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Abstract 

Forward genetic screening associates phenotypes with genotypes by randomly inducing 

mutations and then identifying those that result in phenotypic changes of interest. Here we 

present spatially resolved CRISPR screening (SPARCS), a platform for microscopy-based genetic 

screening for spatial cellular phenotypes. SPARCS uses automated high-speed laser 

microdissection to physically isolate phenotypic variants in situ from virtually unlimited library 

sizes. We demonstrate the potential of SPARCS in a genome-wide CRISPR-KO screen on 

autophagosome formation in 40 million cells. Coupled to deep learning image analysis, SPARCS 

recovered almost all known macroautophagy genes in a single experiment and discovered a role 

for the ER-resident protein EI24 in autophagosome biogenesis. Harnessing the full power of 

advanced imaging technologies, SPARCS enables genome-wide forward genetic screening for 

diverse spatial phenotypes in situ.  
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Introduction 

Genetic screens offer a powerful approach to dissecting the complexity inherent in biological systems. 

Within this space, forward genetic screening is an unbiased way to map phenotypic changes to changes 

in the genome: From a library of genetic variants generated by random mutagenesis, mutants with 

interesting phenotypes are selected and their genotypes determined. This approach has led to 

groundbreaking discoveries in a variety of model organisms (1-3). Now, with the ability to specifically 

target mutagenesis to exonic regions of interest and disrupt both alleles of a given genetic locus, 

CRISPR-based genome editing technologies (4) have enabled the generation of large mutant libraries 

in which a single gene is knocked out in each cell (5). Individual genetically perturbed cells can now 

be profiled for their transcriptome (6-10), protein expression (11), spatial composition (12) and 

chromatin landscape (13). However, genome-wide screening libraries typically contain tens of millions 

of cells, a scale with which most of these techniques are currently incompatible. To overcome this 

limitation, only those cells with an interesting phenotype are typically isolated from the library and 

subsequently genotyped. This paradigm has largely limited cell-based genome-wide screens to three 

types of easily selectable phenotypes: a difference in proliferation rate, an inhibition of cell death, or a 

change in fluorescence intensity compatible with fluorescence-activated cell sorting (FACS) (14-17). 

Increasingly powerful microscopic imaging provides information-rich data on diverse cellular 

phenotypes (18) and would therefore be an ideal technology to read out biological phenotypes of 

interest, particularly if combined with recent advances in deep learning. However, its application in 

genome-wide forward genetic screening has been hampered by a lack of scalability and other 

limitations: ‘in situ sequencing by synthesis’, a technology originally developed to profile the cellular 

transcriptome in tissue samples, has been adapted to sequencing short perturbation-encoding barcodes 

on the DNA level (19, 20). This method separates genotyping and image collection, resulting in 

complete image datasets for unbiased identification of new phenotypes. However, by design it does not 

include an enrichment step for selected phenotypes, requiring all cells in a mutant library to be 

sequenced irrespectively of whether they show a phenotype. In addition, the genotype can only be 

determined for a fraction of cells due to low sequencing fidelity even in low-complexity libraries (20), 

which in combination with the technology’s high costs has limited its applicability for screening 

genome-wide libraries at sufficient coverage (21). Image-based flow cytometers with sorting 

capabilities have recently enabled the investigation of spatial phenotypes at high throughput (22, 23). 

These devices rely on low-resolution flow-based microscopy of detached cells, preventing the 

identification of complex phenotypes. In addition, this technology makes sorting decisions in real time, 

restricting it to the identification of predefined phenotypes and preventing reanalysis of past screens. A 

method originally proposed for the transcriptomic characterization of B-cell populations (24) 

photoactivates fluorophores to mark cells for subsequent isolation by FACS (25-27). This approach can 

only separate few different phenotypes by fluorophore brightness (28). It also requires a real time 
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decision on which cells to isolate, preventing whole-dataset analysis to discover unexpected new 

phenotypes and has not been demonstrated to be compatible with cell fixation, which is necessary for 

antibody-based staining of intracellular targets. 

To enable robust genome-wide high-throughput screening for spatial cellular phenotypes, we set out to 

develop a technology that meets four key requirements: First, it should work on cells in situ and utilize 

state-of-the-art microscopy techniques. Second, it should accommodate large screening libraries to 

ensure adequate representation of rare phenotypes. Third, it should be compatible with the unbiased 

identification of previously unknown phenotypes from entire complex image datasets rather than single 

images in real time. Fourth, it should allow for reanalysis and reselection of cells for genotyping from 

previous archived screens. Importantly, the latter feature would allow the application of novel image 

analysis methods to previously performed screens as they become available. 

Results 

Spatial genotyping by laser microdissection 

To analyze the spatial composition of tissues and clinical samples by mass spectrometry, we have been 

advancing workflows based on laser microdissection (LMD), a technique that uses a focused UV laser 

to cut out and collect arbitrary shapes from tissue sections (29, 30). In a most recent development, deep 

visual proteomics (DVP), we use LMD to excise defined tissue regions for subsequent proteomic 

characterization of individual cell types or extracellular zones by mass spectrometry (31, 32). We 

reasoned that the isolation of single phenotypically interesting cells from a pooled library by LMD 

would provide an ideal basis for a forward genetic screening technology for spatial phenotypes. 

LMD requires samples to be present on a membrane that can be cut by a UV laser, so we first tested 

whether cells could be grown and imaged directly on such polymer membranes. Indeed, on 

polyphenylene sulfate (PPS) membranes, spinning disk confocal microscopy produced high-quality 

images that showed normal cellular morphology (fig. 1A). By segmenting these images into individual 

cells, we generated multi-channel perturbation image datasets from which we aimed to identify cells 

with phenotypes of interest for genotyping (fig. 1B). We then developed a rapid cutting protocol for 

LMD that is compatible with subsequent genotyping by minimizing autofocus time and optimizing the 

trade-off between laser speed and accuracy. Compressing the cutting path and leveraging the fact that 

it is sufficient to isolate nuclei to determine a cell’s CRISPR perturbation by sequencing, we ultimately 

reached a speed of 1,000 nuclei per hour. 

Counting of excised membrane regions collected in a microwell plate using this protocol showed a yield 

of approximately 80 % (fig. 1C). We then tested the genotyping of excised nuclei by generating a pool 

of U2OS cells each expressing one of 77,441 unique sgRNAs in the Brunello CRISPR library (33), 
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plated these cells onto PPS membranes and imaged them. To register membrane slides between imaging 

microscopes and the LMD microscope, we marked the membrane with calibration crosses as landmarks 

that define a coordinate system across each slide, allowing us to find the positions of cells to excise. 

We stitched individual field of view images of a slide into one whole slide image (WSI), segmented 

nuclei based on a DNA stain, generated a cutting map using our newly developed open-source python 

library py-lmd (fig. S1) and then excised and lysed 1,000 nuclei. Sequencing identified 549 unique 

sgRNAs on average in these lysates, demonstrating that isolating individual nuclei for subsequent 

CRISPR genotyping is feasible with LMD (fig. 1D). Comparing the number of unique sgRNAs in the 

LMD lysate with a lysate of cells from the same library isolated by FACS revealed that both techniques 

recovered an sgRNA from approximately 50 % of cells (fig. 1D). From these data we concluded that 

potential DNA damage induced by laser microdissection does not hamper sgRNA recovery. In 

summary, our results show that it is possible to employ LMD to recover genetic information from 

imaged cells at a throughput compatible with genetic screening (fig. 1E). We call this approach spatially 

resolved CRISPR screening (SPARCS). 

Validating SPARCS for genetic screening 

To further develop SPARCS we applied it to screen for regulators of starvation-induced 

macroautophagy (hereafter referred to as autophagy), a fundamental process for cellular energy 

management (34, 35). The signature of autophagy is the formation of vesicles called autophagosomes. 

These are covalently decorated with proteins from the ATG8 family, including the well-studied human 

protein LC3B. During a key event in autophagosome biogenesis LC3B is conjugated to the head group 

of the lipid phosphatidylethanolamine (PE) through a series of ubiquitin ligation-like reactions. A 

critical component of this cascade is the protein ATG5 that forms an E3-like complex with ATG12 to 

mediate the covalent attachment of LC3B to PE. To follow the formation of autophagosomes during 

starvation we stably expressed LC3B tagged with mCherry in U2OS cells, because – unlike GFP – 

mCherry remains fluorescent upon fusion with the lysosome. We then treated these cells with the mTOR 

inhibitor Torin-1 to mimic starvation, which induces autophagy. Cells treated this way began to 

accumulate mCherry-LC3-positive puncta over the course of 14 hours (fig. 2A).  

In a screen, those cells containing sgRNAs against essential regulators of autophagy are unable to form 

these puncta. To identify these cells we trained a deep learning-based image classifier to differentiate 

between cells with or without autophagosomes (fig. 2B, fig. S2A). The training dataset was composed 

of segmented single cell images of mCherry-LC3 expressing U2OS cells that were treated with Torin-

1 (autophagy-on class) or left untreated (autophagy-off class). As an additional group we introduced 

cells treated with Torin-1, yet deficient in ATG5 (autophagy-off class). We used images from several 

biological replicates to avoid overfitting of our classifier to batch-specific characteristics such as 

staining intensity or cell density (table S1). To evaluate the performance of this classifier 1.0, we 
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generated a new test dataset of images from unstimulated and Torin-1 stimulated wildtype and ATG5
-/- 

mCherry-LC3-expressing U2OS cells that had not been part of the training set and as such had never 

been seen by the classifier before. Classifier 1.0 achieved a false discovery rate (FDR) of < 1% (fig. 

S2B) at the chosen threshold, meaning that less than 1% of cells classified as potential hits with an 

autophagy-off phenotype were instead false positives that actually came from the autophagy-on class. 

We then validated SPARCS by performing a small pilot screen on autophagosome formation in 1.2 

million Torin-1-stimulated mCherry-LC3 U2OS cells transduced with the Brunello CRISPR knockout 

(KO) library (fig. 2C). From this library we isolated the top 0.1 % of cells classified as autophagy-off 

by classifier 1.0 with a score > 0.94, corresponding to a test set FDR of 0.38 %. Compared to the entire 

library, we found sgRNAs targeting ATG5 to be highly enriched among isolated cells (median 200-

fold) (fig. 2D). sgRNAs targeting other autophagy-related genes had a median of 60-fold enrichment 

with the most strongly enriched sgRNAs even exceeding 700-fold (fig. 2D). Control sgRNAs not 

targeting any human genes (‘non targeting controls’ (NTCs)) were rare among isolated cells with a 

median enrichment of 10-fold (fig. 2D). These results confirm that the SPARCS protocol stitches and 

registers WSI with sufficient accuracy for the isolation of the nuclei of interest. They also demonstrate 

that assessing autophagosome formation based on images is feasible with a deep learning classifier, and 

that in SPARCS, this classifier can be used to screen for autophagosome formation. 

Accurate detection of autophagy defects in single cell images 

A classifiers’ Receiver Operating Characteristic (ROC) curve visualizes the tradeoff between true 

positive rate (the fraction of all autophagy-off cells that are correctly identified) and false positive rate 

(the fraction of autophagy-on cells incorrectly predicted as autophagy-off). The ROC curve of our 

classifier 1.0 confirmed its overall accuracy with an area under the curve (AUC) of > 0.92 (fig. S2C). 

However, at the precision (the fraction of predicted autophagy-off cells that are actually autophagy-off, 

1-FDR) corresponding to 1 % FDR, the recall (= true positive rate) of classifier 1.0 was below 26% 

(fig. S2D). Closer analysis of the different categories of cells in the test dataset revealed that the 

classifier excelled at identifying autophagy-on cells, but performed poorly at recognizing autophagy-

off cells (fig. S2E, F). 

To improve classification of autophagy-off cells we refined our staining and imaging protocol and then 

trained a new version of our classifier. For this version 2.0 we decided to use a more streamlined 

multilayer perceptron (MLP) head with fewer trainable parameters, add another linear layer and 

increase the number of cells and biological replicates in the training dataset to capture as much 

biological variance as possible (fig. 3A, B, table S1). We also prefiltered the unstimulated and Torin-1 

stimulated images for autophagy-off and -on cells to minimize the number of mislabeled training 

examples (table S1). To evaluate classifier 2.0, we first used parametric UMAP (36) to investigate if 

layers of the CNN had learned to differentiate between images of autophagy-on and autophagy-off cells. 
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This revealed that wildtype cells stimulated with Torin-1, unstimulated wildtype cells and ATG5
-/- cells 

clustered separately in representations of lower layers, most prominently in the 8th of 9 convolutional 

layers (fig. 3C). These results suggested that our CNN had now learned to featurize images of LC3 

distribution in a way that enables accurate classification of cells undergoing autophagy. Of note, the 

network of classifier 2.0 was capable of discriminating between ATG5
-/- and unstimulated wildtype cells 

despite those cells being in the same training class (fig. 3C), a clear improvement over classifier 1.0 

(fig. S2G). Its ROC curve was also drastically improved with an AUC of > 0.999 (fig. 3D). Remarkably, 

in the binary classification output almost all cells were correctly classified according to their autophagy 

status even with a simple classification score threshold of 0.5 (fig. 3E, F). With classifier 2.0, 

classification thresholds > 0.98 produced FDRs of < 1 %, with higher thresholds reducing the FDR 

further without yet diminishing the excellent recall of nearly 100 % (fig. 3G, fig. S2H). Thus, for a 

complex biological process such as autophagy, training a CNN-based classifier on images from 

comparatively few biological replicates achieves excellent performance. 

Genome-wide autophagy screen with SPARCS 

Encouraged by these results we used SPARCS to conduct a genome-wide screen on autophagosome 

formation. We screened a library of 40 million mCherry-LC3 expressing U2OS cells at a median 

coverage of 1,818 cells per gene in the human genome in batches of 5 and 35 million cells (fig. S3). 

Classifying autophagy based on the distribution of LC3 within the first batch showed that 0.56% of 

cells had a score > 0.98. We regarded these cells as potential autophagy-defective hits and, upon 

examining the 8th CNN layer featurization of their LC3 distribution using parametric UMAP, found 

them to cluster separately from autophagy-on cells in the library with a classification score < 0.02 (fig. 

S4A, B). For genotyping we divided the hits into six bins according to their classification score (fig. 

S4C): The top bin represented a cutoff at which we found ATG5
-/- to be strongly enriched in our test 

dataset, whereas the second bin corresponded to unstimulated wildtype cells. Bins 3 – 6 contained the 

remaining potential hits with a roughly equal number of cells per bin. Zooming in on the 8th CNN layer 

featurization of the LC3 distribution in the potential hits revealed that cells in bins 1 & 2 clustered 

separately from bins 3 - 6 (fig. S4D). This indicated that they contained different phenotypic variants 

with regard to their LC3 distribution, potentially corresponding to stronger defects in autophagosome 

formation. Indeed, we observed the fewest LC3 puncta in cells from bins 1 & 2 (fig. S4E). 

For the second genome-wide screen batch we refined our classifier by more stringently selecting 

training examples of autophagy-on and -off cells, thereby further improving its overall performance 

(fig. S5). Using this new classifier 2.1 we obtained similar results from the second batch compared to 

2.0 on the first screen batch: 1.40% of cells were classified as autophagy-off with a score above 0.98 

and in their 8th CNN layer featurization these cells again clustered separately from their autophagy-on 

counterparts with a score < 0.02 (fig. 4A, B). We therefore applied the same binning strategy to these 
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images (fig. 4C), and, upon zooming in on their 8th CNN layer featurization using parametric UMAP, 

found the separation of cells in bin 1 & 2 to be even more apparent than in the first batch (fig. 4D, E). 

We then isolated a total of 395,173 nuclei across both screen batches and sequenced their sgRNAs. 

Given their similarity on the phenotypic level we analyzed the genetic data of both batches together. 

All bins showed a marked enrichment of targeting over non-targeting sgRNAs and enrichment scores 

up to 600-fold, promising the identification of autophagy relevant genes (fig. 4F). In line with our FDR 

calculation (fig. 3G, fig. S5B) and our conclusions from the featurization of individual images (fig. 4D, 

fig. S4D), sgRNAs targeting genes known to be involved in autophagosome formation were most 

strongly enriched in bins 1 & 2 (fig. 4F). On the gene level ATG5, which our classifier was trained to 

identify, was among the most highly enriched genes in several bins, validating our supervised 

classification approach in the context of this large-scale screen (fig. 4G). The Brunello library targets 

each gene in the human genome with four sgRNAs. While in the higher score bins 1 & 2, genes with a 

high mean enrichment score had several sgRNAs enriched, in lower bins genes with a relatively high 

mean enrichment score often only had a single highly enriched sgRNA, indicating potential off-target 

effects. This prompted us to evaluate the number of sgRNAs enriched per gene as an alternative metric 

to score screening hits. Here we again found the strongest hits to contain mainly autophagy-related 

genes (fig. 4H). Taken together, these results establish that SPARCS is highly effective for large scale 

genetic screens on spatial phenotypes. Furthermore, despite the inherent complexity of image-based 

phenotypes, our supervised classifier facilitated the enrichment of a very small subset of individual cells 

with a genetically defined phenotype from a diverse genome-wide library of 40 million cells. 

EI24 reorganizes membranes for autophagy 

The power of SPARCS became even more apparent when we evaluated our screen from the perspective 

of the investigated biological process: Remarkably, this single screen recovered almost all known 

essential genes of the starvation-induced macroautophagy pathway. This included the complete ULK1 

complex and LC3 lipidation cascade (fig. 5A). Closer inspection of individual hits revealed that the 

most strongly enriched gene that is not a canonical macroautophagy gene was EI24, a gene coding for 

an ER-resident transmembrane protein (37) (fig. 5B). EI24
-/- cells have previously been described as 

autophagy-defective, but with a phenotype resulting in spontaneous LC3-puncta formation (38). This 

finding is not in line with the 82-fold enrichment of EI24 in our screen, given that our classifier was 

trained to recognize cells with impaired rather than increased autophagosome formation. To investigate 

why we found EI24 KOs enriched among cells classified as autophagy-off, we generated individual 

EI24
-/- clones. Consistent with the previously reported spontaneous LC3 puncta formation, EI24-

deficient cells have been described to exhibit increased lipidation of LC3 under steady state conditions 

(38), a phenotype we confirmed in EI24
-/- clones (fig. 5C). However, in contrast to previous results we 

found LC3 puncta formation in response to Torin-1 to be largely abolished in EI24-deficient cells (fig. 

5D). Instead, these cells formed a single mCherry-LC3-positive speck that became more pronounced 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 1, 2023. ; https://doi.org/10.1101/2023.06.01.542416doi: bioRxiv preprint 

https://doi.org/10.1101/2023.06.01.542416
http://creativecommons.org/licenses/by-nc-nd/4.0/


 8 

with Torin-1 stimulation, indicating a general defect in membrane traffic or autophagosome formation 

(fig. 5E). These results explain why our classifier picked up EI24 knockouts and demonstrate again that 

even supervised image classification is capable of identifying previously undescribed phenotypes. Our 

results further indicate that EI24 is required for autophagosome formation and has a function beyond 

its recently described LC3 puncta promoting role in maintaining Ca2+ homeostasis across the ER 

membrane (39) that remains to be investigated. 

Discussion 

We present SPARCS, a platform that enables unbiased exploration of the genetic basis of subcellular 

spatial features in forward genetic screens. At the core of the SPARCS methodology, we have adapted 

and refined laser microdissection technology to unprecedented throughput to facilitate genetic screening 

applications. We have improved the precision and efficiency of isolating single nuclei from cell 

cultures, while automating the extraction of several hundred thousand nuclei into distinct bins. By 

integrating a deep learning-based classifier, our genome-wide SPARCS screen successfully identified 

nearly all known genes related to macroautophagy and revealed a novel phenotype associated with the 

EI24 gene. 

SPARCS offers a unique combination of features (table S2) that make it a powerful forward genetic 

screening platform. It can be seamlessly integrated with any state-of-the-art microscope for in situ cell 

imaging. The screening library size is not constrained, except by the imaging microscope's throughput. 

Consequently, microscopy-based genome-wide perturbation screens can now achieve exceptional 

coverage. Besides the method described here, which involves isolating cells based on predefined 

classes, SPARCS is also compatible with the identification of individual cells exhibiting entirely novel 

or unexpected phenotypes. This is achieved through unbiased clustering and anomaly detection applied 

to the entire image dataset. Furthermore, we discovered that samples can be stored long-term, allowing 

for the reanalysis of archived SPARCS screens using newer algorithms. This facilitates the exploration 

of new biological insights within existing data. To streamline the process of translating the identification 

of individual cells with subcellular spatial phenotypes into a cutting map for LMD we have developed 

py-lmd, an open-source Python library for laser microdissection on arbitrary sample types that is 

available on GitHub. We hope that the accessible design of SPARCS, compatible with standard 

microscopes and sequencing workflows, will encourage its adoption by the scientific community. 

Our screen uncovered a potential role in macroautophagy for EI24. This gene had previously been 

implicated in autophagy based on a C. elegans screen in 2010, but its mechanism of action had remained 

unclear (38). Beyond the original observation that EI24 deficiency leads to pronounced formation of 

non-functional autophagosomes even under steady state conditions, it was recently suggested that 

spontaneous Ca2+ fluxes across the ER membrane initiated autophagy in EI24 deficient cells (39). How 
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spontaneous induction of autophagosome formation in EI24
-/- cells can be reconciled with a defect in 

autophagy remained unclear. The results from our screen and the following live cell imaging 

experiments, in which we found EI24
-/- cells to form fewer autophagosomes than wildtype cells, now 

suggest that EI24 plays a – potentially additional – role in autophagosome formation. 

Systems biology is increasingly driven by large-scale artificial intelligence models that set new 

standards for reconstructing and predicting cellular behavior, but require enormous amounts of data to 

train. In light of this development, comprehensive, unbiased data acquisition approaches that can 

generate large datasets across modalities have become highly desirable. In this context, SPARCS, with 

its focus on open and accessible design and the ability to screen large libraries, can make a valuable 

contribution to understanding biology from the molecular to the organismic scale.  
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extract single-cell images from entire fields of view up to WSIs 

(https://github.com/MannLabs/SPARCSpy). 

All other data are available from the authors upon request. 
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Methods 

Cell culture 

U2OS cells were cultured in DMEM supplemented with 10 % fetal calf serum (FCS), 

penicillin/streptomycin and 1 mM sodium pyruvate and split every 2-3 days. PPS membrane slides were 

sterilized for 30 minutes under the UV light of a cell culture hood with their cavity side down. Cells 

were then plated onto these slides cavity down in 4-well plates with 5 mL DMEM per well. 

Genome engineering 

U2OS cells stably expressing Cas9, mCherry-LC3 and mNeon tagged N-terminally with the lipidation 

sequence of Lck (LckLip-mNeon, the original plasmid was a gift from Dorus Gadella (Addgene plasmid 

# 98821, (40))) were generated via lentiviral transduction. Briefly, HEK-293T cells were transfected 

with transfer plasmids for Cas9 or mCherry-LC3 and 3rd generation lentiviral particle production 

plasmids pMDLg and pRSV as wells as a VSV G-protein pseudotyping plasmid 18 hrs after plating. 

Eight hrs later, the medium was exchanged and cells were washed once in PBS. After 48 hrs 

supernatants containing viral particles were harvested and transferred onto U2OS cells plated 18 hrs 

before. 48 hrs later U2OS cells were washed. Cells were selected for Blasticidin resistance with 

10 µg/mL Blasticidin or FACS-sorted for high fluorescent protein expression and single clones 

generated by limiting dilution cloning. A bright clone with a visible reaction to 600 nM Torin-1 was 

selected, expanded and used for all experiments. Lentiviral particles for the expression of individual 

sgRNAs from LentiGUIDE-Puro were generated analogously. Cells were selected for sgRNA 

expression with 5 µg/mL puromycin for 48 hrs. Of note, the cell line used for the autophagy screens 

did not yet stably express Cas9 but was instead transduced with a LentiCRISPRv2, a vector driving 

expression of both Cas9 and an sgRNA. 

Laser microdissection 

Cutting paths for laser microdissection of selected cells were generated using our open-source python 

library py-lmd (https://github.com/MannLabs/py-lmd) with the configurations specified in the “screen 

config” file. Each shape was dilated to ensure that the cutting line did not go through or damage the 

nucleus. Laser microdissection was carried out on a Leica LMD7 at 40 x magnification using the 

software version 8.3.0.8275. The microscope was equipped with the Okolab LMD climate chamber 

(H201-ENCLOSURE-LMD and H201-LEICA-LMD) to ensure stable temperatures throughout the 

cutting process. Slides were equilibrated in the microscope to 34.5 °C before cutting to ensure focus 

stability. Cutting contours were imported from the XML files generated with py-lmd after reference 

point alignment and cut with the following settings: power 60, aperture 1, speed 100, head current 46 % 

- 51 %, pulse frequency 1128 and offset 185. Autofocus adjustment was performed every 30 shapes.

Shapes were sorted into 48-well plates.  During cutting a custom-built wind protection was used around
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the collection plate to ensure collection of excised shapes into the center of the well and prevent wind 

disturbances. After cutting, samples were stored at 4 °C before lysis and library generation. 

CNN-based image classifier training 

Neural networks with 9 randomly initialized convolutional layers and 3 (classifiers 1, P) or 4 (classifiers 

2.1 & 2.2) linear layers were trained to classify segmented single cell images as autophagy-on or 

autophagy-off (table S1). The training datasets were based on several biological replicates of mCherry-

LC3 expressing U2OS cells with and without autophagosomes. The autophagy-off class consisted of 

images from unstimulated wildtype cells (pre-filtered to remove cells showing spontaneous 

autophagosome formation for 2.1 and 2.2) and two different ATG5
-/- clones. Where applicable, pre-

filtering was performed with classifier P. The autophagy-on class consisted of single-cell images from 

stimulated wildtype cells, where applicable pre-filtered with classifier P to remove non-responding 

cells. To increase variability captured in the training data, the training slides were plated at an angle to 

include varying cell densities on one slide. 500 k, 1 million or 1.2 million single-cell images respectively 

were randomly selected from each class for training while ensuring balanced sampling from each test 

slide. An additional 50 k cells from each class were used for testing and validation during training. 

Training data were augmented by Gaussian blur, addition of Gaussian noise and random rotations in 

90° steps. Training was performed using single-gradient descent with a learning rate of 1 × 10-3. 

Gradient clipping was set to 0.5. Training was performed over a total of 20, 30 or 40 epochs. Classifier 

performance was tested on a biologically independent set of unstimulated wildtype cells, Torin-1 

stimulated wildtype cells and ATG5
-/- cells. Models were built and trained using PyTorch (41). 

Segmentation of individual cells 

Images were flat-field corrected during image acquisition using the Perkin Elmer Harmony software 

(v4.9) and intensity rescaled to the 1 % and 99 % quantile. Extremely bright regions (pixel values 

greater than 40000) were set to 0 before determining the normalization quantiles. Stitching of image 

tiles was performed using the ashlar python API (42) in our open-source python library SPARCStools 

(https://github.com/MannLabs/SPARCStools). 

Stitched whole slide images were segmented using our open-source SPARCSpy python library 

(https://github.com/MannLabs/SPARCSpy) with the parameters defined in “config_screen” or 

“config_training” respectively. A nucleus segmentation mask was generated using a local median 

thresholding approach and the cytosol segmentation mask was calculated using fast marching from 

nuclear centroids with WGA staining as a potential map.  

Single cell images were extracted based on nuclear and cytosolic segmentation masks. The masked area 

was extended using a Gaussian filter with a sigma of 5 to extract information from each of the imaged 

channels and saved to hdf5 files as individual 128 × 128	px images. 
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Sample preparation and imaging of autophagy 

After stimulation with 600nM Torin-1, PPS slides were washed 1x in PBS in a Coplin jar and then 

stained with 10 µg/mL WGA-Alexa488 in PBS for 10 minutes at 37 ºC. After washing 1 x with PBS 

slides were fixed for 10 minutes at room temperature in 4 % MeOH-free PFA in PBS in 4-well plates. 

After washing 3 x in PBS, slides were stained with 10 µg/mL Hoechst-33342 in PBS at 37 ºC for at 

least 30 minutes. After washing 3 x in PBS, slides were dried in a centrifuge at 3,400 g for 1 minute. 

Cells in ibidi microwell slides and plates were stained according to the same protocol but imaged in 

PBS. Imaging was done on a Nikon Eclipse Ti2 spinning disk confocal microscope or an Opera Phenix 

high-content imager as indicated. 

Genetic screening for autophagy regulators 

We conducted our screen in mCherry-LC3 expressing U2OS cells using the Brunello human CRISPR 

KO library in the LentiCRISPRv2 backbone. The Brunello library was a gift from David Root and John 

Doench (Addgene #73178) and amplified according to their protocol (33). U2OS cells were transduced 

with lentiviral particles produced as described above at an MOI of approximately 0.2. After 48 hrs, 

successfully transduced cells were selected with 5 µg/mL puromycin for two days and then expanded 

for three days. We then plated 50 million cells on a total of 109 slides in 4 well plates, and in addition 

included unstimulated and wildtype controls on separate slides with every screening batch for classifier 

training. The day after plating, cells were stimulated with 600 nM Torin-1 for 14 hrs. Slides were then 

prepared for microscopy as described above and imaged on an Opera Phenix high content imager at 

20 x resolution. Where applicable slides were stored at -20 °C and brought to 4 °C the day before laser 

microdissection. Cells from each bin were excised into multiple wells. Nuclei were then lysed in 48-

well plates using the arcturis PicoPureTM DNA extraction kit. 120 µL of lysis buffer was added to each 

well and incubated at 65 °C for 4 hrs. Proteinase K was inactivated at 95 °C for 15 mins. Cooled samples 

were transferred to PCR tubes and the emptied wells were rinsed with 40 µL of ddH2O. Amplification 

of sgRNAs was performed as described previously (43) but in a single step PCR (33) over 36 cycles 

with no added water. Sequencing was performed on an Illumina NextSeq with 500 reads per nucleus 

on average. An sgRNA read count table was generated for each sequencing library. Low quality 

sgRNAs were removed by applying a minimum number of reads per sgRNA threshold that was set 

based on the distribution of read counts per sgRNA in the sample. The non-targeting sgRNA with the 

sequence TACGTCATTAAGAGTTCAAC was excluded from sequencing results of approximately 

40 % of cells from bins 3 - 6 of batch 2 of the genome-wide screen due to a contamination of the 

sequencing library leading to abnormally high read counts of this specific sequence. For further analysis 

only sgRNAs with at least a fraction of reads corresponding to a single cell per well were used. sgRNA 

read fractions of individual wells were then aggregated per bin by multiplying with the fraction of 

excised cells in that well over all excised cells in the bin. The per-bin aggregated sequencing results 
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were used for all further data analysis. Enrichment values were determined by normalizing the 

aggregated fraction of reads per sgRNA to the fraction of reads per sgRNA in the input cell library. 

Immunoblotting 

20,000 U2OS cells were plated per 96-well. 18 hrs after plating, cells were stimulated and then 

harvested in 1 x Lämmli buffer. 3 wells were pooled per condition. Lysates were boiled at 95 ºC for 

5 min. and then run on 16 % TRIS-glycine polyacrylamide gels before immunoblotting onto 0.2 µm 

nitrocellulose membrane for 90 minutes. Membranes were blocked in 5 % milk in PBST for 1 hr and 

incubated with primary antibody at 4 ºC overnight. After washing 3 x in PBST for a total of 15 min. 

membranes were incubated with HRP-labelled secondary antibody for 2 hrs at room temperature. After 

washing 3 x in PBST for a total of 15 min. membranes were covered in luminescent HRP substrate and 

immediately imaged. 
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Figure 1 | SPARCS enables genome-wide CRISPR screening for spatial phenotypes in human 

cells 

(A) Example images of U2OS cells on PPS membranes in several channels. Solid lines indicate nuclear

segmentation based on Hoechst DNA staining; dotted lines indicate cytosol segmentation based on fast

marching from nuclear centroids with wheat germ agglutinin (WGA)-Alexa 488 staining as a potential

map. Numbers correspond to images of individual cells shown in (B). Images were acquired on an

Opera Phenix microscope in confocal mode with 20 x magnification. Scalebars represent 15 µm. PPS:

polyphenylene sulfide.

(B) Post-segmentation images of individual mCherry-LC3 expressing U2OS cells. Numbers correspond

to cells shown in (A).

(C) 100 or 500 regions were excised from U2OS cells grown on a PPS membrane slide and subsequently

counted. Five and two technical replicates were excised from one slide, respectively.

(D) Comparison of sgRNA recovery after isolation of sgRNA-expressing fixed cells from one library

either by laser microdissection (Leica LMD7, 1,000 nuclei per replicate, 3 independent biological

replicates) or FACS (technical replicates). Bars indicate mean % sgRNAs recovered, error bars indicate

SEM. p-value was calculated with an unpaired two-tailed t-test.

(E) Overview of genome-wide CRISPR screening for microscopy-based spatial phenotypes with the

SPARCS pipeline. Laser microdissection of individual nuclei on a Leica LMD7 has been optimized to

isolate 1,000 nuclei/hr. Instructions for laser microdissection of selected cells are generated using our

open-source python library py-lmd. PPS: polyphenylene sulfide.
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Figure 2 | SPARCS achieves strong enrichment of spatial phenotypes in a forward genetic screen 

(A) U2OS cells expressing mCherry-LC3 and mNeon tagged with the lipidation signal of Lck at the N-

terminus (membrane marker) were stimulated with Torin-1 and imaged live once per hour on a Nikon

Eclipse Ti2 confocal microscope with 100 x magnification. Scalebars represent 15 µm. One

representative of three independent experiments.

(B) Schematic describing the training of a convolutional neural network-based image classifier for the

identification of individual autophagy-defective cells.

(C) Overview of SPARCS screening for autophagy.

(D) Results from a SPARCS screen for autophagosome formation on 1.2 million U2OS cells. The top

0.1 % of cells classified as autophagy-off with a score above 0.94 by classifier 1.0 were isolated by

laser microdissection (LMD) and their sgRNAs sequenced to determine their enrichment relative to the

input library. p-values were calculated with a Kruskal-Wallis test followed by Tukey’s test.
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Figure 3 | Deep learning accurately identifies autophagy-defective cells 

(A) Unsegmented images that were used for training autophagy classifier 2.0 after segmentation.

Membranes were stained with WGA-Alexa488. “Library” refers to cells transduced with the Brunello

CRISPR KO library. Images were acquired on an Opera Phenix microscope in confocal mode with 20 x

magnification. Scale bars represent 30 µm.

(B) Overview of the architecture and training paradigm of the convolutional neural network-based

classifier 2.0 for autophagic or non-autophagic distribution of mCherry-LC3 in single U2OS cells. 1

million 128 ´ 128 px single cell images from several biological replicates were used in each training

class. The autophagy-on class consisted of images of wildtype cells stimulated with Torin-1 pre-filtered

for responsive cells. The autophagy-off class consisted of images of unstimulated wildtype cells pre-

filtered to remove cells showing spontaneous autophagosome formation and images from two different

ATG5
-/- clones. Images were acquired on an Opera Phenix microscope in confocal mode with 20 x

magnification. CNN: convolutional neural network. MLP: multilayer perceptron.

(C) UMAPs of mCherry-LC3 images of single U2OS cells featurized through the autophagy classifier

2.0 illustrated in (B) up to the indicated layers. Colors depict the indicated genotypes and treatments.

20,000 cells are shown for each genotype and treatment.

(D) Receiver Operating Characteristic (ROC) curve of the autophagy classifier 2.0. AUC: Area under

the curve.

(E) Histograms of images of mCherry-LC3 expressing U2OS cells of the indicated genotypes treated

as indicated after autophagy classification with our classifier 2.0 as illustrated in (B).

(F) Heatmap showing the percentage of cells in e classified as autophagy-on or autophagy-off with a

classification score threshold of 0.5.

(G) Precision (Percent ATG5
-/- among cells classified as autophagy-off from an equal mix of Torin-1

stimulated wildtype cells and ATG5
-/- cells) and recall (Percent ATG5

-/- cells classified as autophagy-

off) of our autophagy classifier at different thresholds for classifying cells as “autophagy-defective”.

The data used for (C) – (G) come from an independent test dataset that was not used during training of 

the autophagy classifier. 
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Figure 4 | Genome-wide CRISPR screening for autophagosome formation in 40 million U2OS 

cells using SPARCS 

(A) Example region from a genome-wide SPARCS CRISPR knockout screen on autophagosome

formation in mCherry-LC3 expressing U2OS cells after Torin-1 stimulation for 14 hrs. Colors in nuclei

indicate the result of binary autophagy classification with the classifier 2.1, dotted lines indicate cytosol

segmentation. Images were acquired on an Opera Phenix microscope in confocal mode with 20 x

magnification.

(B) Histogram of autophagy classification scores in the genome-wide CRISPR KO library batch 2

(inset) zoomed in on cells classified as autophagy-off with a score above 0.975. Colored boxes illustrate

the binning strategy we used to isolate cells for sgRNA sequencing.

(C) UMAP representation of single cell images from all cells in screen batch 2 with a classification

score ≥ 0.98 (dark blue) or < 0.02 (light blue) featurized through the first 8 convolutional layers of

autophagy classifier 2.1. 91,320 images are depicted for each category.

(D) As C but colored according to our binning strategy along different autophagy classification

thresholds as outlined in (B). 15,220 images are depicted per bin. Right panel shows a magnification of

the UMAP region containing the putative screening hits.

(E) Images of individual cells from each bin in screen batch 2.

(F) z-scored enrichments of individual sgRNAs in each bin from batches 1 & 2. Vertical lines depict

median, boxes depict interquartile range (IQR) and whiskers depict 1.5 ´ IQR. #: One sgRNA targeting

the gene ENTPD4 with a z-score of 42.1 in bin 5 is not depicted. p-values were calculated with a

Kruskal-Wallis test followed by Dunn’s test. NTC: non-targeting control.

(G) sgRNA sequencing results of the top 50 genes in each of the six bins filtered for genes for which

we found at least two different sgRNAs in the respective bin in batches 1 & 2. Enrichment is calculated

as the fraction of reads for an sgRNA in the respective bin divided by the fraction of reads of that

sgRNA in the entire library. Bars indicate average enrichment per gene calculated from the enrichment

of individual sgRNAs indicated as dots. Filled bars depict autophagy-related genes highlighted in bold.

(H) Number of different sgRNAs per gene in each bin for all genes with at least 9 total sgRNAs across

all bins. sgRNAs were counted if they were sequenced with a read fraction in the top 50 % per bin.
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Figure 5 | Analysis of hits from genome-wide SPARCS screen 

(A) Overview of the canonical macroautophagy pathway. Colors indicate the highest enrichment value

we found for a given gene in any bin. USO1 was not found with at least two different sgRNAs in any

single bin.

(B) Enrichment vs read count for individual sgRNAs in the top two bins for genes where we found at

least two different sgRNAs in the respective bin. Circle sizes indicate the total number of different

sgRNAs we found for a given gene, colors indicate different groups of genes. Individual sgRNAs from

the “other” group are annotated. NTC: non-targeting control.

(C) Immunoblot of endogenous LC3 lipidation in wildtype and EI24
-/- mCherry-LC3 and LckLip-

mNeon expressing U2OS cell. Two clones are shown per genotype. One representative of three

independent experiments.

(D) Time course analysis of autophagy classification in clones of wildtype and EI24
-/- mCherry-LC3

and LckLip-mNeon expressing U2OS cells. Cells were treated with Torin-1 for up to 14 hrs. Dots

represent average classifier scores from cells in 15 fields of view per timepoint and clone from three

independent experiments, shaded areas represent SEM. Images were acquired on an Opera Phenix

microscope in confocal mode with 20 x magnification.

(E) Images of live mCherry-LC3 and LckLip-mNeon expressing wildtype and EI24
-/- U2OS cells after

14 hrs of Torin-1 stimulation. Arrowheads indicate larger mCherry-LC3 aggregates. Images were

acquired on a Nikon Eclipse Ti2 confocal microscope with 100 x magnification. Scalebars represent

15µm. One representative of three independent experiments.
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from lmd.lib import Collection
from lmd import tools

my_collection = Collection()

my_collection.join(
    tools.makeCross([20, 20], [50, 30, 30, 50], 1, 10)
)

my_collection.join(
    tools.glyph('A', offset=(-50, 130))
)

my_collection.join(
    tools.text('283', offset=(130, 20))
)

Figure S1
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Figure S1 | The py-lmd python library generates cutting paths for automated laser 

microdissection 

(A) Overview of cutting path generation with py-lmd.

(B) py-lmd allows the generation of arbitrary shapes such as calibration crosses.
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Figure S2
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Figure S2 | Performance of LC3 image-based autophagy classifiers 

(A) Overview of the architecture and training paradigm of our convolutional neural network-based

classifier 1.0 for autophagic or non-autophagic distribution of mCherry-LC3 in single U2OS cells.

500,000 128 ´ 128 px single cell images from several biological replicates were used in each training

class. The autophagy-on class consisted of images of wildtype cells stimulated with Torin-1. The

autophagy-off class consisted of images of unstimulated wildtype cells and images from two different

ATG5
-/- clones. CNN: convolutional neural network. MLP: multilayer perceptron.

(B) False discovery rates (FDR) of the autophagy classifier 1.0 at different classification score cutoffs.

(C) Receiver Operating Characteristic (ROC) curve for autophagy classifier 1.0. AUC: area under the

curve.

(D) Precision-Recall curve for our autophagy classifier 1.0.

(E) Histograms of images of mCherry-LC3 expressing U2OS cells of the indicated genotypes treated

as indicated after autophagy classification with classifier 1.0 as illustrated in (A).

(F) Heatmap showing the percentage of cells in d classified as autophagy-on or autophagy-off with a

classification score threshold of 0.5.

(G) Parametric UMAPs of mCherry-LC3 images of single U2OS cells featurized through our autophagy

classifier 1.0 illustrated in (A) up to the indicated layers. Colors depict the indicated genotypes and

treatments. 20,000 cells are shown for each genotype and treatment.

(H) Precision-Recall curve of classifier 2.0.

(B) – (H) were calculated on independent test datasets for the respective classifiers
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Figure S3 | Overview of genome-wide SPARCS screening for autophagy 

(A) Batching and binning strategy for screening autophagosome formation in 40 million mCherry-LC3

expressing U2OS cells. We dissected fewer cells than we imaged for a given bin due to the quality

control step outlined in e. *The efficiency of the PCR on bin 2 from batch 2 had decreased dramatically,

presumably due to the high density of membrane fragments in the reaction, leading to a loss of sgRNAs

for sequencing. PPS: polyphenylene sulfide.

(B) Number of cells segmented per screen slide.

(C) Distribution of human genes targeted in the screen across cells in the library as determined by deep

sequencing.

(D) Distribution of non-targeting and targeting sgRNAs in the reference library as determined by deep

sequencing.

(E) Quality control strategy for false positives arising from out-of-focus images. When we spatially

clustered hits using DBSCAN, we found clusters above a certain size to correspond to entire out-of-

focus imaging tiles and removed these clusters before nuclei excision.
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Figure S4 | Results from genome-wide autophagy screen batch 1 

(A) Example region from a genome-wide SPARCS CRISPR knockout screen on autophagosome

formation in mCherry-LC3 expressing U2OS cells after Torin-1 stimulation for 14 hrs. Colors in nuclei

indicate the result of binary autophagy classification with classifier 2.0, dotted lines indicate cytosol

segmentation. Images were acquired on an Opera Phenix microscope in confocal mode with 20 x

magnification.

(B) UMAP representation of single cell images from all cells in screen batch 1 with a classification

score ≥ 0.98 (dark blue) or < 0.02 (light blue) featurized through the first 8 convolutional layers of

autophagy classifier 2.0. 4,806 cells are depicted per category.

(C) Histogram of autophagy classification scores in the genome-wide CRISPR KO library batch 1

(inset) zoomed in on cells classified as autophagy-off with a score above 0.975. Colored boxes illustrate

the binning strategy we used to isolate cells for sgRNA sequencing.

(D) As (B) but colored by screening bin. 801 cells shown per bin.

(E) Images of individual cells from each bin in screen batch 1.
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Figure S5 | Performance metrics of classifier 2.1 

(A) Receiver Operating Characteristic (ROC) curve for autophagy classifier 2.1. AUC: area under the

curve.

(B) Precision-Recall curve for our autophagy classifier 2.1.

(C) Histograms of images of mCherry-LC3 expressing U2OS cells of the indicated genotypes treated

as indicated after autophagy classification with classifier 2.1.

(D) Heatmap showing the percentage of cells in (C) classified as autophagy-on or autophagy-off with

a classification score threshold of 0.5.

(A) – (D) were calculated on an independent test dataset.
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Table S1 | Overview of CNN-based image classifiers trained in this study 

All classifiers were trained on 128 ´ 128 px single cell images using PyTorch lightning. Unstimulated 

control slides containing library cells plated in parallel with the screen slides were included during 

training to capture possible batch effects introduced during plating and staining of the screening library. 

Cells were pre-filtered according to their autophagy score using classifier version P where indicated. 
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Table S1 

Classifier 
Version 

Description Architecture Number of 
trainable 
parameters 

Training data Training 
Epochs 

Number 
of cells 
per class 

Fig. Used to 
classify 
dataset 

Independent Test 
Dataset 

AUC 
ROC 
Curve 

1.0 Trained on 
initial 
staining 
protocol. 
Used to 
classify pilot 
screen 

As in Fig. 2b 
but classifier 
head only 
consists of 3 
fully 
connected 
linear layers 

17,882,244 2 slides unstimulated wt 
2 slides wt + Torin-1 
1 slide ATG5-/- clone 1 
1 slide ATG5-/- clone 2 

40 500,000 2, 
S2 

A 
1.2 
million 
cells 

1 slide ATG5-/- 
cells clone 1 
1 slide 
unstimulated wt 
cells 
1 slide wt cells + 
Torin-1 

0.925879 

P Only used to 
pre-filter 
cells for 
training 2.0 
& 2.1 

As in first 
classifier 

17,882,244 3 slides wt + Torin-1 
3 slides ATG5-/- mixed 
clones 
1 slide ATG5-/- clone 1 
1 slide ATG5-/- clone 2 

30 1,200,000 1 slide ATG5-/- 
cells clone 1 
1 slide 
unstimulated wt 
cells 
1 slide wt cells + 
Torin-1 

2.0 Used on 
initial batch 
of genome-
wide screen 

As shown in 
Fig. 2b 

14,340,484 1 slide ATG5-/- clone 1 
1 slide ATG5-/- clone 2 
3 slides ATG5-/- mixed 
clones 
2 slides unstimulated screen 
cells score > 0.9 
(autophagy-off) 
3 slides wt + Torin-1 score 
< 0.1 (autophagy-on) 

20 1,000,000 3, 
S4 

Screen 
batch 1 
5 
million 
cells 

1 slide ATG5-/- 
cells clone 1 
1 slide 
unstimulated wt 
cells 
1 slide wt cells + 
Torin-1 

0.999649 
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2.1 Refined for 
largest part 
of genome-
wide screen 

As shown in 
Fig. 2b 

14,340,484 1 slide ATG5-/- clone 1 
1 slide ATG5-/- clone 2 
3 slides ATG5-/-  mixed 
clones 
2 slides unstimulated screen 
cells score > 0.999 
(autophagy-off) 
3 slides wt + Torin-1 score 
< 0.001 (autophagy-on) 

20 1,000,000 4, 
S5 

Screen 
batch 2 
35 
million 
cells 

1 slide ATG5-/- 
cells clone 1 
1 slide 
unstimulated wt 
cells 
1 slide wt cells + 
Torin-1 

0.999772 
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Table S2 | Comparison of high-throughput methods for combined spatial phenotyping and 

genotyping 

Search space: library size that can be screened for phenotypes. Target space: Proportion of library that 

can be analyzed. Phenotypic variants that can be discriminated: The maximum number of different 

phenotypes that can be recovered from a single screen. Real time decision for genotyping necessary: 

Whether a decision has to be made for a given image in real time during screening (“yes”) or whether 

entire single cell datasets can be analyzed after imaging before a decision on which cells to genotype 

has to be made (“no”). 

*A genome-wide screen using in situ-seq has recently been reported (ref 21) with a small library of 10

million cells in which the number of screened and successfully sequenced cells and sgRNA

representation remain unclear.

°These technologies have low costs per screened cell, but require the use of instruments often provided 

by core facilities such as a laser dissection microscope for SPARCS, an imaging sorter device for 

imaging flow cytometry or an imaging setup equipped with a fluorescence recovery after 

photobleaching (FRAP) laser for pA-mCherry. 
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Table S2 

SPARCS In situ seq Imaging flow 

cytometry 

pA-mCherry 

References This study 19, 20, 21 22, 23 25, 26, 27 

Search space large medium large large 

Target space small medium large small 

Phenotypic variants that 

can be discriminated 

microtiter plate unlimited microtiter plate 4 per 

fluorophore 

Image quality confocal confocal flow-based confocal 

Real time decision for 

genotyping necessary 

No No Yes Yes 

Discovery of new 

phenotypes after screen by 

reanalysis with new 

computational model 

possible 

Yes Yes No No 

Largest library size 40 million 31 million 12 million 12.6 million 

Genes targeted 19,114 5,072* 18,408 18,905 

Special equipment 

required 

Laser 

microdissection 

microscope 

Ultrafast 

imaging setup 

and precise 

stage for 

sequencing 

cycles 

Imaging flow 

sorter 

FRAP laser or 

equivalent 

Cost per cell in library Low˚ High Low˚ Low˚ 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 1, 2023. ; https://doi.org/10.1101/2023.06.01.542416doi: bioRxiv preprint 

https://doi.org/10.1101/2023.06.01.542416
http://creativecommons.org/licenses/by-nc-nd/4.0/

