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Abstract 
Transcription factors (TFs) are proteins that affect gene expression by binding to regulatory regions of 
DNA in a sequence specific manner. The binding of TFs to DNA is controlled by many factors, 
including the DNA sequence, concentration of TF, chromatin accessibility and co-factors. Here, we 
systematically investigated the binding mechanism of hundreds of TFs by analysing ChIP-seq data 
with our explainable statistical model, ChIPanalyser. This tool uses as inputs the DNA sequence 
binding motif; the capacity to distinguish between strong and weak binding sites; the concentration of 
TF; and chromatin accessibility. We asked whether TFs preferred to bind to DNA in open or dense 
chromatin conformation and found that approximately one third of TFs are predicted to bind the 
genome in a DNA accessibility independent fashion. Our model predicted this to be the case when 
the TF binds to its strongest binding regions in the genome, and only a small number of TFs have the 
capacity to bind dense chromatin at their weakest binding regions, such as CTCF USF2 and CEBPB. 
Our study demonstrated that the binding of hundreds of human and mouse TFs is predicted by 
ChIPanalyser with high accuracy and showed that many TFs can bind dense chromatin. 

 

Introduction 

Site specific transcription factors (TFs) control gene expression by binding to gene promoters and 
enhancers (1, 2) but prediction of their binding in different cell types has been a significant challenge 
to date. Therefore, we do not have a clear understanding of the underlying mechanism that underpins 
TF binding in various biological contexts. The advent of high throughput technologies, such as 
chromatin immunoprecipitation followed by sequencing (ChIP-seq) drove huge progress in generating 
empirical data on TF binding profiles, which is now the gold standard method to experimentally 
determine TF binding profiles (3). Nevertheless, despite their notable impact on profiling TF binding, 
ChIP methods do not provide a mechanistic understanding of the binding events of TFs to the 
genome. 

TFs bind to the DNA at specific short sequences known as motifs, where TFs recognise and bind their 
motifs with much higher affinity than any other sequence (4–6). There is a wide array of methods, 
both in vitro and in vivo, that can be used to determine TF binding sites (3, 7, 8). However, the 
presence of a motif is not sufficient for a TF to bind or regulate a gene (9–11). Thus, other factors 
besides DNA sequence must influence TF binding, for example TF concentration (12–15). 

Furthermore, TFs in humans and other higher eukaryotes also face the challenge posed by the 
complex structure of chromatin. Indeed, nucleosomes have long been known to impede TF binding 
and nucleosome-rich regions are associated with transcriptionally inactive chromatin (16, 17). Thus, 
nucleosome positioning and DNA accessibility is another significant factor influencing TF binding. 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 16, 2023. ; https://doi.org/10.1101/2023.03.15.532796doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.15.532796
http://creativecommons.org/licenses/by/4.0/


 

 

2 

 

While it is assumed that in general TFs cannot bind nucleosome-rich chromatin, a subset of TFs 
known as pioneer factors can interact with nucleosomes and bind their cognate DNA. Not only that, 
but they are also able to displace nucleosomes and make way for other TFs to bind without the use of 
ATP-dependent chromatin re-modelers (18). The first pioneer factors discovered were FOXA1 and 
GATA4, two TFs that play an important role in endoderm formation during embryogenesis (19, 20). 
Since then, several other TFs involved in a variety of processes have been identified as having 
pioneer function (21). Other examples are the pluripotency factors (SOX2, OCT3/4, KLF4 and c-
MYC), which can reprogram somatic cells and revert them to a pluripotent state. These factors have 
been shown to have pioneer properties, except for c-MYC which appears to lack pioneer properties 
itself, but is a co-factor that enhances the activity of SOX2/OCT4 (22, 23). 

Bookmarking of binding sites by TFs (i.e. the continued occupancy of TFs at their binding sites even 
during transcriptionally inactive phases, such as during mitosis) is a mechanism for quick reactivation 
of transcription sites after cell division. This behaviour has been observed in several TFs such as 
FOXA1 (24), GATA1 (25), as well as the pluripotency factors (26) and it serves to maintain cellular 
differentiation, or lack thereof, in the case of the pluripotency factors. 

The mechanisms by which pioneer factors open chromatin are not well understood. While it has been 
shown that FOXA1-mediated chromatin relaxation does not require ATP- dependent chromatin re-
modelers, it is unclear whether re-modelers are recruited (18, 27). In the case of FOXA1, there is 
evidence for it directly causing chromatin relaxation through the displacement of linker histones (28). 
Other factors, such as OCT4, are known to recruit chromatin re-modelers to their binding site to 
facilitate chromatin opening. For example, OCT4 recruits the SWI/SNF complex of chromatin re-
modelers, particularly Brg1 (29–31).  

When a TF binds to dense chromatin, it can either open the chromatin, stay idle or help maintain it in 
a closed state. If binding results in opened chromatin, the TF would be classified as a pioneer factor, 
while in the latter case, it can be classified either as an insulator or a bookmarking TF. Insulators can 
bind at the boundary between dense and open chromatin and stop the spreading of heterochromatin, 
thereby preventing gene silencing and gene inactivation (32). In addition, insulators can bind between 
the enhancer and the promoter, thus blocking their interaction and interfering with gene expression 
(33). One interesting example of an insulator is CTCF, which appears to have the ability to displace 
nucleosomes after cell division and maintain nucleosome depleted regions in some contexts (34), 
while other times its binding is inhibited by the presence of nucleosomes (35, 36). This indicates that 
the relationship between TFs and chromatin is complex and context dependent.  

Here, we investigate the binding profiles and chromatin accessibility preferences of human and 
mouse TFs using ChIPanalyser, an explainable statistical model we previously developed (13, 37). 
Other tools to predict ChIP profiles (38–40) train an opaque/black box machine learning (ML) model 
on ChIP data and predict binding profiles in other cell types. While those models can be interpreted, it 
is often challenging to interpret mechanistically what drives the binding of a TF. ChIPanalyser uses a 
bottom-up approach, where the models start from known biological and physical components of TF 
binding and we train the parameters of the model on ChIP data (11, 13, 37, 41). One assumption we 
make is that the DNA binding motif (in the form of PWM) is an accurate representation of the binding 
preference of a TF. This is often the case (42), but there are also exceptions, and the ML models 
predict different binding motifs (38–40).  

We first train the ChIPanalyser model on bulk ChIP-seq and DNA accessibility data (e.g., ATAC-seq 
or DNaseI-seq) data in order to estimate TF binding parameters, and then use those to determine 
whether TFs prefer to bind open or nucleosome associated DNA. Our results show that many TFs 
bind to DNA in an accessibility independent manner at their strongest binding sites. We highlight 
different behavioural classes among mouse and human TFs. Additionally, the ability to bind to 
inaccessible DNA can be linked to various functional roles such as bookmarking, chromatin opening 
or chromatin insulation.  

Materials and Methods 

Datasets 

K562 cell line 
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To investigate TF binding behaviour, we considered 244 TFs in K562 cells for which ChIP-seq data 
were available from ENCODE (43, 44). First, we selected ChIP-seq datasets in WT K562 cells and 
excluded from further analysis data where the cells were subjected to different treatments (e.g., 
RNAi). Furthermore, TFs for which a PWM motif was not available in the JASPAR database and had 
less than 60 ChIP-seq peaks were also excluded from the dataset. All metadata information for the 
downloaded data can be found in supplementary data Table S1. The final number of TFs after triage 
was 110 (see Table S2). Where multiple experiments were available for one TF, the data were 
merged.  

In addition to the TF ChIP-seq data, DNase I hypersensitivity data were also downloaded from 
ENCODE for the K562 cell line (experiment accession ENCSR000EOT). This was processed in the 
same way as the ChIP-seq data (see below) until the peak calling stage, where broad peaks were 
called with a q-value threshold of 0.1 instead. 

Mouse cell lines 

We considered 78 ChIP-seq datasets in 8 mouse cell lines from ENCODE (43, 44) and, following the 
same filtering steps as in the K562 cells (motif in JASPAR core and more than 60 ChIP-seq peaks), 
60 ChIP-seq datasets were selected (Table S6). We used several datasets for DNA accessibility (43, 
45–47)(45–48) (see Table S7). 

IMR90 and HepG2 cell lines 

We considered 11 TFs in IMR90 and 3 in HepG2 cell lines using ChIP-seq data available from 
ENCODE (43, 44) (see Table S9). Raw human chromatin accessibility fastq datasets for IMR90 and 
HepG2 (in the form of DNase-seq, MNase-seq, ATAC-seq and NOMe-seq) were downloaded from 
ENCODE release 3 (44).  

Note that whilst ATAC-seq, DNase-seq and MNase-seq follow the same accessibility pattern (starting 
at 100% accessible DNA for QDA=0 and then gradually decreasing their percentage of accessible 
genome), NOMe-seq does not follow this pattern and in this case QDA=0 corresponds to 41% of 
accessible regions and QDA=0.99 corresponds to 8% accessible regions (Figure S10C-D). In other 
words, there are no reads from 59% of the genome in the NOMe-seq data from IMR90. In the case of 
IMR90 cells, MNase-seq does not reach 0%, which can be explained by the quality of the data and 
the size of the sequencing library (MNase-seq measures the nucleosome profiles and, thus, 
increasing the sequencing depth could allow capturing regions with higher density of nucleosomes 
and lower accessibility).  

To select regions with strong, medium and weak ChIP signal, we first ordered 50 Kb regions based on 
the number of ChIP peaks they contain for the corresponding TF and then we selected groups of 50 
regions from the top, middle and bottom of the list. 

When analysing the different methods to estimate DNA accessibility, we found that ATAC-seq and 
DNaseI-seq showed better performance compared to MNase-seq and NOMe-seq. Since this was 
performed in two different cell lines with different DNA accessibility datasets, our results indicate that 
this would not be affected by the dataset quality. However, given the lower number of analysed TFs 
for the comparison of the different methods to measure accessibility, these results could also be 
impacted by a single lower quality dataset.  

 

Pre-processing of ChIP-seq and DNA accessibility data 

We used Trimmomatic v. 0.39 (49) or cutadapt version 1.18 (50) to remove ILLUMINA adapters and 
poor-quality reads. Then, the data were aligned to the hg38 reference genome (51) with bowtie2 
version 2.3.4.1 (52). Peaks were called with macs2 version 2.1.2 with a q-value threshold of 0.5 (53). 

Modelling TF binding with ChIPanalyser 

Model description 
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ChIPanalyser implements an approximation of the statistical thermodynamics model and is described 
in detail in (54, 55). Briefly, ChIPanalyser estimates ChIP-seq like profiles based on four parameters: 
(i) a weighted DNA binding motif referred to as a position weight matrix (PWM), (ii) DNA accessibility 
data, (iii) the number of molecules bound to the DNA (determined experimentally or predicted) and 
(iv) a factor that modulates TF specificity. The model outputs the probability that a TF is bound to a 
site j as given by: 
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Where N is the number of TF molecules bound to the genome, aj is a measure of DNA accessibility at 
site j on the genome (the probability that site j is in accessible chromatin), λ is the specificity scaling 
factor, w is the PWM score and L and n are the length and ploidy of the genome, respectively.  

Computing optimal parameters 

The number of bound molecules N and the TF specificity factor λ are two of the parameters that are 
needed for estimating ChIP-like profiles. These are difficult to measure experimentally, so we 
estimated them by training ChIPanalyser on the corresponding ChIP-seq data. We binned the 
genome into 50kb bins and trained the model on the top 10 bins with the highest ChIP-seq signal. We 
then validated the estimated parameters on a different set of 50 bins of 50kb each from the same 
ChIP-seq dataset.  

Quantile density accessibility (QDA) 

To assess to role of chromatin accessibility in the binding of TFs, we calculated quantiles between 0-
0.99 for the accessibility data and subset it based on these (55). We termed this analysis quantile 
density accessibility (QDA). Each QDA represents a subset of the genomic regions that the model 
considers accessible. For each quantile, we selected the regions with accessibility scores equal or 
greater than the quantile value such that a QDA of 0 corresponds to the subset of regions greater or 
equal to the “0 quantile” of the distribution of scores (i.e., all regions), a QDA of 0.5 corresponds to the 
subset of regions with scores greater or equal to the median of the distribution (top 50% regions with 
highest DNA accessibility signal) and a QDA of 0.9 corresponds to the subset of regions with scores 
greater than the 90th percentile of the distribution (top 10% regions with highest DNA accessibility 
signal) (Figure 1B-C).  

Clustering of the TFs 

To cluster TFs based on their preference for open or dense chromatin, we first used k-means 
clustering to identify the different classes of TFs from the data without prior assumptions. Our analysis 
showed that there are two main classes of TFs (Figure S3A), namely: (i) TFs displaying accessibility 
independent binding (62) and (ii) TFs displaying a clear accessibility dependent binding (48). We did 
not find TFs that display inaccessibility dependent binding, which indicates that either there are fewer 
TFs displaying this behaviour, or that our collection of ChIP-seq data does not contain many TFs 
displaying that behaviour. Nevertheless, four TFs showed higher accuracy of predictions when 
assuming they can bind anywhere in the genome, compared when their binding is restricted only to 
accessible regions (see purple TFs in Figure S3B-C). This indicates that some of the classes in 
Figure 1B have too few TFs in our dataset to be detected by k-means clustering.  

Since only a few TFs displayed some specific behaviours, we also used a manual selection of 
thresholds to group TFs (Figure 3A). We computed the mean AUC for the dense chromatin (QDA 
between 0 and 0.2) and open chromatin (QDA between 0.8 and 0.95) and the difference between 
these means. Using these values we classified TFs as: (i) accessibility independent factors (AIF) 
when both means are above 0.8 and the difference is lower than 0.1, (ii) accessibility dependent 
factors (ADF) when the difference is greater than 0.3 and the mean AUC in open chromatin is greater 
than 0.8, (iii) inaccessibility dependent factors (IDF) when the difference is greater than 0.3 and the 
mean AUC in dense chromatin is greater than 0.8, (iv) partial AIF/ADF when the difference is between 
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0.1 and 0.3 and the mean AUC in open chromatin is greater than 0.8, (v) partial AIF/IDF when the 
difference is between 0.1 and 0.3 and the mean AUC in dense chromatin is greater than 0.8 and (vi) 
poorly predicted if both means are below 0.65. TFs that did not meet any of these criteria were 
classified as other. The threshold of 0.8 AUC was selected based on the result from the K-means 
analysis by rounding the lowest AUC for the AIFs cluster, which was 0.79. In addition, we selected a 
threshold of 0.65 for poorly predicted TFs by rounding the average AUC for the others cluster in the 
K-means analysis, which was 0.64.  

Data access  

All scripts used for pre-processing and further analysis can be accessed at 
https://github.com/nrzabet/human_TF_analysis.  

Results 

Modelling binding of human transcription factors.  

To investigate TF binding behaviour, we considered 110 TF ChIP-seq datasets as well as DNA 
accessibility data (DNaseI-seq) in K562 cells available from ENCODE (43, 44) (Figure S1 and Table 
S1). For each TF, we used a binding motif, in the form of position weight matrix (PWM), available from 
the JASPAR core database (56). To model the binding profiles of these TFs in K562 cells, we used 
ChIPanalyser (13, 37), a Bioconductor package that estimates ChIP-seq profiles based on four 
parameters: (i) binding motif of the TF in PWM format, (ii) DNA accessibility data, (iii) the number of 
TF molecules bound to the DNA (N) and (iv) a factor that modulates TF specificity (λ). The latter 
models the ability of a TF to discriminate between high and low affinity binding sites, where the affinity 
is estimated based on the PWM score. In particular, λ is inversely proportional to the capacity to 
differentiate between high and low affinity sites. In other words, a high λ means that there are more of 
the weaker binding sites, while low values for λ means that there are fewer but stronger binding sites 
for a TF. The number of molecules bound (N) and specificity factor (λ) are difficult to measure 
experimentally but can be estimated by fitting the model to ChIP-seq data and selecting the values 
that minimise the Mean Squared Error (MSE) between the predicted profile and the actual ChIP-seq 
profile (37) (Figure 1A). To run this analysis, the genome was tiled into 50 Kb bins and the model was 
then trained on 10 regions with strongest ChIP-seq signal. The top 10 regions of 50 Kb size contain 
the strongest peaks (true positives), but at the same time, they contain many regions that are not 
bound by the TF (true negatives). This provides an appropriate set of input data to train our model 
with sufficient true positives and true negatives (55). Following training, the estimated parameters 
were validated by computing the area under the curve (AUC) between the predicted profile and the 
ChIP-seq profile on the subsequent 50 regions with strongest ChIP-seq signal (37).  

ChIPanalyser uses DNA accessibility data among other parameters to predict TF binding, and this 
provides the opportunity to investigate the role of DNA accessibility on the binding of TFs to the 
genome. We subset the DNA accessibility signal using a quantile vector into quantile density 
accessibility (QDAs) between 0-0.99 (37). In practice, this means that for each QDA, the model 
considers a percentage of the top ATAC-seq or DNaseI-seq signal regions as accessible, regardless 
of their actual accessibility scores (see Figure 1B-C and Materials and Methods).  

To observe the preferences of the various TFs for chromatin accessibility, we ran the analysis for 
each QDA and used the AUC as a goodness of fit metric to estimate the model accuracy. If the AUC 
for the lower QDAs is high, it indicates that the TF can bind dense chromatin with high affinity. This is 
because the prediction accuracy remains high even though all or most of the genome is considered 
accessible to the TF by the model, including dense chromatin. In contrast, if the AUC is high only for 
the high values of QDAs, it indicates that the TF binds only in open chromatin, as only the most open 
regions are considered accessible to the TF by the model. We were able to identify three main 
classes of TFs based on their chromatin accessibility preference: Accessibility Independent Factors 
(AIF), Accessibility Dependent Factors (ADF) and Inaccessibility Dependent Factors (IDF) (Figure 
1D). Each TF class has different DNA binding properties and impact on the surrounding chromatin, as 
illustrated in Figure 1D.  
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Figure 2 shows the analysis for CTCF in K562 cells. First, for each accessibility threshold value (QDA 
value), we fit the model to the ChIP-seq data over the training dataset and evaluate its performance 
over the validation dataset (Figure 2A-B). Figure 2B reveals that there are negligible differences 
between the performance of the model when assuming that CTCF can bind to all regions of the 
genome independent of their DNA accessibility levels (QDA=0) or when assuming that CTCF can 
bind only to the top 10% accessible regions of the genome (QDA=0.9). This means that CTCF binds 
to DNA in an accessibility independent way and, thus, can be classified as an AIF. Figure 2C shows 
an example comparison between the predicted CTCF profile and the ChIP-seq data, illustrating that 
the predictions are accurate. Similarly, Figure S2A shows two additional examples for other TFs 
(PBX2 and BACH1), while Figure S2B shows the distribution of AUC values across all TFs, which 
confirm that the predictions display high accuracy. A complete list of the estimated optimal 
parameters and AUC values for all TFs is available in Tables S2 and S3.  

Many human TFs are predicted to bind to the DNA at their strong binding regions independent 
of DNA accessibility.  

Following this workflow, we analysed the rest of the available ChIP-seq data in K562 cells. Figure S2 
confirms that our model accurately fits the ChIP-seq data. More precisely, 95 out of 110 ChIP-seq 
datasets were modelled with high accuracy having an AUC of at least 0.8 and none have an AUC 
lower than 0.65 (Figure S2B). To group TFs with respect to their binding preference in open and 
dense chromatin, we first tried k-means clustering. We used K-means clustering to identify groups of 
TFs based on how well ChIPanalyser fits the ChIP-seq data (using AUC metric) assuming that the TF 
can bind in regions with different levels of accessibility. However, we were only able to detect two 
clusters despite observing multiple distinct behaviours when inspecting the AUC trends. For example, 
K-means clustering was not able to identify any IDFs. This is most likely due to having too few TFs 
exhibiting IDF behaviour in our dataset (see Materials and Methods and Figure S3). To evaluate if our 
original K-means analysis was too stringent, we also performed the K-means analysis with five 
clusters (Figure S4). This analysis resulted in grouping all IDFs together with poorly predicted ChIP-
seq datasets and splitting the ADFs in two subgroups. Thus, we opted for a threshold-based 
approach to classify the TFs, where the values for the threshold selection were informed by the k-
means clustering (see Materials and Methods). This analysis identified several classes of TFs with 
respect to their binding in open and dense chromatin (Figure 3A). Most importantly, the classification 
based on manual thresholds leads to similar results to K-means clusters (Figure S4F).  

Unexpectedly, we found that many TFs display no preference for open or dense chromatin (33 AIFs), 
while some display a slight preference for open chromatin (49 partial AIFs/ADFs) (Figure 3B-C). 
CREB1, FOXA1, FOS, GATA1 and JUN were previously identified as pioneer factors (see Table S4) 
and, thus, their classification as AIFs or partial AIFs (green TFs in Figure 3B-C) is supported by the 
previous work. Only a small number of TFs displayed strong preference for open chromatin (12 ADFs) 
or moderate preference for dense chromatin (4 partial AIFs/IDFs) (Figure 3D-E). Seven TFs only 
partially met the criteria for either ADFs or AIFs and were classified as “other” (Figure 3F). Finally, five 
TFs (NR2C2, YBX1, SOX6, SMAD2 and E2F8) were not accurately predicted independently of the 
parameters that were used (Figure 3G), likely due to the quality of the ChIP-seq data or the PWM 
motif (Table S5).    

It is worthwhile noting that FOS was classified as both an Accessibility Independent and Dependent 
Factor by our analysis (orange TFs Figure 3B, D and Figure S3B-C). Interestingly, the classification 
as an AIF was based on ChIP-seq data that was generated with an eGFP tagged version of FOS, 
while the ADF classification was based on the untagged version of FOS. One possibility is that, in the 
eGFP tagged experiment, the levels of FOS are higher than endogenous levels in K562 cells and at 
higher concentrations FOS could also bind in dense chromatin regions of the genome. This raises the 
possibility that a TF can act as an accessibility dependent factor in a cell line where it is expressed at 
low or medium levels and as an accessibility independent factor in cells where it is expressed a high 
or very high levels. In addition, it is known that eGFP can dimerise (57) and this could lead to a 
stronger recruitment of the eGFP tagged version of FOS compared to untagged version of FOS. One 
possibility is that homodimers of eGFP tagged version of FOS could have the capacity to bind dense 
chromatin.  
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It is also possible that some of the TFs identified as AIFs in our analysis bind in the same regions of 
the genome and our analysis identifies co-factors of TFs binding in high-occupancy target (HOT) 
regions (58) To investigate this, we looked for overlapping peaks of all TFs classified as AIF in K562 
cells. Between the peaks used for model validation (based on which we performed TF classification), 
we found only negligible overlaps (Figure S5A), therefore the classification is not likely to be driven by 
TFs binding HOT regions. Furthermore, we also investigated overlaps among the top 1000 and top 
5000 peaks and we observed that the extent of overlap increases with the addition of weaker peaks 
(Figure S5B-C), indicating that most of these TFs do not co-localise in the strongest binding regions in 
the genome, but do co-localise in weaker regions. The three main groups of TFs that co-localise are 
USF1 with USF2, CREB1 with ATF1 and SP2 with NFYA. TFs belonging to the same families, such 
as USF1 and USF2 or CREB1 and ATF1 are expected to share some lower affinity binding sites. 
Indeed, both pairs of TFs have similar binding motifs to each other. Furthermore, SP2 has been 
predicted to interact with NFY family members such as NFYB and NFYC (59). Therefore, the co-
localisation of these TFs is most likely a result of similar function or recognition of similar low-affinity 
motifs and not due to many TFs binding in HOT regions.  

Next, we used an alternative method to evaluate which TFs display strong binding in regions of the 
genome with low accessibility. In particular, we plotted the average ChIP-seq signal at 1000 regions 
with strongest and 1000 regions with lowest DNaseI-seq signal (Figures S6 and S7). We found that 9 
AIFs (ATF4, CTCF, E2F6, EGR1, IRF2, MAFK, NFIC, NFYB and ZKSCAN1), 10 partial AIFs/ADFs 
(CEBPB, ELF1, HMBOX1, JUN, JUND, MAFF, MEIS2, NFE2, YY1 and ZNF384), 3 partial AIFs/IDFs 
(ZNF146, REST and ZNF274) and only 2 ADFs (ZBTB40 and MYNN) display at least similar ChIP-
seq signal in dense chromatin regions as in open chromatin regions. Interesting, ZNF146 and REST 
showed stronger binding in dense chromatin than in open chromatin further supporting their 
classification as IDFs. Altogether, these results show that a large number of TFs that our analysis 
predicted to display DNA accessibility independent binding also show strong binding in dense 
chromatin.   

In our analysis, we have considered all ChIP-seq peaks independent if they are promoter proximal or 
distal. Thus, we investigated if the classification of TFs as AIFs in our analysis has been impacted by 
their preference for proximal or distal binding to TSS. If open chromatin next to promoters were to 
dominate the signal (leading to classification of AIFs), then we should see that for all AIFs the majority 
of the ChIP-seq peaks used for the analysis are next to a TSS. In contrast, if dense chromatin was to 
dominate the signal (leading to classification of AIFs), then we should see that all AIFs have only a 
few peaks next to a TSS. What we see is a mixture (Figure S8B), which indicates that whether we 
train the model on TSS peaks or distal peaks does not influence the classification of TFs as AIFs or 
non-AIFs. We repeated the analysis by using only proximal or only distal ChIP-seq peaks for nine TFs 
that were selected since they were classified as AIFs, showed strong binding in dense chromatin 
(Figures S6A and S8A) and displayed different levels of TSS proximal and distal binding (Figure 
S8B). Our results showed only negligible differences in the AUCs of the nine TFs when considering 
either TSS proximal or TSS distal only binding, and TFs were consistently classified as (partial) AIFs 
(Figure S8D). Note when TFs that were classified as partial AIFs or other (ZKSCAN1, NFIC and 
MAFK), the analysis was performed on regions with weaker ChIP-seq signal (Figure S8C) because 
these TFs had few TSS proximal ChIP-seq peaks. 

Mouse TFs display similar behaviour to human TFs.  

Next, we performed a similar analysis for ChIP-seq datasets in mouse cell lines from the ENCODE 
project (43, 44). We obtained 60 ChIP-seq datasets covering 30 TFs (with a PWM motif in the 
JASPAR core database) in 8 cell lines (Figure S9 and Table S6). We also considered and additional 
study of MYOD1 from (60).  Most of the ChIP-seq datasets (90%) were modelled with high accuracy 
(AUC >0.8); see Figure 4A. Depending on availability, we used DNase or ATAC-seq datasets as 
measures of DNA accessibility (see Table S7). For each ChIP-seq dataset, we computed the AUC for 
all QDA values (Table S8) and then used the threshold-based approach to group these TFs into the 
different classes (Figure 4B-H). Interestingly, we observed that while some TFs were classified in the 
same group for all cell lines, there were some that were classified in 2 or even 3 groups (Figure 4B). 
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(60).  Most of the ChIP-seq datasets (90%) were modelled with high accuracy (AUC >0.8); see Figure 
4A.  

Similarly, to our findings in the human cell line, CTCF was classified as an AIF in three of the mouse 
datasets. Interestingly, it was also classified as a partial IDF in two of the mouse datasets. This 
behaviour is in line with the literature surrounding CTCF, which suggests that its preference for 
chromatin state varies depending on context (34–36). Finally, CTCF was poorly predicted in one 
dataset, likely due to the quality of the data.  

USF2 is the only TF that was identified in all four datasets (two in human and two in mouse) as an AIF 
suggesting that there is a high probability this TF binds in a DNA accessibility independent manner. 
USF1 displayed DNA accessibility independent binding characteristics in three datasets (two in 
mouse and one in human) and partial preference to dense chromatin in one dataset (mouse). These 
two TFs have been previously reported to bind heterochromatin (61), thus further supporting our 
findings.  ZNF384 also displayed DNA accessibility independent binding characteristics in three 
datasets (mouse), but a partial preference to open chromatin in one dataset (human).  NRF1 and 
ZKSCAN1 both showed consistent DNA accessibility independent binding in all three datasets. 
MYOD1, a previously reported pioneer TF (62–64) was identified in our study as displaying DNA 
accessibility independent binding in two different datasets. Only three TFs displayed consistent strong 
preference for open chromatin in at least two datasets, namely: TBP, ETS1 and JUND. 

Binding predictions are consistently better when using ATAC-seq and DNaseI-seq and are 
more accurate at regions with strong and medium ChIP signal.  

One surprising finding from our analysis in K562 cells is that many TFs are predicted to bind 
independently of DNA accessibility despite only a handful of TFs having been previously identified as 
pioneer TFs. This suggests that pioneer TFs are only a subset of AIFs and other types of TFs, such 
as co-factors of pioneers, bookmarking TFs or chromatin re-modelers also bind in an accessibility 
independent manner. However, our model is unable to distinguish between these types of factors. 
Moreover, the use of DNaseI-seq data might also be a potential source of bias and using different 
methods to estimate DNA accessibility could change some of these results. Similarly, we focussed 
our analysis at regions of DNA displaying the strongest ChIP signal and it is not clear if these results 
would remain the same when investigating regions of the genome with weaker signal.  

To address these issues, we analysed the binding of eleven TFs in IMR90 cells and three TFs in 
HepG2 cells (Figure S10A-B and Table S9). First, we considered four different DNA accessibility 
measures (DNaseI-seq, ATAC-seq, MNase-seq and NOME-seq) in IMR90 and three (DNaseI-seq, 
ATAC-seq and MNase-seq) in HepG2; see Figure S10C-D and Materials and Methods. Secondly, we 
ran the validation analysis on 50 regions with strong, medium and weak ChIP-seq signal (see Table 
S9 and Materials and Methods). Our results showed that while most analyses resulted in a high 
prediction accuracy, there were significantly more cases compared to previous analyses where our 
model did not fit the data well (compare Figure 5A to Figure S2B and Figure 4A). To identify if there is 
a subgroup resulting in these lower accuracy models, we split the cases based on whether the 
validation ChIP signal was strong, medium or weak and found that most of the cases where our 
model did not fit the data well were at regions with weaker binding (Figure 5B). Next, we ran a similar 
analysis, but we split the data based on the DNA accessibility method. We found that while ATAC-seq 
and DNaseI-seq produced similar results, MNase-seq and NOMe-seq resulted in worse performance 
by our model (Figure 5C). Altogether, these results support that PWM, DNA sequence, binding 
specificity (λ), TF concentration and DNA accessibility can accurately explain observed binding 
profiles of TFs at regions of the genome displaying strong and medium binding strength, but only 
partially at regions displaying weaker binding. Furthermore, ATAC-seq and DNaseI-seq resulted in 
consistently better predictions than MNase-seq or NOMe-seq in our model, but this might be a 
reflection of the quality of those particular datasets (see Figure S10C-D and Materials and Methods).  

In agreement with our findings in K562 cells and mouse cell lines, our analysis revealed that CTCF 
can be classified as both AIF and as partial IDF (Figure 5D, Figure S11 and Table S10). Interestingly, 
the latter is mainly associated with regions of weaker binding, while the former with strong and 
medium binding. Figure S12 shows an example where ChIPanalyser reproduces with high accuracy 
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(AUC=0.95) the CTCF ChIP-seq data when assuming that it can bind anywhere independent of the 
level of DNA accessibility (QDA=0), but misses several peaks (AUC=0.5) when assuming that it can 
bind only to the top 5% accessible DNA (QDA=0.95). Similarly to CTCF, USF2, CEBPB and NFL2L2 
act as AIFs at regions with stronger ChIP signal, but display IDF characteristics at weaker regions. 
RFX5 and MXI1 act as AIF, mainly at regions with strong binding.  

FOXA1, CREB1 and FOS were previously identified as pioneer factors (Table S4) and were classified 
by our analysis as (partial) AIF (Figure 5D, Figure S11 and Table S10). Overall, we found that many 
TFs (nine out of fourteen) behave as AIFs, but preferentially at regions with stronger binding. At 
regions with weaker binding, they either behave as AIFs or our model cannot accurately capture their 
binding profile. MAFK is predicted most of the times to act as IDF and most likely to prefer dense 
chromatin. MAZ and GATA4 were identified to bind preferentially to open chromatin in regions with 
strong and medium binding.  

One possible explanation for the observation that fewer TFs are classified as AIFs at regions with 
weaker binding is that they have weaker binding sites in those regions. To investigate this, we used 
PWMEnrich (65) to measure the strength of the binding sites located in peaks within strong, medium 
and weak binding regions. Our results showed that the majority of TFs (8 out 13) showed only small 
or negligible reduction in the strength of the binding sites located in medium or weaker binding 
regions (Figure S13). Nevertheless, one exception is CREB1, which displayed a large reduction in the 
strength of binding sites located in weaker binding regions compared to binding sites located in strong 
binding regions.  

 

Jun is predicted to bind before the chromatin is open in MCF10A cells upon Her2 
overexpression  

Recent work showed that HER2 overexpression in MCF10A cells resulted in a large number of 
regions gaining DNA accessibility and a small number losing DNA accessibility (66). One possibility is 
that these changes in DNA accessibility can be explained by changes in the levels of some AIF 
binding to those regions. HER2 overexpression also resulted in some TFs displaying changes in 
phosphorylation which could result in an increase or decrease of the number of bound TF molecules.  
We cross-referenced the TFs that were classified at least once as (partial) AIFs in our K562 
experiment with the TFs that were shown to change phosphorylation upon HER2 overexpression and 
found seven TFs (ATF1, ETV6, JUN, JUND, MYC, NFATC3 and SRF). Using RNA-seq data, we 
estimated the number of bound molecules in MCF10A by multiplying the number of bound molecules 
in K562 cells with the ratio between the mRNA levels for the corresponding TF in the two cells, and 
kept λ the same as in K562 analysis (for each TF: NMCF10A=NK562 × mRNA MCF10A/mRNA K562 and λ 

MCF10A= λ K562). Rescaling the number of bound molecules by changes in RNA-seq between two cell 
types or two conditions was shown previously to generate results that reproduced ChIP-seq profiles 
with high accuracy (37). Then, for the HER2 overexpression experiment, we further rescaled the 
number of bound molecules based on the change in amounts of phosphorylated TFs (66).  

Figure 6 shows the predicted binding levels at regions that gained and regions that lost DNA 
accessibility assuming that these seven TFs can bind independently of DNA accessibility levels. 
Interestingly, ETV6, JUN and SRF are predicted to bind strongest at these regions. SRF is the only 
TF that our model predicts to bind in an accessibility independent fashion and shows a noticeable 
increase in binding upon HER2 overexpression, but that happens at both regions that gained and 
regions that lost DNA accessibility (also see Figure S14).    

Our results show that there are negligible differences in the binding of JUN at regions that gained 
accessibility upon HER2 overexpression, suggesting that this TF is bound there before the regions 
become accessible. JUN is part of the AP-1 complex, which has been reported to have pioneer 
functions (see Table S4). Thus, while JUN can potentially bind inaccessible regions, there isn’t a 
subsequent opening of chromatin; instead, JUN appears to remain bound to closed chromatin. This is 
consistent with JUN being a bookmarking TF that binds to the DNA in dense chromatin and, when 
another co-factor is recruited, it could potentially open the chromatin.  
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Discussion 

Using our statistical thermodynamics framework, we systematically investigated the binding 
characteristics of a large number of human and mouse TFs in different cell lines and focussed our 
analysis on the relationship between TF binding and DNA accessibility. For several TFs, we also 
investigated the impact of using different DNA accessibility methods (ATAC-seq, DNaseI-seq, MNase 
and NOMe-seq) on our binding predictions in depth, to better understand potential sources of bias. In 
addition, we also compared the effects of modelling regions with stronger binding and regions that 
display weaker binding. Overall, we found that more TFs than previously reported do not display 
binding preference for open or dense chromatin (approximately one third), but this generally occurs at 
their strongest binding sites. Regions of the genome displaying weaker binding often are poorly 
modelled or show preference for either open or dense chromatin. In addition, we also provide 
evidence of DNA accessibility independent binding for TFs that have been previously reported to bind 
dense chromatin and explain their complex interaction with chromatin.  

Several transcription factors have no or limited preference for open or dense chromatin 

A previous study proposed that approximately 16% of TFs display pioneer functions (42). Here, we 
find a higher proportion of TFs that bind chromatin independent of the DNA accessibility status 
(approximately one third). In addition to pioneers, AIFs also include bookmarking TFs (binding both 
open and dense chromatin) and co-factors of pioneers (being recruited by pioneer factors), which 
indicates that our estimates of the number of TFs that bind in an accessibility independent fashion are 
supported by this previous study.  

Previous studies have reported that CTCF is a chromatin insulator (67). Nevertheless, CTCF also 
shows depletion of nucleosomes approximately 200 base pairs (bp) at the centre of its binding site 
(68). While the former suggests that CTCF prefers dense chromatin and does not open the chromatin, 
the latter indicates potential pioneer functions, where CTCF binds dense chromatin and opens it. In 
addition, it is reported that CTCF helps maintain the open chromatin state by steric hindrance of the 
DNA methylation machinery (69). Our results also showed that regions displaying weaker binding of 
CTCF could represent areas of the genome where CTCF acts as a potential insulator, while regions 
with strong binding reveal areas of the genome where CTCF might act as a pioneer factor. Altogether 
our results confirm that both functions are possible modes of action for CTCF. 

Similarly to CTCF, CEBPB and NFE2L2 were identified as AIFs, mainly at stronger binding sites, and 
partial IDFs at weaker binding sites. CEBPB has been previously reported as having pioneer function 
and being able to maintain open chromatin (70), while NFE2L2 (NRF2) was reported as being a 
transcription activator (71). While our results support these previous findings, we also discovered a 
new role at weaker binding sites for these TFs. We propose that they preferentially bind the genome 
in denser chromatin and either maintain a closed chromatin state, or are unable to open the chromatin 
at those sites. This could be a consequence of the TF not being recruited in sufficient numbers to 
open the chromatin at weak sites, or it could indicate a bookmarking role, such as in the case of JUN.  

USF1 and USF2 are members of the highly conserved basic-Helix-Loop-Helix-Leucine Zipper 
proteins (bHLH-LZ) that bind to the symmetrical DNA sequences called E-boxes (72). Previously, it 
has been hypothesised that USF1 and USF2 are able to bind heterochromatin and behave as 
pioneers (61). USF1 has been shown to form heterodimers that act as insulators, preventing the 
spread of heterochromatin (73). PLAG1 is one cofactor of USF2 that was suggested to display 
pioneer activity and enable USF2 binding, but the direct interaction was not proven (74, 75). 
Altogether, these previous findings support our results that USF2 binds as an AIF, and USF1 as an 
AIF or partial IDF.  

Our analysis also identified NRF1, ZNF384 and BHLHE40 as AIF. NRF1 binding is methylation 
restricted in mouse embryonic stem cells, as it can be outcompeted by de novo DNA methylation. 
This suggests that methylation-sensitive TFs may rely on neighbouring pioneer TF binding to ensure 
a hypomethylated environment (76). ZNF384 was shown to interact with a variety of structural and 
regulatory proteins (vimentin, zyxin, PCBP1), but their individual roles in transcription regulation is not 
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entirely clear (77). BHLHE40 was shown to induce binding-site directed DNA demethylation and 
hypothesised to have pioneer function (78, 79), which provides additional evidence for our 
classification as an AIF. 

Many TFs in our analysis display accessibility independent binding, but this is mainly the case for 
regions of the genome for which they have the highest affinity. One question that arises is whether 
these TFs could truly bind independently of DNA accessibility. In our analysis, RFX5 was predicted to 
be an AIF only at regions with strong binding. Nevertheless, RFX5 was shown to displace 
nucleosomes, indicating that it has pioneer function (80).  Altogether, these results support the fact 
that even if a TF is found to bind in a DNA accessibility independent way only at its strongest binding 
sites, it does not mean it cannot be a pioneer factor or that they are pioneer factors and not co-factors 
or bookmarking TFs. 

FOXA1 is one of the best characterised pioneer TFs (28). In our analysis, FOXA1 was characterised 
as a partial AIF in K562 cells and in three scenarios in HepG2 (for regions with strong and medium 
binding) and only in one case as an AIF in HepG2 cells (at regions with medium binding when using 
ATAC-seq data) (Figures 3C and 5D). Interestingly, a previous study also reported that FOXA1 would 
have a reduced pioneer activity (42). Nevertheless, it was shown that despite its capacity to bind 
nucleosomes (18), its binding is chromatin context dependent (81). In other words, modifications of 
the histone tails might have an effect of FoxA1 capacity to bind nucleosomes and could explain why in 
some of our datasets and conditions we predict to display only partial accessibility independent 
binding.  

JUN is part of the AP-1 complex, which has been proposed as a pioneer factor (82). Our analysis 
identified JUN as a partial AIF in K562 cells and mouse cell lines. Nevertheless, we predicted that 
JUN is already bound at regions that become accessible upon HER2 overexpression in MCF10A 
cells. This indicates that JUN is more likely a bookmarking TF that can bind in dense chromatin and 
requires co-factor(s) expressed upon HER2 overexpression to open the chromatin.  

Finally, knockdown of MXI1 was shown to block chromatin condensation (83) suggesting that this TF 
could potentially act as an IDF. In our analysis MXI1 was consistently classified either as an AIF or as 
a partial AIF. While our analysis does not contradict the capacity of this TF to bind dense chromatin, it 
provides additional insights into its binding mechanism.  

In our analysis, we did not consider the role of DNA methylation on TF binding. Previous work has 
shown that some TFs can distinguish between methylated and unmethylated DNA (84–88). Several 
previous in vitro studies (85, 89, 90) have observed that the binding of a large percentage of TFs 
seem to be affected by DNA methylation. However, in studies using cellular context, this is not the 
case and a recent paper showed that the function of 97% of enhancers is DNA methylation insensitive 
(87), indicating that binding of TFs in vivo is not DNA methylation dependent. This means that DNA 
methylation might impact the binding of only a small number of TFs considered here in native 
chromatin. Some of these TFs included in our analysis that preferentially bind unmethylated DNA 
include CTCF, GABPA, ELK1 and REST. The former three were classified as AIFs in our analysis 
and, for all three, ChIPanalyser predicts their ChIP-seq profiles accurately (AUC > 0.85) without 
considering DNA methylation. Figure S6 confirms that CTCF displays very strong binding in dense 
chromatin (with similar strength as in open chromatin) further supporting that its binding is not affected 
by DNA accessibility. In contrast, GABPA and CREB1 display significantly weaker binding at dense 
chromatin regions (Figure S6) indicating that they might not be capable of binding dense chromatin at 
least by themselves or that their binding is impacted by DNA methylation in dense chromatin. Overall, 
this shows that DNA methylation affects our results only marginally. 

Transcription factors that prefer dense or open chromatin 

MAFK was found to be preferentially associated with dense chromatin in most cases and thus 
classified as an IDF. These results are supported by the fact that MAFK lacks a transactivating 
domain (91) and is mainly associated with heterochromatic parts of the genome (92). 

We also identified four TFs with moderate preference for dense chromatin, namely: REST, ZNF274, 
ZNF24 and ZNF146. REST has been reported to be preferentially associated with silenced chromatin 
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(93), ZNF274 is part of a complex that recruits H3K9me3 writers and, thus, is involved in 
heterochromatin establishment and maintenance (94), ZNF24 is associated with gene repression 
(95), while ZNF146 preferentially binds at silenced Line-1 elements (96). These previous reports 
support our classification of these TFs as IDFs. 

TBP, ETS1, JUND, MAZ and GATA4 were TFs that were consistently identified to show binding 
preference for open chromatin. Interestingly, GATA4 has been reported to act as a pioneer factor 
(Table S4), but in our analysis, we found only partial AIF properties at regions with medium and weak 
binding (Figure 5D). This indicates that GATA4 function might be concentration- and chromatin 
context-dependent.  

When investigating different datasets in the same cell type or in different cell types, we found that the 
classification of a TF may differ (e.g., Figure 4B). There are several possibilities that could explain 
this. One possibility is that the datasets have different qualities in terms of quality of the antibody or 
library and fragment size. Modelling datasets with different qualities can result in classification 
differences but selecting the most reproducible classification from biological replicates for the same 
TF can remove some of these biases. Alternatively, TFs will display different concentrations in 
different cell lines and, as seen in the analysis of JUN in K562, this can result in different preferences 
for dense chromatin. Finally, co-factors of TFs could be expressed in one cell type and not in another. 
This could help differentiate if a TF can open the chromatin by itself (it is modelled as an AIF in all cell 
types where it is expressed) or if it is also modelled as a bookmarking TF (modelled as an AIF in cell 
types where the pioneer co-factor is expressed and as an IDF where the co-factor is not expressed). 
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Figure Legends 

Figure 1. Workflow overview.  (A) ChIPanalyser models TF binding based on PWM motifs, DNA 
sequence, and DNA accessibility data together with ChIP-seq data. After extracting TF binding 
profiles from ChIP-seq data, we split the genomic regions into 50 Kb bins and selected the top 10 
regions with the highest number of ChIP-seq peaks as training regions, and the following 50 regions 
with the highest number of ChIP-seq peaks as validation regions. The ChIPanalyser model was 
trained on the training regions to minimise mean squared error (MSE), then validated to estimate the 
accuracy of the binding profile predictions. (B-C) Approach to investigate TF preference for DNA 
accessibility. (B) DNA accessibility data (DNaseI-seq or ATAC-seq) is used to (C) select the regions 
of the genome that have a signal above a threshold (e.g., QDA of 0.1 results in selecting the 90% of 
the genome with the highest levels of accessibility signal). (D) Graphical representation of the binding 
properties of each class of TF and how each class affects chromatin structure after binding. 
Accessibility Independent Factors (AIFs) bind open or dense chromatin without preference, but AIF 
binding sometimes can displace nucleosomes. Accessibility Dependent Factors (ADFs) bind open 
chromatin only and no changes in accessibility are observed after binding. Finally, Inaccessibility 
Dependent Factors (IDFs) bind chromatin in three different scenarios:(i) bind dense chromatin and 
maintain it (no changes are observed); (ii) bind dense chromatin and reinforce it, thus changes are 
observed in the increased number of nucleosomes; and lastly (iii) bind open chromatin, which 
becomes compacted. The different classes of TFs that group as AIFs (pioneer, bookmarking, 
chromatin remodeller and co-factors of those), ADFs (traditional TFs and their co-factors) and IDFs 
(insulators, chromatin remodeller and co-factors of those) are shown in the side panels.       

 

Figure 2. Model of CTCF binding. We plot the analysis of CTCF binding in K562 cells. (A) Heatmap 
showing the optimal range for the optimal QDA for CTCF (0.9). (B) AUC for the optimal parameters 
estimated for CTCF for all QDAs. (C) ChIP profile estimated with ChIPanalyser based on the optimal 
parameters. The grey shaded area represents the ChIP signal, the orange line represents the 
ChIPanalyser prediction of the ChIP signal, the blue lines represent occupancy at each locus, the 
yellow shaded areas represent closed chromatin, and the white shaded areas represent open 
chromatin.    

 

Figure 3. K562 classification of TFs. (A) We present the rules used to group the TFs in the different 
classes. (B-G) Heatmaps with the AUC for the optimal parameters estimated for each TF for all 
QDAs: (B) AIFs, (C) partial AIFs/ADFs, (D) ADFs, (E) partial AIFs/IDFs, (F) other and (G) poorly 
predicted. Each row represents a TF and each column an accessibility threshold (QDA value).  The 
blue colour represents the AUC level for the corresponding QDA and TF. We mark with green and 
bold the TFs that were previously reported to act as pioneer TFs. For FOS, there are two different 
datasets leading to opposite results and that was highlighted by bold and orange colour of the text. 
Finally, we mark by purple and bold TFs that display a decrease in AUC with increasing the 
accessibility, which are potential Inaccessibility Dependent Factors (IDFs).  

 

Figure 4. Classification of TFs in mouse cell lines. (A) Histogram with the AUC for the optimal 
parameters of the 60 TFs analysed in mouse cells. (B) Bar plot representing the different 
classifications for each TF in the mouse cell line. We also included the classification in human cells for 
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the corresponding TF if that analysis was performed in K562 cells. (C-H) Heatmaps with the AUC for 
the optimal parameters estimated for each TF for all QDAs: (C) AIFs, (D) partial AIFs/ADFs, (E) 
ADFs, (F) partial AIFs/IDFs, (G) other and (H) poorly predicted. Each row represents a TF and each 
column an accessibility threshold (QDA value).  The blue colour represents the AUC level for the 
corresponding QDA and TF.  

 

Figure 5. Effect of DNA accessibility method and ChIP-seq signal strength on TF classification. We 
consider 14 ChIP-seq datasets in IMR90 and HepG2 cells and investigated the effect of DNA 
accessibility method (DNaseI-seq, ATAC-seq, MNase-seq and NOME-seq in IMR90 and DNaseI-seq, 
ATAC-seq and MNase-seq in HepG2) and ChIP-seq signal strength (validation regions with strong, 
medium and weak ChIP-seq signals) on the classification of TFs . (A) Histogram with the AUC for the 
optimal parameters of all cases considered (13 TFs in two cell lines analysed with 3 or 4 DNA 
accessibility methods and strong, medium and weak binding genomic regions). (B) Density plot with 
the AUC for the optimal parameters of all combinations when the datasets are split based on ChIP-
seq signal strength. We performed a Mann-Whitney U test and found that the differences in the 
means are statistically significant (p-value for strong compared to medium 0.046, strong compared to 
weak 2.46×10-13 and medium compared to weak 3.37×10-11). (C) Density plot with the AUC for the 
optimal parameters of all combinations when the datasets are split based on DNA accessibility 
method. We performed a Mann-Whitney U test and found that ATAC-seq and DNaseI-seq lead to 
similar results and these are different from MNase-seq and NOMe-seq (p-value for ATAC-seq 
compared to DNaseI-seq 0.32, MNase-seq compared to NOMe-seq 0.66,  ATAC-seq compared to 
MNase-seq 3.03×10-5, ATAC-seq compared to NOMe-seq 3.52×10-5, DNaseI-seq compared to 
MNase-seq 2.97×10-4 and DNaseI-seq compared to NOMe-seq 5.15×10-4). (D) Classification of the 14 
TFs in AIF, partial AIFs/ADFs, ADFs, partial AIFs/IDFs, other and poorly predicted.  

Figure 6. Prediction of TF binding in MCF10A cells upon HER2 overexpression. We considered the 
case of WT MCF10A cells and MCF10A cells were HER2 is over expressed. Overexpression of HER2 
resulted in several regions gaining DNA accessibility and a few losing DNA accessibility. Heatmaps 
with the prediction of TF binding using ChIPanalyser for ATF1, ETV6, JUN, JUND, MYC, NFATC3 
and SRF at regions that lost or gained DNA accessibility (±2 Kb) in control and HER2 over 
expression.  
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