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Summary  13 

Motivated by accelerating anthropogenic extinctions, decades of biodiversity-ecosystem function 14 

(BEF) experiments show that ecosystem function declines with species loss from local communities. 15 

Yet, at the local scale, changes in species’ total and relative abundances are more common than 16 

species loss. The consensus best biodiversity measures are Hill numbers, which use a scaling 17 

parameter, ℓ, to emphasize rarer versus more common species. Shifting that emphasis captures 18 

distinct, function-relevant biodiversity gradients beyond species richness. Here, we surmised that Hill 19 

numbers that emphasize rare species more than richness may distinguish large, complex, and 20 

presumably higher-functioning assemblages from smaller and simpler ones. In this study, we tested 21 

which values of ℓ produce the strongest BEF relationships in community datasets of ecosystem 22 

functions provided by wild, free-living organisms. We found that ℓ values that emphasized rare species 23 

more than richness most often correlated most strongly with ecosystem functions. As emphasis 24 

shifted to more common species, BEF correlations were often weak and/or negative. We argue that 25 

unconventional Hill diversities that shift emphasis towards rarer species may be useful for describing 26 

biodiversity change, and that employing a wide spectrum of Hill numbers can clarify mechanisms 27 

underlying BEF relationships.  28 

  29 
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Introduction 30 

A central question in community ecology is, “how will ongoing shifts in biodiversity affect ecosystem 31 

function?” In experiments that vary species richness while controlling other community properties, 32 

the answer has been clear for some time: ecosystem function has a positive, saturating relationship 33 

with species richness [1–3]. There is ongoing interest in “scaling up” research to resolve whether 34 

similar patterns hold in natural ecosystems [4,5]. However, richness is not a robust measure of 35 

biodiversity in observational data taken from natural ecosystems [6], in large part because most 36 

species are rare [7] and likely to be absent from samples.  Further, richness often tracks real-world 37 

biodiversity gradients poorly, because species composition and abundance can change dramatically 38 

with little to no change in observed species richness [8–10]. Therefore, other metrics of biodiversity 39 

may provide improved clarity about the real-world linkages between biodiversity and ecosystem 40 

function (BEF).   41 

 42 

There are both historical and conceptual reasons that BEF research has focused on richness as a 43 

measure of biodiversity. Since at least the 1960s, there has been extensive research on how 44 

productivity affects species richness [1]. Motivated by intensifying biodiversity loss in the 1980s, 45 

declines in richness were (at least implicitly) the global change pattern that seminal BEF studies, with 46 

their focus on species loss (e.g., [11]), aimed to understand. This prompted a wave of experiments on 47 

how species richness affects ecosystem function [2]. Thus, richness was a natural choice, both 48 

because of ecology’s long focus on how richness might respond to ecosystem functions like 49 

productivity, and because of a collective sense that species loss was the correct, or at least most 50 

convenient, way to frame anthropogenic changes in biodiversity. Furthermore, there may have been a 51 

sense that richness was an expedient measure of functional diversity and redundancy, which were 52 

considered the key mechanisms through which biodiversity maintains ecosystem function [12]. 53 

However, the choice of richness may not have been based on theoretical expectation that richness, 54 

rather than other abundance-weighted diversity measures, best described functionally important 55 

biodiversity gradients.  56 

 57 

Using species richness as the key biodiversity measure poses methodological problems for BEF 58 

research. Species richness is not only sensitive to the extent and depth of sampling, but also to the 59 

distribution of relative abundances in the sampled assemblage. To illustrate this, consider the 60 
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difficulty of accurately measuring species richness in a community with one hyper-dominant species 61 

and many very rare species, versus measuring richness in a community in which abundance is evenly 62 

distributed. Richness, like other diversity measures, summarizes the distribution of relative 63 

abundances in an assemblage, and when estimated from data, cannot be independent from that 64 

distribution, even if such a measure were desirable [6,13]. However, different diversity measures vary 65 

in the extent to which they emphasize rare vs. common species, with species richness heavily 66 

emphasizing rare species. A unified family of diversity measures, known as “Hill numbers” or “Hill 67 

diversities,” summarizes a distribution of relative abundances as the abundance-weighted, 68 

generalized mean rarity [14–16]. Hill numbers are governed by a scaling parameter, ℓ, that scales 69 

species rarity when computing the mean, and higher values of ℓ afford more leverage, or emphasis, to 70 

rare species, while lower values emphasize common species more [16]. 71 

 72 

The Hill diversity of an assemblage is not a single value, but rather a spectrum that varies 73 

continuously across ℓ [6,14] (figure 1), raising the question of  how ecosystem function relates to 74 

biodiversity measures with different emphasis on common vs. rare species. While several recent 75 

studies have compared whether richness (ℓ = 1), exponentiated Shannon (ℓ = 0), and inverse Simpson 76 

(ℓ = -1) best predicts ecosystem function [17–20], there has been no examination of how Hill numbers 77 

predict ecosystem function across a wide range of ℓ values. This is a striking knowledge gap because, 78 

although nearly all studies of the relationship between biodiversity and ecosystem function have used 79 

species richness as a measure of diversity [3], other diversity measures could both better describe real 80 

world variation in biodiversity, and also have stronger links to ecosystem functioning. Thus, 81 

biodiversity-function studies may be underestimating the importance of biodiversity for function by 82 

not considering Hill diversities with different emphases on rare and common species via different 83 

values of the scaling parameter ℓ.  84 

 85 

Despite clear declines in richness at the global scale, local changes in biodiversity are likely better 86 

captured by measuring total abundance and species’ relative abundances, for at least three reasons. 87 

First, as already discussed, observed richness is a poor predictor of true richness [21], and good 88 

estimators of true richness based only on species frequencies in samples may never exist [22]. Thus, 89 

even if underlying variation in species richness correlates strongly with, or even drives, ecosystem 90 

function, estimating richness from samples could severely obscure the underlying pattern. Second, 91 
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although observed richness does increase with observed abundance, to the extent that abundance 92 

per se drives function, Hill diversities that better reflect abundance (i.e., when ℓ >>1) should be 93 

stronger correlates of function than richness (ℓ = 1) is. Third, if diversity effects on function are 94 

mediated by positive species interactions [3,23–25], more probable and stronger between equally 95 

abundant species [26,27], Hill diversities that better reflect the probability of interspecific encounter  96 

(e.g. Hill-Simpson diversity, at ℓ = -1 [28]) may outperform richness as a predictor of function.  97 

 98 

Here, we conduct an in-depth examination of Hill numbers across a wide range of values of the scaling 99 

parameter ℓ, and outline the ecological insight that can be gained by knowing which value of ℓ best 100 

predicts ecosystem function. We focus on ecosystem functions that can be expressed as the product 101 

of mean per-capita function and total abundance, which works well for many functions [29,30]. This 102 

provides the opportunity to consider how biodiversity relates to both mean per-capita and total 103 

community function, which are both key targets of BEF research [31–33]. In this endeavor, we use only 104 

simple correlational analyses, omitting other important variables underlying function [34–36]. 105 

 106 

In this study, we use observational community datasets on three ecosystem functions to ask: 107 

1) Which values of the Hill diversity scaling factor ℓ produce the strongest biodiversity- 108 

ecosystem function correlations? 109 

2) How do biodiversity-ecosystem function correlations change in sign and strength over a wide 110 

range of Hill diversities? 111 

3) What is the role of absolute abundance in shaping BEF correlations over the Hill diversity 112 

spectrum? 113 

 114 

It is not our aim to exhaustively review data in search of a single, best ℓ value for BEF research, 115 

because developing insight does not require that the same ℓ is predictive for all functions. Instead, we 116 

aim to provide a framework that allows researchers interested in biodiversity-function questions to 117 

think about diversity as a spectrum, almost certainly leading to the conclusion that Hill diversities 118 

besides richness can better predict ecosystem function.  119 

 120 

Materials and Methods 121 
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To find how biodiversity-ecosystem function correlations change with different diversity scaling, we 122 

used previously published community datasets that recorded both the abundance and function of 123 

species at multiple sites. We chose datasets of disparate ecosystem functions and spatial scales: 124 

pollination by wild bee visitors to a landscape-scale array of three plant species (update ref when DOI 125 

is available: Genung et al. 2022, in press) [37], reef fish biomass from dive surveys replicated within 32 126 

globally distributed geographic regions [38,39], and above-ground tree biomass in census plots 127 

replicated within four tropical forests [40,41] (Table 1). In each system, total function of a community 128 

can be estimated as the summed contribution across species (or individuals) present in the 129 

community. Pollination was measured as the typical number of pollen grains deposited during a 130 

single visit of a bee taxon to the focal plant species, multiplied, at each site, by bee species’s 131 

abundance to calculate total pollen deposition of one species to the focal plant there. Reef fish 132 

biomass was measured by visually estimating individual fish body lengths during dive surveys, which 133 

were then used to calculate biomass using species-specific allometric equations. Tropical tree 134 

biomass was measured by converting observed individual diameter at breast height into biomass 135 

estimates using taxon-specific allometric equations that included information about wood density 136 

[42,43]. In total, we used 39 community datasets, each consisting of one function measured across a 137 

collection of assemblages.  138 

 139 

Which value of ℓ produces the strongest biodiversity- ecosystem function correlations? 140 

We compute Hill diversity as a function of species relative abundances, p_1, p_2, …, p_S, and a scaling 141 

factor, !, using the formula 142 

 143 

𝐷 = #$𝑝!

"

!#$

&
1
𝑝!
(
ℓ
)

$ ℓ⁄

 144 

or its limit as ℓ approaches 0 [16,44] . We used observed species abundances to calculate species 145 

diversities at each site as the Hill diversity along a wide range of ℓ values (from -10 to +10 at intervals 146 

of 0.05) (figure S1). We calculated total function as the sum of species’ functions at each site. We 147 

computed the correlation between the natural logarithm of each diversity and the natural logarithm 148 

of total function, across all sites in the community dataset (hereafter, the “BEF correlation”). To 149 

identify the ℓ value that produced the strongest BEF correlation in each community dataset, we 150 
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plotted the correlation against the scaling factor ℓ. We identified the single ℓ value with the largest 151 

absolute correlation (i.e., largest R-squared for the relationship between log diversity and log 152 

function).  153 

 154 

How do biodiversity-ecosystem function correlations change in sign and strength over a wide range of 155 

Hill diversities? 156 

To determine not only which ℓ value produced the strongest BEF correlation across community 157 

datasets, but also to see how adjusting the Hill diversity scaling parameter affects BEF relationships 158 

more comprehensively, we plotted the BEF correlation against the Hill diversity scaling factor ℓ for 159 

each community dataset. We examined curves to identify patterns in the sign and strength of the BEF 160 

correlation along the spectrum of emphasis on common and rare species.  161 

 162 

What is the role of absolute abundance in shaping BEF correlations?  163 

To begin to separate effects of total and relative abundance on BEF correlations across the Hill 164 

diversity spectrum, we looked separately at the relationships between diversity and two 165 

complementary components of total function, namely total abundance and mean per-capita function. 166 

We used the same graphical approach we used to assess the sign and strength of the BEF correlation 167 

across the Hill diversity spectrum. For each community dataset, we found the correlation between the 168 

natural logarithm of Hill diversity at each site and either the natural logarithm of total abundance at 169 

each site), or the natural logarithm of mean per-capita function at each site, and plotted these 170 

correlations against the Hill diversity scaling parameter ℓ. Although on the logarithmic scale, 171 

abundance and mean per-capita function combine additively to create total function, the BEF 172 

correlation does not additively decompose into abundance by biodiversity and per-capita function by 173 

biodiversity correlations, as there is also covariance between abundance and per-capita function. 174 

Nevertheless, by partitioning total function into additive components and examining how each of 175 

these relates to biodiversity gradients across the Hill spectrum, we can better characterize the role of 176 

total abundance in generating patterns in the BEF correlation itself.  177 

 178 

Results 179 

Which value of ℓ produces the strongest biodiversity- ecosystem function correlations? 180 
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For most datasets, the strongest biodiversity-ecosystem correlations were located at or just above 181 

richness (ℓ = 1), with a mode at ℓ = 1.5 (figure 2). A substantial minority (11 of 39 datasets) had 182 

strongest BEF correlations at values of ℓ > 5, including a peak at ℓ = 10, the largest value of ℓ we 183 

considered. There were a few outliers: Two tree carbon storage datasets had their strongest BEF 184 

correlations near inverse Simpson (ℓ = -1) and Shannon (ℓ = 0) diversities, and a single fish dataset had 185 

a strongest BEF correlation at ℓ = -10, the smallest value of ℓ we considered (figure 2). 186 

 187 

How do biodiversity-ecosystem function correlations change in sign and strength over a wide range of 188 

Hill diversities? 189 

Across all ecosystem functions, we found common patterns in the relationship between the BEF 190 

correlation and the Hill diversity scaling parameter, ℓ. When ℓ is < 1, the diversity-function correlation 191 

is typically weak and may be positive or negative (figure 3). Near ℓ = 1, the diversity-function 192 

correlation rapidly increases, although a substantial minority of community datasets first show a 193 

sharp negative turn in the relationship near Hill-Simpson and Hill-Shannon diversities (figure 3 b-d). 194 

Across all the datasets we considered, the mean correlation between ln(diversity) and ln(total 195 

function) was not significantly different from zero for either Hill-Simpson or Hill-Shannon diversity 196 

(p>0.28 for two-sided Student’s t-test, with no correction for multiple tests). By richness (ℓ = 1), almost 197 

all datasets showed positive diversity-function correlations, with the mean R2 = 0.381. For most 198 

datasets, the strongest correlations are located near richness, with a mode near ℓ = 1.5, where the 199 

mean R2 was 0.445, after which the diversity-function correlation slowly declines as ℓ values continue 200 

to increase (figure 3). A substantial minority of datasets showed continually stronger relationships as ℓ 201 

increased (some profiles in figure 3 b, c), leading to highest R2 values at or near the maximum ℓ we 202 

considered (ℓ = 10).  203 

 204 

This study was not designed to contrast trends between ecosystem functions, but it is important to 205 

note that the relationship between the BEF correlation, and the emphasis the diversity metric puts on 206 

rare vs. common species (i.e., the value of ℓ), did not appear uniform. For the three bee community 207 

datasets, total pollen deposition and bee diversity were positively correlated at every value of ℓ. 208 

Correlation strength peaked at richness (ℓ = 1) or just beyond (ℓ = 2), but remained relatively strong 209 

across all higher values of ℓ (figure 3a). For the 32 reef fish community datasets, total fish biomass and 210 
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fish diversity tended to be weakly and often negatively correlated at low ℓ values. Correlation strength 211 

tended to peak either slightly above richness at ℓ = 1.5, or grow with ℓ for an observed peak near  212 

the maximum value considered (ℓ = 10). (figure 2, figure 3 b, c). When considering either very high or 213 

very low ℓ values, note that at either end of the Hill number spectrum, diversities rapidly converged 214 

towards their maximum or minimum asymptote. Thus, large changes in the BEF correlation rarely 215 

occurred outside a fairly narrow range between ℓ = -2 and 2. Finally, the four tropical tree community 216 

datasets showed generally weak correlations. In two tree datasets, BEF correlation strength peaked at 217 

intermediate ℓ values where the BEF correlation was strongly negative (figure 3 d). In another (Barro 218 

Colorado Island) diversity-function correlation was negative even at high ℓ values (figure 3 d, orange 219 

line), but modestly positive for negative ℓ values.  220 

 221 

What is the role of absolute abundance in shaping BEF correlations?  222 

As expected, the relationship between diversity and abundance was mostly similar to the relationship 223 

between diversity and function, as total abundance underlies function in our datasets. This can be 224 

seen in the similar shape of the curves showing the correlation between ln(diversity) and either 225 

ln(function) (figure 3) or ln(abundance) (figure 4 a-d), as the sign and strength of correlation typically 226 

moved in similar ways across the ℓ spectrum. In almost all cases, the correlation between ln(diversity) 227 

and ln(abundance) was very strong (and in many cases approached unity), for large, positive values of 228 

the Hill diversity scaling parameter ℓ. As previously remarked, this result is a mathematical 229 

inevitability when datasets contain very rare species/singletons. Additionally, across datasets, we 230 

found that the rise towards the high correlation observed for large ℓ values typically occurred in the 231 

range of ℓ values typically considered by ecologists (-1 to 1), likely reflecting biological and sampling 232 

linkages between abundance and diversity; the correlation frequently saturated once ℓ was greater 233 

than two. While for some community datasets, diversity was largely independent of abundance for 234 

negative ℓ values, we also saw community datasets in which ln(abundance) and ln(diversity) had 235 

modest to strong negative correlation across negative ℓ values. Because Hill diversities typically 236 

change little with ℓ below around -2 [6], this result implies that in these systems, total abundance and 237 

the degree of dominance are positively linked  [45].  238 

 239 

While the curves in figures 3 a-d and 4 a-d show strong resemblance, for some community datasets 240 

the BEF and diversity-abundance relationships diverge, implying those BEF relationships result from 241 
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processes other than abundance. For example, correlations between abundance and diversity were 242 

always strongly positive for the reef fish data for large, positive ℓ values, but in some reef fish 243 

community datasets, correlations between diversity and function were only weakly positive at higher 244 

ℓ values (figure 4 b, c). Such divergences between the diversity-function and diversity-abundance 245 

curves could be due to strong and/or countervailing relationships between mean per-capita function 246 

and diversity, which also showed some overall patterns across community datasets (figure 4 e-h). In 247 

general, Hill diversities with negative ℓ values were positively related to per-capita function, 248 

suggestive of a positive relationship between evenness and mean per-capita function. This pattern 249 

was not ubiquitous, however, with notable exceptions in both tree and bee community datasets 250 

(figure 4 e, h). We found that the correlation between diversity and mean per-capita function often 251 

exhibited a positive peak at intermediate ℓ values, a pattern particularly pronounced in the reef fish 252 

community datasets (figure 4 f, g). Finally, there was a tendency towards a negative correlation 253 

between ln(diversity) and ln(mean per-capita function) at for larger, positive values of ℓ (when 254 

diversity becomes largely synonymous with abundance), though the strength of this relationship was 255 

variable. 256 

 257 

Discussion 258 

We explored which Hill diversities best predicted ecosystem function, and were surprised to find that 259 

diversities near richness (1 < ℓ < 2) often performed the best (figure 2). This result was unexpected 260 

based on three assumptions we described in the introduction: first, observed richness is not a robust 261 

biodiversity measure; second, if abundance drives function, Hill diversities with high ℓ should be more 262 

predictive; third, if positive species interactions (e.g., complementarity [46]) drive function, ℓ values  263 

that emphasize the probability of interspecific encounter (-1 ≤ ℓ < 1) should be more predictive. The 264 

disconnect between observed and true richness is not, practically speaking, a resolvable problem and 265 

thus we cannot evaluate how much this first issue is affecting our results [22]. In the following 266 

paragraphs, we first interpret the unexplored meaning of Hill diversity when ℓ > 1 and then explore the 267 

latter two points, namely: how do Hill diversities near richness outperform Hill diversities with higher ℓ 268 

that better reflect abundance, and why we might have found such low predictive power for Hill 269 

diversities that should capture the effects of (potentially positive) species interactions. To better 270 

ground our discussion, we use an admittedly imprecise simplification and refer to ℓ values as falling 271 
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within the “evenness range” (-1 ≤ ℓ < 1), the “rare emphasis range” (1 < ℓ < 2, justification follows), or 272 

the “abundance range” (ℓ > 2).  273 

 274 

Before we can fully understand our results, we must interpret Hill diversities with ℓ > 1, which have 275 

seen little attention. Traditionally used Hill diversities with ℓ < 1 reach their maximum possible value, 276 

species richness, when species all have the same abundance. However, Hill diversities with ℓ > 1, 277 

which strongly emphasize rare species, increase with heterogeneity (rather than homogeneity) in 278 

species abundance. By emphasizing rare species even more than richness does, these diversities may 279 

reflect two essential features of community size: the total number of species and the total number of 280 

individuals. As these features are not practically separable and both apparently drive function, it may 281 

be advantageous to measure them jointly. Arguably, observed richness does this [31], but our results 282 

show that ℓ values in the rare emphasis range, which are relatively more sensitive to abundance than 283 

richness is, yield measures of diversity that better predict function. Beyond the rare emphasis range, 284 

Hill diversity quickly converges on abundance (at least in most observational data). This results in a 285 

slight decline in Hill diversity’s ability to predict ecosystem function for larger ℓ values (figures 2-3). 286 

 287 

Hill diversities in the evenness range (-1 ≤ ℓ < 1) should capture the effects of species interactions by 288 

emphasizing the probability of interspecific encounter, but these diversities were poor predictors of 289 

function. This was unexpected because a consistent BEF finding, including in real-world systems, has 290 

been that function increases with evenness [47–50], which increases Hill diversity for ℓ < 1 [51–53]. 291 

Additionally, in the evenness range, sample Hill diversities have relatively good statistical properties 292 

as estimators of true diversity, and asymptotic estimators [54] can further improve the situation, 293 

largely avoiding the robustness issues we highlight with species richness. Instead, the observed weak 294 

predictive power of Hill diversities with ℓ values in the evenness range is because functions analyzed 295 

here are the product of two components, abundance and per-capita function, which each showed 296 

different responses to increasing ℓ. Abundance-diversity relationships often mirrored function-297 

diversity correlations (compare  figure 3 with the top row of figure 4). In other words, across the ℓ 298 

spectrum, Hill diversities had nearly the same relationship with abundance and with function, 299 

underlining the necessity of accounting for the role of total abundance in BEF research [55]. However, 300 

Hill diversities in the evenness range deviated from this pattern, instead exhibiting often strong, 301 

countervailing relationships with abundance and per-capita function (figure 4).  302 
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 303 

The relationship between diversity and per-capita function differed from the diversity-abundance 304 

relationship, with correlation coefficients for per-capita function generally decreasing with increases 305 

in ℓ, but often showing a positive peak in the evenness range (figure 4). Positive species interactions, 306 

including those that increase per-capita function, are expected to predict total function [46,56]. Our 307 

results partly support these expectations, as Hill diversities in the evenness range, which should track 308 

the probability of interspecific encounter, were positively associated with per-capita function, even as 309 

they tended to be negatively associated with abundance.  As we increased ℓ, the correlation between 310 

Hill diversity and per-capita function disappeared near richness (ℓ = 1), also pushing against 311 

expectations that richness best captures function-relevant biodiversity gradients. In the rare emphasis 312 

and abundance ranges, we typically found a negative correlation between Hill diversity and per-capita 313 

function. This likely reflects spatial constraints and/or fundamental tradeoffs between having many, 314 

smaller-bodied individuals versus fewer larger ones [57,58]. This scenario is particularly easy to 315 

imagine for trees crowding in fixed-area plots, which physically and energetically prohibit arbitrarily 316 

large numbers of the largest trees. Similar energetic and spatial constraints limit the number of very 317 

large fish that might be seen in a single dive. Thus, we suspect that one reason we see a decline in the 318 

correlation between mean per-capita function and diversity with increasing ℓ in the fish and tree 319 

datasets is decreases in per-capita function due to crowding. 320 

 321 

Although Hill diversities in the rare emphasis range were most often the best predictor of total 322 

function, Hill diversities with ℓ values in the abundance range also predicted function well, and should 323 

not be discounted. Hill diversities in the abundance range were the best predictor of function in a 324 

substantial minority of datasets (Fig. 2), and for nearly all datasets were strong predictors of function 325 

(Fig. 3, far right of x-axes). This was expected because of a general link between higher abundance and 326 

higher function [55,59–63]. Even as Hill diversities in the “abundance” range were strong predictors of 327 

function, we also note that abundance can relate to Hill diversity across the full spectrum of ℓ values. 328 

For example, if high-abundance sites tend to be dominated by many individuals of one or a few 329 

species [45], Hill diversities that emphasize the most common species will decrease with abundance. 330 

Thus, we should not expect that strong effects of abundance on function are captured exclusively at 331 

high values of ℓ. 332 

 333 
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The predictive power of power of Hill diversity changed nonlinearly with increases in ℓ, as multiple 334 

facets of community structure (e.g., richness, abundance, evenness) affect function simultaneously. If 335 

we had found a monotonic strengthening of BEF relationships with increasing ℓ, we would argue that 336 

Hill “diversities” with large positive scaling parameters were simply abundance metrics masquerading 337 

as measures of diversity. Instead, we found, across a variety of regions, taxa, and ecosystem functions, 338 

intermediate, positive ℓ values in the “rare emphasis” range tended to produce the strongest BEF 339 

relationships (Fig. 3). All Hill diversities with positive ℓ values (including richness) tend to increase with 340 

both abundance and richness, which we argue can be a useful property, especially for BEF research. 341 

Because the goal of summarizing species’ abundances with diversity metrics is to distill complex, 342 

multivariate information [15], this claim is not radical. In fact, Hill diversities that emphasize rare 343 

species more than richness does can reflect intuitive notions of diversity, which include both high 344 

density and high compositional variation [64]. Our study points to the need for further theoretical 345 

work to explicate the meaning of these seldom-used Hill diversities in the rare emphasis range, and 346 

their linkages to ecosystem function.  347 

 348 

By considering Hill diversities over a wide range of ℓ, we place ourselves at odds with the convention 349 

that Hill diversities should be considered only when ℓ ≤ 1 [6,14,15,65,66]. The most compelling 350 

argument for that restricted range of scaling parameters is presented by Patil and Taillie, who argued 351 

that diversity should not decrease when abundance is shifted from more to less abundant species, 352 

including to species with zero abundance, a variation on Dalton’s “principle of transfers” [15,67]. This 353 

diversity property does not hold for Hill diversity when ℓ >1, which has species richness as its 354 

minimum, occurring in the perfectly even community, and increases (given richness and abundance) 355 

as some species get progressively rarer. A more pragmatic argument comes from Chao et al., who 356 

noted that estimating the relative abundance of rare species is an increasing problem for diversity 357 

measures as ℓ increases; they therefore suggest using only more estimable Hill diversities with ℓ ≤1 [6]. 358 

However, theoretical work suggests that even richness (ℓ = 1) is poorly estimated [22], and by this logic 359 

should not be used either. Finally, and most generally, diversity measures have traditionally been 360 

considered separate from abundance/density measures (but see [68,69]), whereas with increasing ℓ 361 

values, observed diversity and observed abundance tend to be more strongly correlated (and in fact 362 

approach a correlation of one in our datasets). Despite these arguments, our results show that Hill 363 

diversities with ℓ > 1 are meaningful ecological diversity measures, at least in the sense that they 364 
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convey more information about function than do more widely-used Hill numbers. Choosing to exclude 365 

these Hill diversities might be desirable for some conceptualizations of diversity, but we are opening 366 

the narrower question of which Hill diversities—with their variable emphasis on richness, abundance, 367 

evenness, and dominance—best predict ecosystem function. In this pursuit, allowing diversity metrics 368 

to highlight absolute abundance is valuable.    369 

 370 

As global changes lead to shifting species abundances, ecologists must continue to describe and 371 

predict how these shifts impact ecosystems and the way they function. Yet, understanding the 372 

separate and combined roles of total and relative abundance in mediating ecosystem function 373 

remains a difficult challenge, in large part because total abundance is inextricably linked to diversity 374 

measures. It is mathematically linked for large, positive ℓ values. It is practically constrained by 375 

sampling effects for ℓ closer to 1 (i.e., near species richness). As ℓ becomes negative, Hill diversities 376 

may lose their dependence on total abundance [21]. However, in the majority of community datasets, 377 

we saw at least weak negative correlations between negative-ℓ Hill diversities and observed 378 

abundances, likely due to increasing dominance in more abundant systems [45]. Overall, this suggests 379 

that in observational contexts, simple partitioning of abundance and diversity effects may not be 380 

tractable, at least not in a satisfying manner [31,36]. Since no single-best diversity measure is likely to 381 

emerge for all BEF studies, we encourage researchers to be open-minded towards Hill diversities 382 

across a wide spectrum of ℓ values and their potential links to mechanisms underlying BEF 383 

relationships. 384 
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 563 
 564 
 565 
 566 

Table 1. To learn how biodiversity-ecosystem function correlations are affected by different Hill 567 
diversity scaling factors, we gathered published, observational community datasets on three 568 
ecosystem functions. These were subdivided into a total of 39 community datasets, each including 569 
observations of species’ identities, abundances, and functions across replicated sites.  570 

Ecosystem 
function Citation Datasets Replication 

Max extent 
(km) 

Rate of wild 
bee pollen 
deposition 

Genung et al. 
2022 

Landscape array of 3 
plant species 

Each plant species 
present at 25 sites 

35 

Fish biomass 
Lefcheck et al. 
2021 

32 globally distributed 
ecoregions (16 temperate, 
16 tropical) 

11-186 sites 
(median 59) 17 - 4,677 

Above-ground 
carbon storage 

Condit et al. 2000, 
Cavanaugh et al. 
2014 

Tree species ID and 
estimated biomass at four 
globally distributed 
tropical forests 

50 1-Ha subplots 
from the 50-Ha BCI 
census; sets of six 
1-Ha plots in three 
tropical regions. 

1 (Condit et 
al.); 32-681 
(Cavanaugh 
et al.) 
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 592 
 593 
Fig 1. Two hypothetical communities with (a) different species abundance distributions have (b) 594 
different diversity profiles. At large negative ell values, each diversity profile converges on the 595 
inverse proportional abundance of the one most abundant species in the assemblage (inverse 596 
dominance). As ell values are more positive, each diversity profile converges on the inverse 597 
proportional abundance of the one least abundant species in the assemblage (equal to total 598 
abundance when the least abundant species is a singleton). Because singletons are ubiquitous in 599 
observational data, sample Hill diversities converge on observed abundance with increasingly large, 600 
positive values of ell. In the example, the red community is more even and more abundant, so its 601 
diversity is higher compared to the blue community at both ends of the diversity spectrum. However, 602 
the blue community has more species, and therefore is more diverse around richness (ell = 1, solid 603 
vertical). Other commonly used diversities are inverse Simpson (dotted) and exponentiated Shannon 604 
(dashed). 605 
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 626 

 627 
Figure 2. Across 39 observed biodiversity-ecosystem function (BEF) correlations calculated using 628 
a wide range of diversity scaling factors, the BEF relationships with the highest r2 were typically 629 
found using diversities near richness (vertical solid line; modal ℓ  = 1.5). The highest BEF r2 value 630 
for a community dataset was rarely found using diversities that emphasize the relative abundance of 631 
common species, including exponentiated Shannon (dashed line) and inverse Simpson (dotted line). 632 
Correlations were calculated between log diversity and log ecosystem function at a site (total above-633 
ground carbon in tropical forest plots, rate of pollen grain deposition by wild bees, or total biomass of 634 
reef fish encountered in fixed-effort dive surveys in temperate and tropical regions).   635 
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 647 
 648 
Figure 3. Biodiversity-ecosystem function (BEF) correlations across observed communities in a 649 
study system vary in magnitude and direction, depending on which scaling factor (ell) is used for 650 
calculating species’ diversity. Ecosystem services considered here are (a) rate of pollen grain 651 
deposition on one of three flower species by wild bees; total biomass of reef fish encountered in fixed-652 
effort dive surveys in (b) temperate and (b) tropical global regions; and (d) total above-ground carbon 653 
in tropical forest plots. Correlations are between logged total function at each site, and logged species 654 
diversity at a range of ell values (at 0.5 intervals) emphasizing the relative abundance of common 655 
species’ (negative ell values) or rare species (positive ell values). Vertical lines identify correlations at 656 
commonly used diversities: inverse Simpson (dotted), exponential Shannon (dashed), and richness 657 
(solid). Colors visually distinguish different community datasets. 658 
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 659 
 660 
Figure 4. Biodiversity-ecosystem function (BEF) correlation in observational data (figure 3) can 661 
be explained by correlation between total abundance and diversity (first row), correlation 662 
between mean per-capita function and diversity (second row), and interactions between these 663 
two factors (intractable, not shown). With a few exceptions, the abundance-diversity correlations 664 
roughly match the BEF correlation across the range of ell values used to calculate species diversities, 665 
while per-capita function-diversity correlations show countervailing trends in magnitude and 666 
direction. Compare (a, e) wild bee pollination, reef fish biomass in (b, f) temperate and (c, g) tropical 667 
regions, and (d, h) tropical forest above-ground biomass with corresponding panels in figure 3. 668 
Vertical lines identify correlations at commonly used diversities: inverse Simpson (dotted), 669 
exponential Shannon (dashed), and richness (solid). Colors visually distinguish different community 670 
datasets. 671 
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 677 
Figure S1. Community datasets (line color) differed in both the shapes of the diversity profiles (D 678 
vs. ell) and the degree to which diversity profiles differed between sites. For example, the grey-679 
blue tree_carbon sites were all 1-Ha subplots from the contiguous BCI 50-Ha forest plot, and diversity 680 
profiles were very similar between subplots; by contrast the yellow bee_pollination sites (Floral 681 
visitors of Polemonium reptans) had variable structure with wide variety in richness (ell = 1, vertical 682 
solid lines), inverse dominance (large negative ell), and abundance (large positive ell). Each curve is 683 
the diversity profile for a single site; colors indicate a community dataset (set of sites within a region 684 
at which a single function was measured).  685 
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