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Summary 

Primary motor cortex (M1) exhibits a protracted period of development that includes the 

establishment of a somatosensory map long before motor outflow emerges. In rats, the 

sensory representation is established by postnatal day (P) 8 when cortical activity is still 

“discontinuous.” Here, we ask how the representation survives the sudden transition to 

noisy “continuous” activity at P12. Using neural decoding to predict forelimb movements 

based solely on M1 activity, we show that a linear decoder is sufficient to predict limb 

movements at P8, but not at P12; in contrast, a nonlinear decoder effectively predicts 

limb movements at P12. The change in decoder performance at P12 reflects an increase 

in both the complexity and uniqueness of kinematic information available in M1. We next 

show that the representation at P12 is more susceptible to the deleterious effects of 

“lesioning” inputs and to “transplanting” M1’s encoding scheme from one pup to another. 

We conclude that the emergence of continuous cortical activity signals the developmental 

onset in M1 of more complex, informationally sparse, and individualized sensory 

representations. 
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INTRODUCTION 

Perhaps the most striking feature of infant cortical activity is its discontinuity: Periods of 

silence are punctuated by bursts of population-level activity [1, 2]. This early phase of 

discontinuity ends with the sudden and dramatic onset of continuous cortical activity. 

Whereas in humans this transition occurs around the time of birth [3], in infant rats and 

mice it occurs at the end of the second postnatal week [4-8]. In fact, the onset of 

continuous cortical activity is but one aspect of a more global reorganization of brain 

dynamics that includes a shift in GABAergic functioning [9, 10], the increase and 

diversification of inhibitory interneurons [11-14], accelerated myelin deposition [15], and 

the onset of brain rhythms such as delta [16-18] and theta [19]. 

In primary motor cortex (M1), continuous activity emerges in rats between postnatal days 

(P) 8 and P12 [6]. Despite its name, M1 at these ages does not produce movement, but 

instead functions exclusively as a somatosensory structure several weeks before the 

emergence of motor outflow [20-22]. Recently, we showed that neurons within M1’s 

nascent somatosensory map are tuned to limb kinematics, as is the case for M1’s adult 

motor map [23, 24]. Specifically, we found precise sensory tuning to movement amplitude 

at P8—especially for the limb twitches that occur during active (REM) sleep [6]. However, 

upon the emergence of continuous activity at P12, this tuning disappeared. 

Was M1’s kinematic tuning truly lost, or was it only obscured within the noise of 

continuous activity? Here, we address this and related questions using a computational 

technique—neural decoding—that allows us to predict the timing and amplitude of 

forelimb movements based solely on M1 activity (see [25]). Our findings demonstrate that 
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M1's processing of sensory information is intact but substantially transformed after this 

fundamental transition in cortical dynamics. 

RESULTS 

We performed neural decoding using a previously published dataset from P8 and P12 

rats (n = 8 at each age; [6]). This dataset consists of one-hour recordings of M1 unit 

activity and video-based records of 3-D forelimb displacement. For all decoding 

procedures, M1 unit activity and forelimb displacement served as the predictor and target 

variables, respectively. Each recording was divided into training (36 min; 60%) and testing 

(9 min; 15%) datasets; a validation dataset (15 min; 25%) was held back until the final 

model parameters were established. All analyses were performed on the validation 

dataset to ensure an unbiased assessment of decoder performance [25]. 

Movement encoding is obscured by continuous activity at P12 

Discontinuous M1 activity presents a strong contrast between periods of movement 

(when reafference triggers neural activity) and rest (when there is little to no activity). 

Moreover, at P8, we previously found that forelimb twitches trigger rate-coded M1 

responses that correlate with twitch amplitude [6]. Accordingly, we predicted that a linear 

decoder would accurately predict the temporal and spatial properties of forelimb 

movements at P8. In contrast, because continuous activity at P12 occludes the temporal 

and spatial relationships between M1 activity and forelimb movements, we predicted that 

a linear decoder would no longer predict forelimb movements at that age. Indeed, by 

comparing actual with predicted limb displacement using a linear decoder (Figure 1A, 

blue lines), we confirmed both predictions: A linear decoder is sufficient to predict forelimb 

movements at P8, but not at P12. 
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Figure 1. Neural decoding in M1 predicts forelimb movements across the transition to continuous 
cortical activity. 

(A) Representative data from a P8 (left) and P12 (right) rat. From top to bottom: M1 unit activity where 
each row denotes an individual unit and each vertical tick denotes an action potential; actual forelimb 
displacement (black lines) in mm, representing the Euclidean distance traveled by the forelimb in 3-
dimensional space; forelimb displacement as predicted by a linear decoder (blue lines); forelimb 
displacement as predicted by an LSTM nonlinear decoder (orange lines). Shaded blue regions represent 
periods of active sleep. (B) Mean (+SEM) overall performance of the linear (blue bars) and LSTM 
(orange bars) decoders for P8 and P12 rats, as measured by 𝑟!(the proportion of variance in forelimb 
displacement explained by the decoder). Brackets denote a significant interaction between age and 
decoder (p < .05). Asterisk denotes significantly better performance of the linear decoder at P8 
compared to P12 (p < .05). (C) Left: Same as in (B), but for periods of forelimb movement. Right: Same 
as in (B), but for non-movement periods; brackets denote that both decoders performed significantly 
better at P8 than at P12 (p < .05). 

 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 22, 2023. ; https://doi.org/10.1101/2023.01.22.525085doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.22.525085
http://creativecommons.org/licenses/by-nc/4.0/


 6 

Although we observed a loss of decoding accuracy at P12, M1 activity is nonetheless 

highly correlated with limb kinematics in adults [23, 24]. Accordingly, we hypothesized 

that M1 activity continues to represent movement kinematics after the emergence of 

continuous activity, but that this representation is too complex to be revealed using a 

linear decoder. We tested this hypothesis using a nonlinear decoder (long short-term 

memory decoder, LSTM; [26]) and found that it successfully decoded forelimb 

movements at P12, as well as P8 (Figure 1A, orange lines). 

To quantify decoder performance, we computed the proportion of variance explained (𝑟!) 

between the actual and predicted forelimb displacement for each decoder (Figure 1B). 

This metric represents the amount of temporal and spatial kinematic information available 

in M1 immediately after a forelimb movement. There was a significant interaction between 

pup age and the decoder used (F(1, 14) = 19.15, p < .001, adj. 𝜂"! = .548; Figure 1B), 

indicating (1) that the linear decoder performed significantly better at P8 than P12 (F(1, 

14) = 10.08, p = .007, adj. 𝜂"! = .376), and (2) that the nonlinear decoder significantly 

outperformed the linear decoder at both ages. Thus, M1 activity indeed preserves 

kinematic information after continuous activity emerges at P12, though this relationship is 

only observable using a nonlinear decoder. 

State-dependent encoding of movement-related information 

To confirm that decoder performance was driven by M1 activity specifically during periods 

of limb movement, the recordings were split into movement and non-movement periods, 

as described previously [6]. As expected, successful decoder performance was 

attributable to movement periods (F(1, 14) = 7.35, p = .017, adj. 𝜂"! = .297; Figure 1C, 
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left) and not to non-movement periods (F(1, 14) = 0.06, p = .817, adj. 𝜂"! < .001; Figure 

1C, right). Although there was a main effect of age on decoder performance during non-

movement periods (F(1, 14) = 9.15, p = .009, adj. 𝜂"! = .352), this effect was negligible 

compared with the performance of the decoder during movement periods. 

The last analysis did not distinguish between movements during sleep (i.e., twitches) and 

wake. Thus, we next compared decoding accuracy for twitches and wake movements, 

focusing on a 2-s window centered on each forelimb movement (Figure 2A). For twitches, 

a main effect of age indicated that decoding performance was significantly better at P8 

than at P12, regardless of whether a linear or non-linear decoder was used (F(1, 3808) = 

534.25, p < .001, adj. 𝜂"! = .123; Figure 2B, left). Unexpectedly, the nonlinear decoder's  

performance for twitches did not improve on the linear decoder's performance at either 

age (F(1, 3808) = 1.67, p = .197, adj. 𝜂"! < .001). This finding suggests that M1 activity no 

longer represents twitch kinematics after continuous activity emerges (although 

reafference from twitches continues to trigger  M1 activity through at least P20; [27]). 

In contrast with twitches, for wake movements the nonlinear decoder performed 

significantly better than the linear decoder at P8 and P12 (F(1, 1340) = 240.91, p < .001, 

adj. 𝜂"! = .202; Figure 2B, right). This finding was particularly surprising at P8 because 

reafference from wake movements is blunted at this age [20, 21]. Thus, wake movements 

appear to be represented in a nonlinear fashion even as early as P8, and this 

representation survives the transition to continuous activity at P12. For both decoders, 

there was a small but statistically significant decrease in performance at P12 compared 

with P8 (F(1, 1340) = 18.24, p < .001, adj. 𝜂"! = .012), suggesting that the emergence of 
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continuous activity modestly interferes with M1’s representation of wake movements. 

Together, these results indicate that although M1’s representation of twitch kinematics 

diminishes between P8 and P12, its representation of wake-movement kinematics is 

robust at both ages. 

Continuous activity increases the uniqueness of M1 information 

The presence of decorrelated, continuous M1 activity at P12 represents a transition from 

a “dense” (i.e., redundant) encoding of information to a more energy- and information-

efficient “sparse” code [28]. Accordingly, we predicted that removal of redundant neural 

input at P8 would not degrade decoding performance as much as removal of sparse 

neural input at P12. 

Figure 2. Decoding performance for twitches and wake movements varies by age. 

(A) Forelimb displacement for actual movements (black lines) compared to a predicted twitch (blue line, 
top) and a predicted wake movement (red line, bottom). A single representative twitch and wake 
movement is shown. (B) Mean (+SEM) decoder performance (𝑟!) for twitches (left; blue bars) and wake 
movements (right; red bars). For each type of movement, the linear decoder is compared to the LSTM 
decoder across P8 and P12 rats. For twitches, brackets denote that both decoders performed 
significantly better at P8 than at P12 (p < .05). For wake movements, brackets denote that the LSTM 
decoder performed significantly better than the linear decoder at both ages (p < .05). Horizontal dashed 
white lines indicate chance performance using a shuffling procedure. 
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To test this hypothesis, two “lesion” experiments were performed. In the first “unit lesion” 

experiment, a varying percentage of M1 units (up to 90%) recorded from a given pup was 

randomly discarded from the decoding process (Figure 3A, top). The resulting decoding 

performance was then compared with the decoding performance of the “intact” model 

(i.e., 0% of units removed). (Only the nonlinear decoder was used for these experiments.) 

As predicted, although unit lesions degraded decoder performance at both ages, the loss 

was significantly greater at P12 than at P8 (F(1.50, 20.94) = 18.60, p < .001, adj. 𝜂"! = 

.539; Figure 3A, bottom). For example, lesioning 50% of units led to a decoder 

performance of 70.4 ± 3.9% at P8, compared with 41.9 ± 4.4% at P12. Such differences 

in decoder performance were statistically significant across the range of unit lesions (all 

ps ≤ .005). 

The second “spike lesion” experiment was performed in a similar fashion. Here, a varying 

percentage of spikes (i.e., action potentials) across all M1 units (up to 90%) was randomly 

discarded from the decoding process (Figure 3B, top). As predicted, spike lesions 

resulted in significantly greater declines in decoder performance at P12 than at P8 

(F(5.05, 70.63) = 8.41, p < .001, adj. 𝜂"! = .330; Figure 3B, bottom). For example, 

lesioning 50% of spikes led to a decoder performance of 79.5 ± 1.8% at P8, compared 

with 51.0 ± 3.2% at P12. Again, such differences in decoder performance were statistically 

significant across the range of spikes removed (all ps ≤ .03). 

That both lesions decreased decoder performance more at P12 than P8 implies that M1 

activity contains more unique information about limb kinematics at the older age. To test 

this implication, we measured the mutual information between a target M1 unit and a 
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randomly selected subset of units [29]; the size of the subset varied from 1 additional unit 

to all available units for a given pup. Here, mutual information refers to the predictability 

of the target unit’s response (to a movement) when the responses of the subset are 

known. By definition, mutual information only increases when the subset contains non-

Figure 3. M1 activity contains more unique information at P12 than at P8. 

(A) Top: Representation of the “unit lesion” experiment. The top row of nodes represents the individual 
M1 units input to the LSTM decoder. Red X’s denote units that were “lesioned” (i.e., removed from the 
decoding process). The second row of nodes represents the hidden layer of the LSTM decoder. The 
black trace at the bottom represents forelimb displacement as predicted by the LSTM decoder. Bottom: 
Mean (±SEM) decoder performance (measured as the percentage change in the “lesioned” 𝑟! relative to 
the “intact” 𝑟!) for P8 (blue line) and P12 (green line) rats as a function of the percentage of units lesioned. 
Asterisk denotes significantly worse decoder performance at P12 than at P8 across the range of units 
lesioned (p < .05). (B) Top: Representation of the “spike lesion” experiment. “Intact” activity represents 
baseline M1 activity, where each row represents an individual unit and each vertical tick denotes an 
action potential. “Lesioned” activity represents M1 activity after 90% of individual spikes were removed 
from the decoding process. Bottom: Same as in (A), but for the spike lesion experiment. Asterisk denotes 
significantly worse decoder performance at P12 than at P8 across the range of spikes lesioned (p < .05). 
(C) For P8 (top, blue) and P12 (bottom, green) rats, mutual information (in bits) is shown as a function of 
increasing size of the predictor subset (expressed as a percentage of the maximum size). Solid lines 
represent the mean increase in mutual information in the target unit; translucent lines represent individual 
target units (P8: n = 217 units; P12: n = 250 units). Dashed lines show the mean percentage of predictor 
units required to achieve 0.5 bits (half the theoretical maximum); horizontal boxplots show the percentage 
of predictor units required to achieve 0.5 bits for individual target units. 
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redundant (i.e., unique) information about the target unit [30]. We found that adding units 

increased mutual information significantly more quickly at P12 (38.7 ± 1.0% units to reach 

0.5 bits) than at P8 (50.9 ± 1.2% units to reach 0.5 bits; t(436.01) = 7.64; p ≤ .001, adj. 𝜂! 

= .116; Figure 3C; note that 1 bit is the theoretical maximum value). Together, these 

results support the notion that the onset of continuous activity at P12 increases the 

uniqueness of information available in M1. 

M1’s encoding scheme is interchangeable at P8, but not at P12 

The finding that M1’s representation of movement at P8, but not at P12, is so redundant 

as to be robust to the removal of neural activity raises an intriguing hypothesis: Namely, 

that discontinuous activity is not only redundant, but perhaps is also generic to the point 

of being interchangeable between individual pups. Such a property of M1 activity could 

reflect a gross encoding scheme that is present during this period of development when 

somatotopic relations among M1 units and forelimb muscles are still being established. 

Accordingly, we predicted that after “transplanting” the encoding scheme of one pup into 

that of another, decoding performance would remain high at P8, but would be degraded 

at P12 (Figure 4A). 

To test this prediction, M1 activity of a given P8 or P12 rat (the recipient) was decoded 

using the model weights (inferred encoding scheme) transplanted from another P8 or P12 

rat, respectively (the donor). M1 units were aligned between the donor and recipient rats 

according to firing rate (i.e., sorted from highest to lowest firing rates). For both P8 and 

P12 rats, 29 such donor-recipient pairs were generated. (Again, only the nonlinear 

decoder was used.) As predicted, decoder performance was significantly better across 
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P8 pairings than P12 pairings (t(56) = 11.71, p < .001, adj. 𝜂! = .705; Figure 4B–C). To 

ensure that this finding was not simply due to our method of aligning firing rates across 

Figure 4. Transplanting M1’s encoding scheme between pups leads to successful decoding at P8, but 
not at P12. 

(A) Representation of the “model transplant” experiment. Pup A (“donor”; left) donates its encoding 
scheme to Pup B (“recipient”; right). Thus, Pup B’s M1 unit activity (top row) is used to predict Pup B’s 
forelimb displacement (black trace at bottom) using Pup A’s encoding scheme. (B) Representative 
traces of actual limb movement (top) compared to limb movements predicted by Pup B’s (original) 
decoder model (middle) and limb movement predicted by Pup B’s (transplanted) decoder model 
(bottom) for P8 (left, blue lines) and P12 (right, green lines) rats. (C) Mean (+SEM) decoder performance 
(measured as the ratio of the “transplant” 𝑟! to the original 𝑟!, expressed as a percentage) for P8 (blue) 
and P12 (green) rats. Asterisk denotes significantly better decoder performance after transplantation at 
P8 than at P12 (p < .05). (D) Decoder performance (now on the x-axis) is shown for each donor-recipient 
pair across 30 random shuffles. Black lines indicate the mean (±SEM) decoder performance of the 30 
random shuffles for each donor-recipient pair. Blue and green circles indicate decoder performance of 
the unshuffled models at P8 and P12, respectively. 
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pups, we performed 30 additional trials of the experiment using random unit-unit pairings; 

this randomization had no substantive effect on the age-related difference in decoding 

performance after transplantation (Figure 4D). Thus, continuous activity appears to 

contribute to the emergence of individualized M1 encoding schemes at P12. 

DISCUSSION 

We previously reported that M1’s encoding of forelimb movements at P8 disappears with 

the onset of continuous activity at P12 [6]. That finding raised the possibility that M1’s 

somatosensory representations are “reset” at P12 by the sudden change in cortical 

dynamics. An alternative possibility was that the somatosensory representation persists 

at P12 but is obscured by the noisy continuous activity. We considered the second 

possibility more parsimonious than the first, in part because twitch-related reafference 

continues to trigger M1 activity through at least P20 [27]. Accordingly, we predicted that 

M1 continues to encode movement-related information at P12, but through a more 

complex encoding scheme. This prediction was confirmed using a nonlinear neural 

decoder. 

We expected the nonlinear decoder to reveal M1 encoding of twitch movements at P12. 

To our surprise, however, this was not the case; instead, only movement-related 

information during wake was encoded at P12. Also, wake movements were better 

reconstructed by the nonlinear decoder at P8, indicating that a significant component of 

M1’s representation of wake movements is nonlinear even before the onset of continuous 

activity. This last finding is particularly surprising given that the brainstem selectively 

dampens wake-related reafference in M1 at P8 [20, 21, 31]; moreover, our previous 

analysis using linear methods led us to conclude that M1 units are not sensitive to wake-
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related kinematics at either age [6]. Thus, the present finding that M1 encodes twitches 

and wake movements through linear and nonlinear means, respectively, adds another 

dimension to our understanding of M1’s state-dependent sensory representation in early 

development. 

It must be stressed that although individual twitches were not reliably decoded at P12, 

this age does not mark the end of twitches’ significance for sensorimotor development. 

For example, in P20 rats, twitches are implicated in the developmental emergence of a 

cerebellar-dependent internal model of movement [27]. To what extent twitching 

contributes to other forms of plasticity in adults remains an open question [32-34]. 

Continuous activity corresponds with more unique M1 information 

In adults, continuous activity is associated with complex functions such as sparse coding 

[28, 35, 36] and predictive coding [35, 37, 38]. Continuous activity is also thought to 

enhance reafference by providing contextual information related to ongoing behaviors, 

cognitive processes, and cortical dynamics [39-41]. Accordingly, one might expect the 

emergence of continuous activity at P12 to immediately sharpen reafference in M1. 

However, this was not the case (see Figure 2B), suggesting that continuous activity per 

se does not enhance reafference and lead to better neural decoding outcomes. 

Although continuous activity did not immediately enhance reafference at P12, it did 

correspond with an increase in the uniqueness of information in M1. This unique 

information could be due, in part, to the developmental narrowing of M1 receptive fields. 

At P8, M1 units respond across a range of movement amplitudes, suggesting that M1 

receptive fields are broadly tuned to multiple forelimb muscles [6]. This broad tuning is no 
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longer apparent at P12, suggesting a progression toward the narrow receptive fields 

displayed by M1 units in adulthood (Stefanis & Jasper 1964, Nudo et al. 1992, 

Georgopoulos & Stefanis 2007). Similar receptive-field narrowing has been demonstrated 

in other cortical (Hubel & Wiesel 1963, DeAngelis et al. 1993) and subcortical (Chen & 

Regehr 2000, Tschetter et al. 2018) areas and is an activity-dependent process 

(Chakrabarty & Martin 2005). 

The noise that characterizes continuous activity may have a functional benefit related to 

the concept of “regularization.” Regularization is the process of introducing noise to a 

system so as to prevent overfitting (i.e., forming inappropriately strong relationships too 

early in the learning process). Regularization through noise is a conventional technique 

in the creation of robust computational networks [42-44]. Accordingly, we propose that 

regularization contributes to receptive-field narrowing by ensuring that connections 

between M1 units and muscle fibers are only strengthened when they fire together with 

high-temporal precision exceeding the noise band. Connections with less-precise 

temporal relations (i.e., at the edges of the receptive field) would be weakened and 

pruned. 

M1’s encoding scheme individuates at P12 

We found that when the encoding scheme of one P8 rat was “transplanted” to another P8 

rat, decoding outcomes were significantly better than after a similar “transplant” between 

P12 rats. In other words, M1’s encoding scheme becomes significantly more 

individualized, suggesting that the complex encoding schemes at P12 are more specific 

to individual pups than are the encoding schemes at P8. 
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Developing animals face the problem of matching cortical connections to a moving target: 

their rapidly growing bodies. Discontinuous activity solves this problem before P12, as 

nearly all M1 activity occurs in response to movement-related reafference or external 

stimulation [6, 8, 45]. This pattern of activity maximizes the correlation between behavior 

and neural activity. Similarly, before P12, a 10–20 Hz corticothalamic rhythm—known as 

a spindle burst—amplifies reafference and promotes the development of sensorimotor 

pathways [2, 46-49]. This strong correlation between limb movements and M1 activity is 

thought to strengthen those M1 connections early in development that will serve as the 

foundation for later-emerging motor control [6, 21, 45]. 

Conclusion 

In adults, M1 contributes in many complex ways to motor control and motor learning [50-

52]. Also, M1 integrates information arising from the other senses [53, 54], 

neuromodulatory systems [55, 56], and ongoing behaviors [39-41]. Although little is 

known about the development of these higher-level functions of M1, it is now clear that 

these functions—like M1's most basic motor capacities—rest upon an early-developing 

sensory foundation. But even this early "sensory phase" of M1 development is protracted 

and complex: It begins during the discontinuous period of M1 activity as gross 

somatotopic relations are formed and, as shown here, is transformed through the 

transition to continuous activity. Thus, the present findings add new dimensions to our 

growing understanding of M1's sensory development before it assumes its more familiar 

role in motor control. 
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STAR METHODS 
 
KEY RESOURCES TABLE 

REGENT or RESOURCE SOURCE IDENTIFIER 

Experimental models: Organisms/strains  

Sprague-Dawley Norway Rats 
 

Envigo RRID: RGD_10401918  
 

Software and algorithms 

MATLAB, version 2020b 
 

Mathworks RRID: SCR_001622 

Python Programming Language, 
version 3.8 

Python 
Software 
Foundation 

RRID: SCR_008394 

Tensorflow, version 2.9 Google RRID: SCR_016345 

Adobe Illustrator Creative Cloud 
2022  

Adobe RRID: SCR_010279   

SPSS 28  IBM RRID:SCR_019096 

 

RESOURCE AVAILABILITY  

Lead contact 

Further information and requests for resources should be directed to, and will be fulfilled 

by, the lead contact, Dr. Mark Blumberg (mark-blumerg@uiowa.edu). 

Materials availability 
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This study did not generate new unique reagents. 

Data and code availability 

Timestamps of actional potentials, twitches, wake movements, and sleep-wake 

transitions, as well as the position of the forelimb in Cartesian coordinates are available 

for download at https://github.com/rglanz/Glanz_et_al_2023. All custom software is 

available upon request. (Also see https://github.com/KordingLab/Neural_Decoding for 

neural decoding software and https://github.com/nmtimme/Neuroscience-Information-

Theory-Toolbox for information theory software.) 

EXPERIMENTAL MODEL AND SUBJECT DETAILS 

All experiments were conducted in accordance with the National Institutes of Health 

Guide for the Care and Use of Laboratory Animals (NIH Publication No. 80–23) and were 

approved by the Institutional Animal Care and Use Committee of the University of Iowa 

(Protocol #: 0021955). 

As described previously [6], the data used in this study were collected from Sprague-

Dawley Norway rats (Rattus norvegicus) at P8–9 (hereafter referred to as P8; n = 8) and 

P12–13 (hereafter referred to as P12; n = 8). Equal numbers of males and females were 

used, and all subjects were selected from different litters. See our previous report for 

further details related to experimental subjects. 

METHOD DETAILS 

As described previously [6], high-speed (100 fps) video and M1 extracellular unit activity 

were collected from unanesthetized pups as they cycled through sleep and wake. 

Forelimb displacement was quantified using DeepLabCut [57, 58] and forelimb 
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movements were identified using custom software and were visually confirmed. See our 

previous report for further details related to surgeries, electrophysiological recordings, 

video data collection, histology, spike sorting, and determination of behavioral state and 

forelimb movements. 

QUANTIFICATION AND STATISTICAL ANALYSIS 

Data preparation 

For all decoding procedures, M1 unit activity and forelimb displacement served as the 

predictor and target variables, respectively. Both variables were binned in 20-ms 

increments. Forelimb displacement was calculated as the absolute value of zero-centered 

limb position along the x-, y-, and z-dimensions and was smoothed using a 20-ms half-

width Gaussian kernel. 

To prevent model overfitting, the one-hour recordings were split into training (36 min; 

60%) and testing (9 min; 15%) datasets, which were used to train and test model 

parameters for best performance. A validation dataset (15 min; 25%) was held back until 

the final model parameters were established. The validation dataset was then used to 

perform all present analyses in order to ensure an unbiased final assessment of decoder 

performance [25]. 

Data scaling 

M1 activity was z-scored prior to decoding. The scaling factors (mean and standard 

deviation) were calculated using only the training dataset to avoid data leakage (i.e., 

positive bias in performance estimates due to information from the testing dataset leaking 

into the training dataset; [59]. Forelimb position was normalized prior to decoding. The 
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scaling factors (minimum and maximum) were again calculated using only the training 

dataset to avoid data leakage. 

Linear model 

The linear model was composed of a single-layer Tensorflow model [60] with no hidden 

layer or activation function. This design forms a linear perceptron [61] and is equivalent 

to an ordinary least-squares (i.e., linear) regression. All models were assembled in Keras, 

a software package that assists in building Tensorflow models [62]. A 240-ms time 

window surrounding each timepoint was flattened (i.e., crossed with the feature of 

individual units) to provide additional temporal context to the model. 

The decoder’s learning parameters were as follows: Mean-square error was selected as 

the loss function (i.e., a function used to determine the error between the real limb 

displacement and the predicted limb displacement). Adam [63] was selected as an 

optimizer (i.e., an algorithm that updates the internal parameters of the model across 

training iterations). The learning rate (i.e., the degree to which the internal parameters are 

updated) was set to 0.001 arbitrary units, which is the default learning rate for Adam in 

the Keras package. Importantly, we tested a variety of different combinations of loss 

functions, optimizers, and learning rates and did not find meaningful impact on decoder 

performance (data not shown). 

The model was allowed to train until the validation loss function stopped decreasing, 

which typically occurred after 3–5 iterations. Three target variables were independently 

predicted for each time bin, corresponding to x-, y-, and z-displacement of the forelimb. 
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The three predictions were combined using the Pythagorean theorem prior to comparison 

with actual limb displacement: 

Equation 1:  #𝑥! 	+ 	𝑦! +	𝑧! 

Nonlinear model 

Several nonlinear models were compared before settling on a long-short-term memory 

(LSTM) neural network [26]. The LSTM model was chosen for its superior performance 

on the current dataset and its successful application in similar neural decoding 

applications [25, 64, 65]. The number of nodes in the input layer was identical to the 

number of units in each specific M1 recording (i.e., 14–38 nodes). Larger numbers of 

nodes were tested (up to 500) but did not result in significantly better decoding 

performance (data not shown). A 240-ms time window, similar to that added to the linear 

model, was included as a recurrent feature. 

To further prevent overfitting, a penalty was added to the recurrent dimension of the model 

to prevent rapid changes to the model’s internal parameters across training iterations. 

The penalty selected was L2 (ridge regression; [66]: 

Equation 2:  𝜆 ∙ ‖𝛽‖ 

where 𝜆, which represents the magnitude of the penalty, was set to 0.001 arbitrary units. 

The optimizer, learning rate, and loss function were identical to the linear model. The 

nonlinear model was also allowed to run until the validation error stopped decreasing 

(typically within 3–5 iterations). Similar to the linear model, three independent predictions 
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(x-, y-. and z-displacement) were made for each time bin and summed using the 

Pythagorean theorem (Equation 1) prior to comparison with actual limb displacement. 

Decoder performance 

Decoder performance was evaluated using the square of the Pearson correlation 

coefficient (𝑟!) with actual (x) and predicted (y) limb displacement as the two variables: 

Equation 3:  𝑟! =	. ∑(%"	'	%̅)(*"	'	*+)
,∑(%"	'	%̅)# 	∑(*"	'	*+)#		

/
!
 

In typical neural decoding applications, regression performance is measured using the 

Coefficient of Determination (𝑅!) 

Equation 4:  𝑅! = 1 −	∑(*"	'	%")
#

∑(%"	'	%̅)#
 

which is sensitive to the scale of the errors. The scale-invariant definition of model 

performance used here (Equation 3) solves the “intermittent demand” problem [67]. 

Briefly, because the limb’s displacement is near zero (i.e., at rest) across the vast majority 

of sampled time points, 𝑅! disproportionately rewards predictions equal to the mean limb 

displacement and punishes predictions that vary from baseline, which is not the case with 

𝑟!. 

Lesion experiment 

Two “lesion” experiments were performed in which individual M1 units or action potentials 

(spikes) were randomly selected to be removed from the decoding process. A given 

percentage of units or spikes, in a range from 0% to 90% (in increments of 10%), was 

randomly selected and removed without replacement using the NumPy software package 
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in Python [68]. The resulting units or spike trains were then used as the predictor variable 

and given to the decoder model that was trained on the “intact” dataset. The performance 

of the decoding model after a lesion was calculated as the ratio of the lesion 𝑟! to the 

“intact” 𝑟!, converted to a percentage. The randomization procedure was repeated ten 

times and the ten 𝑟! values were averaged (per animal). 

Mutual Information 

Mutual information between a target unit (X0) and a subset of predictor units ({Xk}) of size 

k was defined as: 

Equation 5:  𝐼(𝑋-; {𝑋.}) = 𝑆(𝑋-) − 𝑆(𝑋-	|	{𝑋.}) 

where 𝐼(𝑋-; {𝑋.}) represents the mutual information between the target unit and subset 

of units [69-71]. This is equivalent to the entropy of the target unit (𝑆(𝑋-)) minus the 

entropy of the target unit explained by the subset (𝑆(𝑋-	|	{𝑋.})). Software from [72] was 

used to calculate mutual information. Random subsets of units were randomly selected 

from all possible combinations (10 selections per subset of size k). 

Model transplant experiment 

To test the interchangeability of decoder models between animals of a particular age, a 

“model transplant” experiment was performed. The M1 activity (predictor variable) of an 

individual rat (referred to as Pup A; “recipient”) was used to predict Pup A’s forelimb 

displacement using the model weights of a different rat (Pup B; “donor”) of the same age. 

Two animals of the same age were paired when Pup A had the same number of M1 units, 

or a greater number, than Pup B. The two animals’ units were matched by descending 

firing rate. The excess units (from Pup A) were discarded from the analysis. In total, 29 
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such donor-recipient pairs were selected for both P8 and P12 animals. To test whether 

firing-rate sorting introduced bias, the experiment was repeated 30 times with random 

unit-unit pairings. The performance of the “model transplant” was measured as the ratio 

of the transplanted 𝑟! (Pup A ´ Pup B) to the original 𝑟! (Pup A ´ Pup A). 

Statistical analyses 

Prior to analysis, all data were tested for normality using the Shapiro-Wilk test, for equal 

variance using Levene’s test (for between-subjects variables), and for sphericity using 

Mauchly’s test (for within-subjects variables with >2 groups). For analyses in which the 

variance between groups was not equal, a pooled error term was not used when 

generating simple main effects and post-hoc tests. For analyses in which sphericity was 

violated, a Huynh-Feldt correction was applied to the degrees of freedom. All 𝑟! values 

were arc-sin transformed prior to analysis. The mean and standard error of the mean 

(SEM) were used throughout as measures of central tendency and dispersion, 

respectively. 

All analyses were performed as independent t tests or two-way mixed-design ANOVAs. 

Simple main effects were only tested if the interaction term was significant. In all two-way 

ANOVAs, an adjusted partial eta-squared was used as an estimate of effect size that 

corrects for positive bias due to sampling variability [73]. For t tests, an adjusted eta-

squared estimate of effect size was reported. 
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