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Abstract

While the conventional wisdom is that growth rate is prominently set by ribosome amounts,
in many biologically relevant situations the levels of mRNA and RNA polymerase can
become a bottleneck for growth. Here, we construct a quantitative model of biosynthesis
providing testable predictions for these situations. Assuming that RNA polymerases
compete for genes and ribosomes for transcripts, the model gives general expressions
relating growth rate, mRNA concentrations, ribosome and RNAP levels. On general
grounds, the model predicts how the fraction of ribosomes in the proteome depends
on total mRNA concentration, and inspects an underexplored regime in which the
trade-off between transcript levels and ribosome abundances sets the cellular growth
rate. In particular, we show that the model predicts and clarifies three important
experimental observations, in budding yeast and E. coli bacteria: (i) that the growth-
rate cost of unneeded protein expression can be affected by mRNA levels, (ii) that
resource optimization leads to decreasing trends in mRNA levels at slow growth, and
(iii) that ribosome allocation may increase, stay constant, or decrease, in response to
transcription-inhibiting antibiotics.

Introduction

Understanding cell growth is a classic and central question in biology (Neidhardt and
Magasanik, 1960; Koch, 1988; Zhu and Thompson, 2019). A striking progress of the recent
years is the development of mathematical theories that explain quantitative relationships
between global parameters of biosynthesis and growth rate, initially found classically
for bacteria (Bremer and Dennis, 2008; Dennis and Bremer, 1974; Schaechter et al.,
1958). Such growth laws can be understood as “resource allocation” constraints, as they
reflect the presence of a finite pool of resources allocated to the production of different
protein classes. For instance, allocating ribosomes to production of one protein class
implies withdrawing ribosomes from the production of another class. Crucially, this
approach has proved important to generate predictive models, for example, of the global
regulation of gene expression across growth conditions (Scott and Hwa, 2011; You et al.,
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2013; Qian et al., 2017), the growth response to different classes of translation-targeting
antibiotics (Scott et al., 2010; Greulich et al., 2012) and the cost of producing unnecessary
proteins (Scott et al., 2010). While most of the recent work in this area has been
performed on E. coli (You et al., 2013; Dai et al., 2016; Erickson et al., 2017; Scott
and Hwa, 2011; Hu et al., 2020; Serbanescu et al., 2020; Belliveau et al., 2021), there
are strong indications that different quantitative relationships hold across bacteria, in
budding yeast and across lower eukaryotes (Scott et al., 2010; Scott and Hwa, 2011; Maitra
and Dill, 2014; Borkowski et al., 2016; Metzl-Raz et al., 2017,?; Kostinski and Reuveni,
2021; Hu and Lercher, 2021). This suggests the presence of strong unifying principles
(likely reflecting universal aspects due to resource-allocation trade-offs) in biosynthesis
across kingdoms, despite the profound architectural and regulatory differences between
organisms (Bruggeman et al., 2020; Kostinski and Reuveni, 2021; Kafri et al., 2016b;
Shahrezaei and Marguerat, 2015; Weiße et al., 2015).

A key aspect for sustaining growth is autocatalysis from ribosome self replication,
which is also a primary ingredient of growth-laws theories (Roy et al., 2021; Koch, 1988;
Kafri et al., 2016b; Kostinski and Reuveni, 2020). More broadly, growth laws originate
from the presence of a finite pool of cellular resources needed for biosynthesis. As such,
their specific form depends on which factors are limiting for biosynthesis, and indeed
many experiments show that in most conditions ribosomes are a major limiting factor
for growth. However, there are both physiological and perturbed situations where this
ceases to be the case. In particular, a growing body of evidence suggests that in several
circumstances transcription, RNA polymerase and mRNA levels become relevant for
setting growth rate (Espinosa et al., 2022; Balakrishnan et al., 2022; Neurohr et al., 2019;
Kafri et al., 2016b,a; Lin and Amir, 2018; Liang et al., 2000).

Therefore, a critical next question for theory is how to produce theoretical frameworks
that evolve the ribosome-centered view, preserving its transparency, while also accounting
for the experimental observations that call for a more comprehensive description of
biosynthesis, and in particular for the general observation that gene transcription plays a
major role in setting the growth rate (Kafri et al., 2016b; Balakrishnan et al., 2022).

Here, our goal is to provide precisely this extended framework. In order to introduce
our approach, let us revise the body of the experimental evidence that inspires it, and
the previous theories the form the basis of our work. Experimentally, we started from
several lines of evidence. The first is the production of unnecessary proteins, which
leads to a reduction in growth rate (a “growth cost”). The established view (based
on E. coli data and ribosome-centric models), is that the cost of unneeded protein
expression comes from the mass fraction of the proteome occupied by this unneeded
protein (Scott et al., 2010). In S. cerevisiae, a study by Kafri and collegues (Kafri et al.,
2016a) has shown that in some conditions the growth cost of protein overexpression
also comes from a transcriptional burden (but we lack a quantitative framework that
captures this cost). Turning to drugs perturbing the global transcription rate in E.
coli, several studies (Si et al., 2017; Scott et al., 2010; Izard et al., 2015) have shown
that the growth rate decreases smoothly under exposure to rifampicin, a well-known
antibiotic that targets transcription elongation by binding to RNA polymerase (RNAP).
Intriguingly, Scott and coworkers (Scott et al., 2010) also found a non obvious (and
yet unexplained) nutrient-dependent ribosome re-allocation under rifampicin treatment,
which may suggest that cells possess specific mechanisms in place to deal with limited
transcriptional capacity. From a theoretical perspective, two recent studies have included
the central dogma into a theory of biosynthesis. Lin and Amir (Lin and Amir, 2018) have
used the framework to explore the limits of full saturation, for example when ribosomes
fully saturate mRNAs. Roy and coworkers (Roy et al., 2021) defined a more complex
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model of growth stemming from a universal ‘autocatalytic network’, which includes
several layers of biosynthesis. The model identifies several limiting regimes beyond
translation-limited growth, including transcription, but it does not analyze specifically
the situation of competition for transcripts. Additionally, both of these frameworks do
not consider the problem of optimal allocation of resources, which was shown to underline
multiple growth laws (Scott et al., 2014; Chure and Cremer, 2023).

Our framework integrates biosynthesis and the central dogma at both the transcrip-
tional and translational level along the lines of the studies by Lin and Amir and Roy
and coworkers (Roy et al., 2021; Lin and Amir, 2018), but also adds a description of
growth laws with growth-rate optimization (Scott et al., 2014; Chure and Cremer, 2023).
We analyze this model in both growth-optimized and non-optimized conditions. As
we will argue in the following, this combination results in a theory able to predict the
key experimental findings described above. More widely, it describes the dependency
of growth rate on both transcription and translation, through allocation of resources
of the biosynthetic machinery, mainly RNAPs and ribosomes. Crucially, we show that
mRNA levels can affect growth rate well outside of the saturation regime analyzed by
Lin and Amir, in a regime where ribosomes within a finite pool compete for transcripts.
In this regime the ribosome-mRNA complex formation limits biosynthesis: ribosome
autocatalysis is still the engine of cell growth, but its throttle are mRNA levels.

Results

A minimal biosynthesis model including transcription

Our first step is to propose a general framework (Figure 1A) that links cellular growth
physiology with two layers of the central dogma: transcription (for which we will use
the suffix TX in our notation) and translation (suffix TL). The equations describing
the expression of different classes of genes representing distinct coarse-grained biological
functions (indexed by i) are similar to ref. (Lin and Amir, 2018). Each class is populated
by gi gene copies. Transcription synthesizes mi mRNA copies of each gene class, which
are then translated into proteins with abundances Pi. The abundance of transcripts mi

and proteins Pi belonging to gene type i evolves according to the following equations,

dmi

dt
= gi J

TX
i ([N ])− dmi mi (1)

dPi
dt

= mi J
TL
i ([R])− dPi Pi , (2)

where the fluxes JTXi and JTLi are the RNAP flux per gene (corresponding to the amount
of mRNA produced per unit time per gene) and the ribosome flux per mRNA (protein
produced per unit time per mRNA). The previous equations consider the general case
in which transcripts are degraded with rate dmi and proteins with rate dpi . Regardless
of their particular form, the transcriptional and translational fluxes JTXi and JTLi are
functions of the total RNAPs and ribosome concentrations [N ] and [R] respectively.
Figure 1B graphically summarises the main elements of the model.

The reservoirs of RNAPs and ribosomes couple the expression of all gene types. Such
‘global coupling’ is a crucial element of a class of biosynthesis models able to link gene
expression and growth physiology (Klumpp et al., 2009; Lin and Amir, 2018; Roy et al.,
2021). Note that the expression of proteins constituting RNAPs and ribosomes will also
need to obey Eqs.[1] and [2] above. This gives rise to autocatalytic cycles able to sustain
exponential growth (Roy et al., 2021).
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Fig 1. Illustration of the cell growth model including resource allocation
and transcription. (A) The model predicts cellular growth rates taking into account
translation and transcription. (B) In the model, transcription and translation are
treated on the same footing (transcript and protein production boxes). The core of the
model is encoded in the transcript flux per gene and the protein flux per gene. These
fluxes are determined by the respective initiation and elongation rates, which describe
the recruitment of RNAPs and ribosomes. In the model, different gene types compete
for recruiting free RNAPs (RNAP competition box) and transcripts compete for free
ribosomes (ribosome competition box). Consequently, the synthesis of all proteins is
coupled through the availability of RNAPs and ribosomes. (C) Qualitative sketch of the
different expected regimes of growth. Our model focuses on the regime in which growth
is driven by both ribosome levels and mRNA concentration (green region). In this
regime the formation of the ribosome-mRNA complex is the limiting step
(complex-formation limiting regime, CF-LIM). Instead, if translation or transcription
alone are the limiting step, protein production depends only on either the number of
ribosomes (TL-LIM) or the number of mRNAs (TX-LIM), according to the level of
mRNA saturation by ribosomes (see grey and red regions).

In typical applications, e.g. for bacteria, mRNA degradation rates are considered
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to be high (Lin and Amir, 2018; Balakrishnan et al., 2022), and protein degradation
rates are neglected (Scott and Hwa, 2011). Although these approximations should be
taken with caution (Kafri et al., 2016a; Calabrese et al., 2022), they are reasonable in
regimes where the time scales of growth and protein degradation are separated (Calabrese
et al., 2022). Thus, for the sake of simplicity, in the following we will neglect the role of
protein degradation. Instead, mRNA degradation rates are fast (typical half lives of 5-20
minutes, depending on the organism), and will play a crucial role in the following. We
will consider homogeneous transcript degradation rates, dmi = d.

The total amounts of mRNAs and proteins, which will be the main quantities of
interest for us, are given by the sum of transcripts and proteins over all the gene types,
m :=

∑
imi, and P :=

∑
i Pi. The model produces steady-state exponential (“balanced”)

growth (see SI Appendix), where extensive quantities (defined as the quantities that
increase linearly with total biomass) all grow exponentially with the same rate.

A suitable parameter to characterise cellular physiology is thus the protein-specific
growth rate, defined as

λ :=
1

P

dP

dt
. (3)

We have singled out conceptually protein production over mRNA production because
measurements of total protein content are much more prevalent in the literature. At the
same time, the definition above becomes the growth rate of every molecular species at
the steady state, including mRNAs (Scott et al., 2010). Therefore, in balanced growth
regimes (to which we will restrict ourselves here) such rate still fully characterizes the
growth process.

Finally, while we are very aware that organism-specific features are often very im-
portant, we will keep our framework organism-agnostic, aiming to describe a general
economy of cellular trade-offs (at the level of protein synthesis) with a reduced set of
parameters.

mRNA-ribosome complex formation impacts growth rate

To evaluate the impact of the transcription machinery on cellular physiology we have
derived a general expression that relates the exponential growth rate λ, the ribosome
allocation, and the total mRNA concentration [m], and is valid in a particular regime of
“limiting complex formation” (CF-LIM, see below and SI Appendix, sec. 3). Both a priori
arguments and comparison of model predictions with data lead us to hypothesize that
this regime is relevant in many experimental situations. Such an expression takes the
particularly transparent form under a few further simplifying assumptions (see Materials
and Methods and SI Appendix)

λ = γφR
[m]

Km + [m]
, (4)

where γ is an effective translation rate, which can be interpreted as the inverse of the
time needed to assemble the amino acids constituting a ribosome, φR = PR/P is the
ribosomal protein fraction1, and Km is an effective mRNA concentration scale set by the
ratio of the translation initiation and elongation rates (see below).

Among the simplifying assumptions used to derive Eq. [4] (see Methods and SI
Appendix), it is worth noting that we assumed that all genes have identical properties
(transcript length and degradation rate, promoter and ribosome binding site strengths,

1Note that for simplicity of notation we use φX to denote proteome number fractions, and not mass
fractions as some previous literature, but the two quantities can be converted into each other, using the
masses of the proteins belonging to each sector.

5

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 21, 2023. ; https://doi.org/10.1101/2023.03.17.533181doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.17.533181
http://creativecommons.org/licenses/by-nc-nd/4.0/


etc.). Moreover, we have neglected gene expression regulation at the translational level
(so that genes are differentially expressed only through differences at the transcriptional
level (Balakrishnan et al., 2022)). It is simple to relax all these assumptions and obtain
more precise expressions, at the cost of some transparency and ease of interpretation.

Similarly to previous frameworks (Scott et al., 2010; Scott and Hwa, 2011; Scott
et al., 2014; Roy et al., 2021), Eq. [4] linearly relates the growth rate to the ribosomal
protein fraction φR with a proportionality factor associated with the translation capacity
γ. However, differently from other frameworks, Eq. [4] also includes a Michaelis-Menten
factor [m]/(Km + [m]) reflecting the competition of transcripts for ribosomes. This term
comes from the assumption of a regime where the formation of the ribosome-transcript
complex is the limiting step of the process (Fig. 1C). The competition between transcripts
and ribosomes, and thus the dependence of growth rate on both mRNA and ribosome
levels, becomes relevant when [m] ≈ Km (see SI Appendix). In the remainder of this
work, we will focus on the ‘strong’ complex-formation limiting regime (CF-LIM) when
[m]� Km, but we will also address the ‘weak’ case, when [m] ≈ Km.

The Michaelis-Menten-like factor emerges from a a kinetic model of competition
for ribosomes between mRNAs. In brief, we first assume a translation initiation rate
α proportional to the concentration [Rf ] of free, unbound ribosomes. Mathematically,
this can be written as α = α0[Rf ], where α0 is a rate constant representing the affinity
between ribosomes and transcripts. We combined such model of initiation with a model
of protein production (Greulich et al., 2012), which allows us to re-write the free ribosome
concentration in terms of the total ribosome concentration [R], total mRNA concentration
[m] and translation elongation rate ktl. In the regime where the translation flux JTL is
proportional to the initiation rate, we obtain equation [4], with Km := ktl

α0Lp
where Lp is

the average protein length.
Our hypothesis (motivated by the experimental evidence on both budding yeast

and E. coli) is that the CF-LIM regime illustrated in Fig. 1C may be relevant in
different situations. The Michaelis-Menten-like factor of Eq. [4] describes the non-neglibile
competition of mRNAs for ribosomes. If mRNAs are abundant, they strongly compete
for ribosomes, which become the main limiting factor. In this situation the ratio Km/[m]
becomes sufficiently small, and the growth rate λ depends on the ribosomal fraction φR
only. This is the conventional translation-limited regime (TL-LIM in Fig. 1C), in which
transcripts are abundant, [m] � Km. At the other extreme, if transcript abundance
is low and ribosomes are in excess, our framework predicts that protein production
is proportional to both the amount of mRNA [m] and φR (see equation [4]). Thus,
when [m]� Km, λ ∝ φR[m] and the formation of the ribosome/transcript complex still
limits the protein synthesis process in this regime (CF-LIM). Contrary to the saturated
transcript regime explored in previous studies (Lin and Amir, 2018; Roy et al., 2021) where
protein production is proportional to only transcript abundances (TX-LIM in Fig. 1C),
our framework predicts a new regime of growth driven by mRNA/ribosome complex
formation where growth rate depends on both ribosome and transcript concentrations.

A back-of-the-envelope estimate (see Materials and Methods) supports our hypothesis.
We get Km ≈ 0.05 − 0.15µM for E. coli and Km ≈ 0.25 − 0.5µM for S. cerevisiae.
This range of values is roughly an order of magnitude smaller than the typical mRNA
concentration at fast growth (Balakrishnan et al., 2022), placing ourself in between the
translation limited (TL-LIM) and the complex-limited (CF-LIM) competition regimes.
This suggests that small perturbations of mRNA levels do not impact growth, but a
ten-fold reduction of mRNA levels compared to fast growth could significantly impact
the growth rate. While such perturbations could be considered quite strong, mRNA
levels can indeed span an order of magnitude in E. coli, and they can reach [m] ≈ Km
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physiologically at slow growth (Balakrishnan et al., 2022). We will see in the following
that the CF-LIM regime can explain key experimental trends, further supporting our
hypothesis.

All the above arguments lead us to focus (differently from previous studies) in
particular on the CF-LIM regime, where the association mRNA/ribosome becomes
limiting. For simplicity (and testability of our model), we have considered a theory where
ribosome-mRNA binding (competition) is the only determinant of ribosome activity.
While a full description of growth limitations beyond the initiation-limited assumption of
the translation flux is beyond the scope of this work, SI Appendix sec. 3 provides further
arguments regarding the wider phase space of growth-limiting regimes and the relations of
our assumptions with other studies. We are also aware that other contributions, including
ribosome sequestration or hibernation, degradation, variations in translation rates at slow
growth, drugs perturbing transcription and translation etc. can contribute to Eq. [4]. This
is particularly expected at slow growth (Dai and Zhu, 2020; Dai et al., 2016; Calabrese
et al., 2022), where consequently Eq. [4] is less precise. Some variants of the model are
discussed below. The following subsection shows how the relation between fraction of
ribosomes in the proteome and growth rate depends on RNAP allocation through a factor
that is set by the ratio of the translation-initiation rate to the translation-elongation rate.

mRNA availability couples the translational and transcriptional ma-
chineries

Equation [4] shows that our framework relates growth and ribosome allocation taking
into account transcript levels. It is possible to probe the interdependence between the
translational and transcriptional machineries by decoupling the contributions of ribosomes
and RNAP polymerases. Indeed, the model connects mRNA concentration with RNAP-
proteins and with key parameters related to mRNA production and degradation (see
Materials and Methods for a derivation):

[m] =
γtx
d
fbn [PN ] (5)

The above expression encodes an intuitive picture of mRNA production: transcript
concentration is proportional to the protein fraction of RNAP and to a “transcription
capacity” γtx (which is defined by the ratio between transcription elongation rate ktx
and the total length of the genes forming RNAPs γtx := ktx/LN), while it is inversely
proportional to the transcript degradation rate d. Note that this expression is equivalent
to the equation [m] = γtx

d fbn
LN
Lg

[N ] with [N ] the RNA polymerase concentration,

and the term LN
Lg

is a conversion factor allowing to pass with ease from abundances
of proteins of the polymerase class N to the number of polymerases, assuming perfect
stochiometry (see Materials and Methods). The parameter fbn represents the fraction
of bound RNAPs, i.e., those that are actively transcribing. This term is the analogous
of the Michaelis-Menten factor [m]/(Km + [m]) of Eq. [4], which describes the fraction
of ribosomes bound to transcripts. However, the expression of fbn is lengthy and not
particularly transparent, and we provide it in SI Appendix.

Equivalently, Eq. (5) can also be written as

[m] = Γ [P ] φN ,

with Γ := γtx
d fbn depending on the transcription efficiency γtxfbn and transcript degrada-

tion d, and [P ] being the overall protein concentration.
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Combining these considerations with Eq. (4) leads to the following expression of the
growth rate in terms of protein fractions only,

λ = γφR
φN

φN + ε−1
, (6)

where

ε :=
Γ[P ]

Km
. (7)

While Eq. [4] couples growth and mRNA concentration, Eq. [6] unfolds the link between
growth and the fraction of RNAP-associated proteins φN . The parameter ε incorporates
a purely transcriptional “supply” term Γ, which represents the mRNA concentration
per unit of RNA polymerase fraction), and a purely translational “demand” term Km,
discussed above, which corresponds to the typical amount of transcripts needed by
translation. Equivalently, ε can also be seen as the increase in mRNA concentration (in

units of Km) per units of added RNAP fraction as [m]
Km

= ε φN . Therefore, this parameter
can also be interpreted as the mRNA transcription capacity rescaled by the the amount
of needed mRNA. The term ε−1 represents the proteome fraction of RNAP-associated
proteins around which the CF-LIM regime becomes relevant: if φN is significantly smaller
than this quantity, then growth is constrained by the available fraction of RNAPs (TX-
LIM). At the opposite situation, if the cell allocates an RNAP fraction εφN � 1, then
ribosomes become scarce (TL-LIM).

Thus, the ratio ε can be interpreted as a “supply-demand trade-off” between tran-
scription and translation. This parameter can be experimentally perturbed in different
ways, acting on both transcription (and RNA pools) and translation (and ribosome pools).
Here, we will focus on changes in transcriptional supply that vary Γ (as it happens for
example for transcription-targeting drugs). Instead, in the following section we will
exploit its dependence on the transcripts degradation rates to quantify transcription
limitation under protein overexpression of unnecessary proteins.

Competition for transcripts increases the cost of unneeded protein pro-
duction

This section explores the consequences of transcriptional limitation on the cost of unnec-
essary protein expression in the competition regime versus translation-limited growth
(Fig. 2A). Overexpression of unnecessary “burden” proteins that do not contribute to
growth helps determining which factors are limiting for growth (Shachrai et al., 2010;
Dekel and Alon, 2005; Scott and Hwa, 2011; Scott et al., 2010; Kafri et al., 2016a). Experi-
ments can induce this burden by different methods. For example, Scott et al. (Scott et al.,
2010) over-expressed β-Galactosidase from an IPTG-inducible gene on a medium-copy
plasmid in E. coli. Kafri et al. (Kafri et al., 2016a) generated a library of S. cerevisiae
expressing mCherry by integrating multiple gene copies into the genome.

In presence of an unnecessary ”type-U” gene, inspired by the experimental approach
of ref. (Kafri et al., 2016a), we considered two ways of modulating protein overexpression
(Fig. 2B): (i) by varying the copy number of the gene gU within the cell and (ii) by changing
the degradation rate dU of the corresponding transcript. The former perturbation globally
tunes the growth cost of protein overexpression. Increasing the copies of the genes gU
always increases the growth cost, regardless of which factors are limiting. Instead, tuning
the degradation rate modifies the relative contribution of transcription and translation
burden to the overall growth cost. To understand how this works, we can consider the
limit of “infinitely fast” unnecessary-mRNA degradation. In this case, there are no
unnecessary transcripts, and the presence of unnecessary genes does not affect at all
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ribosome allocation, i.e., there is no burden on translation. In general, increasing the
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Fig 2. If formation of the ribosome-mRNA complex is limiting, mRNA
levels contribute to the protein expression cost. (A) The expression cost of an
unneeded protein was probed experimentally in refs. (Scott et al., 2010; Kafri et al.,
2016a) by integrating into the genome highly-expressed unnecessary genes (possibly in
multiple copies), labelled by U . In the CF-LIM regime, the presence of such genes
reduces both mRNA concentration [m] and ribosomal protein fraction φR, and the
decrease of total mRNA level contributes to a decrease in growth rate. Conversely, in
TL-LIM only a reduction of ribosomal levels causes a reduction of the growth rate λ. (B)
The model predicts a drop in growth rate (quantified by the relative growth rate
λ/λWT ) as a function of protein fraction φU of the unnecessary proteins, and how such
trend changes as the degradation rate of the unnecessary transcript dU varies (right
panel, where d/dU is the inverse degradation rate of the unnecessary transcript
normalized to the average degradation rate of the other transcripts). The left panel
shows the prediction in TL-LIM. The right panel shows the prediction in the CF-LIM
regime. Above the two plots, the sheded boxes show how the slopes of the curve
λ/λWT (φU ) change with d/dU under translation limitation and complex-formation
limitation respectively. (C) S. cerevisiae data from ref. (Kafri et al., 2016a) falsify a
scenario of translation-limited growth and show the trends predicted by the CF-LIM
regime. The left panel shows the comparison between the data (circles) and a TL-LIM
model (solid lines). Light-grey circles represent data corresponding to stable transcripts
(d/dU u 1). Dark-grey circles represent unstable trascripts (d/dU u 0.08). Dark- and
light-grey lines are model predictions for the two conditions. The right panel shows the
comparison between the data (circles) and our model of the complex-formation limiting
regime (CF-LIM, solid lines), using the same color-code.
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degradation rate dU always decreases the translation burden because fewer unnecessary
transcripts remove active ribosomes from the pool of available ones. However, the presence
of unnecessary genes will still affect overall mRNA content, because they remove active
RNAPs from the pool of all the other transcribed genes (Klumpp et al., 2009). If the
overall mRNA content limits growth, the contribution to the growth cost coming from
translation remains unchanged.

In our framework, ribosomes are not necessarily the only growth-limiting component.
Indeed, Eq. [4] implies that unnecessary proteins may affect growth both through their
impact on ribosomes and through their effect on total mRNA content (as well as through
RNAP allocation, as shown by Eq. [6]). To predict the burden of unnecessary proteins,
it is therefore necessary to determine their effect on mRNA as well as on ribosomes. For
the reasons explained above, the modulation of the unnecessary transcript degradation
rate (Kafri et al., 2016a) is an ideal testing ground for our model as it allows to tune
the relative contribution of translation and transcription to the growth cost. Increasing
the degradation rate of unnecessary transcripts decreases the translation cost (as fewer
ribosome are allocated to unnecessary transcripts) while also increasing the transcription
cost (as some transcripts degrade faster, depressing the overall average lifetime of the
transcripts).

In order to pursue this question mathematically, let us first consider the two limit
cases [m]/Km → ∞ (complete translation limitation) and [m]/Km → 0 (complete
complex-formation limitation). By labelling as wild-type (WT) all quantities without
overexpression burden, we find,

λ

λWT
≈


φR
φWT
R

TL-LIM [m]/Km →∞
φR
φWT
R

[m]
[m]WT CF-LIM [m]/Km → 0 .

(8)

Equation [8] shows that, in these two limiting cases, the relative growth is determined

by the ratios φR
φWT
R

and [m]
[m]WT . Our framework provides an expression for these ratios

under the assumption that unnecessary proteins compete for resources equally with the
other protein sectors.

For the ribosomal protein ratio, we recover the well-known result (Scott et al., 2010)

φR

φWT
R

=

(
1− φU

1− φQ

)
, (9)

where φU is the fraction of the proteome taken up by the unnecessary protein, while
φQ is the fractional size of a “Q sector” whose size remains constant across growth
perturbations (by negative auto-regulation for instance) (Scott et al., 2010; Scott and
Hwa, 2011).

Regarding the Q sector we need to distinguish the following two possible scenarios,
which make a difference for the mRNA ratio: (i) RNAP proteins may not be part of
the Q sector, therefore their fraction changes across growth conditions, or (ii) RNAP
proteins may be part of the sector Q, and consequently they remain constant. Although
the first hypothesis may appear more conservative, as it does not imply the existence of
a circuit that keeps constant the fraction of RNAPs, Balakrishnan et al. (Balakrishnan
et al., 2022) show experimentally that RNAP proteins are part of the Q sector in E.
coli. As different organisms may not regulate RNAP proteins in the same way, we will
nonetheless consider both scenarios.

We begin by considering scenario (i) where RNAP is not a part of the Q sector. In
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this case, our model provides the following expression for the mRNA ratio

[m]

[m]WT
=

(
1− φU

1− φQ

)1−
φU

(
dU
d − 1

)
1 + φU

(
dU
d − 1

)
 fbn
fWT
bn

. (10)

In Eq. [10], the first term
(

1− φU
1−φQ

)
represents the decrease in RNAP fraction due

to the burden from the unnecessary protein. In scenario (ii), RNAP fraction cannot

change, and consequenlty this term is simply 1. The second term

[
1−

φU

(
dU
d
−1
)

1+φU

(
dU
d
−1
)
]

corresponds to a decrease in mRNA content due to the decreased mRNA stability of
the unnecessary gene (hence the term is 1 if dU = d). The third term of Eq. [10], fbn

fWT
bn

represents the relative fraction of bound RNAPs. As the exact expression of the ratio
fbn
fWT
bn

in terms of the model parameters is not particularly transparent, we provide it in SI

Appendix. We proved (see SI Appendix) that such ratio increases as more unnecessary
genes are added to the genome if RNAP is not saturated, and that mRNA concentration
always decreases with unnecessary protein expression ( [m]

[m]WT < 1). Biologically, this is a

consequence of two basic mechanisms in our model. First, a fraction of RNAPs needs
to be allocated to transcribe unnecessary genes, decreasing the activity of RNAP genes.
Second, the presence of fast-degrading unnecessary transcripts decreases the lifetime of
the average transcript. Note that, if the fraction of RNAPs remains constant as in the
scenario (ii), mRNA decreases only due to the second mechanism.

To illustrate the effect of transcriptional limitation on the cost of protein overex-
pression, we now consider the two limits of Eq. [8] in conjunction with Eq. [9] and [10].
Fig. 2B shows the main results of the model in the scenario where RNAP is constant
across growth conditions. SI Fig. S1 shows the results for the scenario of variable RNAP
sector. Both scenarios can reproduce the data, but the latter can match the data only in
the regime where the housekeeping Q-sector is absent, which we deem to me less realistic.
We also stress that the qualitative results are independent of whether the RNAP sector
is constant or variable across growth conditions. The plots in Fig. 2B show the relative
growth rate (the ratio λ

λWT ) against the unnecessary gene protein fraction φU in the
two limiting regimes. Under translation-limitation (TL-LIM), Eq. [9] predicts that the
growth rate decreases linearly with the protein fraction φU . In addition, increasing the
degradation rate dU of unnecessary transcripts has no effect on the slope of the curve,
and consequently all the curves collapse onto the same curve (as observed for E. coli in
ref. (Scott et al., 2010)). Under competition for transcripts (CF-LIM), the growth rate
still decreases linearly with the protein fraction φU . Yet, the response of the system to
decreasing the unnecessary transcript lifetime is very different: the slope of the plot of
relative growth rate vs unneeded protein fraction does not stay flat but increases with
decreasing stability, indicating that higher growth cost per protein fraction stems from
the decrease in total mRNA content.

The results above imply that the different behavior of overexpression experiments
under increasing transcript instability provides a way to probe whether the regime of
competition for transcripts described by our model is in place. In brief, the lack of
curve-collapse under a change of transcript lifetime would would be a signature of a
transcriptional burden. We found that the study of Kafri and coworkers (Kafri et al.,
2016a) has performed precisely such an experiment in S. cerevisiae.

Specifically, they have generated S. cerevisiae strains inegrating an mCherry reporter
into the genome in multiple copies, and modulated the lifetime of the transcript by an
antibiotic resistance cassette that inhibits termination in the mCherry gene, a method
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termed DAmP (decreased abundance by mRNA perturbation). They do not quantify
directly the reduction in the lifetime of the DAmP transcript, but they show that protein
levels of the construct are reduced roughly by a factor of 10. We estimated the reduction
of transcript lifetime from these measurement (SI Appendix) and found a corresponding
10-fold decrease. Importantly, such estimate does not assume any specific limitation
regime. Next, we used this estimated parameter in our model and observe its predictions
under different limitation regimes. We note that we also analyzed directly data from
ref. (Kafri et al., 2016a) in order to be able to compare with our model, and in particular
we quantified the protein fraction of the unneeded protein (see SI Appendix and SI
Fig. S2). Fig. 2C shows the comparison of their data to the predictions of our model
(which do not entail any adjustable parameter). A model of purely translation-limited
growth cannot describe these data, as the two curves corresponding to different transcript
stability do not collapse onto one another (Kafri et al., 2016a). Instead, a model describing
the complex-limited regime (CF-LIM) reproduces quantitatively the experimental trends.
Finally, we note that the study of Kafri and co-workers (Kafri et al., 2016a) also quantified
the trend of the relative growth rate against the gene copy number. Our framework
also makes correct predictions for this quantity (see SI Fig. S3). We note that a 10-fold
reduction of unnecessary mRNA lifetime can also be obtained directly by fitting the
data of growth cost as a function of gene copy number from ref. (Kafri et al., 2016a) (SI
Fig. S4), leading to the same independent prediction of Fig. 2C. In their work, Kafri
and colleagues also state that perturbing the transcript stability of the unneeded genes
induces a 30-fold decrease in the unneeded mRNA in correspondence to the 10-fold
decrease of protein levels used in our estimate. Instead, our model would predict the
same fold change for unnecessary mRNA and protein levels. In the SI Appendix, we
discuss more carefully the origin of this discrepancy. The possible explanations include
a larger-than-predicted decrease in total mRNA content, reduced translation burden
due to reduced misfolding and protein damage (a mechanism not taken into account
by our model, but observed in similar experiment in yeast (Farkas et al., 2018)) or the
importance of post-transcriptional regulation of gene expression.

The model formulated thus far outputs the cellular growth rate given ribosome
fraction and total mRNA concentration. However, we did not put forward any hypothesis
on how the cell chooses such inputs. If such quantities contribute setting growth rates,
given that growth rate is a crucial component of evolutionary fitness, they are likely to be
strongly regulated. Indeed, it is well-known that ribosomal proteins are tightly regulated
in fast-growing organisms such as E. coli and S. cerevisiae (Scott et al., 2010; Kafri et al.,
2016a). Our framework can describe regulation of gene expression in a simple way. The
next section describes how our model can encode different regulatory strategies, and
examines the regulation strategy that maximizes the growth rate (Scott et al., 2014),
formulating predictions for changes in mRNA and RNAP abundance across nutrient
conditions under such strategy.

Optimization of growth rate leads to decrease of total mRNA in poor
nutrient conditions

Our model outputs the cellular growth rate given the ribosome allocation and total
mRNA concentration via Eq. [4], which can be rewritten in terms of RNAP allocation,
as shown in Eq. [6]). However, we did not discuss the biological mechanisms responsible
for fixing these allocation parameters. This section describes how our model encodes
different regulatory strategies, and examines the optimal allocation strategy maximising
the growth rate (Scott et al., 2014), and which predicts changes in mRNA and RNAP
abundance across nutrient conditions.
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In order to do that, we focus on the proteome composition Φ = {φ1, . . . , φi, . . . , φS},
where S is the number of sectors. As nutrient conditions change, cells adjust their growth
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Fig 3. The mRNA levels that maximize growth rate vary across nutrient conditions. (A)
The model predicts proteome composition and mRNA levels across nutrient conditions
under the assumption that RNAP allocation optimizes growth rate. The left panel
illustrates the basic mathematical ingredients of the model, including the dependency of
the growth rate on ribosomes and RNAPs, as well as the flux-balance constraint between
protein-precursors metabolism and the production of housekeeping proteins. The right
panel shows how the model ingredients lead to a nutrient-dependent growth “landscape”
where the growth rate is a bell-shaped function of RNAP levels. By taking the maximum
of the curve, the model predicts the optimal RNAP and mRNA levels. Such predictions
can take the form of a growth law (Scott et al., 2010, 2014) by plotting such levels
against the corresponding optimal growth rate. (B) Under growth-rate optimization and
constant mRNA supply-demand trade-off ε across nutrient conditions, the model
predicts that both the total mRNA concentration (upper panel, orange solid line) and
the fraction of RNAP proteins in the proteome (lower panel, grey solid line) increase as
the square root of the growth rate. (C) Under growth-rate optimization and linearly
increasing trade-off parameter ε with growth rate, the model predicts that the total
mRNA concentration increases linearly with the growth rate (upper panel, orange solid
line) while the fraction of RNAP proteins remains constant (lower panel, grey solid line).
Both panel (B) and (C) show E. coli mRNA and RNAP data from ref. (Balakrishnan
et al., 2022) across nutrient conditions (orange and grey circles), validating the scenario
of increasing transcriptional activity (panel C) for this model organism.
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rate by changing their proteome composition (Scott and Hwa, 2011), which we can
summarise with the remodelling Φ→ Φ

′
. Such changes require the presence of specific

molecular pathways able to sense the nutrient conditions and relay the signal to the
gene expression machinery (Zhu et al., 2019; Potrykus and Cashel, 2008; Nomura, 1999;
Ramirez et al., 1991). While a detailed mechanistic understanding of such architecture
is only at its dawn (Wu et al., 2022), previous work has shown that often simplifying
assumptions such as flux balance and growth rate optimization allow to formulate
effective predictions. Such coarse-grained models bypass an explicit description of the
sensing-regulation mechanisms, whose function must be at least in part to enforce growth
optimality (Scott et al., 2010, 2014; Erickson et al., 2017).

In the following, we will assume that cells regulate resource allocation to achieve an
optimal regime for growth, and look for the proteome allocation assignment Φ∗ that
maximizes the growth rate under different perturbations. Since at steady state proteome
composition reflects proteome allocation, this is equivalent to looking for the RNAP
allocation assignment that maximizes the growth rate under different perturbations. We
discuss in more detail the correspondence, valid in balanced exponential growth, between
transcript and protein fraction mi

m and φi = Pi
P with the fraction ωi of RNAP polymerases

transcribing a gene of type i in SI Appendix.
We proceed by analyzing the predictions of our model under the assumption of growth

optimality. We have already discussed how the model links growth rate to ribosome
and RNAP allocation via Eq. [6]. In order to optimize the growth rate, we need to find
an assignment of the RNAP allocation φN and ribosome allocation φR such that λ is
maximal. Importantly, φN and φR also need to satisfy a number of constraints (Fig. 3A).
A trivial constraint is normalization (see above), φi are protein fractions, their sum∑

i φi must add to unity, and such sum includes φN and φR. In addition, we assume a
“flux balance” condition (Scott et al., 2010), according to which regulatory constraints
must match the influx of protein precursors such as amino acids to the flux of protein
synthesis. Specifically, if φC is a protein sector that synthesizes and imports precursors,
the precursors influx (per unit of time) is dAin = νφC dP . The parameter ν represents
the efficiency of converting nutrients to precursors, often called nutrient quality (Scott
et al., 2010; Erickson et al., 2017). Biologically, this parameter depends both on the
nutrient type and on the metabolic efficiency of the cell. The outflux of precursors
due to conversion into proteins is dAout = −γφR φN

φN+ε−1 dP . By the assumption of flux
matching, we impose dAin = dAout and obtain

νφC = γφR
φN

φN + ε−1
. (11)

Combining our framework with these constraints, we considered a minimal model
with only four protein sectors: the RNAP sector (proteome fraction φN ), the ribosomal
sector (φR), a catabolic sector (φC) and a housekeeping sector (φQ) that does not change
with growth conditions (Scott et al., 2010; Hui et al., 2015), and which effectively sets
the maximum level φmax = 1 − φQ that any other sector can reach. Therefore, the
normalization condition reads

φN + φR + φC + φQ = 1 . (12)

By combining Eq. [6], [11], and [12], we solved analytically the constrained optimization
problem as illustrated in Fig. 3A.

A key quantity to describe the role of transcription in growth is the proteome fraction
of RNA polymerases. Such quantity takes the following expression in the solution of the
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following optimization problem,

φ∗N
φmax

=
ε−1

φmax
ν̄

1 + ν̄

√1 +

(
ε−1

φmax
ν̄

1 + ν̄

)−1

− 1

 , (13)

where we indicate with the superscript ∗ the optimized variables, and ν̄ = ν
γ is a

dimensionless nutrient quality. Equation [13] shows that
φ∗N
φmax solely depends on a

single composite parameter p = ε−1

φmax
ν̄

1+ν̄ , which can be tuned by changing either the
dimensionless nutrient quality ν or the mRNA trade-off parameter ε. The Materials and
Methods and SI Appendix provide details of these calculations.

We note that if the supply-demand trade-off parameter ε is a function of the nutrient
quality ν, the expression above still holds. Motivated by the findings of ref. (Balakrishnan
et al., 2022), we considered two particular cases, which we can be compared with data. In
the first scenario, ε is a constant that does not depend on the nutrient quality. Conversely,
in the second scenario ε takes the form ε = εmax ν̄

1+ν̄ , which is equivalent to stating that
ε is linearly proportional to the growth rate (see SI Appendix and SI Fig. S5).

Fig. 3B shows the model predictions for overall mRNA concentration in the first
scenario. As nutrient conditions improve (increasing ν̄), the RNAP protein fraction φN
increases under the optimal solution. As total mRNA levels are proportional to φN ,
they also increase with increasing nutrient quality. Interestingly, the model predicts that
such quantities have a square-root dependency on the growth rate as opposed to the
typical linear laws (see also SI appendix for an extended discussion). Fig. 3B also shows
E. coli data from ref. (Balakrishnan et al., 2022). These data agree qualitatively, but not
quantitatively, with the mRNA trend in the data and fail to capture the measured constant
RNAP protein fraction. Finally, Fig. 3C shows the result of the optimization under the
assumption that the transcription-translation trade-off is proportional to growth rate
ε ∝ λ∗. In this case, the model predicts that mRNA increases linearly with the growth
rate, while the the fraction of RNAP proteins stays constant. Crucially, the model also
predicts that there is no need to tune the fraction of RNAP in this scenario, as it happens
in E. coli. Specifically, Balakrishanan and coworkers show that φN stays constant across
growth conditions (gray circles), and that the expression of σ-70 sequestration factor
Rsd decreases with growth rate, modulating mRNA synthesis fluxes at constant fraction
of RNAP (Balakrishnan et al., 2022). In our framework, the RNAP sequestration at
slow growth is achieved by the linear reduction of the transcription-translation trade-off
parameter ε, which can be interpreted as a lowering of the fraction of RNAPs bound to
genes fbn in order to maintain the linear density of ribosomes on transcripts constant
across conditions (Balakrishnan et al., 2022). Indeed, our analysis also shows that such
density remains constant under growth-dependent ε, but increases if ε stays constant (SI
Fig. S6 and S7).

An important (more general) aspect is that whatever the architecture causing this
trend, and whatever the scenario, in both data and model mRNA concentration decreases
with decreasing growth rate, suggesting that at slow growth competition for transcripts
is likely relevant as the mRNA concentration becomes closer to Km, the concentration
scale that determines to what extent mRNA affect the growth rate.

We note again that this slow-growth regime is also the one where the simplified model
considered here for illustration becomes approximate. Specifically, it neglects documented
processes in E. coli leading to a reduction of the ribosomes that are effectively available
for translation (Dai et al., 2016; Dai and Zhu, 2020; Calabrese et al., 2022).
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Under transcription-targeting drugs, RNAP levels must increase to
achieve optimal growth, but ribosome levels may not

The expressions obtained in the previous section can be used to investigate the effect
of transcription-targeting drugs on growth (Scott et al., 2010; Si et al., 2017; Roy
et al., 2021). More precisely, we analyzed the optimal re-arrangement of coarse-grained
proteome composition. We modeled a transcription-targeting drug that affects the global
mRNA concentration [m]. Our model shows trivially that in the regime where growth is
dependent on such concentration, transcription-targeting drugs also directly affect growth.
We can ask the further question of how the proteome responds to such perturbations.

Such drugs might target different steps of the transcription process to reduce overall
mRNA concentration. From the perspective of our model, we focus on transcription-
targeting drugs that modify the trade-off parameter ε (Eq. [7]).

We recall that [m]/Km = εφN , which implies that in principle transcription-inhibitory
drugs could also decrease mRNA levels by reducing RNAP expression. Note that ε is a
composite parameter shaped by several distinct biological processes. According to our
model, drugs attacking distinct aspects of transcription can cause quantitatively similar
results. For instance, drugs targeting transcriptional elongation decrease ε by lowering
the elongation rate ktx; drugs targeting transcriptional initiation decrease ε by reducing
the fraction of gene-bound RNAP fbn; drugs targeting transcript stability decrease ε
by curbing the transcript degradation rate d. Hence, by focusing generically on how ε
changes, our model makes generic predictions about multiple situations.

To derive the effect of transcription-inhibitory drugs in the model, we follow the same
formal steps of the previous section. The growth rate is a function of the coarse-grained
proteome composition made of ribosomal, RNAP and catabolic proteins. In addition,
it also depends on the mRNA supply-demand trade-off parameter ε and the nutrient
quality ν. Mathematically, the growth rate λ is a function f(φR, φN , φC , ε, ν) given by
equations [6] and [11]. We find the composition {φR, φN , φC} that maximizes the growth
rate at given supply-demand trade-off ε. Consequently, the optimal composition is a
function of the trade-off parameter ε. If transcription-targeting drugs effectively vary ε,
the optimal proteome composition as a function of ε can be interpreted as the optimal
cellular gene-regulatory control in response to transcription-targeting drugs - see also the
sketch in Fig. 4A.

Biologically, there can be situations where cells can or cannot implement an optimal
response strategy, hence it makes sense to compare a growth-optimized scenario with a
non-optimized one. Fig. 4B shows how the growth rate slows down under transcription
inhibitors when mRNA trade-off ε decreases with and and without the enforcement of
growth-rate optimization. The dashed grey line shows the relative growth rate against the
trade-off parameter ε without any response in proteome rearrangement (Eq. [6] plotted
as a function of ε). The solid blue line shows the relative growth rate under optimization,
following the procedure described above. The plot shows that optimal feedback always
determines a faster growth rate.

Additionally, our model makes testable predictions about how the proteome re-
arranges under transcription-targeting drugs. The RNAP fraction of the proteome always
increases, to compensate the lower transcriptional efficiency with more RNA polymerases
(see equation [13]). Despite such increase, overall mRNA concentration still decreases
(Fig. 4D), although it decreases less than it would without growth-optimized response.
Clearly, RNAP upregulation must come at the expense of other protein sectors. How do
the other coarse-grained protein sectors behave? Intriguingly, the ribosomal proteome
fraction changes qualitatively differently under treatment of transcription-targeting drugs
in nutrient-poor vs nutrient-rich media. Fig. 4C shows that the model predicts up-
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Fig 4. The predicted response to transcription-targeting drugs entails up-regulation of
the RNA polymerase sector, but not necessarily of ribosomes. (A)
Transcription-targeting drugs affect growth directly, but the overall effect also depends
on the physiological response of the cell to reduced transcriptional capacity. Our model
predicts ribosome- and RNAP-allocation rearrangements under transcription inhibitors.
(B) The grey box illustrates the model expression for the transcription-translation
trade-off ε, i.e., the ability of RNAP to produce mRNA (see Fig. 3A). This effective
parameter combines several quantities, including the transcription elongation rate of
RNAP on genes, the fraction of gene-bound RNAPs and the mean lifetime of transcripts.
The model predicts that drugs attacking any of these parameters modify the way mRNA
level affect growth rate only through changes in ε. The plot shows the growth rate
reduction vs ε under growth-optimized (continuous blue line) and non-optimized (grey
dashed line) conditions. Note that λ∗0 is the growth rate in the unpertubed condition.
Optimal proteome re-arrangement “rescues” the growth rate decrease under
transcription inhibition (reduction of ε). (C) The predicted ribosomal proteome fraction
φR under growth optimization changes as transcription is inhibited (ε reduced). Solid
lines of different colors indicate different nutrient conditions with darker colors
representing poorer media. Importantly, the qualitative trend depends on the nutrient
quality. Symbols are experimental data points from ref. (Scott et al., 2010) (D) The
model prediction for mRNA concentration [m] changes as ε decreases under optimal
allocation. Different solid lines indicate different nutrient conditions, with darker colors
representing poorer media.

regulation of ribosomal content in poorer media and down-regulation in richer media.
For a “critical” value of the nutrient quality, the ribosomal change does not change at

17

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 21, 2023. ; https://doi.org/10.1101/2023.03.17.533181doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.17.533181
http://creativecommons.org/licenses/by-nc-nd/4.0/


all upon inhibition of transcription. These predictions are in agreement with E. coli
experimental data under treatment with rifampicin, a well-known inhibitor of global
transcription (Fig. 4C, data from ref. (Scott et al., 2010)).

The reasons for such a trend change are subtle, although easy to prove computationally
and analytically. In brief, as transcription capacity decreases, the model predicts that the
cell will reduce the size of the catabolic sector φC (see SI Fig. S8) because fewer precursors
are being used due lower overall biosynthetic capacity. Hence, the freed fraction of the
proteome ∆φC becomes available to the other sectors. Quantitatively, the size change
∆φC depends on the nutrient quality of the medium. In rich media φ∗C ' 0, while in
poor media φ∗C can become considerable. This is because in rich media nutrients are
easily imported and catabolized, so φ∗C can be small. Part of the freed ∆φC will increase
the fraction of the proteome occupied by ribosomes, offsetting its decrease due to the
upregulation of RNAP (see Fig. 1). If φ∗C is sufficiently large (which may happen in poor
media), the ribosomal fraction can also increase as transcriptional capacity decreases.

Finally, we note that we made the crucial assumption that the RNAP fraction can
vary under treatment of transcription-targeting drugs. In SI Appendix, we consider the
optimal response under constant level of RNAP fraction as in the scenario described in
Fig. 3.

Discussion

We presented an organism-agnostic framework describing biosynthesis, accounting ex-
plicitly for the two key steps of the central dogma, mRNA and protein production,
which can describe the growth laws determined by RNAP and ribosome allocation.
The fact that our model is able to formulate correct predictions for both E. coli and
S. cereviesiae supports the hypothesis that unifying principles, due to simple trade-offs
(allocation, flux balance, etc.) may apply across organisms and kingdoms, and therefore
adds up to the thread of evidence supporting the existence of universal aspects of growth
physiology (Bruggeman et al., 2020; Kostinski and Reuveni, 2021; Kafri et al., 2016b;
Shahrezaei and Marguerat, 2015; Calabrese et al., 2022). Clearly, further work could
investigate the role of specific aspects of different transcription-translation architectures.
For example, in E. coli transcription and translation co-occur in the nucleoid, while
in budding yeast the formation of ribosome-mRNA complexes needs nucleocytoplasmic
transport of mRNA, which relies on multiple proteins and organelles. Such differences
may affect the parameters leading to regime of competition for complexes, as well as
the biological perturbations that affect this regime (Liang et al., 2000; Nomura, 2001).
While the effect of proteome allocation on translation is clear from previous work, general
feedbacks between translation and transcription capacity remain relatively unexplored.
Our results show clearly that there are interesting physiological and perturbed situations
where competition for transcripts sets growth rate. Interestingly, the RNAP proteome
sector, while being very small, plays the crucial role of controlling mRNA levels, therefore
it can be determinant to decide to which extent mRNAs set growth rate. In eukaryotes,
a further extension of our framework could investigate the role of different dedicated
RNAP pools (Kostinski and Reuveni, 2021).

As we have mentioned in the Introduction, two recent studies (Lin and Amir, 2018;
Roy et al., 2021) have considered the impact of the transcriptional layer of protein
production on growth, but our work differs in several important ways. We built our
transcription-translation framework following Lin and Amir (Lin and Amir, 2018), who
focus on the transcription-limited growth regime (TX-LIM) where only mRNA determines
growth (and RNAP autocatalysis is essential for exponential growth). Conversely,

18

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 21, 2023. ; https://doi.org/10.1101/2023.03.17.533181doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.17.533181
http://creativecommons.org/licenses/by-nc-nd/4.0/


our model focuses on the regime where both mRNA and ribosomes are relevant for
setting growth rate, as a consequence of the competition for ribosomes by mRNA.
We note that cells grow exponentially in this competition regime, through ribosome
autocatalysis. The study by Roy and coworkers (Roy et al., 2021) also did not consider this
regime. In addition, our study also investigates the optimal RNAP/ribosomal allocation
across nutrient conditions, while both previous studies focused only on non-optimized
relationships. Finally our framework is very similar to the data-driven model proposed
by Balakrishan and coworkers (Balakrishnan et al., 2022), with the advantage of being
able to provide a mechanistic interpretation for the factor relating growth rate and total
mRNA concentration, and to compare growth-optimized situations with non-optimized
ones as done in ref. (Scott et al., 2014).

Growth limitations can be important across different perturbed and physiological
contexts, therefore we expect that our approach can form the basis for further inves-
tigations. A first perturbation where transcriptional limitation is obviously important
is treatment of cells with transcription inhibitors. The net effect of protein synthesis
inhibitors on growth is mediated by the physiological feedback of the cell in response to
drug treatment(Scott et al., 2010). A well-known example of this is the growth reponse
of E. coli to ribosome-targeting antibiotics. Such drugs also induce up-regulation of ribo-
somal content which partially rescues growth rate decrease. More in detail, the response
depends on the growth condition as well as the affinity of the drug to its target (Greulich
et al., 2012). The structure of this feedback has been used to predict the shape of
dose-response curves for different translation-targeting antibiotics (Angermayr et al.,
2022). This kind of analysis remains largely open for the case of transcription inhibitors.
The relationship of transcription inhibitors with growth rate (in non-optimized conditions)
was considered in ref. (Roy et al., 2021). Our model adds the further step of being
able to compare growth-optimized with non-optimized resonse scenarios, and to make
definite predictions for ribosomal and RNAP sector response to transcription inhibitors.
However, additional elements such as drug affinity and feedback mechanisms (Angermayr
et al., 2022; Greulich et al., 2012) may be important to fully understand the physiological
response to transcription inhibitors. Future studies could extend our framework in these
directions.

A second important perturbation where transcription becomes important for growth
is the expression of unnecessary proteins (Scott et al., 2010; Dekel and Alon, 2005;
Shachrai et al., 2010; Kafri et al., 2016b). Unnecessary protein expression imposes a cost
on growth by affecting the abundance of growth-limiting components. In the standard
ribo-centric growth model, the growth rate is proportional to ribosome content (Kafri
et al., 2016b). Because of finite resources, expression of unnecessary protein decreases
the expression of ribosomal proteins, which reduces the number of ribosomes and slows
down growth. In our framework, ribosomes are not necessarily the only growth-limiting
components. We found that the growth cost depends on the decrease of total mRNA
content as well as ribosomal content and provided a quantitative predictive model of this
decrease and the corresponding growth cost. The transcription rate of the unneccessary
gene always increases the growth cost of overexpression, while the decrease of unnecessary
transcript stability decreases the growth cost, because fewer unnecessary transcripts
take up ribosomes from the unnecessary mRNAs. Our model provides a quantitative
framework to describe both perturbations jointly. We speculate that this quantitative
understanding could be useful to predict the fitness landscape of situations with perturbed
gene dosage, such as large-scale gene duplications in absence of dosage-compensation
mechanisms (Pompei and Lagomarsino, 2023). In addition, our model provides a method
to rigorously test the presence of transcriptional limitations by considering how the
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cost of overexpression varies as the mRNA stability of the unnecessary protein changes.
Hence, the problem of the growth cost of unneeded proteins may be important as an
experimental testing tool for the presence of transcriptional limitations in a specific
reference regime. Other situations where transcription may become limiting indirectly,
as a consequence of orthogonal perturbations are inhibition of translation (as already
shown in E. coli (Zhang et al., 2020)) and DNA dilution (as shown in yeast under G1/S
arrest (Neurohr et al., 2019)).

In physiological conditions, our model predicts that under the assumption of transcript
competition, optimization of growth rate leads to the observed decrease of total mRNA
levels in poor nutrient conditions (in absence of any external perturbations). This
prediction is in agreement with the recent experimental observation that total mRNA
concentration decreases with decreasing growth rate in E. coli (Balakrishnan et al., 2022).
Mechanistically, as the authors show, this trend is realized in E. coli by increasing RNAP
sequestration from anti-sigma factor Rsd, indicating that growth rate is modulated by a
change of the fraction of active RNAPs, instead of the total RNAP levels, a situation
that, as we have shown, can be implemented in our model. We speculate that this
sequestration mechanism could help the system to react faster in nutrient upshifts,
as desequestration of RNAP components could be much faster than transcriptional
reprogramming (Balakrishnan et al., 2022). Transcriptional limitation in physiological
conditions was also reported to be relevant for phosphate limitations, in both yeast
and E.coli (Espinosa et al., 2022; Metzl-Raz et al., 2020; Kafri et al., 2016b), and may
be relevant for regulating cell-cycle dependent expression in budding yeast (Swaffer
et al., 2021). On more general grounds, an understanding of the link between mRNA
concentration and ribosome/RNAP allocation needs a theoretical framework able to link
growth rate to mRNA levels (Lin and Amir, 2018; Roy et al., 2021; Balakrishnan et al.,
2022).

Finally, we note that in transcription-limited situation, as well as under competition
for transcripts, mRNA scarcity may contribute to inactive ribosomes (Dai et al., 2016;
Dai and Zhu, 2020; Calabrese et al., 2022). Since mRNA concentration can be quite low
for slow-growing E. coli (Balakrishnan et al., 2022), we speculate that this factor may
play a role in setting the fraction of idle ribosomes.

Methods and Materials

This Materials and Methods section discusses the model ingredients, assumptions, and
derives the main mathematical results presented in the text, in particular the expression
linking the growth rate to the ribosome fraction and mRNA concentrations, Eq. [4], and
the formulas for the cost of protein overexpression Eqs. [8], [9], [10]. See also the SI
Appendix for more detailed information on the model.

Initiation limited fluxes

We consider a situation in which the transcription and translation fluxes JTXi ([N ]) and
JTLi ([R]) in Eqs. [1] and [2] are initiation-limited:

JTXi ([N ]) ≈ βi0[Nf ]; JTLi ([R]) ≈ α0[Rf ] (14)

where βi0 is the rate constant of transcription initiation of the genes belonging to class i, and
α0 is the rate constant for translation initiation, assumed to be identical for all transcripts.
[Nf ] and [Rf ] are the concentrations of free RNAPs and of ribosomes, respectively (see
SI Appendix). Eqs. [14] relate the biosynthetic fluxes with the process of recruitment and
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complex formation (RNAP-gene and ribosome-transcript). We approximate for simplicity
the current with the initiation, neglecting RNAP and ribosome traffic (MacDonald et al.,
1968; Klumpp and Hwa, 2008; Erdmann-Pham et al., 2020; Ciandrini et al., 2013). While
in mRNA translation approximating the ribosomal current with the initiation rate is
a crude approximation (Szavits-Nossan et al., 2018), this assumption makes the model
analytically treatable (see the SI Appendix for further comments on the different limiting
regimes).

Minimal derivation of mRNA-dependent growth rate

In a regime of negligible ribosome traffic (see (Calabrese et al., 2022) and SI Appendix

for a quick derivation), the relation α0[Rf ] = ktl
Lp

[Rb]
[m] links the free ribosomal pool [Rf ]

with the concentration of bound ribosomes [Rb]. Since [R] = [Rb] + [Rf ], we can write the
translation flux/initiation rate in terms of the total ribosome concentration, obtaining

JTLi ([R]) = ktl
Lp

[R]
Km+[m] , with Km := ktl

α0Lp
. Combining this result with Eq. [2], gives

dPi
dt

=
ktl
Lp

mi

m

[m]

Km + [m]
R . (15)

Each term in this equation can be interpreted in a simple way: (i) [m]
Km+[m] is the

fraction of bound ribosomes, (ii) χi := mi
m is the fraction of bound ribosome translating a

transcript of type i and (iii)
Lp

ktl
is the typical time to translate a protein. Associating a

symbol to each of these quantities, we write schematically

dPi
dt

= γp χiRfbr , (16)

where γp is the inverse time to translate the typical protein, , χi is the fraction of bound
ribosomes translating transcripts of type i and fbr is the overall fraction of ribosomes
bound to transcripts. This way to represent Eq. [2] is particularly interpretable, and our
model has a parallel equation for transcript production (see below).

Assuming perfect stochiometry (i.e. all ribosomal subunits are involved in a functional
ribosome), we write the number of total ribosomes R in terms of the number of ribosomal

proteins PR as R = PR
Lp

LR
, where LR stands for the number of amino-acids present in a

ribosome. Summing Eq. [16] for all classes and dividing by the total protein abundance
P gives Eq. [4] after defining γ := ktl/LR.

Connecting mRNA concentration with RNAP abundance

Mirroring Eq. [16] for the transcript dynamics (see SI Appendix for details), we write

dmi

dt
=
ktx
Lg

ωifbnN − d mi (17)

with ktx
Lg

, ωi and fbn being respectively the inverse typical time needed to transcribe

a gene (the ratio of a typical transcription elongation rate and a typical gene length),
the fraction of bound RNAPs translating genes of type i and fbn the overall fraction of
RNAPs bound to transcripts. SI Appendix derives the exact expressions for ωi and fbn.
Crucially, they depend only on the binding constants βi0 (promoter strength) and the
gene copy number gi. Compared to the case of translation, these expressions are more
complex due to gene- or sector-specific promoter strengths, although qualitatively they
behave very similarly to the corresponding translation quantities χi and fbr provided we
substitute the transcripts mi for the genes gi.
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Since transcript degradation is fast compared to dilution (growth rate), we assume
that transcripts are steady state, and we sum all the amount mi for all classes i, from
Eq. [17] we obtain Eq. [5]. We convert the amount of RNAPs in number of proteins

composing RNAPs: N = PN
Lg

LN
, where LN is the total number of amino acids needed to

form a RNAP complex and Lg the typical gene length (perfect stochiometry assumption).
This allows us to write the concentration [N ] in terms of fraction of polymerases φN and

total protein concentration [P ] as [N ] = φN
Lg

LN
[P ]. Finally, to derive Eq. [6] we plug the

obtained relation [m] = γtx
d fbn [P ] φN into Eq. [4].

Regime of limiting complex formation (CF-LIM)

Eq. [4] gives the mRNA dependence of the growth rate via a Michaelis-Menten factor,
which becomes relevant when Km

[m] ≈ 1. This quantity has a simple interpretation as the
ratio between the ribosome-mRNA association and dissociation times

Km

[m]
=
ktl/Lp
α0[m]

=
τon

τoff
, (18)

since (ktl/Lp) can be seen as the inverse of a ribosome characteristic “dissociation”
time, i.e., the time necessary to elongate the typical protein, while a free ribosome
takes a time roughly inversely proportional to α0[m] to find a transcript and form a
complex, i.e., “associate” with it. The growth rate depends on total mRNA concentration
when the time scale of ribosome-mRNA complex formation (τon) is comparable to the
timescale of full protein elongation (τoff). The slower complex formation is with respect
to full protein elongation, the more dependent the growth rate becomes on mRNA.
Eq. [4] provides a general relation between growth rate, ribosome fraction and transcript
concentration, without assuming that ribosomes or mRNAs are limiting. Note that this
trade-off depends on a “supply” of mRNA and a “demand” from trnaslation: if τon < τoff

ribosomes accumulate on mRNAs, because supply is scarce, and viceversa if τon > τoff

the demand for transcripts is scarce with respect to the supply.
In the competition regime described above, it is simple to show that the growth rate

λ := 1
P
dP
dt is proportional to a Michelis-Menten-like factor λ ∝ [m]

Km+[m] (see SI Appendix).
The effective concentration Km is

Km =
ktl
Lp

1

α0
. (19)

Let us recall that we defined the translation initiation rate as α = α0[Rf ], where [Rf ]
is the concentration of free ribosomes. Therefore, α0 is a binding constant that can be
estimated with the ratio α

[Rf ] . To estimate Km from literature data we expressed it as

Km =
(ktl/Lp)

α
[Rf ]

=
tot. translation elongation rate

translation initiation rate
× free ribosome conc.

(20)

Estimate of Km for E. coli

To estimate Km for E. coli we started from the quantities linked to translation elongation.
As ktl ≈ 10 − 20 aa/s (Dai et al., 2016) and Lp ≈ 300 aa (Milo and Philips, 2015), it
follows that the ratio (ktl/Lp) ≈ 0.03− 0.06 s−1 ≈ 2− 4 min−1 ≈ 100− 200 h−1.

For translation initiation, we took α ≈ 0.2 − 0.3 s−1 =≈ 12 − 18 min−1 = 700 −
1000 h−1 (Balakrishnan et al., 2022). By taking the ratio of the protein elongation rate
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to the initiation rate, we obtain so far Km = 0.1 − 0.3 [Rf ]. A rough estimate of the
total concentration of ribosomes gives ≈ 50µM independent on nutrient conditions (Milo
and Philips, 2015). To conclude our estimate, we needed the fraction of free ribosomes.
A recent study (Metelev et al., 2022) provides direct measurements of the percentage
of ribosomal subunits that are engaged in translation, which is 90% at rich nutrient
conditions. This gives an upper bound [Rf ] < 5µM. Thus, a back-of-the-envelope
estimate provides a value of Km in the range 0.05− 0.15µM.

S. cerevisiae estimate of Km

In yeast, we used ktl ≈ 10 aa/s (Metzl-Raz et al., 2020) and Lp ≈ 370 aa (Milo and
Philips, 2015), it follows that their ratio is (ktl/Lp) ≈ 0.03 s−1 ≈ 2 min−1 ≈ 100 h−1.
The translation initiation rate is rather broadly distributed with a mean α = 0.12 s−1 =
7.2 min−1 ≈ 400 h−1 (Ciandrini et al., 2013), providing Km ≈ 0.25 [Rf ]. We estimate
the total ribosome concentration using the fact that S. cerevisiae contains roughly
2− 4× 105 ribosomes (An and Harper, 2020) and has a volume of about 40 µm3 (Milo
and Philips, 2015). Consequently, the total ribosomes concentration is roughly ≈ 25 µM.
In ref. (Metzl-Raz et al., 2017) the authors use polysome profiling to estimate the fraction
of inactive ribosomes, of the order of 10− 20%. Using these figures, our estimate of Km

in S. cerevisiae gives Km ≈ 0.25− 0.5 µM.

Minimal derivation of the growth cost of protein overexpression

To derive the growth of cost of protein overexpression, we used an expression for the
ribosomal-protein fraction fold-change φR

φWT
R

and the total mRNA fold change [m]
[m]WT in

the presence of the unneeded protein type U . Subsequently, we used Eq. [4] to obtain
the growth cost (see SI Appendix).

Fold change of the ribosomal protein fraction

The fold change of the ribosomal-protein fraction φR
φWT
R

was obtained directly from the

normalization condition
∑

i φi = 1 by assuming that each protein fraction changes
in the same way. With this assumption φi = cφWT

i for all i 6= U,Q (including R-
proteins). Since

∑
i6=U,Q φ

WT
i = 1− φQ, we can find from the normalization condition

that c(1− φQ) + φU + φQ = 1, which means c = 1− φU
1−φQ . Therefore φR

φWT
R

= 1− φU
1−φQ ,

as stated in the main text in Eq. [9]. To derive the change of the total mRNA, we used
Eq.[ 1], obtaining the following expression for the mRNA transcript for sector i and U
(see SI Appendix)

[mi] =

{
1
d

ktr
LRNAP

ωifbn[PN ] i 6= U
1
dU

ktr
LRNAP

ωUfbn[PN ] i = U .
(21)

Note that ωi above is the fraction of RNAPs transcribing transcript type i. the total
mRNA was obtained by summing [mi] on i,

[m] =
ktr

LRNAP
fbn[PN ]

(∑
i6=U ωi

d
+
ωU
dU

)
.

To further simplify this expression, we expressed the concentration in terms of the
protein fraction, i.e. [PN ] = [P ]φN with [P ] the protein concentration, and used the the
fact that

∑
i6=U ωi = 1 − ωU . Finally, we also used the link between ωU and φU , i.e.,
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φU =
d

dU
ωU[

1−
(

1− d
dU

)
ωU

] (see SI Appendix and Fig. S3 for the full derivation). Following this

procedure, we obtained Eq. [10] in the main text.
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[U+FFFD], Rutkai, E., Szvetnik, A., Papp, B., and Pál, C. (2018). Hsp70-associated
chaperones have a critical role in buffering protein production costs. eLife, 7.

Greulich, P., Ciandrini, L., Allen, R. J., and Romano, M. C. (2012). Mixed population
of competing totally asymmetric simple exclusion processes with a shared reservoir of
particles. Physical review. E, Statistical, nonlinear, and soft matter physics, 85:011142.

Hu, X.-P., Dourado, H., Schubert, P., and Lercher, M. J. (2020). The protein translation
machinery is expressed for maximal efficiency in escherichia coli. Nature communica-
tions, 11:5260.

Hu, X.-P. and Lercher, M. J. (2021). An optimal growth law for rna composition and its
partial implementation through ribosomal and trna gene locations in bacterial genomes.
PLoS genetics, 17:e1009939.

Hui, S., Silverman, J. M., Chen, S. S., Erickson, D. W., Basan, M., Wang, J., Hwa,
T., and Williamson, J. R. (2015). Quantitative proteomic analysis reveals a simple
strategy of global resource allocation in bacteria. Molecular systems biology, 11:784.

Izard, J., Gomez Balderas, C. D. C., Ropers, D., Lacour, S., Song, X., Yang, Y., Lindner,
A. B., Geiselmann, J., and de Jong, H. (2015). A synthetic growth switch based on
controlled expression of rna polymerase. Molecular systems biology, 11:840.

Kafri, M., Metzl-Raz, E., Jona, G., and Barkai, N. (2016a). The cost of protein production.
Cell reports, 14(1):22—31.

Kafri, M., Metzl-Raz, E., Jonas, F., and Barkai, N. (2016b). Rethinking cell growth
models. FEMS yeast research, 16.

Klumpp, S. and Hwa, T. (2008). Stochasticity and traffic jams in the transcription of
ribosomal RNA: Intriguing role of termination and antitermination. Proc. Natl. Acad.
Sci., 105(47):18159–18164.

25

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 21, 2023. ; https://doi.org/10.1101/2023.03.17.533181doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.17.533181
http://creativecommons.org/licenses/by-nc-nd/4.0/


Klumpp, S., Zhang, Z., and Hwa, T. (2009). Growth rate-dependent global effects on
gene expression in bacteria. Cell, 139(7):1366–1375.

Koch, A. L. (1988). Why can’t a cell grow infinitely fast? Canadian journal of
microbiology, 34:421–426.

Kostinski, S. and Reuveni, S. (2020). Ribosome composition maximizes cellular growth
rates in e. coli. Physical review letters, 125:028103.

Kostinski, S. and Reuveni, S. (2021). Growth laws and invariants from ribosome biogenesis
in lower eukarya. Phys. Rev. Res., 3:013020.

Liang, S. T., Xu, Y. C., Dennis, P., and Bremer, H. (2000). mrna composition and
control of bacterial gene expression. Journal of bacteriology, 182:3037–3044.

Lin, J. and Amir, A. (2018). Homeostasis of protein and mrna concentrations in growing
cells. Nature communications, 9:4496.

MacDonald, C. T., Gibbs, J. H., and Pipkin, A. C. (1968). Kinetics of biopolymerization
on nucleic acid templates. Biopolymers, 6(1):1–5.

Maitra, A. and Dill, K. A. (2014). Bacterial growth laws reflect the evolutionary
importance of energy efficiency. Proceedings of the National Academy of Sciences,
112(2):406–411.

Metelev, M., Lundin, E., Volkov, I. L., Gynn̊a, A. H., Elf, J., and Johansson, M.
(2022). Direct measurements of mRNA translation kinetics in living cells. Nature
Communications, 13(1):1852. Number: 1 Publisher: Nature Publishing Group.

Metzl-Raz, E., Kafri, M., Yaakov, G., and Barkai, N. (2020). Gene transcription as a
limiting factor in protein production and cell growth. G3 (Bethesda, Md.), 10:3229–
3242.

Metzl-Raz, E., Kafri, M., Yaakov, G., Soifer, I., Gurvich, Y., and Barkai, N. (2017).
Principles of cellular resource allocation revealed by condition-dependent proteome
profiling. eLife, 6.

Milo, R. and Philips, R. (2015). Cell Biology by the Numbers. CRC Press.

Neidhardt, F. C. and Magasanik, B. (1960). Studies on the role of ribonucleic acid in the
growth of bacteria. Biochimica et biophysica acta, 42:99–116.

Neurohr, G. E., Terry, R. L., Lengefeld, J., Bonney, M., Brittingham, G. P., Moretto, F.,
Miettinen, T. P., Vaites, L. P., Soares, L. M., Paulo, J. A., Harper, J. W., Buratowski, S.,
Manalis, S., van Werven, F. J., Holt, L. J., and Amon, A. (2019). Excessive cell growth
causes cytoplasm dilution and contributes to senescence. Cell, 176:1083–1097.e18.

Nomura, M. (1999). Regulation of ribosome biosynthesis in escherichia coli and sac-
charomyces cerevisiae: diversity and common principles. Journal of bacteriology,
181:6857–6864.

Nomura, M. (2001). Ribosomal rna genes, rna polymerases, nucleolar structures, and
synthesis of rrna in the yeast saccharomyces cerevisiae. Cold Spring Harbor symposia
on quantitative biology, 66:555–565.

Pompei, S. and Lagomarsino, M. C. (2023). A fitness trade-off explains the early fate of
yeast aneuploids with chromosome gains. bioRxiv.

26

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 21, 2023. ; https://doi.org/10.1101/2023.03.17.533181doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.17.533181
http://creativecommons.org/licenses/by-nc-nd/4.0/


Potrykus, K. and Cashel, M. (2008). (p)ppgpp: still magical? Annual review of
microbiology, 62:35–51.
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