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Abstract 
 
Cryptic pockets, or pockets absent in ligand-free, experimentally determined structures, hold 
great potential as drug targets. However, cryptic pocket opening is often beyond the reach of 
conventional biomolecular simulations because certain cryptic pocket openings involve slow 
motions. Here, we investigate whether AlphaFold can be used to accelerate cryptic pocket 
discovery either by generating structures with open pockets directly or generating structures with 
partially open pockets that can be used as starting points for simulations. We use AlphaFold to 
generate ensembles for 10 known cryptic pocket examples, including 5 that were deposited after 
AlphaFold’s training data was extracted from the PDB. We find that in 6 out of 10 cases 
AlphaFold samples the open state. For plasmepsin II, an aspartic protease from the causative 
agent of malaria, AlphaFold only captures partial pocket opening. As a result, we ran simulations 
from an ensemble of AlphaFold-generated structures and show that this strategy samples cryptic 
pocket opening, even though an equivalent amount of simulations launched from a ligand-free 
experimental structure fails to do so. Markov state models (MSMs) constructed from the 
AlphaFold-seeded simulations quickly yield a free energy landscape of cryptic pocket opening 
that is in good agreement with the same landscape generated with well-tempered metadynamics. 
Taken together, our results demonstrate that AlphaFold has a useful role to play in cryptic pocket 
discovery but that many cryptic pockets may remain difficult to sample using AlphaFold alone.  
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Introduction 
 
Cryptic pockets, or pockets absent in ligand-free experimental structures, are a promising 

means to expand the scope of drug discovery. By one estimate, almost half of all structured 
domains lack obvious pockets in their experimental structures1. These proteins have often been 
considered ‘undruggable’. However, as proteins fluctuate in solution, they may adopt excited 
structural states that contain cryptic pockets. Thus, cryptic pockets may provide a means to target 
these ‘undruggable’ proteins2. Furthermore, many cryptic pockets are distant from active sites, 
suggesting that targeting them may lead to the discovery of allosteric activators3 ⁠ or more specific 
modulators given the high sequence conservation of many active sites4. 

 
The discovery of cryptic pockets using experimental and computational methods remains 

difficult in many cases. Most cryptic pockets are discovered serendipitously when experimental 
structures of a ligand bound to a protein reveal a novel binding site that is closed in ligand-free 
structures of the same protein5 While this process has revealed cryptic pockets, it requires 
knowledge of a ligand a priori. Molecular dynamics simulations can reveal excited states with 
cryptic pockets that can then be used for structure-based drug design2,6. However, in certain 
cases, cryptic pockets may not be discovered by simulations because cryptic pocket opening 
motions may be slow (e.g., Niemann-Pick C2 Protein in Meller et al.1). Two classes of slow 
motions include sidechain ring flipping7 ⁠ events and secondary structure rearrangements8 which 
can both occur on microsecond and slower timescales. 

 
Here we explore the possibility of using AlphaFold⁠9 to accelerate cryptic pocket discovery. 

Previous work has shown that stochastic sampling of AlphaFold’s input multiple sequence 
alignment can generate diverse conformations of membrane and globular proteins10,11. We 
hypothesized that a similar strategy can be applied to discover cryptic pockets. Even if 
AlphaFold can only capture partial opening, we reasoned that starting molecular dynamics 
simulations from these structures may capture full opening far more quickly than starting 
simulations from completely closed structures. 

 
We test our strategy of launching simulations from AlphaFold-generated starting structures 

with plasmepsin II (PM II), a well-studied protease from the causative agent of malaria12–14. PM 
II is one of many aspartic proteases that play an important role in the lifecycle of Plasmodium 
falciparum. It is found in digestive vacuoles where it is used by the parasite to digest 
hemoglobin. Though functional redundancy in digestive vacuoles may limit the utility of narrow 
PM II inhibitors, PM II may play a role in antimalarial drug resistance15  and provide insight into 
developing inhibitors of other aspartic proteases that are essential in the Plasmodium lifecycle. 
Notably, PM II contains a cryptic pocket adjacent to its active site, which was revealed in several 
experimental structures capturing PM II bound to different classes of inhibitors. Given that 
previous simulation studies of PM II have failed to sample cryptic pocket opening13, here we 
explore if increasing aggregate simulation time is sufficient to open this pocket or if AlphaFold 
can accelerate cryptic pocket discovery. 
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Figure 1. To efficiently sample cryptic pocket opening, we propose launching molecular 
dynamics simulations from diverse AlphaFold-generated starting conformations. Starting 
with an MSA of a query sequence (top left), the MSA can be stochastically clustered to create 
input MSAs of lower depth that are then fed to AlphaFold. Through this procedure, we can 
generate an ensemble of structures of the same protein (top right shows snapshots of 
Plasmodium falciparum’s plasmepsin II). These structures may adopt different conformations at 
known cryptic pockets (bottom right inset highlights different conformations of the plasmepsin II 
cryptic pocket). To generate free energy landscapes of cryptic pocket opening, we can launch 
molecular dynamics simulations from these different conformations and then stitch these 
simulations together with a Markov State Model. 

  

�� �� ����� ��	�

�� � ���
� ��	


�� �� ���
� 	�	�

���

��� �� ����	
��

��� ��
���� �
�� �� ����� ��	�
�� � ���
� ��	

���

��

��

��

��� ��
���� �
�� �� ����� ��	�
�� �� ���
� 	�	�
���

��� ��
���� �
�� �� ����� ��	�
�� �� ���
� 	�	�
���

�

�

�

������ ����� ����� �� ��	
�������

������
���	

������

����


.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 25, 2022. ; https://doi.org/10.1101/2022.11.23.517577doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.23.517577
http://creativecommons.org/licenses/by-nd/4.0/


Methods 
 
Ensemble generation using AlphaFold 

 
To generate ensembles of structures from a sequence rather than a single structure, we use two 
modifications to the original AlphaFold⁠ implementation. Firstly, we stochastically subsample the 
multiple sequence alignment (MSA) to a maximum of 32 cluster centers and 64 extra sequences. 
Each time we generate a structure prediction a different random seed is used for sequence 
clustering, so that the input MSA passed to AlphaFold is slightly modified. Secondly, we also 
enable dropout during the forward-pass through the model. 

 
We generated ensembles for each of the proteins studied using ColabFold16, a fast and user-
friendly implementation of the AlphaFold algorithm. Specifically, we used the Google 
Collaboratory notebook. We generated initial MSAs using the jackhammer method with pre-
filtering that enforced a minimum 50% coverage and 20% sequence identity with the query. We 
then limited the depth of the input MSA by setting the max_msa_clusters variable to 32 and 
max_extra_msa to 64. We generated ensemble of 32 or 160 structures by setting num_models to 
1 or 5 respectively and num_samples to 32. We enabled droupout by setting is_training to True. 
We also enabled use_ptm, set num_ensembles to 1, set tol to 0, and set max_recycles to 3. 

 
The link to the Google Collaboratory notebook is here 
(https://colab.research.google.com/github/sokrypton/ColabFold/blob/main/beta/AlphaFold2_adv
anced.ipynb). 

 
Molecular dynamics simulations 

 
We prepared molecular dynamics simulations using the tleap module integrated with Amber 
202017 with the workflow described here. Proteins were parametrized using the AMBER 
FF14SB18 force field and solvated in a truncated octahedron box with TIP3P19 waters. Each 
system was neutralized by 17 Na+ ions. For each system, the box was extended 1.0 nm from 
protein atoms in all directions. Minimization was performed in two steps: (a) initial minimization 
where the protein was constrained with a restrained potential of 100 kcal/mol-1Å2 to minimize 
only the water and ions (200 steps of steepest descent followed by 200 steps of conjugate 
gradients) followed by (b) 500 steps of unrestrained minimization of the whole system.  

 
We equilibrated protein systems and performed production runs using Gromacs 202120. 
Following minimization in Amber, we converted Amber topologies to Gromacs format using 
Acpype21. Initially, we heated each system (from 0 K to 300 K) using the NVT ensemble for 500 
ps with harmonic restraints of 500 kJ mol-1nm-2 applied to backbone heavy atoms. Next, each 
system was equilibrated at 300 K in an NPT ensemble for 200 ps without any restraints using the 
Parrinello-Rahman barostat22 to maintain the pressure at 1 bar and the v-rescale thermostat for 
temperature control. Production runs were carried out in the NPT ensemble at 300 K and 1 bar 
using the leap-frog integrator and Parrinello-Rahman thermostat with a 2 fs timestep. Non-
bonded interactions were cut off at 1.0 nm, and long-range electrostatic potentials were treated 
using the Particle Mesh Ewald (PME) method23 with a grid spacing of 0.16 nm. The LINCS 
algorithm24 was used to constrain H-bonds during MD simulations.  
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We performed 640 independent MD simulations in total to generate apo-seeded and AF-seeded 
ensembles each with 32 microseconds of sampling. We used 32 different AlphaFold-generated 
starting structures for plasmepsin II with 10 independent (i.e., starting from different initial 
velocities) simulations launched for each structure. Each simulation was 100 ns in length. For the 
apo-seeded ensemble, we ran 320 independent simulations 100 ns in length starting from a single 
starting structure from the PDB (1LF425). 

 
Markov State Modeling 

 
To construct MSMs26–28, we first defined a subset of features that were relevant to PM II cryptic 
pocket opening. We focused on the set of residues that were within 0.5 nm of the cryptic 
extension of the A1T ligand in the holo crystal structure (PDB: 2IGX29). Specifically, we located 
all residues that were within 0.5 nm of the following A1T atoms: C48, C46, C43, C40, C38, C36, 
C33, C34, C30, N29, and C26. We then used backbone (phi, psi) and sidechain dihedrals for 
those residues to define an initial feature set relevant for cryptic pocket opening. We removed 
any χ-2 angles that included symmetrically equivalent atoms (e.g., χ-2 for tyrosine residues). 

 
To perform clustering in a kinetically relevant space, we applied time-structure-independent 
component analysis30 (tICA) to these features. Specifically, we used a tICA lag time of 10 ns and 
retained the top n tICs that accounted for 90% of kinetic variance using commute mapping. 

 
To determine the appropriate number of microstates for clustering, we used a cross-validation 
scheme where trajectories were partitioned into training and test sets. Clustering into k 
microstates was performed using only the training set, and the test set trajectories were assigned 
to these k microstates based on their Euclidean proximity in tICA space to each microstate’s 
centroid. Using the test set only, an MSM was fit using maximum likelihood estimation (MLE), 
and the quality of the MSM was assessed with the rank-10 VAMP-2 score of the transition 
matrix. We found that 25 microstates had the highest VAMP-2 score on average across 10 trials 
on the test set for the AF-seeded ensemble (Fig. S17). For consistency, we used the same number 
of microstates for the apo-seeded MSM. 

 
Finally, MSMs of the PM II cryptic pocket were fit for the apo-seeded and AF-seeded ensembles 
separately using MLE. Lag times were chosen by the logarithmic convergence of the implied 
timescales test (Fig. S18, S19). Lag times of 12.5 ns were used for both the apo-seeded and AF-
seeded MSMs.  

 
MSM construction was performed using the PyEMMA31 software package. 

 
Metadynamics 

 
We performed well-tempered metadynamics32,33 (WTMeta) simulations to sample the 
conformational landscape associated with Trp41 ring flipping, one of the motions necessary for 
plasmepsin II cryptic pocket opening. For each residue, we performed two-dimensional WTMeta 
at 300 K using χ-1 and χ-2 angles as collective variables. Gaussians were deposited every 500 
time steps with a width and height of 0.05 radians and 1.2 kJ/mol respectively and a bias factor 
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of 20. Unbiased free energy surfaces along different collective variables were extracted from 
WTMeta using the reweighting protocol described by Tiwary and Parrinello34. 

 
We also used WTMeta simulations to study unbinding of small molecules from two holo 
conformations (PBD: 2BJU35, 4AY836). Small molecules were parameterized using the General 
Amber Force Field37 (GAFF) and the protein was parameterized using the Amber14SB force 
field. The complexes were neutralized using sodium ions and immersed into a truncated 
octahedral box such that the distance from protein to the edge of the box was at least 1 nm. 
Equilibration and production runs were performed using the protocol described in Bhakat & 
Soderhjelm13. To estimate the apparent free energy profile of ligand unbinding, we performed 
multiple independent WTMeta simulations using the distance between the center of mass of the 
active side residues and the ligand as collective variables. All unbinding WTMeta simulations 
were performed at 300 K with a bias factor of 10 using Gaussian width and height of 0.011 nm 
and 1.2 kJ/mol respectively. 
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Results 
 
AlphaFold predicts some but not all known cryptic pocket openings 
 

We reasoned that AlphaFold (AF) could produce conformations with open cryptic pockets 
through stochastic sampling of its input multiple sequence alignment. Previous studies have 
shown that AlphaFold samples diverse conformations of transporters and receptors when its 
input MSA is stochastically subsampled to only include 16 sequences10,11. Additionally, AF 
ensembles of a set of proteins where ligand binding is associated with conformational 
rearrangements (though not necessarily at the ligand binding site) often included holo-like 
conformations38. However, it was not known if AlphaFold samples open structures for proteins 
known to form cryptic pockets when bound to drug-like molecules (e.g., not ions). 

 
We generated AlphaFold ensembles for 10 known cryptic pocket examples, including a 

subset that was deposited to the PDB after AlphaFold was trained. These examples include 
several different types of conformational rearrangements: loop motions, secondary structure 
motions, and interdomain motions. To ensure that the network was not ‘memorizing’ particular 
conformations in its training dataset, we also focused on 5 cryptic pocket examples that were 
deposited to the PDB after April 2018, the date when the AlphaFold training set was pulled. We 
used ColabFold’s implementation of AlphaFold to generate 160 conformers for each input 
sequence because it offered a massive speed up and supported stochastic clustering of the input 
MSA (see Methods). We also used dropout in the forward-pass through the network to amplify 
structural diversity. 

 
We find that AlphaFold samples many but not all cryptic pocket openings (Fig. 2). Among 

proteins that were in the training dataset, AlphaFold recapitulates known cryptic pockets in 3 out 
of 5 examples. In those cases, AF predicts a structure with less than 1.2 Å root mean square 
deviation (RMSD) to the holo structure in the cryptic site (i.e., using all heavy atoms within 5 Å 
of where the cryptic ligand binds for the RMSD calculation). Interestingly, AlphaFold generates 
open states of the Niemann-Pick C2 Protein that were not discovered in 2 microseconds of 
adaptive sampling simulations (Fig. 2B)1. However, AlphaFold’s ensemble of TEM b-lactamase 
structures does not include any open states where the Horn39 or omega6 pockets are open (Fig. 
S1). Among proteins that were not in the training dataset, AlphaFold recapitulates 3 of the 5 
cryptic pockets (i.e., using pocket RMSD of 1.2 Å as the cutoff again). There appears to be a 
correlation between the size of the rearrangement (i.e., RMSD between apo and holo structures) 
and the ability of AF to sample cryptic pockets (Fig. S2-S12). For example, cryptic pocket 
opening in fascin requires a large interdomain motion (0.47 pocket RMSD between apo and 
holo) and is not captured in the AF ensemble. 

 
Interestingly, for plasmepsin II (PM II), AlphaFold only samples partial cryptic pocket 

opening, capturing a ring flip that is necessary but not sufficient for pocket opening. In an AF-
generated ensemble of 32 structures, there are several different Trp41 orientations (Fig. S13A). 
Notably, ligand-free PM II structures have only ever been observed in a single Trp41 orientation 
that blocks access to the cryptic site (Fig. S14). In contrast, the AF ensemble contains a Trp41 
orientation that has only been experimentally observed in holo PM II structures with an open 
cryptic pocket (Fig. 2C, PDB: 2BJU35, 2IGX, 2IGY29). Similarly, AF-generated structures 
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sample the Tyr77 conformation seen in holo PM II structures (Fig. S15). Despite this progress 
towards observing pocket opening, there are still significant differences in the position of the flap 
domain in the AF ensemble as compared to the holo crystal structures. In the AF ensemble, the 
flap domain has not moved away from the active site, sterically blocking known cryptic pocket 
binders. We wondered if simulations launched from the AF ensemble would sample cryptic 
pocket opening.  
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Figure 2.  Stochastic clustering of its input multiple sequence alignment allows AlphaFold 
to generate structures with open or partially open cryptic pockets across multiple systems. 
A) In 6 out of 10 examples, AlphaFold samples the open state of a known cryptic pocket. The 
box-and-whisker plots show cryptic pocket root mean square deviation (RMSD) to a holo crystal 
structure (defined by heavy atoms within 5 Å of the ligand that binds at the cryptic pocket). For 
the top 5 examples, the holo structure was part of the training dataset for AlphaFold but the 
bottom 5 examples had their holo crystal structures deposited after AlphaFold was trained. The 
red line indicates 1.2 Å RMSD, a proposed cutoff for sampling the open state. B) Structural 
overlay of an AlphaFold-generated structure with the holo structure of Neimann-Pick C2 Protein 
(NPC2) shows that AlphaFold samples the open state. The ligand which binds in the cryptic 
pocket is shown in magenta; the apo structure is shown in gray; the holo structure is shown in 
blue; and the AF structure is shown in orange. Residues that change rotamer state between apo 
and holo experimental structures are shown in sticks. C) Structural overlay of an AlphaFold-
generated structure of plasmepsin II with a holo structure containing a cryptic pocket shows that 
AlphaFold partially samples cryptic pocket opening. Select residues that change rotamer state 
between apo and holo experimental structures show that AlphaFold samples holo-like tryptophan 
orientations in the plasmepsin II cryptic pocket. As in B, the ligand which binds in the cryptic 
pocket is shown in magenta; the apo structure is shown in gray; the holo structure is shown in 
blue; and the AF structure is shown in orange. 
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PM II’s cryptic pocket opening is not captured with conventional MD simulations 
 

We wanted to set a baseline to determine if AlphaFold accelerates cryptic pocket opening. 
Given recent success in using molecular dynamics to reveal cryptic pockets, we wondered if 
simulations launched from a ligand-free PM II structure would sample cryptic pocket opening. 
Though a previous study did not report cryptic pocket opening, it was limited to ~2 
microseconds of sampling13. We hypothesized that increasing the aggregate simulation time 
might be sufficient to observe cryptic pocket opening. Hence, we launched 320 100 ns-long 
independent simulations from an apo crystal structure of PM II (PDB 1LF425). 

 
To our surprise, we find that 32 microseconds of MD simulations do not reveal cryptic 

pocket opening in PM II. For the PM II cryptic pocket to open, three separate events must occur: 
Trp41 must change its sidechain orientation, Tyr77 must flip along χ-1, and the ‘flap’ domain 
must move away from the active site. Our apo seeded simulations sample both Tyr77 flipping 
and flap domain movement. However, we do not sample the change in Trp41 sidechain 
orientation (the distance between Trp41’s sidechain and the C-alpha of K72 remains large as 
seen in Fig. 3C). Hence, we conclude that PM II’s cryptic pocket opening is not captured with 
conventional MD simulations, though it is possible that large increases in the amount of 
sampling could enable us to observe Trp41 ring flipping that is necessary for cryptic pocket 
opening. 
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Seeding with AlphaFold accelerates exploration of the free energy landscape of PM II’s 
cryptic pocket 
 

Given that the AF ensemble of PM II included diverse partially open structures (Fig. 3B)., we 
wondered if launching simulations from these structures would accelerate sampling of full 
cryptic pocket opening. The AF ensemble contains structures with different Trp41 orientations, 
including one with the Trp41 in the same orientation as holo crystal structures (Fig. S13A). 
Given that flap domain movement was sampled in the simulations initiated from the crystal 
structure, we hypothesized that we would observe open states in our simulations. We launched 
ten independent simulations of 100 ns in length for each of the 32 AlphaFold-generated starting 
structures (32 microseconds of aggregate simulation time). We also performed metadynamics 
simulations to generate a free energy landscape of Trp41 sidechain orientations using an 
orthogonal technique that could be compared against our unperturbed simulations. 

 
We find that simulations launched from the AF ensemble sample cryptic pocket opening. 

Unlike in single-seeded simulations, we sample all three events required for cryptic pocket 
opening when simulations are launched from the AF ensemble (Fig. 3D). The Trp41 adopts a 
holo-like orientation while the distance between Trp41 and Tyr77 is large, creating a cavity for 
ligands to bind. Furthermore, we can build Markov State Models26,40,41 (MSMs) of the cryptic 
pocket ensemble to measure the probability of cryptic pocket opening. MSM are network models 
of free energy landscapes composed of many conformational states and the probabilities of 
transitioning between these states. Specifically, we constructed a MSM using a time-structure 
independent component analysis (tICA) projection of the backbone and χ-1 dihedrals within the 
cryptic pocket (see Methods). Despite starting from different starting structures, we find that our 
model is fully connected in this feature space, and we predict that the probability of cryptic 
pocket opening is 0.07, indicating that open states are a rare but non-negligible part of the 
ensemble.  

 
Additionally, reasonable agreement between multiple simulation techniques suggests we 

have converged to the correct thermodynamics for the force field (Fig. 4). We use our MSM to 
construct a free energy landscape in the space of Trp41 χ-1 and χ-2 dihedral angles and compare 
against the free energy landscape generated by well-tempered metadynamics (see Methods). 
Overall, the two free energy landscapes identify similar free energy minima (Fig. 4). The deepest 
well in both landscapes corresponds to the Trp41 sidechain orientation seen in ligand-free 
structures (Fig. 4, S13B). There are minor differences in the two free energy landscapes with 
metadynamics predicting that the well centered on (-1, -2) is more probable than the MSM does. 
Furthermore, in metadynamics simulations the probability of the holo Trp41 orientation is 0.30 
while in the MSM it is 0.08. Nonetheless, both methods predict that the flipped state necessary 
for pocket opening is a minor part of the ensemble. 
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Figure 3. Launching simulations from AlphaFold-generated structures improves sampling 
of cryptic pocket opening in Plasmepsin II. A) Structure of PM II’s flap domain showing key 
residues involved in PM II’s cryptic pocket. Trp41 and Tyr77, part of the flap domain, are shown 
in sticks. We use the distances indicated in dotted lines to capture pocket opening. Specifically, 
the cryptic pocket is open when the minimum distance between Y77 and W41 is large (indicated 
with blue line) and the distance between the W41 sidechain (either atom CZ3 or CH2 depending 
on which is closer) and a reference residue in the 6th beta-sheet (K72) is small (indicated with red 
line). B) Pocket distances for a set of 32 AlphaFold-generated conformers (grey dots) and holo 
crystal structures (black triangles) show that the AlphaFold ensemble includes partially open 
states for PM II. Trp41 is in its holo orientation in one of the AlphaFold structures, but the 
distance between Trp41 and Tyr77 is smaller than it is in holo crystal structures. C) A free 
energy surface from a Markov State Model from apo-seeded simulations shows that these 
simulations do not sample cryptic pocket opening. Though the flap dissociates as indicated by 
large Trp41-Tyr77 distances, Trp41 does not adopt the holo orientation, despite 32 microseconds 
of sampling. D) A free energy surface from a Markov State Model generated from AlphaFold-
seeded simulations shows robust sampling of the open state. Both requirements for cryptic 
pocket opening are fulfilled as indicated by the overlay of holo crystal structures (black triangles) 
on the free energy surface.  
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Figure 4. A Markov State Model built from AlphaFold-seeded simulations and 
metadynamics simulations yield similar free energy landscapes for plasmepsin II cryptic 
pocket opening. A) Free energy surface for Trp41 sidechain orientations derived from a Markov 
State Model constructed using dihedrals in the PM II cryptic pocket. Holo crystal structures are 
indicated with black triangles (three points are plotted though only two are visible). Apo crystal 
structures sample the well centered near (1, -2). B) Free energy surface from well-tempered 
metadynamics simulations using Trp41 χ-1and χ-2 angles as collective variables.  
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Discussion 
 

Certain cryptic pocket opening events remain difficult to sample with classical molecular 
dynamics simulations. As in previous work12,13, MD simulations launched from an apo PM-II 
structure failed to sample full cryptic pocket opening, even with an aggregate simulation time of 
32 microseconds. This result makes PM-II an exception to a general trend. We have found that 
many cryptic pockets can be discovered with a handful of simulations of intermediate length 
(i.e., 40 ns)1.  Furthermore, significant progress has been made in developing algorithms for 
cryptic pocket discovery, including Markov State Models6,41, enhanced sampling strategies like 
SWISH42, or adaptive sampling approaches like FAST43. However, we have previously seen that 
even adaptive sampling strategies can fail to sample known cryptic pockets. This likely stems 
from the difficulty of sampling rare events in classical molecular dynamics simulations. 

 
The sampling strategy proposed here expands the available computational toolkit for cryptic 

pocket discovery and characterization without perturbing the underlying energy landscape (Fig. 
1). Specifically, when assessing a protein as a drug target, we suggest generating diverse 
conformers of that protein by iteratively passing a stochastically subsampled multiple sequence 
alignment to AlphaFold. Next, we propose using pocket detection tools, such as LIGSITE44, 
fpocket45, or P2rank46, to identify pockets that are absent in apo experimental structures or an 
AlphaFold-predicted structure using a complete MSA. In some cases, this will be sufficient to 
uncover novel cryptic pockets (Fig. 2A). However, if this approach yields partial opening or one 
is interested in assessing the equilibrium probability of a cryptic pocket opening, we propose 
using molecular dynamics simulations followed by Markov State Model construction. As 
demonstrated here with PM II, this strategy can greatly accelerate the discovery and 
characterization of cryptic pockets. 

 
Drug discovery efforts directed towards plasmepsins illustrate that targeting cryptic pockets 

is a generally promising strategy for discovering selective and potent inhibitors.  Ligands that 
bind at the PM II cryptic site have enhanced potency and selectivity towards PM II compared 
with other plasmepsins from Plasmodium falciparum (Fig. S16A and S16B). Furthermore, 
ligands that bind in the cryptic pockets do not inhibit human pepsin-like aspartic proteases (e.g., 
pepsin, cathepsin D and E)29. To further illustrate the utility of targeting the PM-II cryptic site, 
we used metadynamics to compare the unbinding of an inhibitor from the cryptic site with the 
unbinding of a ligand from the active site (Fig. S16). We find that the ligand which binds at the 
cryptic pocket has a ~25 kJ/mol higher free energy barrier to unbinding because the tyrosine in 
the cryptic pocket acts as a lid over the ligand (Fig. S16C). Slower unbinding kinetics may 
explain why ligands that bind in the PM II cryptic pocket are more potent and selective. We 
expect these same principles will apply in other systems.  
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Conclusions 
 

We have demonstrated that AlphaFold can be used to accelerate the discovery and 
characterization of cryptic pockets. When its input multiple sequence alignment is stochastically 
subsampled, AlphaFold generates diverse conformers of proteins known to form cryptic pockets. 
In 6 out of 10 examples of proteins known to form cryptic pockets, AlphaFold samples the open 
state (Fig. 2A). Impressively, AlphaFold also makes predictions of the open state even when the 
holo structure was deposited after AlphaFold was trained. In other cases, like with plasmepsin II, 
AlphaFold samples partially open states (Fig. 2C). For example, in plasmepsin II, the ensemble 
of AF structures includes structures with a tryptophan sidechain in its holo orientation, even 
though 32 microseconds of MD simulations launched form an apo crystal structure do not 
sample tryptophan flipping. We find that launching simulations from this ensemble accelerates 
sampling of the open state (Fig. 3). Furthermore, because we observe both pocket opening and 
closing events, we can use a Markov State Model to generate a free energy landscape of pocket 
conformations that is in reasonable agreement with a similar landscape generated from 
metadynamics. Thus, we propose an efficient strategy to discover cryptic pockets that we hope 
becomes indispensable to future structure-based drug design efforts.  
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