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ABSTRACT 13 

Genome-scale metabolic models comprehensively describe an organism’s metabolism and can be 14 

tailored using omics data to model condition-specific physiology. The quality of context-specific 15 

models is impacted by (i) choice of algorithm and parameters and (ii) alternate context-specific 16 

models that equally explain the -omics data. Here we quantify the influence of alternate optima on 17 

microbial and mammalian model extraction using GIMME, iMAT, MBA, and mCADRE. We find 18 

that metabolic tasks defining an organism’s phenotype must be explicitly and quantitatively 19 

protected. The scope of alternate models is strongly influenced by algorithm choice and the 20 

topological properties of the parent genome-scale model with fatty acid metabolism and 21 

intracellular metabolite transport contributing much to alternate solutions in all models. mCADRE 22 

extracted the most reproducible context-specific models and models generated using MBA had the 23 

most alternate solutions. There were fewer qualitatively different solutions generated by GIMME 24 

in E. coli, but these increased substantially in the mammalian models. Screening ensembles using 25 

a receiver operating characteristic plot identified the best-performing models. A comprehensive 26 

evaluation of models extracted using combinations of extraction methods and expression 27 

thresholds revealed that GIMME generated the best-performing models in E. coli, whereas 28 

mCADRE is better suited for complex mammalian models. These findings suggest guidelines for 29 

benchmarking -omics integration algorithms and motivate the development of a systematic 30 

workflow to enumerate alternate models and extract biologically relevant context-specific models.  31 

Keywords: Systems biology; Metabolic modeling; Constraint-based models; Context-specific 32 

models; Model extraction methods 33 

 34 

1. INTRODUCTION 35 
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The physiological state of a cell is mediated by an intricate network of signaling pathways, gene 36 

regulatory networks and metabolic reactions. Gene expression data provide functional insights into 37 

the modulation of cellular phenotype (Manzoni et al., 2018), biological features of disease states 38 

(Borrageiro et al., 2018; Dickson, 2021; Kori and Yalcin Arga, 2018; Pedrotty et al., 2012), cellular 39 

differentiation and tissue-specific functions (Burke et al., 2020; Uhlen et al., 2016; Watcham et 40 

al., 2019), and cellular responses to environmental perturbations (Kochanowski et al., 2017). 41 

Although many tools improve the coverage of gene expression data analysis, to gain more 42 

functional insights into the modulation of cell state (Nguyen et al., 2019), quantitative assessments 43 

using genome-scale models (GEMs) can provide rich mechanistic insights.  44 

GEMs are a comprehensive repository of biochemical reactions encoded within the genome of an 45 

organism (Gu et al., 2019) that reflect its metabolic capabilities. The sheer size (e.g., number of 46 

reactions) of eukaryotic genome-scale models introduces computational and data availability 47 

bottlenecks to parameterize quantitative integration techniques such as whole-cell modeling 48 

(Macklin et al., 2020), ME-Models (O'Brien et al., 2013), or kinetic models (Gopalakrishnan et 49 

al., 2020; Khodayari and Maranas, 2016). The integration of transcriptomics with GEMs has been 50 

invaluable to the scientific community for nearly two decades (Blazier and Papin, 2012; Robaina 51 

Estevez and Nikoloski, 2014). For example, transcriptomics data can be integrated with eukaryotic 52 

models through binarization of enzyme abundance levels to “ON” or “OFF” states after 53 

thresholding associated gene expression levels and evaluating gene-protein-reaction (GPR) 54 

relationships to yield context-specific models that represent the condition-specific metabolism of 55 

the organism. However, inactivating reactions based on thresholding alone leads to fragmented 56 

metabolic networks that are incapable of predicting any meaningful flux distributions (hereafter 57 

known as flux inconsistent networks) (Åkesson et al., 2004). Flux consistency must be restored 58 
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using gap-filling algorithms, which seek to preserve the validity of the model. Several algorithms 59 

have been developed over the past decade, each with its own unique approach for extracting flux-60 

consistent sub-networks. Context-specific models generated using various model extraction 61 

methods have been previously applied to study human tissue-specific metabolism (Jerby et al., 62 

2010), identify biomarkers in NAFLD (Mardinoglu et al., 2014), cancer (Zielinski et al., 2017), 63 

and diabetes (Bordbar et al., 2011; Kumar et al., 2014), propose potential anti-cancer drug targets 64 

(Pacheco et al., 2019) , and optimize bioprocessing for drug manufacturing (Fouladiha et al., 2020; 65 

Schinn et al., 2021a).  66 

Model extraction methods are broadly classified into optimization-based and pruning-based 67 

methods. Optimization-based methods are broadly classified into the GIMME-like family of 68 

methods (Becker and Palsson, 2008) and the iMAT-like family of methods (including iMAT (Zur 69 

et al., 2010), INIT (Agren et al., 2012), and tINIT (Agren et al., 2014)) and rely on solving a linear 70 

or mixed-integer programming problem to extract context-specific models. The objective varies 71 

based on the method and generally maximizes removal of poorly expressed genes (as in the 72 

GIMME-like methods) or inclusion of highly expressed genes (as in iMAT and INIT) and may      73 

enforce minimum flux through certain required phenotype-defining pathways (also known as 74 

required metabolic functions (RMFs))  as implemented in tINIT. On the other hand, pruning-based 75 

methods like MBA (Jerby et al., 2010), FASTCORE (Vlassis et al., 2014), mCADRE (Wang et 76 

al., 2012), and CORDA (Schultz and Qutub, 2016) extract context-specific models by first 77 

identifying a candidate list of reactions to be removed and then pruning the genome-scale models 78 

one reaction at a time, until no more reactions can be removed without losing information about 79 

the cell’s phenotype. While optimization-based methods are faster and better at protecting flux 80 

through known metabolic functions, pruning-based methods allow evidence-based retention of 81 
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reactions, thereby generating models that are more representative of the physiological state being 82 

investigated (Robaina Estevez and Nikoloski, 2014). 83 

The content and quality of an extracted model depends on the choice of model extraction method, 84 

the threshold applied to gene expression data to identify active and inactive reactions, and the 85 

coverage of data. Previous studies (Opdam et al., 2017; Richelle et al., 2019b) revealed the choice 86 

of method and the threshold strongly influencing model content. However, an overlooked factor 87 

influencing model content is whether model extraction methods yield a unique context-specific 88 

model. Alternate optimal solutions arise when there are multiple combinations of reactions 89 

associated with poorly expressed genes that can be retained to restore flux consistency of the 90 

metabolic network but cannot be effectively resolved using the available gene expression data. 91 

Typically, these include isozymes utilizing different cofactors (e.g., NAD vs NADP) and alternate 92 

biosynthetic routes. The scope and disparity of alternate optimal solutions is a measure of 93 

reproducibility of each model extraction algorithm and sufficiency of data. To account for alternate 94 

optimal solutions, the algorithm EXAMO first identifies all fluxes that are active in all alternate 95 

solutions generated by iMAT and uses this set of reactions as high-confidence reactions in MBA 96 

(Rossell et al., 2013). Robaina-Estevez and Nikoloski (2017) developed a framework to quantify 97 

alternate optima in flux-centric extraction methods such as RegrEx and CORDA and revealed that 98 

the variability in extracted model topology stemmed from different combinations of 58% of the 99 

reactions that were flagged for removal. Therefore, it is necessary to identify and quantify the 100 

variability in extracted context-specific models and screen potential alternate solutions using 101 

appropriate data (gene knockout data, fluxomics, endo-metabolomics, etc.) so that extracted 102 

models are sufficiently accurate to identify meaningful intervention strategies for therapeutic 103 

design or metabolic engineering applications of interest. In addition, a framework to enumerate 104 
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and screen the space of alternate solutions will provide insights into the reproducibility of existing 105 

model extraction algorithms and establish a platform to benchmark future omics-integration 106 

algorithms. 107 

This study comprehensively assesses the importance of quantitatively protecting flux through 108 

RMF reactions (the biomass production reaction, in this case) and the effect of choice of threshold 109 

and extraction method on the scope of alternate optimal solutions during transcriptomics-based 110 

model extraction in E. coli, CHO-S, and a renal cancer cell line (786O). Ensembles of 100 context-111 

specific models were extracted using combinations of parameters selected from five thresholding 112 

approaches (global 80th percentile, global 75th percentile, global 60th percentile, StanDep, and local 113 

T2), four model extraction methods (GIMME, iMAT, MBA, and mCADRE), and quantitative 114 

protection of metabolic functions (i.e., growth rate). First, we define a method to generate the 115 

ensemble of alternate solutions for each case. Next, we evaluate the growth rate predicted by all 116 

extracted context-specific models and determine that qualitatively protecting the biomass reaction 117 

(as previously suggested (Richelle et al., 2019a)) is not sufficient to accurately predict the 118 

experimentally measured growth rate. Following this, we quantify the variability in content of 119 

context-specific models in each ensemble in terms of conserved and variable pathways to assess 120 

the reproducibility of each method. Across all organisms and expression thresholds evaluated in 121 

this study, mCADRE generated the most reproducible models, whereas models generated by MBA 122 

showed the largest variance in reaction content. We also find that the size and content of models 123 

extracted using GIMME were the least sensitive to the applied expression threshold in all 124 

organisms evaluated in this study. We then demonstrate the utility of the receiver-operating-125 

characteristic (ROC) plot in visualizing the performance of extracted context-specific models and 126 

propose a metric to select the model which best represents the biological system in the context of 127 
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the application, using gene knockout data reserved from the model extraction dataset. Using a 128 

Euclidean distance metric, we quantified the proximity of the extracted models to the ideal model 129 

and found that GIMME generated the best-performing models for fast growing prokaryotes such 130 

as E. coli, whereas models extracted using mCADRE fared better in mammalian systems such as 131 

786O. Finally, we establish a set of guidelines that an extracted model should satisfy for reliable 132 

hypothesis generation in biomedical and metabolic engineering applications.  133 

 134 

 135 

2. RESULTS 136 

2.1. Flux through required metabolic functions must be explicitly protected during model 137 

extraction 138 

Model extraction methods aim to generate models that predict biologically relevant fluxes and 139 

accurately capture the sensitivity of the fluxome to genetic and environmental perturbations. 140 

Therefore, biologically relevant models must accurately recapitulate experimentally measured 141 

metabolite uptake and secretion rates and fluxes through required metabolic function (RMF) 142 

reactions. In this study, we consider the biomass formation reaction as an RMF reaction. Because 143 

the biomass reaction may not necessarily be retained in the extracted models, it should be protected 144 

as a core reaction to ensure retention (Richelle et al., 2019a). This was sufficient in optimization-145 

based methods (GIMME and iMAT), in which fluxes were protected using lower and upper bounds 146 

in the metabolic model. However, protecting the biomass reaction was insufficient to ensure a 147 

biologically relevant growth rate in models extracted using MBA and mCADRE (Figure 1). Only 148 

34 MBA models for E. coli generated using the 80th percentile expression threshold predicted a 149 
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growth rate greater than 90% of the experimentally measured growth rate (Supplementary Figure 150 

S1A). For 786O, only 36 of 500 models generated using MBA supported a growth rate within 10% 151 

of the maximum rate predicted by Recon2.2 (Supplementary Figure S1B). For CHO-S, only 9 of 152 

500 generated MBA models predicted a growth rate within 10% of the maximum growth rate 153 

predicted by iCHO1766 (Supplementary Figure S1C). No model extracted using mCADRE for 154 

any organism correctly predicted biologically relevant growth rates despite protecting the biomass 155 

formation reaction itself as a core reaction. Core reactions in MBA and mCADRE are considered 156 

active if they can carry a flux of at least 10-4 mmol/gDW-h for E. coli or 10-4 mmol/gDW-day for 157 

786O and CHO-S, which is several orders of magnitude less than the experimentally measured 158 

growth rate of all three organisms.  159 

In E. coli, reactions from the electron transport chain (complexes I, II and III) and succinate 160 

dehydrogenase from the TCA cycle were necessary for ATP production but were inactivated 161 

because the associated transcript abundances were below the cutoff threshold. The resulting 162 

models therefore relied on the lower-yield substrate-level phosphorylation reactions for ATP 163 

generation and yielded lower growth rates compared to iJO1366. In 786O and CHO-S, reactions 164 

supporting cysteine and lysine uptake were removed based on transcriptomic evidence. Thus, the 165 

resulting models relied on de novo cysteine biosynthesis pathways and biocytin catabolism to meet 166 

the biosynthetic cysteine and lysine demands. The low abundance of biocytin in cell culture media 167 

limited lysine availability for protein synthesis, resulting in a considerably lower growth rate 168 

prediction compared to the respective parent genome-scale models. Ranking of non-core reactions 169 

based on expression scores prior to model pruning in mCADRE ensured that reactions required to 170 

sustain an experimentally measured growth rate were always removed due to low or missing gene 171 

expression values. However, very few MBA models fortuitously retained these reactions because 172 
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MBA randomizes the removal order for reactions with low expression scores. Upon enforcing a 173 

mandatory minimum flux of 90% of the maximum growth rate predicted by the parent genome-174 

scale model as a pruning criterion, all models generated by MBA and mCADRE predicted a 175 

biologically relevant growth rate for each of E. coli, 786O, and CHO-S (Figure 1). These findings 176 

suggest that even the most lenient threshold approaches such as StanDep and the Local T2 177 

threshold can filter out reactions necessary to support key phenotypes and therefore, flux through 178 

RMF reactions must be explicitly protected during model extraction. 179 

 180 

Figure 1:  Retention of required metabolic functions. Box and Whisker plots show the distribution of the 181 
maximum growth rate predicted by extracted models relative to the maximum growth rate predicted by the 182 
genome-scale model for E. coli, 786O, and CHO-S using GIMME, iMAT, MBA, and mCADRE. 183 

 184 

2.2. Choice of extraction method determines the scope of alternate solutions 185 

Analysis of model sizes in each ensemble provided insights into the reproducibility and internal 186 

variability of model extraction methods. The ensemble generated using mCADRE showed the 187 
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least dispersion in model sizes (average range = 2 for E. coli, 10 for 786O, and 14 for CHO-S), 188 

while models generated using MBA showed the largest dispersion in model sizes for E. coli 189 

(average range = 37) and CHO-S (average range = 280) (Figure 2, Supplementary Tables ST4, 190 

ST5, and ST6). For 786O, models generated using iMAT showed the largest size dispersion 191 

(average range = 128). Upon increasing the global expression threshold from the 60th percentile to 192 

the 80th percentile, the dispersion of model sizes from iMAT and MBA increased by up to 50%. 193 

However, ensembles generated using iMAT and MBA with StanDep or local T2 thresholding had 194 

lower size dispersion compared to models using global thresholding. The size dispersion correlated 195 

with the size of the core reaction set. For larger core reaction sets, model extraction methods choose 196 

pathways from a smaller set of non-core reactions for gap-filling, resulting in ensembles with 197 

smaller dispersions for thresholds with more core reactions. Interestingly, model size dispersion 198 

in ensembles generated using GIMME remained relatively unchanged in response to changes in 199 

threshold. On the other hand, rank-ordering of non-core reactions by mCADRE limits variability 200 

in removal order, and therefore, generated ensembles with the smallest size dispersion. 201 
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 202 

Figure 2: Size distribution of models in the ensemble generated using GIMME, iMAT, MBA, and 203 
mCADRE for E. coli, 786O and CHO-S with the global 60th percentile threshold, global 75th percentile 204 
threshold, global 80th percentile threshold, StanDep, and the local T2 threshold. 205 

 206 

Because a low size dispersion within an ensemble does not necessarily imply fewer alternate 207 

solutions, conserved and variable reactions in the ensemble must be identified and analyzed. 208 

During model extraction, we classified all reactions in the parent genome-scale models into one of 209 

four classes: conserved reactions (always retained in the ensemble), inactivated reactions (always 210 

removed in all models), variable reactions (retained in some models when certain criteria are met), 211 

and no data reaction (reactions lacking data in favor of retention or removal). The Jaccard index 212 

highlights the prevalence of each of these reaction classes and therefore quantifies the diversity of 213 

models within an ensemble.  214 
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The average Jaccard index for ensembles from mCADRE were 0.99, 0.99, and 0.98, in E. coli, 215 

786O, and CHO-S, respectively. Over 98% of reactions in the extracted models were conserved 216 

reactions (Figure 3A). Upon varying the applied threshold, the number of conserved reactions in 217 

E. coli ranged from 872 to 1,426 reactions. The corresponding ranges were 1,722 to 3,199 reactions 218 

in 786O, and 1,161 to 2,249 reactions in CHO-S. Reactions were conserved in an ensemble 219 

because they were either core reactions, stoichiometrically coupled to core reactions, or 220 

stoichiometrically coupled to the biomass formation reaction. 434, 286, and 332 growth-coupled 221 

reactions were conserved in E. coli, 786O, and CHO-S, respectively. While only 315 reactions in 222 

E. coli were retained to activate blocked core reactions, this number increased up to 541 reactions 223 

in CHO-S and 1,019 reactions in 786O. This suggests that reaction retention in E. coli was 224 

primarily driven by biomass coupling, whereas gene expression data were the primary cause of 225 

reaction retention in the eukaryotic models. 27 reactions in E. coli, 303 reactions in 786O, and 259 226 

reactions in CHO-S constituted alternate solutions (Figure 3B). In E. coli, these 27 reactions (21 227 

reactions from glycerophospholipid metabolism, 3 metabolite transport reactions, and 3 reactions 228 

from lipopolysaccharide biosynthesis) were included to ensure flux consistency of seven core 229 

reactions (five transport reactions, and one reaction each from lipopolysaccharide and 230 

glycerophospholipid biosynthesis). In 786O, alternate solutions resulted from variability in 203 231 

transport reactions, 34 glycosylation reactions, 22 reactions from fatty acid metabolism, and 8 232 

reactions from nucleotide metabolism, 10 reactions from amino acid metabolism, and 23 reactions 233 

from central metabolism. These reactions were retained in the extracted models to activate 195 234 

core reactions, primarily from fatty acid metabolism, all of which have four alternate pathways on 235 

average activating them. In CHO-S, 187 transport reactions, 25 reactions from fatty acid 236 

metabolism, 15 glycosylation reactions, 11 reactions from nucleotide metabolism, and 21 reactions 237 
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from central and amino acid metabolism make up all identified alternate solutions. Similar to 238 

786O, the core reactions activated by these non-conserved reactions are predominantly from fatty 239 

acid metabolism. Since mCADRE attempts to remove all non-core reactions, none of the reactions 240 

in the model were classified as no data reactions. 241 

Compared to mCADRE, MBA ensembles had greater size dispersion and lower Jaccard index 242 

values (averaging 0.95 in E. coli, 0.86 in 786O, and 0.82 in CHO-S). Although MBA used more 243 

core reactions than mCADRE, an average 10% reduction in conserved reactions was observed in 244 

all three organisms. Unlike mCADRE, MBA permits removing core reactions if at least twice as 245 

many non-core reactions are removed. In addition, conserved reactions accounted for only 91%, 246 

84%, and 83% of the extracted models for E. coli, 786O, and CHO-S, respectively. This contrasted 247 

with mCADRE, in which >99% of the reactions in all extracted models were conserved. The 248 

variable fraction of the models was considerably higher in MBA models compared to mCADRE 249 

models (Figure 4A), accounting for 247 reactions in E. coli, 1,436 reactions in 786O, and 1,579 in 250 

CHO-S, of which, 23 reactions in E. coli, 49 reactions in 786O, and 91 reactions in CHO-S were 251 

rendered growth-coupled by mCADRE. The variable reactions in extracted models were 252 

predominantly from fatty acid metabolism in E. coli and from metabolite transport pathways in 253 

786O and CHO-S (Figure 3B). Of these variable reactions, 171 reactions in E. coli, 1,114 reactions 254 

in 786O, and 1,222 reactions in CHO-S were always removed in ensembles generated using 255 

mCADRE. This is because MBA randomizes the removal order of non-core reactions whereas 256 

mCADRE sorts non-core reactions based on expression and connectivity evidence prior to 257 

removal. Thus, certain non-core reactions are always eliminated by mCADRE because their low 258 

gene expression increases their removal priority, while MBA may retain them if competing non-259 
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core reactions are removed earlier. This implementation difference contributed to the larger 260 

variation in size and content in models extracted using MBA compared to other methods. 261 

Compared to MBA, iMAT models had fewer reactions, lower dispersion, and lower variability in 262 

model content with a Jaccard index of 0.96, 0.86, and 0.8 in E. coli, 786O, and CHO-S, 263 

respectively. Ensembles generated using iMAT for E. coli had the smallest fraction of conserved 264 

reactions (88%). For 786O and CHO-S, this fraction was 74% and 55%, respectively, considerably 265 

lower than mCADRE despite having the same number of core reactions. Unlike mCADRE, iMAT 266 

does not remove all reactions below the high expression threshold but attempts to inactivate only 267 

those reactions whose expression score is below the specified lower threshold. Moreover, iMAT 268 

permits removing core reactions if an equal number of low expression reactions were inactivated. 269 

Reactions from transport pathways and fatty acid metabolism accounted for 65% of all variable 270 

reactions in the E. coli ensembles (Figure 4B). Meanwhile, reactions from fatty acid metabolism, 271 

cofactor biosynthesis, and transport pathways accounted for 88% of the variable reactions in 786O, 272 

whereas reactions from metabolite transport pathways alone accounted for 70% of the variable 273 

reactions in CHO-S.  274 

Although the GIMME ensembles had low size dispersions relative to iMAT and MBA, a pairwise 275 

comparison of models based on reaction content revealed that the scope of alternate solutions 276 

varied based on the topological features of the parent GSM model. Ensembles extracted using 277 

GIMME for E. coli had an average Jaccard index of 0.99 with 426 conserved reactions across the 278 

ensemble, 1,815 reactions always removed in all models, and 342 reactions contributing to 279 

alternate solutions. Of the 426 conserved reactions, 375 reactions were growth-coupled in 280 

iJO1366, 43 reactions were growth-coupled in the extracted models but not in iJO1366, one 281 

reaction (ATP maintenance) was retained based on pre-specified flux bounds, and six reactions 282 
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from central metabolism were retained as alternatives to low-expression reactions. Of the 342 283 

variable reactions, 224 reactions from metabolite transport, fatty acid metabolism, tryptophan 284 

biosynthesis and nucleotide phosphorylation pathways were growth-coupled when retained in the 285 

extracted models. Ensembles for both eukaryotic models had more diverse alternate solutions with 286 

an average Jaccard index of 0.72 for CHO-S and 0.64 for 786O. The number of conserved reactions 287 

was also reduced to 170 reactions in CHO-S and 83 reactions in 786O with only 127 and 44 288 

reactions coupled to biomass formation in iCHO1766 and Recon2.2, respectively. 4,757 reactions 289 

in CHO-S and 5,861 reactions in 786O were inactivated in every extracted model. However, the 290 

number of variable reactions in each case increased to 1,736 reactions in CHO-S and 1,841 291 

reactions in 786O, which is much greater than E. coli, despite similarities in model sizes in all 292 

three ensembles. 70% of these variable reactions were inter-compartment metabolite transport 293 

reactions, 10% from amino acid metabolism, 6% from fatty acid metabolism, and the remaining 294 

from cofactor biosynthesis and nucleotide biosynthesis and salvage. The primary objective of 295 

GIMME is to inactivate reactions with genes expressed below the threshold while ensuring that 296 

RMF reactions are retained and fully operational. Thus, we classify reactions as: (i) growth-297 

coupled, (ii) low-expression, and (iii) maybe-on. All growth-coupled reactions are always retained 298 

in every extracted model. Low-expression reactions are always removed unless coupled to the 299 

RMF reaction. The inactivation of low-expression reactions forces flux through alternate 300 

pathways, when available, to meet the demands of the RMF reaction. Pathways that are the sole 301 

alternatives to low-expression reactions are retained in every extracted model. However, when 302 

alternate pathways exist, variable reactions can be retained, resulting in alternate solutions. 303 

Reactions with no available data have no reason for retention or removal and therefore contribute 304 

to alternate pathways. As such, alternate solutions from GIMME are determined predominantly by 305 
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the topological features of the parent GSM. In E. coli, a much larger fraction of metabolism is 306 

growth-coupled leading to less diverse alternate solutions. However, models relying on more 307 

complex media, such as 786O and CHO-S have a more diverse set of alternate solutions. 308 

 309 

Figure 3A: Fraction of conserved reactions in models extracted using GIMME, iMAT, MBA, and 310 
mCADRE for E. coli, 786O, and CHO-S with various thresholds.  311 

 312 
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 313 

 314 

Figure 3B: Fraction of reactions from various pathways (0 representing no variable reactions and 315 
1 representing all variable reactions) contributing to alternate solutions in models extracted using 316 
GIMME, iMAT, MBA, and mCADRE for E. coli, 786O, and CHO-S with various thresholds 317 

 318 

 319 

2.3. ROC plots help evaluate the quality of extracted models  320 

Diverse ensembles of context-specific models can be generated, but it is often unclear which 321 

models are most biologically relevant. To validate extracted models, gene dispensability data, flux 322 

redirections, and fluxomics datasets can be used (Opdam et al., 2017). Here we rely on gene 323 

knockout data to evaluate the quality of alternate optimal models. The ideal model would correctly 324 

identify all essential and non-essential genes. Integrating transcriptomics data deactivates 325 

pathways that are inactive in the context of interest and is therefore expected to reconcile false 326 

predictions by the genome-scale model. Here we evaluate the specificity and sensitivity using 327 

receiver operating characteristic (ROC) plots (see Methods section for the definition of specificity 328 

and sensitivity and Supplementary Figure S2 ROC plots for E. coli, 786O, and CHO-S). After 329 
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computing the specificity and sensitivity for each model, the distance from the ideal model was 330 

computed and then compared with the parent genome-scale model.  331 

All extracted models outperformed their respective parent GEM models in predicting gene 332 

dispensability. This is because model pruning removes alternate routes that compensate for the 333 

loss of function of essential reactions, which reconciles false-positive predictions in the genome-334 

scale model. We find that GIMME models had the highest specificity for E. coli and CHO-S with 335 

an average sensitivity of 0.87 and 0.71, respectively. mCADRE generated the highest specificity 336 

models for 786O with an average specificity of 0.14. The best models generated for E. coli and 337 

CHO-S using GIMME showed a 29% and 55% improvement in gene essentiality predictions 338 

compared to iJO1366 and iCHO1766, respectively. On the other hand, the best model for 786O 339 

generated using mCADRE only showed a 13% improvement compared to Recon2.2.  340 

The essentiality of 203 genes were reconciled in the best performing model generated using 341 

GIMME for E. coli, including 30 genes from fatty acid biosynthesis, nucleotide biosynthesis, and 342 

glycolysis. Compared to other models in the ensemble, the best performing model failed to 343 

reconcile the essentiality of the b1638 gene that encodes the PDX5POi reaction involved in 344 

pyridoxal phosphate biosynthesis. The PDX5PO2 reactions serves as an alternate route to 345 

pyridoxal phosphate synthesis when the PDX5POi gene is inactivated. Because PDX5PO2 is not 346 

associated with any gene, it is not preferentially removed or retained in models generated using 347 

GIMME and iMAT, due to which, b1638 is always reconciled in these ensembles. In contrast, 348 

PDX5PO2 is treated as a low confidence reaction by MBA and mCADRE, leading to prioritized 349 

removal. As a result of this, MBA and mCADRE can reconcile the essentiality of b1638.   350 

The essentiality of 62 genes predominantly from fatty acid metabolism and transport pathways 351 

were reconciled in the best performing model for 786O generated using mCADRE. In the best 352 
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model for CHO-S constructed using GIMME, the essentiality of 18 genes from fatty acid 353 

metabolism and the TCA cycle were reconciled. The best models generated for 786O and CHO-S 354 

reconciled all essential genes reconciled in their respective ensembles.  355 

The difference in gene essentiality reconciliation between the three models is attributable to 356 

differences in the metabolism of E coli and mammalian cells, which are reflected in the topological 357 

features of iJO1366, Recon2.2, and iCHO1766. Because E. coli grows in minimal media, a large 358 

fraction of its metabolism is biosynthetic, leading to a higher number of growth-coupled pathways. 359 

Protection of flux through the biomass reaction leads to removal of only dispensable pathways 360 

supported by low gene expression in models extracted using GIMME. This gave rise to models 361 

with the largest increase in specificity compared to the parent genome-scale model in E. coli. On 362 

the other hand, because a much smaller fraction of Recon2.2 and iCHO1766 is coupled to biomass 363 

production, removal of reactions without evidence-based prioritization leads to erroneous removal 364 

of essential reactions. This resulted in models with low specificity in 786O and CHO-S. In contrast, 365 

mCADRE prioritizes removal of reactions that are poorly expressed and weakly connected to 366 

highly expressed reactions. This systematic removal protects against the removal of highly 367 

expressed reactions in potentially essential pathways, thereby generating models with higher 368 

specificity than those extracted using GIMME for 786O. In comparison, models generated by 369 

iMAT and MBA did not perform as well as those generated by GIMME as suggested by their 370 

proximity to the parent genome-scale model (Figure 4 and Supplementary Figure S2). Models 371 

generated by iMAT were much closer to the parent genome-scale model for E. coli and 786O, but 372 

performed considerably better in CHO-S. 373 
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  374 

Figure 4A: Improvement in quality of models extracted using GIMME, iMAT, MBA, and 375 
mCADRE for E. coli, 786O, and CHO-S compared to the parent genome-scale models. The ideal 376 
model correctly classifies all essential and non-essential reactions and therefore, has a specificity 377 
and sensitivity equal to 1. The distance from the ideal model is calculated as 378 

�(1 − 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠)2 + (1 − 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠)2 . 379 
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 380 

Figure 4B: Receiver Operating Characteristic (ROC) plot showing the improvement in model 381 
performance of the best models extracted using GIMME, iMAT, MBA, and mCADRE relative to 382 
the parent genome-scale model in E. coli, 786O, and CHO-S.  383 

 384 

3. DISCUSSION 385 

This study evaluates key parameters influencing the quality of context-specific models extracted 386 

with various methods using gene expression data. While the choice of model extraction method 387 

and the threshold for gene expression remain the most important factors affecting model size, our 388 

analysis reveals that depending on the choice of model extraction method, the exploration of 389 

alternate solutions can lead to drastically different models. These findings suggest the need for a 390 

set of guidelines for extracting the most meaningful and biologically relevant context-specific 391 

models, to supplement guidelines on model construction (Thiele and Palsson, 2010), model 392 

annotation (Ebrahim et al., 2015), and model parameterization (Schinn et al., 2021b). Key 393 

guidelines are presented in Table 1, a workflow incorporating the proposed guidelines is shown in 394 
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Figure 5, and the steps to implement the workflow are listed in Table 2. Three steps (Figure 5) are 395 

involved in the extraction of context-specific models from genome-scale models: (i) pre-396 

processing, (ii) ensemble generation, and (iii) ensemble screening. The pre-processing step 397 

transforms the raw model and transcriptomic data into a format compatible with model extraction 398 

methods. 399 

 400 

Figure 5: Generalized workflow pipeline for extracting context-specific models using gene-401 
expression data 402 

Preprocessing of transcriptomics involves applying a threshold to determine which reactions are 403 

likely active. To this end, transcriptomic data are log-transformed and mapped to reactions via 404 
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gene-protein-reaction (GPR) relationships. A threshold (top 25th percentile, top 50th percentile, 405 

etc.) is applied to reaction expression scores to extract lists of reactions based on the requirements 406 

of model extraction methods. Here we investigated combinations of five thresholds (global 60th 407 

percentile, global 75th percentile, global 80th percentile, StanDep, and local T2 threshold) and four 408 

model extraction methods (GIMME, iMAT, MBA, and mCADRE). GIMME and mCADRE 409 

require the lists of reactions with expression scores below and above the specified threshold, 410 

respectively. iMAT and MBA require two thresholds to classify reactions into highly expressed 411 

and weakly expressed sets. Incorporating media information identifies and eliminates inconsistent 412 

core reactions which protects the workflow from extraction failures (see Supplementary Results). 413 

After preprocessing, gap-filling of metabolic networks is performed using model extraction 414 

methods to ensure flux consistency of the core reaction set. 415 

 416 

# Guideline 

1 Limit nutrient uptake to media components only 

2 Enforce minimum fluxes through known metabolic functions 

3 Generate and screen ensembles of alternate solutions using other omics data 

4 Draw inferences from conserved reactions only 

 417 

Table 1: Guidelines for extracting meaningful metabolic models using transcriptomics data 418 

 419 
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STEP DESCRIPTION 

STEP 1A: 

Model preprocessing 

Impose the lower and upper bounds for the uptake and secretion of all measured 
metabolites as well as the growth rate. For metabolites in the growth medium 
that are not measured, an arbitrary bound limiting their uptake can be imposed. 
Identify all reactions incapable of carrying flux using Flux Variability Analysis 
and remove them. The resultant pre-processed model should be flux consistent. 
 

STEP 1B: 

Data preprocessing 

Compute reaction expression scores from gene expression data using defined 
reaction-specific Gene-Protein-Reaction (GPR) rules. 
Generate multiple core reaction sets by applying different thresholds to the 
computed reaction expression scores. Local thresholding methods are often 
preferred due to their ability to retain lowly expressed housekeeping genes. 
 

STEP 2: 

Identify metabolic tasks that define the cell’s phenotype 

Generate a list of metabolic tasks that must be retained in extracted models. 
Metabolic tasks with available experimental measurements must be 
quantitatively protected. Other identified metabolic tasks should be added to the 
sets of core reactions. 
 

STEP 3: 

Generate ensembles of context-specific models 

Using the preprocessed model form step 1a, the preprocessed reaction expression 
scores from step 1b, and the metabolic tasks from step 2 as inputs, generate 
ensembles of at least 50 models using any model extraction method.  
 

STEP 4: 

Screen and select the best-performing models 

For each model in the generated ensemble, compute the specificity and 
sensitivity using validation data (gene knockout, flux prediction, etc.). Compute 
the distance from the ideal model using the expression: 
�(1 − 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠)2 + (1 − 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠)2. The top performing models have 
the lowest distance metric. 
 

 420 
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Table 2: Implementation of the workflow depicted in Figure 5. 421 

 422 

During model extraction, it is mandatory to retain and protect the flux through known metabolic 423 

functions in the conditions being investigated. Indeed, required metabolic functions are not always 424 

retained in extracted models (Opdam et al., 2017) and protecting metabolic functions reduces the 425 

variability in model content between models extracted using different extraction methods (Richelle 426 

et al., 2019a). This study, however, finds that merely protecting these tasks is insufficient to ensure 427 

the required flux through the metabolic task. For example, the predicted growth rate in E. coli 428 

drops by over 99% in models generated using mCADRE when a minimum growth rate is not 429 

enforced. This suggests that while gene expression data provides insights into pathway activity, it 430 

alone is insufficient to distinguish between the various metabolic states underpinning the metabolic 431 

task. Although a comprehensive list of condition-specific metabolic tasks may be obtained through 432 

a literature search, sets of metabolic known tasks in rat and human tissues have been published 433 

(Blais et al., 2017; Richelle et al., 2019b; Thiele et al., 2013). Furthermore, context-specific 434 

metabolic tasks can be predicted from transcriptomic data to inform which of all tasks should be 435 

protected when extracting a model for the desired conditions or cell type (Masson et al., 2022; 436 

Richelle et al., 2019a; Richelle et al., 2021). The inability to consistently retain and predict a 437 

required flux through essential metabolic functions implies that flux constraints on these reactions 438 

complement gene expression data and improve the biological relevance of extracted models. 439 

The size, content, and predictive capabilities of the model are strongly influenced by the choice of 440 

model extraction method and the applied threshold for gene expression, as seen in previous studies 441 

(Opdam et al., 2017; Richelle et al., 2019b). Therefore, the choice of the right combination of 442 

parameters is crucial for extracting a meaningful model. Here we demonstrated that ROC plots can 443 
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be used to identify the best performing models. While models generated using individual gene-444 

specific local thresholds (Uhlen et al., 2015) or thresholds derived from hierarchical clustering 445 

(Joshi et al., 2020) were generally better, these thresholding methods can only be applied when 446 

multiple gene expression data samples are available. In addition to gene knockout data used for 447 

screening in this study, other types of biological data such as metabolomics and fluxomics data 448 

can be used for validation so long as the model’s recapitulation of the validation dataset can be 449 

represented using a confusion matrix. While metabolomics data reveals which metabolites actively 450 

participate in the condition being investigated, fluxomics data elucidates pathway utilization to 451 

validate generated models. Furthermore, the quality of models extracted using different algorithms 452 

varied based on the biology of the organism in question. Using available gene knockout data, we 453 

found that GIMME generated the best performing models in fast-growing prokaryotes such as E. 454 

coli, whereas the corresponding models generated for a function-oriented cell such as 786O were 455 

sub-par. These differences suggest the need for a careful assessment of thresholds and methods 456 

while constructing context-specific models for targeted applications. 457 

The impact of alternate solutions must be assessed while extracting and/or and developing tools to 458 

extract context-specific models. Alternate optima provide meaningful insights into the 459 

reproducibility of the algorithm and highlight the variable parts of the extracted metabolic 460 

networks (Rossell et al., 2013). This arises from the insufficiency of available gene expression 461 

data to resolve pathway usage in those parts of metabolism. Thus, any inferences drawn from flux 462 

distributions involving those pathways are potentially ambiguous and would require additional 463 

validation. Furthermore, for algorithms of lower reproducibility such as MBA, generation of an 464 

ensemble of models increases the likelihood of identifying better performing models that may be 465 

more relevant to the condition being investigated.  466 
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 467 

An important factor affecting the performance of extracted models is the quality of the parent 468 

genome-scale model. While curated models such as those for E. coli benefit from a wealth of 469 

available literature, thereby leading to models with very high specificity and sensitivity, less 470 

studied and more complex organisms do not enjoy the same luxury. For example, the parent 471 

genome-scale model for 786O, Recon2.2, has a very low sensitivity of 0.02. This indicates a need 472 

for developing algorithms that leverage gene knockout data in addition to gene expression data for 473 

extracting accurate context-specific models. Better model extraction algorithms that can accurately 474 

capture the biological state of the cell will simplify the model reduction step commonly performed 475 

before computationally intensive analyses such as 13C-MFA (Sacco and Young, 2021), kinetic 476 

modeling (Islam et al., 2021), hybrid models(Khaleghi et al., 2021), and models integrating other 477 

cell processes with metabolism, such as signaling pathways, protein secretion, and many other 478 

processes (Elsemman et al., 2022; Gutierrez et al., 2020; Karr et al., 2012). This will expand the 479 

coverage of biological data that can be integrated with metabolic models to gain novel insights 480 

into the biology of the organism, study the progression of diseases, identify novel therapeutics, 481 

and inform metabolic engineering strategies in production hosts. 482 

4. Methods 483 

4.1. Models and Data Sources 484 

The metabolic models iJO1366 (Orth et al., 2011), Recon 2.2 (Swainston et al., 2016), and 485 

iCHO1766 (Hefzi et al., 2016) for E. coli, human metabolism, and Chinese hamster ovary (CHO-486 

S) cells were used as parent genome-scale models for extraction of context-specific models. 487 

Published glucose uptake rate, growth rate, and acetate secretion rate for E. coli grown in M9 488 
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Minimal Medium were used (Leighty and Antoniewicz, 2013). Glucose uptake rate, lactate 489 

secretion rate, growth rate, and uptake and secretion rates for amino acids were obtained from the 490 

NCI-60 database for the 786O renal cancer cell line (Jain et al., 2012; Opdam et al., 2017) and 491 

from literature for the CHO-S cell line (Hefzi et al., 2016). Gene expression data for E. coli grown 492 

in M9 minimal medium, 786O, and CHO-S were obtained from previously published data by 493 

Monk et al. (2016), the NCI-60 database (Klijn et al., 2015), and previously published data by 494 

Hefzi et al. (2016), respectively.  495 

4.2. Model and Data Preprocessing 496 

Gene expression data were converted to reaction expression scores using a gene-protein-reaction 497 

(GPR) relationship. A GPR relationship is a Boolean expression that relates genes products to 498 

enzymes catalyzing a reaction. An OR relationship indicates that a reaction can be catalyzed by 499 

multiple isozymes. In this case, the reaction expression score is computed as the maximum 500 

expression of the genes encoding the different isozymes. Association of multiple subunits is 501 

modeled using the AND relationship. The reaction expression score for an AND relationship is 502 

evaluated as the minimum expression of the genes encoding the various subunits. Reactions 503 

without GPR relationships or with missing gene expression data were assigned an expression score 504 

of -1. These scores were used to identify global thresholding approaches. Expression scores using 505 

StanDep were computed as described by Joshi et al. (2020) whereas local T2 thresholding was 506 

performed as described by Richelle et al. (2019b). These approaches enable the better retention of 507 

more lowly expressed housekeeping genes and reactions (Joshi et al., 2022). Flux variability 508 

analysis (Mahadevan and Schilling, 2003) was performed to identify and remove inactive reactions 509 

so that all reactions in the parent models used for transcriptomics-based model extraction are flux 510 

consistent. 511 
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4.3. Model Extraction Methods 512 

GIMME (Becker and Palsson, 2008) requires as inputs one expression threshold and assignment 513 

of a reaction as the required metabolic function (RMF). Values corresponding to the 60th, 75th, and 514 

80th percentile in the reaction expression scores were applied as thresholds to determine which 515 

reactions must be removed. For expression scores computed using StanDep and the local T2 516 

approach, thresholds of 0 and 5*ln(2), respectively were applied. The biomass reaction was 517 

selected as the RMF reaction for all three organisms and a mandatory minimum of 90% of the 518 

maximum growth rate was enforced during model extraction. Since GIMME solves a linear 519 

programming problem to identify context-specific models, alternate solutions were identified by 520 

imposing an integer cut that eliminates previously identified solutions (Maranas and Zomorrodi, 521 

2016). 522 

iMAT (Zur et al., 2010) requires one threshold for high expression reactions and one for low 523 

expression reactions. For the global thresholding cases, expression scores corresponding to the 524 

60th, 75th, and 80th percentile were used to identify core reactions that must be included in the 525 

extracted model, whereas scores corresponding to the 20th percentile were considered inactive 526 

reactions for removal. For StanDep and the local T2 cases, equal upper and lower threshold of 1 527 

and 5*ln(2), respectively were applied. Because iMAT does not inherently protect flux through 528 

the RMF reaction, a lower bound of 90% of the maximum biomass flux was enforced in the MILP 529 

formulation of the iMAT case. As with GIMME, alternate solutions were identified using integer 530 

cuts. 531 

MBA (Jerby et al., 2010) requires two sets of reactions be provided as inputs: one set 532 

corresponding to high confidence reactions that must be included in the extracted model and a 533 

medium confidence set that is maximally retained. For the global thresholding cases, reactions 534 
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with scores above the 60th, 75th, and 80th percentile were considered high confidence reactions 535 

whereas those with scores above the 40th percentile but not part of the high confidence set were 536 

included in the medium confidence set. For StanDep, reactions with expression score greater than 537 

110% of that method’s cluster threshold were considered high confidence reactions and reactions 538 

with expression scores between 90% and 110% were considered medium confidence reactions 539 

(Joshi et al., 2020). For the local T2 case, reactions with scores above the 75th percentile were high 540 

confidence reactions and those with scores greater than 5*ln(2) and below the 75th percentile were 541 

included in the medium confidence set. Alternate solutions were generated by permuting the 542 

removal order of low confidence reactions. In addition to ensuring flux consistency of the high 543 

expression reaction set, a minimum flux of 90% of the maximum growth rate was enforced as a 544 

criterion for removing reactions to ensure that all models in the ensemble can predict a biologically 545 

meaningful growth rate. A separate ensemble was also generated using the conventional 546 

implementation of MBA in which the biomass formation reaction is added to the set of high 547 

confidence reactions. 548 

mCADRE (Wang et al., 2012) requires ubiquity scores to be provided as an input. Ubiquity scores 549 

for the global threshold cases were computed by normalizing reaction expression scores by the 550 

applied global threshold. Ubiquity scores for StanDep were computed as previously described by 551 

Joshi et al. For the local T2 case, ubiquity scores were calculated by normalizing expression scores 552 

to 5*ln(2) after applying appropriate local thresholds. Reactions with a ubiquity score greater than 553 

1 were flagged as core reactions to be protected during model extraction. Because mCADRE ranks 554 

non-core reactions based on expression and connectivity evidence, only a subset of non-core 555 

reactions of equal rank can be permuted. Alternate solutions were identified by permuting the 556 

removal order of this subset of reactions. As with MBA, a minimum of 90% of the maximum 557 
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growth rate was enforced as an additional criterion for model pruning. An ensemble was also 558 

generated using conventional mCADRE with the biomass formation reaction added to the set of 559 

core reactions. 560 

All algorithms were implemented in the COBRA Toolbox (Heirendt et al., 2019) in MATLAB ®.  561 

4.4. Analysis of Ensembles 562 

The similarity of two models (𝑚𝑚𝑚𝑚𝑚𝑚𝑠𝑠𝑙𝑙𝑖𝑖 and 𝑚𝑚𝑚𝑚𝑚𝑚𝑠𝑠𝑙𝑙𝑗𝑗) in any ensemble is quantified using the Jaccard 563 

Index defined as follows: 564 

𝐽𝐽𝑖𝑖𝑗𝑗 =
{𝑅𝑅𝑠𝑠𝑅𝑅𝑠𝑠𝑠𝑠𝑠𝑠𝑚𝑚𝑠𝑠𝑠𝑠 𝑠𝑠𝑠𝑠 𝑚𝑚𝑚𝑚𝑚𝑚𝑠𝑠𝑙𝑙𝑖𝑖} ∩ �𝑅𝑅𝑠𝑠𝑅𝑅𝑠𝑠𝑠𝑠𝑠𝑠𝑚𝑚𝑠𝑠𝑠𝑠 𝑠𝑠𝑠𝑠 𝑚𝑚𝑚𝑚𝑚𝑚𝑠𝑠𝑙𝑙𝑗𝑗�
{𝑅𝑅𝑠𝑠𝑅𝑅𝑠𝑠𝑠𝑠𝑠𝑠𝑚𝑚𝑠𝑠𝑠𝑠 𝑠𝑠𝑠𝑠 𝑚𝑚𝑚𝑚𝑚𝑚𝑠𝑠𝑙𝑙𝑖𝑖} ∪ �𝑅𝑅𝑠𝑠𝑅𝑅𝑠𝑠𝑠𝑠𝑠𝑠𝑚𝑚𝑠𝑠𝑠𝑠 𝑠𝑠𝑠𝑠 𝑚𝑚𝑚𝑚𝑚𝑚𝑠𝑠𝑙𝑙𝑗𝑗�

 565 

4.5. Validation of Extracted Models 566 

Gene essentiality data inferred from gene knockout studies were used to screen ensembles of 567 

context-specific models. In silico gene essentiality was determined by computing the reduction in 568 

the growth rate upon inactivating one gene at a time in every extracted context-specific model. 569 

Genes were considered in silico essential if the predicted growth rate in the knockout model fell 570 

below 5% of the growth rate predicted by the original context-specific model. The quality of 571 

extracted context-specific models was evaluated by comparing model predictions of gene 572 

essentiality with experimentally determined gene essentiality. Gene essentiality data for WT E. 573 

coli grown in M9 Minimal medium was obtained from the KEIO collection (Baba et al., 2006). 574 

For the 786O cell line, gene essentiality was determined based on the CERES scores published in 575 

the NCI-60 database (Meyers et al., 2017). Genes with a CERES score less than zero were 576 

considered essential. The list of essential genes in CHO was obtained from (Xiong et al., 2021). 577 

Genes correctly predicted as non-essential were classified as true positive (TP) predictions, 578 
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incorrectly predicted as essential were classified as false negative (FN) predictions, correctly 579 

predicted as essential were classified as true negative (TN) predictions, whereas those incorrectly 580 

predicted as non-essential were classified as false positive (FP) predictions. The specificity and 581 

sensitivity of the models were computed using the following expressions. 582 

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 =
# 𝑚𝑚𝑠𝑠 𝑇𝑇𝑇𝑇 𝑔𝑔𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

# 𝑚𝑚𝑠𝑠 𝑇𝑇𝑇𝑇 𝑔𝑔𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 + # 𝑚𝑚𝑠𝑠 𝐹𝐹𝐹𝐹 𝑔𝑔𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
   

(1) 

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 =
# 𝑚𝑚𝑠𝑠 𝑇𝑇𝐹𝐹 𝑔𝑔𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

# 𝑚𝑚𝑠𝑠 𝑇𝑇𝐹𝐹 𝑔𝑔𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 + # 𝑚𝑚𝑠𝑠 𝐹𝐹𝑇𝑇 𝑔𝑔𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
 

(2) 

 583 

All extracted models and gene dispensability predictions are reported in the supplementary 584 

material. 585 
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 589 

Figure Captions 590 

 591 

Figure 1 592 

Retention of required metabolic functions. Box and Whisker plots show the distribution of the 593 
maximum growth rate predicted by extracted models relative to the maximum growth rate 594 
predicted by the genome-scale model for E. coli, 786O, and CHO-S using GIMME, iMAT, MBA, 595 
and mCADRE. 596 

Figure 2 597 

Size distribution of models in the ensemble generated using GIMME, iMAT, MBA, and 598 
mCADRE for E. coli, 786O and CHO-S with the global 60th percentile threshold, global 75th 599 
percentile threshold, global 80th percentile threshold, StanDep, and the local T2 threshold. 600 

 601 
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Figure 3 602 

(A) Fraction of conserved reactions in models extracted using GIMME, iMAT, MBA, and 603 
mCADRE for E. coli, 786O, and CHO-S with various thresholds. 604 

(B) Fraction of reactions from various pathways (0 representing no variable reactions and 1 605 
representing all variable reactions) contributing to alternate solutions in models extracted 606 
using GIMME, iMAT, MBA, and mCADRE for E. coli, 786O, and CHO-S with various 607 
thresholds 608 

 609 

Figure 4 610 

(A) Improvement in quality of models extracted using GIMME, iMAT, MBA, and mCADRE 611 
for E. coli, 786O, and CHO-S compared to the parent genome-scale models. The ideal 612 
model correctly classifies all essential and non-essential reactions and therefore, has a 613 
specificity and sensitivity equal to 1. The distance from the ideal model is calculated as 614 

�(1 − 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠)2 + (1 − 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠)2 . 615 
(B) Receiver Operating Characteristic (ROC) plot showing the improvement in model 616 

performance of the best models extracted using GIMME, iMAT, MBA, and mCADRE 617 
relative to the parent genome-scale model in E. coli, 786O, and CHO-S. 618 

 619 

Figure 5 620 

Generalized workflow pipeline for extracting context-specific models using gene-expression data 621 

 622 

 623 
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