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Summary 23 

Although several studies have applied single-cell approaches to explore gene expression changes in aged 24 

brains, they were limited by the relatively shallow sampling of brain cell populations, and thus may have 25 

failed to capture aspects of the molecular signatures and dynamics of rare cell types associated with aging 26 

and diseases. Here, we set out to investigate the age-dependent dynamics of transcription and chromatin 27 

accessibility across diverse brain cell types. With EasySci, an extensively improved single-cell 28 

combinatorial indexing strategy, we profiled ~1.5 million single-cell transcriptomes and ~400,000 single-29 

cell chromatin accessibility profiles across mouse brains spanning different ages, genotypes, and both 30 

sexes. With a novel computational framework designed for characterizing cellular subtypes based on the 31 

expression of both genes and exons, we identified > 300 cell subtypes and deciphered the underlying 32 

molecular programs and spatial locations of rare cell types (e.g., pinealocytes, tanycytes) and subtypes. 33 

Leveraging these data, we generate a global readout of age-dependent cell population dynamics with high 34 

cellular subtype resolution, providing insights into cell types that expand (e.g., rare astrocytes and vascular 35 

leptomeningeal cells in the olfactory bulb, reactive microglia and oligodendrocytes) or are depleted (e.g., 36 

neuronal progenitors, neuroblasts, committed oligodendrocyte precursors) as age progresses. 37 

Furthermore, we explored cell-type-specific responses to genetic perturbations associated with 38 

Alzheimer’s disease (AD) and identify rare cell types depleted (e.g., mt-Cytb+, mt-Rnr2+ choroid plexus 39 

epithelial cells) or enriched (e.g., Col25a1+, Ndrg1+ interbrain and midbrain neurons) in both AD models. 40 

Key findings are consistent between males and females, validated across the transcriptome, chromatin 41 

accessibility, and spatial analyses. Finally, we profiled a total of 118,240 single-nuclei transcriptomes from 42 

twenty-four human brain samples derived from control and AD patients, revealing highly cell-type-specific 43 

and region-specific gene expression changes associated with AD pathogenesis. Critical AD-associated 44 

gene signatures were validated in both human and mice. In summary, these data comprise a rich resource 45 

for exploring cell-type-specific dynamics and the underlying molecular mechanisms in both normal and 46 

pathological mammalian aging. 47 
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Introduction 49 

 50 

The mammalian brain is a remarkably complex system made up of millions to billions of highly 51 

heterogeneous cells, comprising a myriad of different cell types and subtypes (Erö et al., 2018; Zeisel et 52 

al., 2018). Progressive changes in brain cell populations, which occur during the normal aging process, 53 

may contribute to functional decline of the entire organ and increased risks for neurodegenerative diseases 54 

such as Alzheimer's disease (AD) (Mathys et al., 2019; Xia et al., 2018). While the recent advances in 55 

single-cell genomics have created unprecedented opportunities to explore the cell-type-specific dynamics 56 

across the entire mammalian brain in aging and AD models (Morabito et al., 2021; Tabula Muris 57 

Consortium, 2020; Wang et al., 2022; Ximerakis et al., 2019), most prior studies relied on a relatively 58 

shallow sampling of the brain cell populations, possibly resulting in poor sensitivity to investigate the 59 

dynamics of cell types during aging, particularly with respect to rare aging or AD-associated cell types. 60 

While providing proof of key concepts, these prior studies were also technically limited in several ways, 61 

including failing to recover isoform-level gene expression patterns for rare cell types, providing few insights 62 

into how the chromatin landscape regulates cell-type-specific alterations across aging stages, and often 63 

lacked integrative analyses with spatial visualization to explore the anatomic region-specific changes. 64 

 65 

We previously developed single-cell RNA sequencing by combinatorial indexing, a methodological 66 

framework involving split-pool barcoding of cells or nuclei for single-cell transcriptome profiling (Cao et al., 67 

2017). While the method has been widely used to study embryonic and fetal tissues (Cao et al., 2019, 68 

2020), it remains restricted to gene quantification proximal to the 3’ end ( i.e., full-length transcript isoform 69 

information is lost) and is limited in terms of efficiency and cell recovery (up to 95% cell loss rate) (Cao et 70 

al., 2019), which pose a challenge when dealing with aged tissues. We have now performed over 350 71 

optimization experiments to overcome the above limitations (representative examples are shown in Figure 72 

S1 and S2; Methods). Several test conditions were inspired by optimizations described in recently 73 

developed or optimized single-cell techniques (Ma et al., 2020; Martin et al., 2021). The major 74 

improvements of the resulting method, EasySci-RNA (Figure 1A), include: (i) one million single-cell 75 

transcriptomes prepared at a library preparation cost of around $700, less than 1/100 the cost of the 76 

commercial platforms (Ding et al., 2020) (Figure 1B and 1C). Of note, this cost mainly includes the 77 

reagents cost for scRNA-seq library preparation and does not include the cost of personnel or sequencing; 78 

(ii) nuclei are deposited to different wells for reverse transcription with indexed oligo-dT and random 79 

hexamer primers (i.e., different molecular barcodes to separate reads primed by two types of primers and 80 

across different wells), thus recovering cell-type-specific gene expression with full gene body coverage 81 

(Figure 1D); (iii) chemically modified oligos were included in the ligation reaction to prevent the formation 82 

of primer-dimers and increase the detection efficiency (Figure S2); (iv) cell recovery rate, as well as the 83 

number of transcripts detected per cell, were significantly improved through optimized nuclei storage and 84 

enzymatic reactions (Figure S2). The optimized technique yields significantly higher signals per nucleus 85 

compared with the original sci-RNA-seq3 protocols as well as the popular commercial platform (i.e., 10x 86 

Genomics) (Figure 1E; Figure S2N-O); (v) An extensively improved single-cell data processing pipeline 87 

was developed for both gene counting and exonic counting utilizing paired-end single-cell RNA sequencing 88 

data (Methods). 89 

 90 

Leveraging the technical innovations during the development of EasySci-RNA, we further optimized the 91 

recently published single-cell chromatin accessibility profiling method by combinatorial indexing (sci-92 

ATAC-seq3) (Cusanovich et al., 2018; Domcke et al., 2020). Critical additional improvements include: (i) 93 
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tagmentation reaction with indexed Tn5 that are fully compatible with indexed ligation primers of EasySci-94 

RNA; (ii) a modified nuclei extraction and cryostorage procedure to further increase the reaction efficiency 95 

and signal specificity (Figure S3). The detailed protocols for the EasySci method (RNA and ATAC), as 96 

well as the data processing pipeline, are both included as supplementary files (Supplementary file 1-6) 97 

to facilitate the uptake of the techniques to further enable individual laboratories to cost-efficiently generate 98 

gene expression and chromatin accessibility profiles from millions of single cells. 99 
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 101 
Figure 1. EasySci-RNA enables high-throughput and low-cost single-cell transcriptome profiling 102 

with full gene body coverage. 103 

(A) EasySci-RNA workflow. Key steps are outlined in the texts.  104 

(B) Pie chart showing the estimated cost compositions of library preparation for profiling 1 million single-105 

nucleus transcriptomes using EasySci-RNA.  106 

(C) Bar plot comparing different single-cell RNA-seq methods in terms of their cost of the library preparation 107 

for 1 million single-nucleus transcriptomes. The cost of sci-RNA-seq3 and SPLiT-seq were calculated using 108 

data from (Martin et al., 2021; Rosenberg et al., 2018). The cost of other techniques was calculated using 109 

data from (Ding et al., 2020). 110 

(D) Density plot showing the gene body coverage comparing single-cell transcriptome profiling using 10X 111 

genomics and EasySci-RNA. Reads from indexed oligo-dT priming and random hexamers priming are 112 

plotted separately for EasySci-RNA.  113 

(E) Box plot showing the number of unique transcripts detected per mouse brain nucleus comparing 10X 114 

genomics and an EasySci-RNA library at similar sequencing depth (~ 4,450 raw reads/cell, Methods). For 115 

the box plot: middle lines, medians; upper and lower box edges, first and third quartiles, respectively; 116 

whiskers, 1.5 times the interquartile range. The star indicates p-value < 0.05 using a Wilcoxon rank-sum 117 

test. 118 
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A comprehensive single-cell catalog of the mouse brain in Aging and AD 120 

 121 

We first applied the EasySci method to characterize cell-type-specific gene expression, and chromatin 122 

accessibility across the entire mouse brain sampling at different ages, sexes, and genotypes (Figure 2A). 123 

We collected C57BL/6 wild-type mouse brains at three months (n=4), six months (n=4), and twenty-one 124 

months (n=4). To gain insight into the early molecular changes associated with the pathophysiology of AD, 125 

we included two AD models from the same C57BL/6 background at three months. These include an early-126 

onset AD (EOAD) model (5xFAD) that overexpresses mutant human amyloid-beta precursor protein (APP) 127 

and human presenilin 1 (PS1) harboring multiple AD-associated mutations (Oakley et al., 2006); and a 128 

late-onset AD (LOAD) model (APOE*4/Trem2*R47H) that carries two of the highest risk factor mutations 129 

of LOAD, including a humanized ApoE knock-in allele and missense mutations in the mouse Trem2 gene 130 

(Desimone et al., 2021; Xiang et al., 2018).  131 

 132 

Nuclei were first extracted from the whole brain, then deposited to different wells for indexed reverse 133 

transcription (EasySci-RNA) or transposition (EasySci-ATAC), such that the first index identified the 134 

originating sample and assay type of any given well. The resulting EasySci libraries were sequenced in 135 

two Illumina NovaSeq runs, yielding a total of 20 billion reads (around 10 billion for each library). After 136 

filtering out low-quality cells and potential doublets, we recovered gene expression profiles in 1,469,111 137 

single nuclei (a median of 70,589 nuclei per brain sample, Figure S4A; Methods) and chromatin 138 

accessibility profiles in 376,309 single nuclei (a median of 18,112 nuclei per brain sample, Figure S4B; 139 

Methods) across conditions. Despite shallow sequencing depth (~ 4500 and ~ 16,000 raw reads per cell 140 

for RNA and ATAC, respectively), we recovered an average of 1,788 UMIs (RNA, median of 935, 12.8% 141 

duplication rate) and 5,515 unique fragments (ATAC, median of 3,918, 9.3% duplication rate) per nucleus 142 

(Figure S4C and S4D), comparable to the published datasets (Cao et al., 2019, 2020; Domcke et al., 143 

2020). A median of 19% of ATAC-seq reads was mapped to locations near the transcription start site (±1 144 

kb) (Figure S4E), comparable to the published sci-ATAC-seq3 approach (Domcke et al., 2020). 145 

 146 

With UMAP visualization (McInnes et al., 2018) and Louvain clustering (Blondel et al., 2008), we identified 147 

31 main cell types by gene expression clusters (a median of 16,370 cells per cell type; Figure 2C; 148 

Methods), annotated based on cell-type-specific gene markers (Zeisel et al., 2018). Each cell type was 149 

observed in almost every individual, except the rare pituitary cells (0.09% of the cell population) that were 150 

missing in three out of twenty individuals (Figure S5). The cell-type-specific fractions in the global cell 151 

population are highly biased, ranging from 0.05% (Inferior olivary nucleus neurons) to 32.5% (Cerebellum 152 

granule neurons) (Figure 2B). An average of 74 marker genes were identified for each main cell type 153 

(defined as differentially expressed genes with at least a 2-fold difference between first and second-ranked 154 

cell types with respect to expression; FDR of 5%; and TPM > 50 in the target cell type; Table S1). In 155 

addition to the established marker genes, we identified many novel markers that were not previously 156 

associated with the respective cell types, such as markers for microglia (e,g., Arhgap45 and Wdfy4), 157 

astrocytes (e,g., Celrr and Adamts9) and oligodendrocytes (e,g., Sec14l5 and Galnt5) (Figure S5B).  158 

 159 

We next sought to quantify isoform expression through a published computation pipeline (Booeshaghi et 160 

al., 2021). Briefly, we merged random hexamer reads from each cell type in every individual mouse brain, 161 

yielding 613 pseudocells. We then pseudo-aligned the merged reads to the mouse transcriptome using 162 

Kallisto (Bray et al., 2016), producing a raw isoform count matrix that was processed per the above 163 

pipeline. After filtering and normalization, we recovered abundance estimates for 33,361 isoforms 164 
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corresponding to 12,636 genes (Methods). As expected, the previously identified main clusters can be 165 

readily resolved through isoform expression (Figure S6A). Compared with single-cell RNA-seq libraries 166 

(Booeshaghi et al., 2021), a relatively lower fraction (~40%) of EasySci-RNA reads were mapped to 167 

transcriptome with the above pipeline, potentially due to the high fraction of intronic reads in single nucleus 168 

RNA sequencing. Nevertheless, we identified certain isoforms strongly expressed in a given cell type even 169 

though their corresponding genes are not cell-type-specific (Table S2). For example, App-202, an isoform 170 

of the amyloid precursor protein gene, is preferentially expressed in choroid plexus epithelial cells, while  171 

its corresponding gene is not (Figure S6B). Similarly, Aplp2-209, an isoform of the amyloid beta precursor-172 

like protein 2 gene, is differentially expressed in oligodendrocytes, while its cell-type-specificity is not 173 

detected at the gene level (Figure S6C). The differential expression of Aplp2-209 in oligodendrocytes is 174 

further validated using the Tabula Muris Senis mouse aging atlas dataset (Tabula Muris Consortium, 2020) 175 

(Figure S6D). 176 

 177 

To reconstruct a brain cell atlas of both gene expression and chromatin accessibility, we applied a deep 178 

learning-based strategy (Lin et al., 2022) to integrate the 376,309 single-cell chromatin accessibility profiles 179 

with gene expression data (Figure 2C; Methods), yielding all 31 main cell types defined by chromatin 180 

accessibility. The gene body accessibility and expression of marker genes across cell types were highly 181 

correlated (Figure 2D). The fraction of each cell type was highly consistent between two molecular 182 

measurements as well (Figure 2E). To gain more insight into the epigenetic controls of the diverse cell 183 

types in the brain, we next identified peaks of accessibility within each cell type, yielding a master set of 184 

339,951 peaks. There was a median of 34% of reads in peaks per nucleus. UMAP dimension reduction 185 

using the resulting peak count matrix readily separates main cell types, further validating the integration-186 

based annotations (Figure S7A). Through differential accessibility (DA) analysis, we identified a median 187 

of 474 differential accessible peaks per cell type (FDR of 5%, TPM > 20 in the target cell type, Figure S7B 188 

and S7C; Table S3). Key cell-type-specific TF regulators were discovered by correlation analysis between 189 

motif accessibility and expression patterns across diverse cell types (Figure S7D), such as Spi1 in 190 

microglia (Yeh and Ikezu, 2019), Nr4a2 in cortical projection neurons 3 (Watakabe et al., 2007), and Pou4f1 191 

in inferior olivary nucleus neurons (McEvilly et al., 1996). 192 

 193 

As a step toward a spatially resolved brain atlas, we integrated our dataset with a 10x Visium spatial 194 

transcriptomics dataset (Genomics, 2019a, 2019b, 2019c) through a modified non-negative least squares 195 

(NNLS) approach (Methods). Aggregated cell-type-specific gene expression data were used as input to 196 

decompose mRNA counts at individual spatial locations of both sagittal and coronal sections of the entire 197 

mouse brain, thereby estimating the cell-type-specific abundance across locations. As expected, specific 198 

brain cell types were mapped to distinct anatomical locations (Figure 2F and 2G), especially for region-199 

specific cell types such as cortical projection neurons (Clusters 6,7,8), cerebellum granule neurons (Cluster 200 

3), and hippocampal dentate gyrus neurons (Cluster 9). The integration analysis further confirmed the 201 

annotations and spatial locations of main cell types in our single-cell datasets. 202 
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 203 
Figure 2. Single-cell transcriptome and chromatin accessibility profiling of mouse brains with 204 

EasySci.  205 

(A) Experiment scheme to reconstruct a brain cell atlas of both gene expression and chromatin accessibility 206 

across different ages, sexes, and genotypes.  207 

(B) Bar plot showing the cell-type-specific proportions of the brain cell population profiled by EasySci-RNA.  208 

(C) UMAP visualization of mouse brain cells by single-cell transcriptome (top) and chromatin accessibility 209 

(bottom), colored by main cell types in (B).   210 

(D) Heatmap showing the aggregated gene expression (top) and gene body accessibility (bottom) of the 211 

top ten marker genes (columns) in each main cell type (rows). For both RNA-seq and ATAC-seq, unique 212 

reads overlapping with the gene bodies of cell-type-specific markers were aggregated, normalized first by 213 

library size, and then scaled by the maximum expression or accessibility across all cell types.  214 

(E) Scatter plot showing the fraction of each cell type in the global brain population by single-cell 215 

transcriptome (x-axis) or chromatin accessibility analysis (y-axis).  216 
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(F-G) Mouse brain sagittal (F) and coronal (G) sections showing the H&E staining (left) and the 217 

localizations of main neuron types through NNLS-based integration (right), colored by main cell types in 218 

(B). The numbers correspond to cell-type-specific cluster-ID in (B).  219 
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A computational framework tailored to characterize cellular subtypes in the mammalian brain 221 

 222 

To investigate the molecular signatures and spatial distributions of cellular subtypes in the brain, we 223 

developed a computational framework tailored to sub-cluster level analysis. Key steps include: (i) sub-224 

clustering analysis by expression of both genes and exons to increase the clustering resolution (Figure 3); 225 

(ii) Integration analysis with spatial datasets to map the distribution of cellular subtypes (Figure 3). (iii) 226 

gene module analysis to identify the molecular signatures of main and rare cell types (Figure 4); 227 

 228 

Rather than performing sub-clustering analysis with the gene expression alone, we exploited the unique 229 

feature of EasySci-RNA (i.e., full gene body coverage), by incorporating both gene counts and exonic 230 

counts for principal component analysis followed by unsupervised clustering (Methods). The combined 231 

information greatly increased the resolution of sub-clustering analysis. For example, we recovered several 232 

microglia subtypes that were not easily separated in clusters defined by gene expression alone (e.g., sub-233 

cluster 13 in microglia marked by an exonic marker Ttr-ENSMUSE00000477272.5, Figure 3A and 3B). 234 

Leveraging this sub-clustering strategy, we identified a total of 359 sub-clusters, with a median of 1,038 235 

cells in each group (Figure 3C). All sub-clusters were contributed by at least two individuals (median of 236 

twenty), with a median of nine exonic markers enriched in each sub-cluster (At least a 2-fold difference 237 

between first and second-ranked cell types with respect to expression; FDR of 5%; and TPM > 50 in the 238 

target sub-cluster, Figure S9; Table S4). Some subtype-specific exonic markers were not detected by 239 

conventional differential gene analysis (e.g., Map2-ENSMUSE00000443205.3 in microglia, Figure S8). 240 

Notably, our strategy favors detecting extremely low-abundance cell types. For example, the smallest sub-241 

cluster (choroid plexus epithelial cells-7) contained only 21 cells (0.001% of the brain population, Figure 242 

3D-E, top), representing rare pinealocytes in the brain based on gene markers such as Tph1 and Ddc 243 

(Mays et al., 2018). Another example of the rare sub-clusters (vascular leptomeningeal cells-2, 35 cells, 244 

Figure 3D-E, bottom) represents the tanycytes, validated by multiple gene markers (e.g., Fndc3c1, Scn7a 245 

(Campbell et al., 2017)). 246 

 247 

To spatially map the diverse sub-clusters, we integrated the EasySci-RNA dataset with the 10x Visium 248 

spatial transcriptomics datasets (Genomics, 2019a, 2019b, 2019c) using cell2location (Kleshchevnikov et 249 

al., 2022), a Bayesian model designed to map fine-grained cell types. For example, sub-clusters of cortical 250 

projection neuron 1 can be mapped to distinct regions in the cortex by integration analysis (Figure 3F). A 251 

similar approach enabled us to deconvolute the region-specificity for other broadly distributed cell types 252 

such as astrocytes (Figure 3G). For instance, we identified astrocyte subtypes that specifically mapped to 253 

the olfactory bulb (sub-cluster 7), cortex (sub-cluster 3, 12), hippocampus (sub-cluster 6), thalamus (sub-254 

cluster 11), midbrain (sub-cluster 4), hindbrain (sub-cluster 10), consistent with the known region-specificity 255 

of astrocytes (Kleshchevnikov et al., 2022).  256 
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 260 

Figure 3. Identification and characterization of cellular subtypes in the mouse brain.  261 

(A) Schematic plot showing the computational framework for identifying and characterizing cell sub-262 

clusters. We subjected each main cell type to sub-clustering analysis based on both gene and exon 263 

expression. As an example, we performed UMAP analysis of microglia cells based on gene expression 264 

alone (left), or both gene and exon level expression (right). Cells are colored by sub-cluster ID from Louvain 265 

clustering analysis with combined gene and exon level information. Several sub-clusters cannot be 266 

separated from each other in the UMAP space by gene expression alone.  267 

(B) UMAP plots same as (A), showing the expression of an exonic marker Ttr-ENSMUSE00000477272.5 268 

of microglia sub-cluster 13. Microglia-13 can be better separated when combining both gene and exon 269 

level information. 270 

(C) By sub-clustering analysis, we identified a total of 359 sub-clusters across 31 main cell types. The 271 

barplot (left) shows the number of sub-clusters for each main cell type. The dot plot (right) shows the 272 

number of cells from each sub-cluster. Two rare sub-clusters (choroid plexus epithelial cells-7 and vascular 273 

leptomeningeal cells-2) are circled out.  274 

(D) UMAP visualizations showing sub-clustering analysis for choroid plexus epithelial cells (top) and 275 

vascular leptomeningeal cells (bottom) colored by sub-cluster IDs, highlighting two rare sub-clusters shown 276 

in (C).  277 

(E) Dot plot showing the expression of selected marker genes for choroid plexus epithelial cells-7 (top) and 278 

vascular leptomeningeal cells-2 (bottom), including both normal genes (left five genes) and transcription 279 

factors (right five genes).  280 

(F-G) Mouse brain sagittal sections showing spatial abundances of main cell types and related sub-clusters 281 

for cortical projection neurons 1 (F) and astrocytes (G) in anterior (top) and posterior (bottom) regions, 282 

estimated using the cell2location (Kleshchevnikov et al., 2022). 283 
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Gene module analysis to determine cell-type-specific molecular programs 285 

 286 

We next examined the key molecular programs underlying diverse cellular subtypes by gene module 287 

analysis. We clustered genes based on their expression variance across all 359 cell sub-clusters, revealing 288 

a total of 21 gene modules (GM) (Figure 4A; Figure S10; Table S5). The largest gene module (GM1) 289 

corresponds to a group of housekeeping genes (e,g., ribosomal synthesis) universally expressed across 290 

all sub-clusters. Several gene modules were enriched in specific cell types, such as the ependymal cell-291 

specific gene module (GM11, enriched biological process: cilium movement, adjusted p-value = 1.2e-26) 292 

(Kuleshov et al., 2016) (Figure 4B). Meanwhile, we detected gene modules that marked rare subtypes. 293 

For example, GM9, including genes in neuropeptide signaling (e,g., Tbx19, Pomc (Liu et al., 2001)), was 294 

highly enriched in a subtype of pituitary cells (PC-6) corresponding to corticotropic cells (Figure 4B). A 295 

similar analysis enabled us to characterize other rare cell subtypes, including myeloid cells (microglia-13, 296 

0.005% of the cell population, marked by GM19), pars tuberalis cells (vascular leptomeningeal cells-12 297 

(VLC-12), 0.003% of the cell population, marked by GM20), as well as aforementioned pinealocytes 298 

(choroid plexus epithelial cells-7 (CPEC-7), 0.001% of the cell population, marked by GM2) (Figure S10).  299 

 300 

Remarkably, rare proliferating cell types were identified through a cell-cycle-related gene module (GM6, 301 

enriched biological process: microtubule cytoskeleton organization involved in mitosis, adjusted p-value = 302 

1.2e-44) (Kuleshov et al., 2016), including proliferating cells of neurons (OB neurons 1-17, 0.03% of the 303 

cell population), astrocytes (astrocytes-7, 0.15% of the cell population), oligodendrocytes progenitor cells 304 

(oligodendrocytes progenitor cells-4, 0.04% of the cell population) and microglia (microglia-10, 82 cells, 305 

0.006% of the cell population) (Figure 4B). These sub-clusters were marked by conventional proliferating 306 

markers such as Mki67, as well as a group of lncRNAs (e.g., Gm29260, Gm37065), most of which were 307 

not well-characterized in previous studies (Figure 4C).  308 

 309 

To spatially map the rare cell types, we next investigated the expression patterns of cell-type-specific gene 310 

modules across spatial spots of the 10x Visium spatial transcriptomic datasets (Genomics, 2019a, 2019b, 311 

2019c), which resolved the anatomical locations of multiple main and rare cell types. For example, 312 

ependymal cells, a critical cell type regulating cerebrospinal fluid (CSF) homeostasis, were mapped along 313 

brain ventricles as expected (Figure 4D). Furthermore, rare proliferating cells were mapped to the 314 

subventricular zone area (Figure 4E). A similar analysis enables us to spatially map other rare cell types 315 

with high resolution, including pinealocytes (CPEC-7, GM2), corticotropic cells (PC-6, GM9), pars tuberalis 316 

cells (VLC-12, GM20), tanycytes (VLC-2, GM14) and a less-characterized endothelial cell type in the 317 

pituitary gland (Igfbp3+ Sfn+ endothelial cells, EC-10, GM7) (Figure 4F). 318 
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320 
Figure 4. Identification of key molecular programs underlying cell type specificity in the mouse 321 

brain. 322 

(A) UMAP visualizations of genes colored by identified gene module IDs.  323 

(B) Scatter plots showing examples of gene modules and their expression levels across sub-clusters 324 

(ordered by the level of gene module expression): GM-11 is specific to ependymal cells; GM-9 is specific 325 

to pituitary cell-6 (corticotropic cells); GM-6 marks four proliferating sub-clusters from different main cell 326 

types.  327 

(C) UMAP visualization showing four proliferating sub-clusters identified from OB neurons 1, astrocytes, 328 

oligodendrocyte progenitor cells, and microglia, colored by the normalized expression of canonical 329 

proliferating marker Mki67 (top) and the aggregated expression of lncRNAs in GM-6 (bottom). UMI counts 330 

are first normalized by library size, log-transformed, aggregated (for multiple genes), and then mapped to 331 

Z-scores. OPCs, oligodendrocyte progenitor cells. 332 

(D-E) Plots showing the normalized expression of gene modules in spatial transcriptomic datasets profiling 333 

mouse sagittal (left) and coronal (right) sections: GM-11 is specific to ependymal cells (D); GM-6 is specific 334 

to proliferating cells (E).  335 

(F) Similar to (D), plots showing the normalized expression of gene modules in spatial transcriptomic 336 

dataset profiling a mouse coronal section. UMI counts for genes from each gene module are scaled for 337 
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library size, log-transformed, aggregated, and then mapped to Z-scores. CPEC, choroid plexus epithelial 338 

cells; EC, endothelial cells; PC, pituitary cells; VLC, vascular leptomeningeal cells. 339 
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A global view of brain cell population dynamics across the adult lifespan at subtype resolution 341 

 342 

To obtain a global view of brain cell population dynamics across the adult lifespan, we first quantified the 343 

cell-type-specific fractions recovered from cell populations in each individual mouse. We next performed 344 

differential abundance analysis across all 359 sub-clusters (Methods), yielding 45 significantly changed 345 

sub-clusters during the early growth stage (between 3 and 6 months) and 29 significantly changed sub-346 

clusters upon aging (between 6 and 21 months;  FDR of 0.05, at least two-fold change of cellular fractions, 347 

Figure 5A; Table S6 and S7). Most significantly changed cell types were consistent between male and 348 

female mice (Figure 5B). 349 

 350 

Both the main clusters and subtypes of olfactory bulb (OB) neurons showed a remarkable population 351 

expansion from young to adult mice (Figure 5A, left), consistent with the expansion of the OB region 352 

during the early growth stage (Tufo et al., 2022). Meanwhile, a rare astrocytes subtype (AS-14, Lyn+ 353 

Adgrb1+; 0.05% of the global population) and a vascular leptomeningeal cell subtype (VLC-14, Sox10+  354 

Mybpc1+; 0.06% of the global population) also showed substantial expansion (over 4-fold) in the same 355 

period. We further characterized the chromatin accessibility of these two rare cell types, along with many 356 

OB neuron subtypes, by single-cell RNA-seq and ATAC-seq integration analysis through the deep-357 

learning-based strategy (Lin et al., 2022) described above (Figure S11A-C; Methods). As expected, the 358 

observed cell population dynamics can be cross-validated by two molecular layers (i.e., RNA and ATAC) 359 

(Figure S11D). Furthermore, both cell subtypes were spatially mapped to the OB region based on the 360 

expression of cell-type-specific gene markers in 10x Visium spatial transcriptomic data (Genomics, 2019a, 361 

2019b, 2019c) (Figure 5C, left), suggesting their potential roles in OB expansion during the early growth 362 

stage. As a further illustration of this point, the astrocytes subtype 14 is featured with the high expression 363 

of BAI1, a gene marker involved in the clean-up of apoptotic neuronal debris produced during fast growth 364 

of the brain (Sokolowski et al., 2011). The vascular leptomeningeal cell subtype 4 highly expresses gene 365 

markers of olfactory ensheathing cells (e.g., Sox10 and Mybpc1 (Rosenberg et al., 2018; Tepe et al., 366 

2018)), a key cell type that supports the growth and regeneration of axons in the central nervous system 367 

(Barraud et al., 2010). 368 

 369 

The aging-associated cell population changes between 6 and 21 months differed remarkably from the early 370 

growth stage. For example, all main cell types of OB neurons remain relatively stable during aging. Instead, 371 

we found aging-associated changes mostly in specific neuron subtypes. Key examples include the 372 

expansion of an OB neurons 3 subtype (OBN 3-3, marked by Cpa6 and Col23a1) corresponding to a group 373 

of less-characterized excitatory neurons in the mitral cell layer of the OB region (Monavarfeshani et al., 374 

2017), and the depletion of another OB neurons 1 subtype (OBN 1-11, marked by Robo2 and Prokr2) 375 

corresponding to the OB neuroblasts (Puverel et al., 2009; Zeisel et al., 2018)). These subtypes were 376 

spatially mapped to different areas of the olfactory bulb (Figure 5C, right), which is in contrast with the 377 

early growth stage, where almost all subtypes of OB neurons expanded across all regions.  378 

 379 

We identified a total of 21 subtypes showing a marked reduction across the adult lifespan of the mouse 380 

brain. For example, the most depleted populations in the aged brain include OB neuroblasts (OBN 1-11, 381 

marked by Prokr2 and Robo2 (Puverel et al., 2009; Zeisel et al., 2018)), OB neuronal progenitor cells (OBN  382 

1-17, marked by Mki67 and Egfr (Pastrana et al., 2009)), and dentate gyrus (DG) neuroblasts (DGN-8, 383 

marked by Sema3c and Igfbpl1 (Kumar et al., 2020))(Figure 5D, left). Interestingly, the population of DG 384 

neuroblasts showed a substantial decrease even in the early growth stage, suggesting an earlier decline 385 
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of DG neurogenesis compared to OB neurogenesis. In contrast to the depleted pool of neurogenesis 386 

progenitors, the proliferating oligodendrocyte progenitor cells (cycling OPCs, OPC-4, marked by Pdgfra 387 

and Mki67) remain relatively stable during aging. Instead, we detected the aging-associated depletion of 388 

the newly formed oligodendrocytes (oligodendrocytes-6 (OLG-6), marked by Prom1 and Tcf7l1 (Marques 389 

et al., 2018; Pastrana et al., 2009)) and committed oligodendrocyte precursors (OPC-6, marked by Bmp4 390 

and Enpp6 ((Marques et al., 2018; Pastrana et al., 2009; Zhang et al., 2014)), indicating that the 391 

oligodendrocyte differentiation is impaired upon aging.  392 

 393 

While the aforementioned integrative approach successfully identified the chromatin landscape of all main 394 

cell types, there were several substantial challenges for the sub-clustering level analysis, including the 395 

relatively lower number of profiled cells and lower resolution of the single-cell chromatin accessibility 396 

dataset compared with the single-cell transcriptome analysis. Nevertheless, we were able to recover 397 

several cell subtypes with relatively high abundance and unique epigenetic signatures. For example, we 398 

identified OB neuroblasts (OBN 1-11), OB neuronal progenitors (OBN 1-17), and newly formed 399 

oligodendrocytes (OLG-6) (Figure S12A and S12B), all of which exhibited a sharply decreased cell 400 

proportions in the aged brain similar to the single-cell transcriptome analysis (Figure 5D, right). Moreover, 401 

cell-type-specific TF regulators were identified and validated by both gene expression and TF motif 402 

accessibility, such as known regulators of neurogenesis (e.g., Sox2 and E2f2 (Graham et al., 2003; Li et 403 

al., 2018)) (Figure 5E), which further validated this integration approach for characterizing key epigenetic 404 

signatures of cellular subtypes associated with aging. 405 

 406 

We identified a total of 14 cellular sub-clusters that exhibited a remarkable expansion in the aged brain, 407 

such as a microglia sub-cluster (MG-9, Apoe+, Csf1+) corresponding to a previously reported disease-408 

associated microglia subtype (Keren-Shaul et al., 2017). In addition, we identified a reactive 409 

oligodendrocyte subtype (OLG-7, C4b+, Serpina3n+ (Kenigsbuch et al., 2022; Zhou et al., 2020)) 410 

significantly enriched in the aged brain. With the chromatin accessibility dataset, we further confirmed the 411 

expansion of this cell type (Figure 5F; Figure S12B and S12C), and identified its associated transcription 412 

factors (Figure 5E), such as Stat3, a critical factor involved in the regulation of inflammation and immunity 413 

in the brain (See et al., 2012). To further characterize the spatial distribution of the reactive 414 

oligodendrocytes in the brain, we performed spatial transcriptomics analysis of both adult and aged mouse 415 

brains. A striking enrichment of the reactive oligodendrocyte-specific markers (e.g., C4b, Serpina3n) was 416 

detected around the subventricular zone (SVZ), a region critical for the continual production of new neurons 417 

in adulthood (Figure 5G and 5H), indicating an age-related activation of inflammation signaling around the 418 

adult neurogenesis niche.  419 

 420 

We next explored the subtype-specific manifestation of key aging-related molecular signatures. Through 421 

differentially expressed gene analysis, we identified 7,135 aging-associated signatures across 359 sub-422 

clusters (FDR of 5%, with at least a 2-fold change between aged and adult brains, Table S8; Figure S13A). 423 

Out of the 580 genes significantly altered in multiple (>= 3) subtypes, we detected 241 genes that were 424 

differentially expressed in concordant directions across subtypes (Figure S13B). For example, Nr4a3, a 425 

component of DNA repair machinery and a potential anti-aging target (Paillasse and de Medina, 2015), 426 

was significantly decreased in aged neurons, including striatal neurons, OB neurons, and interneurons. 427 

Hdac4, encoding a histone deacetylase and a recognized regulator of cellular senescence (Di Giorgio et 428 

al., 2021), was significantly reduced in aged astrocytes and ependymal cells. Meanwhile, the Insulin-429 

degrading enzyme (IDE), a key factor involved in amyloid-beta clearance (Zhang and Wang, 2018), 430 
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showed increased expression mostly in subtypes of neurons, including interneurons, OB neurons, 431 

interbrain, and midbrain neurons. While many of these genes have been previously reported to be 432 

associated with aging, our analysis represents the first global view of their alterations across over 300 433 

subtypes. In addition, we identified several non-coding RNAs that underwent age-associated changes in 434 

multiple cell subtypes, most of which showed high cell-type-specificity (e.g., B230209E15Rik in cortical 435 

projection neurons subtypes) but were not well-characterized previously (Figure S13B). 436 
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Figure 5. Identifying brain cell population changes across the adult lifespan at subtype resolution.  439 

(A) Dot plots showing the cell-type-specific fraction changes (i.e., log-transformed fold change) of main cell 440 

types (circles) and sub-clusters (dots) in the early growth stage (adult vs. young, left plot) and the aging 441 

process (aged vs. adult, right plot) from EasySci-RNA data. Differential abundant sub-clusters were colored 442 

by the direction of changes. Representative sub-clusters were labeled along with top gene markers. AS, 443 

astrocytes; BG, Bergmann glia; CGN, cerebellum granule neurons; CPEC, choroid plexus epithelial cells; 444 

DGN, dentate gyrus neurons; EC, endothelial cells; HN; habenula neurons; IMN 1, interbrain and midbrain 445 

neurons 1; MG, microglia; OBN 1, OB neurons 1; OBN 3; OB neurons 3; OLG, oligodendrocytes; VLC; 446 

vascular leptomeningeal cells. 447 

(B) Scatter plots showing the correlation of the sub-cluster specific fraction changes between males and 448 

females in the early growth stage (top) and the aging stage (bottom), with a linear regression line. The 449 

most significantly changed sub-clusters are annotated on the plots.  450 

(C) Examples of development- or aging-associated subclusters are highlighted in (a) and their spatial 451 

positions. Left: scatter plots showing the aggregated expression of sub-cluster-specific marker genes 452 

across all sub-clusters. Right: plots showing the aggregated expression of sub-cluster-specific marker 453 

genes across a brain sagittal section in 10x Visium spatial transcriptomics data(Genomics, 2019a, 2019b, 454 

2019c). UMI counts for gene markers are scaled for library size, log-transformed, aggregated, and then 455 

mapped to Z-scores.  456 

(D) Line plots showing the relative fractions of depleted subclusters across three age groups identified 457 

from EasySci-RNA (left) and EasySci-ATAC (right).  458 

(E) Scatter plots showing the correlated gene expression and motif accessibility of transcription factors 459 

enriched in OB neurons 1-17 (Sox2 and E2f2, left and middle) and oligodendrocytes-7 (Stat3, right), 460 

together with a linear regression line.   461 

(F) Box plots showing the fractions of the reactive microglia (left) and reactive oligodendrocytes (right) 462 

across three age groups profiled by EasySci-RNA (top) and EasySci-ATAC (bottom). For all box plots: 463 

middle lines, medians; upper and lower box edges, first and third quartiles, respectively; whiskers, 1.5 464 

times the interquartile range; and all individual data points are shown.  465 

(G-H) Mouse brain coronal sections showing the expression level of C4b (g) and Serpina3n (h) in the adult 466 

(left) and aged (right) brains from spatial transcriptomics analysis.  467 
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A global view of AD pathogenesis-associated signatures and subtypes 469 

 470 

Toward a global view of AD-associated cell population dynamics, we quantified the relative fraction of sub-471 

clusters in the two AD models for comparison with their age-matched wild-type controls (3-month-old). We 472 

detected 16 and 14 significantly changed sub-clusters (FDR of 5%, at least two-fold change) in the EOAD 473 

(5xFAD) model and LOAD (APOE*4/Trem2*R47H) model, respectively (Figure 6A, Table S9 and S10). 474 

Most significantly altered subtypes showed consistent proportion changes in male and female mice (Figure 475 

6B).  476 

 477 

Interestingly, while these two AD mutants involved different genetic perturbations, the significantly altered 478 

cell subtypes were highly concordant (Figure 6C). For example, a rare choroid plexus epithelial cell 479 

subtype (CPEC-4, 0.02% of the total brain cell population) was strongly depleted (> two-fold decrease) in 480 

both AD models. This cell type is marked by significant enrichment of multiple mitochondrial genes, 481 

including mt-Rnr1, mt-Rnr2, mt-Co1, mt-Cytb, mt-Nd1, mt-Nd2, mt-Nd5, and mt-Nd6. Out of these gene 482 

markers, mt-Rnr2 is involved in synthesizing neuroprotective factors against neurodegeneration by 483 

suppressing apoptotic cell death (Hashimoto et al., 2001). Other markers (e,g., mt-Rnr1 and mt-Nd5) are 484 

associated with the phosphorylated Tau protein levels in cerebrospinal fluid (Cavalcante et al., 2022). 485 

While this subtype was rarely detected in our single-cell ATAC data, we were able to map the cell subtype 486 

to the area around the subventricular zone by the expression of its cell-type-specific markers in the spatial 487 

transcriptomics data (Figure 6D and 6E, top). Furthermore, the spatial transcriptomics analysis further 488 

validated the depletion of this cell type in the EOAD (5xFAD) model (Figure 6E), suggesting a potential 489 

interplay between cell-type-specific mitochondrial functions and neurodegenerative phenotypes.  490 

 491 

By contrast, another choroid plexus epithelial cell subtype (CPEC-6, 0.045% of the total brain cell 492 

population; marked by Sptlc3+, Fer1l6+) expanded in both AD models (over two-fold increase) (Figure 493 

6B). It is marked by the gene Sptlc3, which encodes a subunit of a complex that catalyzes the synthesis 494 

of sphingolipids, a group of bioactive molecules contributing to amyloid-beta production and Alzheimer 495 

pathogenesis (Mielke and Lyketsos, 2010). Furthermore, we identified another rare interbrain and midbrain 496 

neuron subtype (IMN 1-13, 0.61% of the total brain population; marked by Col25a1+, Ndrg1+) that 497 

expanded considerably in both AD models (Figure 6C). This subtype is characterized by the expression 498 

of Col25a1, a membrane-associated collagen that has been reported to promote intracellular amyloid 499 

plaque formation in mouse models (Tong et al., 2010). Indeed, we identified an up-regulation of IMN 1-13 500 

specific gene markers in the thalamus region of the 5xFAD mouse brain (Figure 6D and 6E, bottom), 501 

further validating the single-cell transcriptome analysis. 502 

 503 

Finally, we detected a significant expansion of the microglia subtype 9 (MG-9, 0.026% of the total brain 504 

cell population, marked by ApoE+, Csf1+) in the early-onset 5xFAD mice, consistent with previous reports 505 

(Keren-Shaul et al., 2017). The reactive microglia subtype was also expanded in the aged group, but not 506 

in the late-onset APOE*4/Trem2*R47H model (3-month-old) (Figure 6F, left), potentially due to the 507 

different disease onset. Consistent proportion changes were detected with the chromatin accessibility 508 

dataset (Figure 6F, right). We next integrated both transcriptome and chromatin accessibility profiles to 509 

further delineate the molecular programs of this reactive microglia subtype., We first identified 199 genes 510 

differentially expressed in the reactive microglia subtype, many of which (44%) can be validated by the 511 

promoter accessibility (Figure S12D). We then revealed key transcription factors validated by both cell-512 

type-specific gene expression and motif accessibility (Figure 6G), including TFs of the NF-kappa B 513 
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signaling pathway (e.g., Nfkb1 and Relb (Oeckinghaus and Ghosh, 2009)) and TFs involved in oxidative 514 

stress protection (e.g., Nfe2l2 (Liu et al., 2017)), and cholesterol homeostasis (e.g., Srebf2 (Bommer and 515 

MacDougald, 2011)). These molecular pathways could play critical regulatory roles in microglia 516 

specification and expansion in aging and AD. 517 

 518 

We next explored AD pathogenesis-associated signatures in AD mouse models. Through differentially 519 

expressed gene analysis (Methods), 6,792 and 7,192 sub-cluster-specific DE genes were detected in the 520 

5xFAD (EOAD) model and the APOE*4/Trem2*R47H (LOAD) model, respectively (Figure S13C and 521 

S13E, Table S11 and S12). For example, we observed a global down-regulation of the mouse Apoe gene 522 

across many sub-clusters in the APOE*4/Trem2*R47H mice (Figure S13D), potentially due to the fact that 523 

part of the Apoe gene is replaced with the human sequence that does not align to the mouse genome. 524 

Meanwhile, we detected a global change of Thy1 across many neuron types in the 5xFAD mice, consistent 525 

with the fact that all transgenes introduced in the 5xFAD model were overexpressed under the Thy1 526 

promoter (Figure S13F). Remarkably, many AD-associated gene signatures exhibited concordant 527 

changes across cellular subtypes (Figure S13D and S13F). For example, markers involved in unfolded 528 

protein stress (e.g., Hsp90aa1) and oxidative stress (e.g., Txnrd1) were significantly upregulated in an 529 

overlapped set of neuron subtypes in the early-onset 5xFAD mice (Figure S13D), indicating increased 530 

stress levels and cellular damages in neurons across the brain. Meanwhile, Reln, which encodes a large 531 

secreted extracellular matrix protease involved in the ApoE biochemical pathway (Seripa et al., 2008), 532 

significantly decreased in multiple cell types (e.g., OB neurons, interbrain and midbrain neurons, vascular 533 

cells, oligodendrocytes) in both early- and late-onset models (Figure S13D and S13F). This is consistent 534 

with previous reports that the depletion of Reln is detectable even before the onset of amyloid-beta 535 

pathology in the human frontal cortex (Herring et al., 2012). Other interesting phenomena included the 536 

overall upregulation of Ide, a gene responsible for amyloid-beta degradation, in the late-onset model similar 537 

to the aged brain (Figure S13B and S13F).  Less-characterized genes were identified as well. For 538 

example, Tlcd4, a gene involved in lipid trafficking and metabolism (Attwood and Schiöth, 2021), was 539 

significantly downregulated in thirty-five sub-clusters across broad cell types (e.g., OB neurons, vascular 540 

cells, oligodendrocytes) in the EOAD mice (Figure S13D), indicating a potential interplay between the lipid 541 

homeostasis and cellular changes in the early stage of AD.  542 

 543 

While the two AD mouse models are different in terms of genetic perturbations or disease onsets, their 544 

cell-type-specific molecular changes were surprisingly consistent. Illustrative of this, we detected 559 sub-545 

cluster-specific DE genes shared between two AD mutants, such as genes involved in epilepsy (Adjusted 546 

p-value = 0.02, e.g., Gria1, Med1, Plp1) (Kuleshov et al., 2016) and oxidative stress protection pathway 547 

(Adjusted p-value = 0.05, e.g., Arnt, Nfe2l2) (Kuleshov et al., 2016). Intriguingly, 99% (555 of the 559) of 548 

the shared DE genes showed concordant changes in two AD mutants (Pearson correlation coefficient r = 549 

0.96, p-value < 2.2e-16, Figure S13G), indicating shared molecular programs between early- and late-550 

onset AD models. Of note, this analysis further validates that the APOE*4/Trem2*R47H mice mutant, a 551 

mouse model recently developed, can serve as an informative model to study Alzheimer’s disease.  552 

  553 
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Figure 6. Identifying AD pathogenesis-associated cell subtypes. 554 

(A) Dot plots showing the log-transformed fold changes of main cell types (circles) and sub-clusters (dots) 555 

comparing EOAD vs. WT (left) and LOAD vs. WT (right). Differential abundant sub-clusters were colored 556 

by the direction of changes. Representative sub-clusters were labeled along with top gene markers. BG, 557 

Bergmann glia; CPEC, choroid plexus epithelial cells; IMN 1, interbrain and midbrain neurons 1; MG, 558 

microglia; OLG, oligodendrocytes; SN 2, striatal neurons 2. 559 
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(B) Scatter plots showing the correlation of the log-transformed fold changes of sub-clusters (top: EOAD 560 

vs. WT, bottom: LOAD vs. WT) between male and female.  561 

(C) Scatter plot showing the correlation of the log-transformed fold changes of sub-clusters in two AD 562 

models (both compared with the wild-type). Only sub-clusters showing significant changes in at least one 563 

AD model are included.  564 

(D) Scatter plots showing the aggregated expression of gene markers of two cell subtypes (top: choroid 565 

plexus epithelial cells-4; bottom: the interbrain and midbrain neurons 1-13) across all sub-clusters from 566 

EasySci-RNA data.   567 

(E) Brain coronal sections showing the spatial expression of subtype-specific gene markers of two 568 

subtypes (top: choroid plexus epithelial cells-4; bottom: the interbrain and midbrain neurons 1-13) in the 569 

WT and EOAD (5xFAD) brains in 10x Visium spatial transcriptomics data.  570 

(F) Box plots showing the fraction of microglia-9 cells across different conditions profiled by EasySci-RNA 571 

(left) or EasySci-ATAC (right). For all box plots in this figure: middle lines, medians; upper and lower box 572 

edges, first and third quartiles, respectively; whiskers, 1.5 times the interquartile range; and all individual 573 

data points are shown.  574 

(G) Scatter plot showing the correlated gene expression and motif accessibility of four transcription factors 575 

(Nfe2l2, Nfkb1, Relb, and Srebf2) enriched in microglia-9, together with a linear regression line. 576 

  577 
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Identification of dysregulated gene signatures in human AD brains 578 

 579 

To examine the AD pathogenesis-associated gene signatures, we further sequenced a total of 118,240 580 

single-nuclei transcriptomes (a median of 5,585 nuclei per sample, with a median of 1,109 UMIs per 581 

nucleus, Figure S14A and S14B) from twenty-four human brain samples across two brain regions 582 

(hippocampus, superior and middle temporal lobe (SMTG)), derived from six Alzheimer ’s disease patients 583 

and six age- and gender-matched controls (Table S13). Thirteen main cell types were identified through 584 

integration analysis with the mouse dataset and validated by the cluster-specific expression of known 585 

markers (Figure 7A and Figure S14C-E). 586 

 587 

We next sought to investigate the region- and cell type-specific gene expression changes associated with 588 

human AD pathogenesis. By differential gene expression analysis, we identified a total of 4,171 and 2,149 589 

cell-type-specific DE genes in the hippocampus and SMTG, respectively (Figure 7B, Table S14). 349 590 

genes were significantly changed in the same cell type from two distinct regions, among which 332 were 591 

altered in concordant directions (Figure 7C, Pearson correlation coefficient r = 0.68, p-value < 2.2e-16). 592 

For example, oligodendrocytes from both regions exhibited down-regulated expression of an 593 

oligodendrocyte terminal differentiation factor OPALIN (de Faria et al., 2019) and an oxidation stress 594 

protector OXR1 (Volkert and Crowley, 2020). Meanwhile, we detected an increased expression of genes 595 

related to programmed cell death (e.g., FLCN and RASSF2) (Cooper et al., 2009; Schmidt and Linehan, 596 

2018), indicating an elevated stress level in oligodendrocytes from both regions. Other examples include 597 

the microglia-specific upregulation of PTPRG, a receptor protein tyrosine phosphatase that plays a key 598 

role in mediating AD-associated neuronal death (Luo et al., 2022). In astrocytes, we observed a decreased 599 

expression of several transmembrane transporters (e.g., AQP4 and SLCO1C1) as well as neural 600 

transmitter metabolism enzymes (e.g., GLUD1), suggesting an impairment of blood-brain barrier (Silva et 601 

al., 2021) and altered metabolic state (Kulijewicz-Nawrot et al., 2013) in astrocytes from both regions of 602 

the AD brains.  603 

 604 

Remarkably, some of the AD-associated gene signatures present with region-specific expression patterns. 605 

For example, GPNMB, a transmembrane glycoprotein associated with microglia activation in AD brains 606 

(Hüttenrauch et al., 2018), showed increased expression in the microglia from the hippocampus but not 607 

from SMTG (Figure 7D, top). On the other hand, MMP24, a gene of the matrix metalloproteinase family 608 

and extensively implicated in AD pathogenesis in previous studies (Zipfel et al., 2020), exhibited an 609 

increase in cortical projection neurons unique to SMTG (Figure 7D, bottom). In fact, inhibiting MMP24 610 

has been shown to reduce the amyloid-beta levels and promoter cognitive functions in mouse models, 611 

serving as a novel target for AD therapy (Baranger et al., 2016). 612 

 613 

Finally, we explored the human-mice relevance for certain AD-associated gene signatures and molecular 614 

pathways. Despite differences in the species and ages between the two datasets, several genes encoding 615 

heat shock proteins (e.g., HSP90AA1, HSPH1) were upregulated across multiple cell types in the EOAD 616 

mouse model and the human hippocampus (Figure 7E). The elevated expression of the chaperon system 617 

potentially serves as a compensatory mechanism to reduce the formation of toxic oligomeric assemblies 618 

in AD brains (Arawaka et al., 2010), further validating the dysfunction of proteostasis as a molecular marker 619 

of AD (Cornejo and Hetz, 2013). Meanwhile, we identified down-regulated genes in both human and mice 620 

(Figure 7F). One of the examples, PLP1, was reported as a subtype-specific driver gene contributing to 621 

AD pathogenesis (Neff et al., 2021). Another gene, PDE10A, plays a key role in the promotion of neuronal 622 
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survival, with its reduction detected in multiple neurodegenerative diseases (e.g., Huntington’s disease 623 

(Niccolini et al., 2015a), Parkinson's disease (Niccolini et al., 2015b)). Importantly, the above-mentioned 624 

trends were readily validated by another recently published single-cell dataset investigating Alzheimer’s 625 

disease in the human prefrontal cortex (Morabito et al., 2021) (Figure S15). In summary, the human-mice 626 

relevance analysis further advances our current understanding of genetic programs associated with 627 

Alzheimer’s pathogenesis. 628 

  629 
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 630 

 631 
Figure 7. Identifying AD pathogenesis-associated gene expression signatures across regions and 632 

cell types in human brains.  633 

(A)  UMAP visualization of single-cell transcriptomes of all human brain cells, colored by main cell types 634 

(left), region (middle) and conditions (right).   635 

(B) Bar plot showing the number of differentially expressed genes between AD and control samples in 636 

each cell type. DE genes are colored by whether they are unique to each region or shared between two 637 

regions. Of note, choroid plexus epithelial cells and vascular leptomeningeal cells were not included into 638 

the differential gene expression analysis in SMTG due to their low cell numbers. 639 
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(C) We detected 394 DE genes significantly changed within the same main cell type in both regions. The 640 

scatterplot shows the correlation of the log2-transformed fold changes of these 394 shared DE genes in 641 

Hippocampus (x-axis) and in SMTG (y-axis). Key genes are annotated and colored by their corresponding 642 

main cell types. AS, astrocytes; MG, microglia; OLG, oligodendrocytes. 643 

(D) Heatmaps showing examples of region-specific DE genes for the hippocampus (left) and SMTG 644 

(bottom). Gene expressions were quantified as transcripts per million in the corresponding cell types in 645 

each group, and normalized to the maximum expression across groups.   646 

(E-F) Volcano plots showing the examples of top differentially expressed (DE) genes between the AD and 647 

control samples across main cell types in human brains or between EOAD and WT samples across cell 648 

subclusters in mouse brains. Highlighted genes are colored by the main cell type identity.  649 

  650 
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Discussion 651 

 652 

In this study, we obtained a global view of aging and AD pathogenesis-associated cell population 653 

dynamics, by profiling ~1.5 million single-cell transcriptomes at full gene body coverage and ~380,000 654 

single-cell chromatin accessibility profiles across the entire mammalian brains spanning various age and 655 

genotype groups. With the resulting datasets, we identified over 300 cellular subtypes across the brain, 656 

including extremely rare cell types (e.g., pinealocytes, tanycytes) representing less than 0.01% of the brain 657 

cell population. In addition, we detected region-specific aging and AD effects with high-resolution spatial 658 

transcriptomic analysis and explored the cell-type-specific manifestation of aging and AD-associated 659 

molecular signatures. With the EasySci method, we introduced a technical framework for individual 660 

laboratories to generate gene expression and chromatin accessibility profiles from millions of single cells 661 

cost-effectively. We have made the EasySci pipeline, detailed experimental protocols, computation scripts, 662 

and datasets freely available to facilitate further exploration of the techniques and datasets.  663 

 664 

As illustrated by our sub-cluster level analysis, the effects of aging and AD on the global brain cell 665 

population are highly cell-type-specific. While most brain cell types stay relatively stable under various 666 

conditions, we identified many cell subtypes that are significantly changed (over two-fold change) in aged 667 

and AD model brains, most of which were rare cell types and thus presumably missed in conventional 668 

“shallow” single-cell analysis. For example, the aged brain is characterized by the depletion of both rare 669 

neuronal progenitor cells and differentiating oligodendrocytes, associated with the enrichment of a C4b+ 670 

Serpina3n+ reactive oligodendrocyte subtype surrounding the subventricular zone (SVZ), suggesting a 671 

potential interplay between oligodendrocytes, local inflammatory signaling and the stem cell niche.  672 

 673 

The lack of reliable mouse models remains one of the biggest challenges in studying late-onset Alzheimer’s 674 

disease. The novel APOE*4/Trem2*R47H model aims to overcome this limitation by introducing two of the 675 

strongest late-onset Alzheimer’s disease-associated mutations (Karch and Goate, 2015). However, limited 676 

validation is available to assess whether this novel model shows any characteristics of Alzheimer’s 677 

disease. Here we observed overall concordant molecular and cell population dynamics between the well-678 

established 5xFAD and the novel APOE*4/Trem2*R47H model, which emphasizes that the novel LOAD 679 

model indeed shows signs of Alzheimer’s disease. For example, we observed shared subtypes that were 680 

depleted (e.g., mt-Cytb+ mt-Rnr2+ choroid plexus epithelial cell) or enriched (e.g., Col25a1+ Ndrg1+ 681 

interbrain and midbrain neuron) in both early- and late-onset AD mutant brains, validated by single-cell 682 

RNA-seq from both sexes as well as spatial transcriptomics analysis. On the other hand, differences were 683 

also observed between the two AD models, as expected by the different onset times. Most notably, the 684 

missing of the disease-associated microglia population increase in the LOAD model could be explained by 685 

the lack of amyloid deposition in the mouse model (Kotredes et al., 2021) or by genetic perturbations, as 686 

both Trem2 and Apoe play a role in the activation of this cell population(Keren-Shaul et al., 2017). To 687 

answer this question, further studies are needed to characterize APOE*4/Trem2*R47H mouse models at 688 

late stages. 689 

 690 

In addition, we further explored AD-associated gene signatures in human brains by profiling over 100,000 691 

single nucleus transcriptomes from twenty-four human brain samples from control and AD patients and 692 

two anatomical locations. While most AD-associated gene dynamics are highly cell-type- and region-693 

specific, we identified dysregulated genetic signatures that are conserved between different anatomical 694 

locations in the human brains. Moreover, integrating the human and mouse brain datasets further revealed 695 
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molecular pathways shared between human AD patients and mouse AD models, which could advance our 696 

knowledge of biomarkers for Alzheimer's diagnosis. 697 

 698 

In summary, this study demonstrated the potential of novel ‘high-throughput’ single-cell genomics for 699 

quantifying the dynamics of rare cell types and novel subtypes associated with development, aging, and 700 

disease. We anticipate that further development of high-throughput single-cell profiling strategies and 701 

computation approaches will enable a comprehensive view of cell-type-specific dynamics across all 702 

mammalian organs through “saturate sequencing", which may be especially critical for identifying rare cell 703 

types in human samples. 704 

 705 

 706 
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Supplementary Figures 727 

 728 

 729 
Figure S1. Summary of key optimizations of EasySci-RNA compared to published single-cell RNA-730 

seq by combinatorial indexing (sci-RNA-seq3 (Cao et al., 2019)). 731 

 732 
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Figure S2. Representative examples showing the performance of optimized conditions of EasySci-734 

RNA.  735 

(A-B) Box plots showing the number of unique transcripts detected per nucleus in different lysis conditions: 736 

1% DEPC vs. no DEPC in lysis buffer (A); EZ lysis buffer vs. nuclei lysis buffer used in the published sci-737 

RNA-seq3 (Cao et al., 2019) (B). For all box plots in this figure: middle lines, medians; upper and lower 738 

box edges, first and third quartiles, respectively; whiskers, 1.5 times the interquartile range.  739 

(C-D) Box plot showing the number of unique transcripts detected per nucleus across different fixation 740 

conditions: 1% formaldehyde vs 4% paraformaldehyde (C); 0.1% formaldehyde vs. 1% formaldehyde (D).  741 

(E-F) We compared two conditions for preserving the fixed nuclei. The slow freezing condition (in 10% 742 

DMSO) outperformed the flash freezing condition in sci-RNA-seq3 (Cao et al., 2019) by increasing the 743 

number of nuclei recovered in the experiment (E) and the number of unique transcripts detected per 744 

nucleus (F).  745 

(G-H) Maxima reverse transcriptase greatly reduces the enzyme cost (G) without affecting the number of 746 

transcripts detected per nucleus (H).  747 

(I-J) We included both short oligo-dT and random primers in reverse transcription to increase the number 748 

of unique transcripts (I) and genes (J) detected per nucleus.  749 

(K) EasySci-RNA used T4 ligase instead of quick ligase for a higher recovery rate of nuclei.  750 

(I) We used chemically modified ligation primers in EasySci (Method), which greatly reduced primer dimers 751 

in the following PCR reaction and slightly increased the number of unique transcripts detected per nucleus.  752 

(M) Additional cDNA purification step after second strand synthesis increased the number of unique 753 

transcripts per nucleus.  754 

(N) We compared the efficiency of the novel EasySci-RNA method with the sci-RNA-seq3 using mouse 755 

brain nuclei. The raw data was subset to 4,448 reads/cell to remove any potential bias from sequencing 756 

depth. 757 

(O) Box plot showing the number of unique transcripts detected per mouse brain nucleus in a deep 758 

sequenced dataset comparing 10X genomics and a small-scale EasySci-RNA library at similar sequencing 759 

depth (~ 20,000 raw reads/cell, Methods).  760 

 761 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 30, 2022. ; https://doi.org/10.1101/2022.09.28.509825doi: bioRxiv preprint 

https://paperpile.com/c/vSmC9g/pxJ1c
https://paperpile.com/c/vSmC9g/pxJ1c
https://doi.org/10.1101/2022.09.28.509825
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

 

 

34 

 762 
Figure S3. Representative examples showing the performance of optimized conditions of EasySci-763 

ATAC.   764 

(A-C) We compared two fixation conditions: nuclei were either fixed with 1% formaldehyde for 10 minutes 765 

at room temperature or directly used for tagmentation without fixation. The unfixed condition outperformed 766 

the fixed condition by increasing cell recovery (A), the number of reads (B), and the ratio of reads in 767 

promoters (C) per nucleus. For all box plots in this figure: middle lines, medians; upper and lower box 768 

edges, first and third quartiles, respectively; whiskers, 1.5 times the interquartile range; circles, outliers.    769 

(D) Pie chart showing the estimated enzyme cost compositions of library preparation for profiling 1 million 770 

single-cell chromatin accessibility profiles using EasySci-ATAC.  771 
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 772 
Figure S4. Performance of EasySci-RNA and EasySci-ATAC profiling of mouse brain samples.  773 

(A-B) Scatter plots showing the number of single-cell transcriptomes (A) and single-cell chromatin 774 

accessibility (B) profiled in each mouse individual across five conditions, colored by sex. Of note, the 775 

number of cells recovered from two mouse individuals in the EOAD model (RNA) are very close and can 776 

not be separated in the plot.  777 

(C-D) Box plots showing the number of unique transcripts (C) and genes (D) detected per nucleus in each 778 

condition profiled by EasySci-RNA. For all box plots: middle lines, medians; upper and lower box edges, 779 
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first and third quartiles, respectively; whiskers, 1.5 times the interquartile range; and circles are outliers. 780 

(E-F) Box plots showing the number of unique fragments (E) and the ratio of reads in promoters (F) per 781 

cell in each condition profiled by EasySci-ATAC.  782 

  783 
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 784 

 785 
Figure S5. Identification of main brain cell types and cell-type-specific markers by EasySci-RNA. 786 

(A) Dot plot showing the number of single-cell transcriptomes recovered from each individual, colored by 787 

conditions.  788 

(B) UMAP plots showing the gene expression of identified novel markers for microglia (Arhgap45, Wdfy4), 789 

astrocytes (Clerr, Adamts9), and oligodendrocytes (Sec14l5, Galnt5). UMI counts for these genes are 790 

scaled by the library size, log-transformed, and then mapped to Z-scores. 791 
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Figure S6. Identification of cell-type-specific isoforms in the mouse brain.  793 

(A) We aggregated randomN primed EasySci-RNA reads from each main cell type in every mouse 794 

individual, yielding 613 pseudocells. The t-SNE plot showed the separation of main cell types by isoform 795 

expression.  796 

(B) Violin plots showing the expression of gene App and isoform App-202 across main cell types.  797 

(C-D) Violin plots showing the expression of gene Aplp2 and isoform Aplp2-209 across main cell types in 798 

the EasySci dataset (C) and the Tabula Muris Senis mouse aging atlas dataset (Tabula Muris Consortium, 799 

2020) (D). White circles represent the normalized expression of genes and isoforms (log(1+TPM)). White 800 

bars represent standard deviation. 801 

 802 
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 804 

Figure S7. Characterization of cell-type-specific chromatin accessibility and key TF regulators 805 

using EasySci-ATAC.  806 

(A) UMAP plot of the EasySci-ATAC dataset subsampled to 5,000 cells per cell type (or all cells if the 807 

number of cells is less than 5,000), colored by main cell types in Figure 2C. The analysis was performed 808 

using the peak-count matrix without integration with the EasySci-RNA dataset.  809 

(B) Bar plot showing the number of cell-type-specific peaks for each main cell type (defined as differential 810 

accessible (DA) peaks across main cell types with q-value < 0.05 and TPM > 20 in the target cell type).  811 

(C) Heatmap showing the aggregated accessibility of top 100 DA peaks per cell type (ranked by fold 812 

change between the maximum and the second accessible cell type). Unique counts for cell-type-specific 813 

peaks are first aggregated, normalized by the library size, and then mapped to Z-scores.  814 
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(D) Scatter plots showing the correlation between gene expression and motif accessibility of cell-type 815 

specific TF regulators, together with a linear regression line. TF gene expressions are calculated by 816 

aggregating scRNA-seq gene counts for each main cluster, normalized by the library size, and then 817 

mapped to Z-scores. TF motif accessibilities are quantified by chromVar (Schep et al., 2017), then 818 

aggregated per main cell type and mapped to Z-scores (Methods). 819 

  820 
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 821 
Figure S8. Characterizing microglia subtypes incorporating both gene and exon level expression. 822 

UMAP plots same as Figure 3A based on both gene and exon-level expression, showing the specific 823 

expression of an example exon marker Map2-ENSMUSE00000443205.3 (left) of microglia sub-cluster 8 824 

and the lack of specificity of its corresponding gene Map2 (right). Single-cell gene/exon expression was 825 

normalized first by library size, log-transformed, and then scaled to Z-scores. 826 

  827 
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 828 

 829 
Figure S9. Characteristics of subclusters.  830 

(A) Density plot showing the number of individuals per subcluster. The rug plot below the density plot 831 

represents the individual subclusters.  832 

(B) Density plot of the number of marker exons per subcluster. The rug plot below the density plot 833 

represents the individual subclusters.  834 

 835 
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 836 
Figure S10. Characterization of cell types/subtypes by gene module expression. Scatter plot showing 837 

the expression of each gene module across 359 sub-clusters. The associated cell types were annotated 838 

on the plot. UMI counts for genes from each gene module are scaled for library size, log-transformed, 839 

aggregated, and then mapped to Z-scores. 840 

 841 
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 842 
Figure S11. Identification of cell subtypes underlying olfactory bulb expansion from the young to 843 

adult stage in EasySci-RNA and EasySci-ATAC.  844 

(A) Heatmaps showing the aggregated gene expression (top) and gene body accessibility (bottom) of sub-845 

cluster specific gene markers (columns) in OB expansion-associated sub-clusters (rows) from OB neurons 846 

1 (left), OB neurons 2 (middle), and OB neurons 3 (right). UMI counts for genes or reads overlapping with 847 

gene bodies were aggregated for each sub-cluster, normalized first by the total number of reads, column 848 

centered, and scaled across all cell sub-clusters.  849 

(B-C) UMAP visualization showing astrocytes subtype 14 (B) and vascular leptomeningeal cells subtype 4 850 

(VLC-4, C), colored by subcluster ID in EasySci-RNA (top left) and EasySci-ATAC (bottom left), the 851 
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aggregated gene expression (top right) and gene body accessibility (bottom right) of sub-cluster specific 852 

gene markers.  853 

(D) For the OB expansion-related sub-clusters, we plotted their log2-transformed fold changes between 854 

each age group and the young mice, profiled by EasySci-RNA (left) and EasySci-ATAC (right).  855 

 856 

 857 
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 859 

 860 
Figure S12. Identifying aging-associated sub-clusters related to neurogenesis, 861 

oligodendrogenesis, and inflammation in EasySci-ATAC.  862 

(A) UMAP visualization showing OB neurons 1-11 and OB neurons 1-17 identified from EasySci-RNA (top) 863 

and EasySci-ATAC (bottom), colored by subcluster id (left), aggregated gene expression or gene activity 864 

of OB neurons 1-11 gene markers (middle) and OB neurons 1-17 gene markers (right).  865 

(B) UMAP visualization showing oligodendrocytes-6 and oligodendrocytes-7 identified from EasySci-RNA 866 

(top) and EasySci-ATAC (bottom), colored by subcluster id (left), aggregated gene expression or gene 867 

activity of oligodendrocytes-6 gene markers (middle) and oligodendrocytes-7 markers (right).  868 

(C) UMAP visualization showing microglia-9 identified from EasySci-RNA (top) and EasySci-ATAC 869 

(bottom), colored by subcluster id (left), aggregated gene expression or gene activity of microglia-9 gene 870 

markers (right). Subcluster marker genes were identified by differential expression analysis using scRNA-871 

seq data (Methods).  872 

(D) Heatmap showing the gene expression (top) and the promoter accessibility (bottom) of microglia-9 873 

enriched genes across subclusters. The EasySci-RNA data (UMI count matrix) and EasySci-ATAC data 874 

(read count matrix) were aggregated per sub-cluster, normalized by the total number of reads, column 875 

centered, and scaled. Of note, rare subclusters from RNA-seq data that were not detected in ATAC-seq 876 

data were not included in this analysis. 877 

 878 

 879 
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 880 
Figure S13. Identifying aging and AD pathogenesis-associated gene expression signatures.  881 

(A) Volcano plots showing the differentially expressed (DE) genes between adult (6 months) and aged (21 882 

months) mice across all sub-clusters. Significantly changed genes are colored by the main cell type identity 883 

for the corresponding sub-cluster.  884 

(B) Volcano plot same as (A), highlighting example DE genes with concordant changes across multiple 885 

sub-clusters comparing adult and aged models, labeled with related biological pathways. 886 

(C) Volcano plots showing the differentially expressed (DE) genes between WT and EOAD models across 887 

all sub-clusters. Significantly changed genes are colored by the main cell type identity for the 888 

corresponding sub-cluster.  889 

(D) Volcano plot same as (C), highlighting example DE genes with concordant changes across multiple 890 

sub-clusters comparing WT and EOAD models, labeled with related biological pathways.  891 

(E) Volcano plots showing the differentially expressed (DE) genes between WT and LOAD models across 892 

all sub-clusters. Significantly changed genes are colored by the main cell type identity for the 893 

corresponding sub-cluster.  894 

(F) Volcano plot same as (E), highlighting example DE genes with concordant changes across multiple 895 

sub-clusters comparing WT and LOAD models, labeled with related biological pathways.  896 

(G) We detected 559 DE genes significantly changed within the same sub-cluster in both AD models (both 897 

compared with the wild-type). The scatter plot shows the correlation of the log2-transformed fold changes 898 

of these 559 shared DE genes in the EOAD model (x-axis) and the LOAD model (y-axis).  899 

 900 
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 903 
Figure S14. Performance and quality control of the human brain dataset. 904 

(A) Scatter plot showing the number of single-cell transcriptomes profiled in each human sample in two 905 

regions, colored by sexes. Of note, the number of cells recovered from two AD individuals in the SMTG 906 

are very close and cannot be separated in the plot.  907 

 908 
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(B) Box plots showing the number of unique transcripts (left) and genes (right) detected per nucleus profiled 909 

in the human dataset. For all box plots: middle lines, medians; upper and lower box edges, first and third 910 

quartiles, respectively; whiskers, 1.5 times the interquartile range; and circles are outliers.  911 

(C) Dotplot showing the markers for the main cell types identified in the human dataset. 912 

(D-E) UMAP plot showing the integration between human and mouse cells, colored by the dataset (D) and 913 

main cell types (E). AS, astrocytes; BG, Bergmann glia; CGN, cerebellum granule neurons; CIntN, 914 

cerebellum interneurons; CPEC, choroid plexus epithelial cells; CPN 1, cortical projection neurons 1; CPN 915 

2, cortical projection neurons 2; CPN 3, cortical projection neurons 3; DGN, dentate gyrus neurons; EC, 916 

endothelial cells; EpC, ependymal cells; HN, habenula neurons; HBN 1, hindbrain neurons 1; HBN 2, 917 

hindbrain neurons 2; IONN, Inferior olivary nucleus neurons; IMN 1, interbrain and midbrain neurons 1; 918 

IMN 2, interbrain and midbrain neurons 2; IntN1, interneurons 1; IntN2, interneurons 2; MG, microglia; 919 

OBN 1, OB neurons 1; OBN 2, OB neurons 2; OBN 3, OB neurons 3; OPC, oligodendrocyte progenitor 920 

cells; OLG, oligodendrocytes; PC, pituitary cells; PN, purkinje cells; SN 1, striatal neurons 1; SN 2, striatal 921 

neurons 2; UBC, unipolar brush cells; VLC, vascular leptomeningeal cells. 922 

 923 
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 925 

 926 

Figure S15. Identifying conserved gene expression changes across mouse AD models and human 927 

AD samples from the prefrontal cortex. (A-E) Volcano plots of genes from human prefrontal cortex 928 

samples (Morabito et al., 2021). These genes show consistent changes in multiple cell subclusters 929 

between mouse AD models, human hippocampus and SMTG samples, and human prefrontal cortex 930 

samples from the above-mentioned publication. Dots on the figures represent genes across cell 931 

subclusters; abbreviations correspond to the following cell types: ASC, astrocytes; EX, excitatory neurons; 932 

INH, inhibitory neurons; MG, microglia; ODG, oligodendrocytes; OPC, oligodendrocyte progenitor cells; 933 

and PER.END, pericyte/endothelial cells. 934 
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Materials and Methods: 936 

 937 

Animals 938 

 939 

C57BL/6 wild-type mouse brains at three months (n=4), six months (n=4), and twenty-one months (n=4) 940 

were collected in this study. These age points correspond to approximately 20, 30, and 62 years in humans. 941 

Furthermore, to gain insight into the early cellular state changes underlying the pathophysiology of 942 

Alzheimer’s disease, we added two AD models at 3-month-old from the same C57BL/6 background. These 943 

include an early-onset AD model (5xFAD, JAX stock #034840) that overexpresses mutant human amyloid-944 

beta precursor protein (APP) with the Swedish (K670N, M671L), Florida (I716V), and London (V717I) 945 

Familial Alzheimer's Disease (FAD) mutations and human presenilin 1 (PS1) harboring two FAD mutations, 946 

M146L and L286V. Brain-specific overexpression is achieved by neural-specific elements of the mouse 947 

Thy1 promoter (Oakley et al., 2006).  The second, late-onset AD model (APOE*4/Trem2*R47H, JAX stock 948 

#028709) in this study carries two of the highest risk factor mutations of LOAD (Karch and Goate, 2015), 949 

including a humanized APOE knock-in allele, where exons 2, 3, and most of exon 4 of the mouse gene 950 

were replaced by the human ortholog including exons 2, 3, 4 and some part of the 3' UTR. Furthermore, a 951 

knock-in missense point mutation in the mouse Trem2 gene was also introduced, consisting of an R47H 952 

mutation, along with two other silent mutations. Two male and two female mice are included in each 953 

condition. 954 

 955 

By studying 3-month-old animals, our goal was to gain insight into the early changes underlying the 956 

pathophysiology of the AD models. Mature adult mice start at the age of 3 months, but multiple AD 957 

hallmarks, including amyloid-beta plaques and gliosis, can be observed in the early-onset 5xFAD model 958 

(Oakley et al., 2006). Therefore, we decided that this age might be the most appropriate for our goal to 959 

study early contributors of Alzheimer’s disease pathomechanism. 960 

 961 

EasySci-RNA library preparation and sequencing 962 

 963 

Extracted mouse brains were snap-frozen in liquid nitrogen and stored at -80°C. Detailed step-by-step 964 

EasySci-RNA protocol is included as a supplementary file (Supplementary file 1).  965 

 966 

Human brain sample 967 

 968 

Twenty-four post-mortem human brain samples across two regions (hippocampus and superior and middle 969 

temporal gyrus) and twelve individuals, including six controls and six Alzheimer's disease patients ranging 970 

from 70 to 94 in age, were collected from the University of Kentucky Alzheimer's Disease Center Tissue 971 

Bank. Each surveyed sample underwent rigorous quality control, including short PMI, and was subjected 972 

to EasySci-RNA profiling. The libraries were sequenced across four Illumina NextSeq™ 1000 sequencer 973 

runs. 974 

 975 

Computational procedures for processing EasySci-RNA libraries 976 

 977 

A custom computational pipeline was developed to process the raw fastq files from the EasySci libraries. 978 

Similar to our previous studies (Cao et al., 2019, 2020), the barcodes of each read pair were extracted. 979 

Both adaptor and barcode sequences were trimmed from the reads. Second, an extra trimming step is 980 
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implemented using Trim Galore (Krueger et al., 2021) with default settings to remove the poly(A) 981 

sequences and the low-quality base calls from the cDNA. Afterward, the paired-end sequences were 982 

aligned to the genome with the STAR aligner (Dobin et al., 2013), and the PCR duplicates were removed 983 

based on the UMI sequence and the alignment location. Finally, the reads are split into SAM files per cell, 984 

and the gene expression is counted using a custom script. At this level, the reads from the same cell 985 

originating from the short dT and the random hexamer RT primers were counted as independent cells. 986 

During the gene counting step, we assigned reads to genes if the aligned coordinates overlapped with the 987 

gene locations on the genome. If a read was ambiguous between genes and derived from the short dT RT 988 

primer, we assigned the read to the gene with the closest 3’ end; otherwise, the reads were labeled as 989 

ambiguous and not counted. If no gene was found during this step, we then searched for candidate genes 990 

1000 bp upstream of the read or genes on the opposite strand. Reads without any overlapped genes were 991 

discarded. 992 

 993 

We used a similar strategy to generate an exon count matrix across cells. Specifically, we counted the 994 

number of expressed exons based on the number of reads overlapping each exon. If one read overlapped 995 

with multiple exons, this read was split between the exons. Read overlapped with multiple genes were 996 

discarded, except if we can determine the exact gene based on the other paired-end read. For reads 997 

without overlapped genes, we checked if there are any overlapped exons on the opposite strand. Reads 998 

without any overlapped exons were discarded. 999 

 1000 

To compare the performance of EasySci-RNA with the commercial 10x Chromium system on mouse brain 1001 

samples, we subsampled ~4,450 (from one randomly selected PCR batch of our large-scale mouse brain 1002 

experiment and from the following 10x Chromium dataset (Ding et al., 2020)) or ~20,000 (from a separate 1003 

deep-sequenced dataset we generated and the previously mentioned publicly available 10x Chromium 1004 

dataset) raw reads/cells to account for the different sequencing depths. The experiment, with the deeply 1005 

sequenced EasySci dataset (~20,000 reads/cells), contained cells from human and mouse cell lines as 1006 

well. Because these cell lines are known to have higher recovered signals per cell, we pre-selected the 1007 

cell barcodes corresponding to brain samples from the raw data before subsampling. This pre-selection of 1008 

expected barcodes removes sequences with non-matching barcodes in the target location of the reads, 1009 

like primer dimers. To adjust for the enrichment of the signal of interest, we performed the same barcode 1010 

pre-selection on the 10x Chromium data. After the subsampling, the EasySci data was processed with the 1011 

custom computational pipeline, while the 10x Chromium data was processed with 10x Genomics’ Cell 1012 

Ranger software (Zheng et al., 2017). 1013 

 1014 

Cell clustering and cell type annotation of single-cell RNA-seq data 1015 

 1016 

After gene counting, we kept the cells with reads identified by both RT primers. We then merged the reads 1017 

from the same cells. Low-quality cells were removed based on one of the following criteria: (i) the 1018 

percentage of unassigned reads > 30%, (ii) the number of UMIs > 20,000, and (iii) the detected number of 1019 

genes < 200. We then used the Scrublet (Wolock et al., 2019) computational pipeline to identify and 1020 

remove potential doublets, similar to our previous study (Cao et al., 2020). At the end of these filtering 1021 

steps, we had around 1.5 million brain cells in the dataset. 1022 

 1023 

To identify distinct clusters of cells corresponding to different cell types, we subjected the 1,469,111 single-1024 

cell gene expression profiles to UMAP visualization and Louvain clustering, similar to our previous study 1025 
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(Cao et al., 2020). We then co-embedded our data with the published datasets (Kozareva et al., 2021; Yao 1026 

et al., 2021; Zeisel et al., 2018) through Seurat (Stuart et al., 2019), and clusters were annotated based 1027 

on overlapped cell types. The annotations were manually verified and refined based on marker genes. 1028 

Differentially expressed genes across cell types were identified with the differentialGeneTest() function of 1029 

Monocle 2 (Qiu et al., 2017). To identify cell type-specific gene markers, we selected genes that were 1030 

differentially expressed across different cell types (FDR of 5%, likelihood) and also with a > 2-fold 1031 

expression difference between first and second-ranked cell types and TPM > 50 in the first-ranked cell 1032 

types. 1033 

 1034 

Isoform expression analysis 1035 

 1036 

Isoform expression was quantified in EasySci data using an adapted version of the pipeline built by 1037 

Booeshaghi et al. (Booeshaghi et al., 2021) RandomN-primed reads for ~1.5M single cells were merged 1038 

into 613 pseudocells, grouping by individual mouse and cell types (31 cell types). The pseudocells were 1039 

aligned to the mouse transcriptome with kallisto (Melsted et al., 2021), generating a raw isoform count 1040 

matrix. To filter and pre-process the raw data, isoform counts were normalized by length, and genes and 1041 

isoforms with a dispersion of less than 0.001 were removed. The gene count matrix was produced by 1042 

aggregating counts of all isoforms of a given gene. Both isoform and gene count matrices were normalized 1043 

by dividing the counts in each cell by the sum of the counts for that cell, then multiplying by 1,000,000 and 1044 

transforming with numpy’s log1p() function. The filtered data contained 33,361 isoforms corresponding to 1045 

12,636 genes. Highly variable isoforms and genes were identified using scanpy, by binning into 20 bins 1046 

and scaling the dispersion for each feature to zero mean and unit variance within each bin. The top 5,000 1047 

gene and isoforms in each matrix were retained based on normalized dispersion. Neighborhood 1048 

components analysis was performed on the filtered and normalized isoform matrix after scaling the 1049 

log(1+TPM) expression to zero mean and unit variance, training on cell type labels from each pseudocell 1050 

with random state 42, and visualized using t-SNE with perplexity 10, 5,000 iterations and random state 42. 1051 

Differentially expressed isoforms were identified by looking for isoforms that were upregulated across a 1052 

given cell type, while the genes containing those isoforms were not significantly expressed more among 1053 

that cell type than its complement (the rest of the dataset). Isoforms expressed in less than 90% of 1054 

pseudocells within a cell type were discarded. T-tests used a significance level of 0.01 with Bonferroni 1055 

correction for multiple comparisons. 1056 

 1057 

Sub-cluster analysis of the single-cell RNA-seq data 1058 

 1059 

To identify cell subtypes, we selected each main cell type and applied PCA, UMAP and Louvain clustering 1060 

similarly to the major cluster analysis, based on a combined matrix including the 30 principal components 1061 

derived from the gene-level expression matrix and the first 10 principal components derived from the exon-1062 

level expression matrix. We then merged sub-clusters that were not readily distinguishable in the UMAP 1063 

space through an intra-dataset cross-validation procedure described before (Cao et al., 2020). A total of 1064 

359 cell subtypes were identified, with a median of 1,038 cells in each group. All subtypes were contributed 1065 

by at least two individuals (median of twenty). Differentially expressed genes and exons across cell types 1066 

were identified with the differentialGeneTest() function of Monocle 2 (Qiu et al., 2017). To identify sub-1067 

cluster-specific differentially expressed genes associated with aging or AD models, we sampled a 1068 

maximum of 5,000 cells per condition for downstream DE gene analysis using the differentialGeneTest 1069 
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function of the Monocle 2 package (Qiu et al., 2017). The sex of the animals was included as a covariate 1070 

to reduce gender-specific batch effects.  1071 

 1072 

To detect cellular fraction changes at the subtype level across various conditions, we first generated a cell 1073 

count matrix by computing the number of cells from every sub-cluster in each reverse transcription well 1074 

profiled by EasySci-RNA.  Each RT well was regarded as a replicate comprising cells from a specific 1075 

mouse individual. We then applied the likelihood-ratio test to identify significantly changed sub-clusters 1076 

between different conditions, with the differentialGeneTest() function of Monocle 2 (Qiu et al., 2017). Sub-1077 

clusters were removed if they had less than 20 cells in either the male or female samples. The fold change 1078 

was calculated manually by first normalizing the number of cells in a cluster by the total number of cells in 1079 

the corresponding condition, then dividing the normalized values in the case and control conditions after 1080 

adding a small number (10-5) to reduce the effect of the very small clusters. In addition, we considered 1081 

subclusters to change significantly only if there was at least a two-fold change between two groups and 1082 

the q-value was less than 0.05.  1083 

 1084 

Spatial transcriptomic analysis to estimate spatial abundances of cell subtypes 1085 

 1086 

To spatially map EasySci cell subtypes, we integrated the EasySci-RNA data with a publicly available 10x 1087 

Visium spatial transcriptomics dataset (Genomics, 2019a, 2019b, 2019c) using cell2location, a Bayesian 1088 

model designed to map fine-grained cell types. We first aggregated ~50 single-cell transcriptomes 1089 

identified by k-means clustering (k = 50) of cells in the UMAP space of sub-clustering analysis. The 1090 

cell2location model first used negative binomial regression to estimate reference cell type signatures from 1091 

the EasySci-RNA data. In a second step, cell2location decomposed spatial mRNA counts from 10x Visium 1092 

data into the reference signatures to estimate cell type spatial abundances. Training of the model utilized 1093 

durations of 25 and 15,000 epochs for the negative binomial regression and spatial mapping steps, 1094 

respectively.  1095 

 1096 

Gene module analysis 1097 

 1098 

We performed gene module analysis to identify the molecular programs underlying different cell types in 1099 

the brain. First, we aggregated the gene expression across all sub-clusters. The aggregated gene count 1100 

matrix was then normalized by the library size and then log-transformed (log10(TPM / 10 + 1)). Genes 1101 

were removed if they exhibited low expression (less than 1 in all sub-clusters) or low variance of expression 1102 

(i.e., the gene expression fold change between the maximum expressed sub-cluster and the median 1103 

expression across sub-clusters is less than 5). The filtered matrix was used as input for UMAP/0.3.2 1104 

visualization (McInnes et al., 2018) (metric = "cosine", min_dist = 0.01, n_neighbors = 30). We then 1105 

clustered genes based on their 2D UMAP coordinates through densityClust package (rho = 1, delta = 1)  1106 

(Rodriguez and Laio, 2014). 1107 

 1108 

EasySci-ATAC library preparation and sequencing 1109 

 1110 

Mouse brain samples were snap-frozen in liquid nitrogen and stored at -80°C. For nuclei extraction, thawed 1111 

brain samples were minced in PBS using a blade, re-frozen, stored at -80°C, and processed in multiple 1112 

batches. The detailed step-by-step protocol is included as a supplementary file (Supplementary file 4). 1113 

 1114 
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Data processing for EasySci-ATAC 1115 

 1116 

Base calls were converted to fastq format and demultiplexed using Illumina’s bcl2fastq/v2.19.0.316 1117 

tolerating one mismatched base in barcodes (edit distance (ED) < 2). Downstream sequence processing 1118 

was similar to sci-ATAC-seq (Cao et al., 2018). Indexed Tn5 barcodes and ligation barcodes were 1119 

extracted, corrected to its nearest barcode (edit distance (ED) < 2) and reads with uncorrected barcodes 1120 

(ED >= 2) were removed. Tn5 adaptors were removed from 5’-end and clipped from 3’-end using 1121 

trim_galore/0.4.1 (Krueger et al., 2021). Trimmed reads were mapped to the mouse genome (mm39) using 1122 

STAR/v2.5.2b (Dobin et al., 2013) with default settings. Aligned reads were filtered using samtools/v1.4.1 1123 

(Li et al., 2009) to retain reads mapped in proper pairs with quality score MAPQ > 30 and to keep only the 1124 

primary aligment. Duplicates were removed by picard MarkDuplicates/v2.25.2 (Broad Institute, 2019)  per 1125 

PCR sample. Deduplicated bam files were converted to bedpe format using bedtools/v2.30.0 (Quinlan and 1126 

Hall, 2010), which were further converted to offset-adjusted (+4 bp for plus strand and -5 bp for minus) 1127 

fragment files (.bed). Deduplicated reads were further split into constituent cellular indices by further 1128 

demultiplexing reads using the Tn5 and ligation indexes. For each cell, we also created sparse matrices 1129 

counting reads falling into promoter regions (±1 kb around TSS) for downstream analysis. 1130 

 1131 

Cell filtering, clustering and annotation for EasySci-ATAC 1132 

We used SnapATAC2/v1.99.99.3(Fang et al., 2021; Zhang, 2022) to perform preprocessing steps for the 1133 

EasySci-ATAC dataset. Cells with less than 1500 fragments and less than 2 TSS Enrichment were 1134 

discarded. Potential doublet cells and doublet-derived subclusters were detected using an iterative 1135 

clustering strategy (Cao et al., 2020) modified to suit for scATAC-seq data. Briefly, cells were splitted by 1136 

individual animals to overcome the large memory use when simulating doublets for the full dataset, and 1137 

doublet scores were calculated using snap.pp.scrublet() (Wolock et al., 2019). Then, all cells were 1138 

combined, followed by clustering and sub-clustering analysis with spectral embedding and graph-based 1139 

clustering implemented in SnapATAC2. Cells labeled as doublets (defined by a doublet score cutoff of 0.2) 1140 

or from doublet-derived sub-clusters (defined by a doublet ratio cutoff of 0.4) were filtered out. In addition, 1141 

cells with high fragment numbers in each main cluster (defined as cells with fragments number higher than 1142 

the 95th quantile within the main cluster) were also filtered out. We then generated a gene activity matrix 1143 

using snap.pp.make_gene_matrix() for the following integration analysis.    1144 

 1145 

We used a deep-learning-based framework scJoint (Lin et al., 2022) to annotate main ATAC-seq cell types 1146 

using the EasySci-RNA dataset as a reference. First, we subsampled 5,000 cells from each main cell type 1147 

of the EasySci-RNA dataset, and selected genes detected in more than 10 cells. Then, the gene count 1148 

matrix and cell type labels of EasySci-RNA, along with the gene activity matrix of EasySci-ATAC were 1149 

input into the scJoint pipeline with default parameters. Jointed embedding layers calculated from scJoint 1150 

were used for UMAP visualizations using python package umap/v0.5.3 (McInnes, 2018). Louvain clusters 1151 

were identified using the Seurat function FindNeighbors() and FindClusters() based on the UMAP 1152 

coordinates. Cells were assigned to the prediction label with the highest abundance within each louvain 1153 

cluster. Clusters with low purities (i.e., less than 80% cells were from the highest abundant cell type) were 1154 

removed upon inspections. Finally, to validate the integration-based annotations, we selected differentially 1155 

expressed genes identified from the RNA-seq data with the following criteria: fold change between the 1156 

maximum and the second maximum expressed cell type > 1.5, q-value < 0.05, TPM (transcripts per million) 1157 

> 20 in the maximum RNA group and RPM (reads per million) > 50 in the maximum ATAC group. Top 10 1158 
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genes ranked by fold change between the maximum and the second maximum expressed group were 1159 

selected using RNA-seq data for each cell type. If there were less than 10 genes passing the cutoff, we 1160 

selected the top genes ranked by the fold change between the maximum expressed cell type and the mean 1161 

expression of other cell types. We then calculated the aggregated gene count and gene body accessibility 1162 

(gene activity) for each cell type.  1163 

 1164 

Subcluster level integrations were similar to the main cluster level integrations with mild modifications. For 1165 

astrocytes, microglia, OB neurons 1, OB neurons 2, OB neurons 3 and vascular leptomeningeal cells, we 1166 

used all cells from the EasySci-RNA dataset as input for the integrations. For oligodendrocytes, we 1167 

subsampled 2,000 cells from each subcluster from the EasySci-RNA data for integration analysis. 1168 

Similarly, we validated the subcluster level integrations by inspecting the aggregated gene activity of 1169 

subcluster-specific gene markers in the predicted ATAC subclusters. Subcluster marker genes were 1170 

identified by differential expression analysis using scRNA-seq data and selected by the following criteria: 1171 

fold change between the maximum expressed sub-cluster and the mean of all the other subclusters within 1172 

the same main cell type > 2, FDR < 0.05, TPM (transcripts per million) > 50 in the maximum expressed 1173 

RNA group and RPM (reads per million) > 50 in the maximum accessible ATAC group. 1174 

 1175 

Peak calling, peak-based dimension reduction and identifications of differential accessible peaks 1176 

 1177 

To define peaks of accessibility, we used MACS2/v2.1.1 (Zhang et al., 2008). Nonduplicate ATAC-seq 1178 

reads of cells from each main cell type were aggregated and peaks were called on each group separately 1179 

with these parameters: --nomodel --extsize 200 --shift -100 -q 0.05. To correct for differences in read depth 1180 

or the number of nuclei per cell type, we converted MACS2 peak scores (−log10(q-value)) to ‘score per 1181 

million’ (Corces et al., 2018) and filtered peaks by choosing a score-per-million cut-off of 1.3. Peak summits 1182 

were extended by 250bp on either side and then merged with bedtools/v2.30.0. Cells were determined to 1183 

be accessible at a given peak if a read from a cell overlapped with the peak. The peak count matrix was 1184 

generated by a custom python script with the HTseq package (Anders et al., 2015).  1185 

 1186 

We used R package Signac/v1.7.0 (Stuart et al., 2021) to perform the dimension reduction analysis using 1187 

the peak-count matrix. We subsampled 5,000 cells from each main cell type and performed TF-IDF 1188 

normalization using RunTFIDF(), followed by singular value decomposition using RunSVD() and retained 1189 

the 2nd to 30th dimensions for UMAP visualizations using RunUMAP(). 1190 

 1191 

Differentially accessible peaks across cell types were identified using monocle 2 (Qiu et al., 2017) with the 1192 

differentialGeneTest() function. 5,000 cells were subsampled from each cell type for this analysis. Peaks 1193 

detected in less than 50 cells were filtered out. We selected peaks that were differentially accessible across 1194 

cell types by the following criteria: 5% FDR (likelihood ratio test), and with TPM > 20 in the target cell type. 1195 

 1196 

Transcription factor motif analysis  1197 

 1198 

We used ChromVar/v1.16.0 (Schep et al., 2017) to access the TF motif accessibility using a collection of 1199 

the cisBP motif sets curated by chromVARmotifs/v0.2.0 (Weirauch et al., 2014; Schep et al., 2017). To 1200 

investigate TF regulators at the main cluster level, we subsampled 5,000 cells from each main cell type, 1201 
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and calculated the motif deviation score for each single cell using the Signac wrapper RunChromVAR(). 1202 

The motif deviation scores of each single cell were rescaled to (0, 10) using R function rescale() and then 1203 

aggregated for each cell type. In addition, we also aggregated the gene expression of each TF in each cell 1204 

type. We then computed the Pearson correlations between the aggregated motif matrix and aggregated 1205 

TF expression matrix after scaling across all main cell types. TF analysis at the subcluster level was 1206 

performed similarly with modifications. For each cell type of interest, we selected peaks detected in more 1207 

than 20 cells and only kept cells with more than 500 reads in peaks. Peaks were resized to 500 bp (± 250 1208 

bp around the center) and motif occurrences were identified using matchMotifs() function from 1209 

motifmatchr/v1.16.0 (Schep, 2017). The motif deviation matrix was calculated using the ChromVar function 1210 

computeDeviations(). Then, the motif deviation scores were rescaled to (0, 10) and aggregated per 1211 

subcluster. Pearson correlation was calculated between the aggregated motif activity and aggregated TF 1212 

expression across subclusters after scaling. ATAC-seq subclusters with less than 20 cells were excluded 1213 

from the correlation analysis. 1214 

 1215 

Spatial gene expression profiling of mouse brains 1216 

 1217 

Spatial gene expression analysis experimental protocol was followed according to Visium Spatial Gene 1218 

Expression User Guide (catalog no. CG000160),  Visium Spatial Tissue Optimization User Guide (catalog 1219 

no. CG000238 Rev A, 10x Genomics) and Visium Spatial Gene Expression User Guide (catalog no. 1220 

CG000239 Rev A, 10x Genomics). Briefly, mice were sacrificed, and brains were extracted and frozen with 1221 

liquid nitrogen. Frozen brain was embedded in OCT (Tissue TEK O.C.T compound) and cryosectioned at 1222 

-15C (Leica cryostat). Coronally placed brains were cut halfway, to place half coronally sectioned brains 1223 

at 10um on Visium tissue optimization, or gene expression analysis slides capture areas. User guide 1224 

CG000160 from 10x Genomics was followed for methanol fixation and H&E stain. After fixation and 1225 

staining, imaging was performed using Leica DMI8, and images were stitched using Leica Application Suite 1226 

X and saved into .tiff format.  After tissue fixation and staining, Visium Spatial Tissue Optimization User 1227 

Guide (catalog no. CG000238 Rev A, 10x Genomics) or Visium Spatial Gene Expression User Guide 1228 

(catalog no. CG000239 Rev A, 10x Genomics) were followed for either protocol optimization, or gene 1229 

expression analysis, respectively.  Tissue optimization was performed according to CG000238 , and 1230 

according to optimization experiments, 18 min permeabilization provided the most optimal signal, and was 1231 

followed for gene expression library preparation as well. Libraries were prepared according to Visium 1232 

Spatial Gene Expression User Guide (CG000239, 10x Genomics) 1233 

 1234 

Library preparation and data processing of spatial transcriptomics  1235 

 1236 

Libraries were sequenced using a NextSeq1000 system. BCL files were converted to FASTQ, and raw 1237 

FASTQ files and .tiff histology images were processed with spaceranger-1.2.2 software. Spaceranger-1238 

1.2.2 uses STAR for RNA reads genome alignment, and utilized the GRCm38 (mouse mm10) as the 1239 

reference genome provided from 10X Genomics. We performed the downstream visualization and 1240 

clustering analysis of the spatial transcriptomic data following the tutorial of Seurat (Stuart et al., 2019) 1241 

(https://satijalab.org/seurat/articles/spatial_vignette.html) with default parameters. 1242 

 1243 

Spatial transcriptomic analysis to locate the spatial distributions of main cell types and subtypes 1244 

  1245 
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To annotate the spatial locations of main cell types, we integrated the EasySci-RNA data with publicly 1246 

available 10x Visium spatial transcriptomics dataset （1247 

https://satijalab.org/seurat/articles/spatial_vignette.html (Genomics, 2019a, 2019b, 2019c) through a non-1248 

negative least squares (NNLS) approach modified from our previous study (Cao et al., 2020). We first 1249 

aggregated cell-type-specific UMI counts, normalized by the library size, multiplied by 100,000, and log-1250 

transformed after adding a pseudo-count. A similar procedure was applied to calculate the normalized 1251 

gene expression in each spatial spot captured in the 10x Visium dataset. We then applied non-negative 1252 

least squares (NNLS) regression to predict the gene expression of each spatial spot in 10x Visium data 1253 

using the gene expression of all cell types recovered in Easy-RNA data:  1254 

 1255 

𝑇𝑎 = 𝛽0𝑎  + 𝛽1𝑎𝑀𝑏  1256 

 1257 

where 𝑇𝑎and 𝑀𝑏  represent filtered gene expression for target spatial spot from 10x Visium dataset A and 1258 

all cell types from EasySci-RNA dataset B, respectively. To improve accuracy and specificity, we selected 1259 

cell type-specific genes for each target cell type by: 1) ranking genes based on the expression fold-change 1260 

between the target cell type vs. the median expression across all cell types, and then selecting the top 200 1261 

genes. 2) ranking genes based on the expression fold-change between the target cell type vs. the cell type 1262 

with maximum expression among all other cell types, and then selecting the top 200 genes. 3) merging 1263 

the gene lists from step (1) and (2). 𝛽1𝑎is the correlation coefficient computed by NNLS regression.  1264 

 1265 

Similarly, we then switch the order of datasets A and B, and predict the gene expression of target cell type 1266 

(𝑇𝑏) in dataset B with the gene expression of all spatial spots (𝑀𝑎) in dataset A: 1267 

 1268 

𝑇𝑏 = 𝛽0𝑏  + 𝛽1𝑏𝑀𝑎   1269 

 1270 

Thus, each spatial spot a in 10x Visium dataset A and each cell type b in EasySci dataset B are linked by 1271 

two correlation coefficients from the above analysis: 𝛽𝑎𝑏 for predicting the gene expression in each spatial 1272 

spot a using b, and 𝛽𝑏𝑎for predicting gene expression in each cell type b using a. We combine the two 1273 

values by:  1274 

 1275 

𝛽  = (𝛽𝑎𝑏  +  0.01) * (𝛽𝑏𝑎  +  0.01) 1276 

 1277 

The 𝛽 is then capped to [1, 3]. We find 𝛽 reflects the cell-type-specific abundance across different spatial 1278 

spots in 10x Visium datasets with high specificity. We thus use 𝛽 as the alpha value (i.e., the opacity of a 1279 

geom) to plot the spatial distribution of different cell types. 1280 

 1281 

To characterize the expression of sub-cluster specific gene markers, we first normalized the gene 1282 

expression in each spatial spot of 10x Visium data by the library size, multiplied by 100,000, and log-1283 

transformed after adding a pseudo-count. The expression of genes from sub-cluster specific gene markers 1284 

was aggregated, scaled to z-score and capped to [3, 6]. Of note, the sub-cluster specific gene markers 1285 

were selected by differentiation expression analysis described above and only DE genes (FDR of 5%, with 1286 

a >2-fold expression difference between first and second ranked sub-clusters, expression TPM > 50 in at 1287 

least one sub-cluster) were selected as gene markers. In addition, we examined the aggregated 1288 
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expression of the selected gene markers across all 359 sub-clusters to further validate the specificity of 1289 

gene markers for labeling target sub-clusters. 1290 

 1291 

Clustering, annotation and differential analysis for human brain samples 1292 

A digital gene expression matrix was constructed from the raw sequencing data as described before. To 1293 

identify distinct clusters of cells corresponding to different cell types in the human brain samples, we co-1294 

embedded the human cells from both regions with our mouse brain dataset (up to 5,000 cells randomly 1295 

sampled from each of 31 cell types), and clusters were annotated based on overlapped cell types. The 1296 

annotations were manually verified and refined based on marker genes. Following on, the hippocampus 1297 

and SMTG human dataset were integrated together to construct the same low-dimensional space with 1298 

only human cells. 1299 

 1300 

Differentially expressed genes between AD and control samples for each cell type in each region were 1301 

identified using Monocle 2 (Qiu et al., 2017) with the differentialGeneTest() function. Main cell types with 1302 

less than 50 cells were excluded from the analysis (i.e, choroid plexus epithelial cells and vascular 1303 

leptomeningeal cells in the SMTG). DE genes were filtered based on the following cutoffs: q-value < 0.05, 1304 

with FC > 1.5 between the maximum and second expressed condition, and with transcripts per million 1305 

(TPM) > 50 in the highest expressed condition. To further validate human-mouse shared gene expression 1306 

changes, we used a recently published Alzheimer’s disease single-cell dataset from the human prefrontal 1307 

cortex (Morabito et al., 2021). 1308 

 1309 

Code Availability 1310 

The detailed experimental protocol and computation scripts of EasySci were included as supplementary 1311 

files.  1312 

 1313 

Supplementary Tables (provided as Microsoft Excel files) 1314 

Supplementary Table 1: Differentially expressed genes across main cell types. For each gene, the “Cell 1315 

type” is the cell type with the highest expression, with the expression level quantified by transcripts per 1316 

million in “TPM in cell type”. The “Q-value” is the false detection rate (one-sided likelihood ratio test with 1317 

adjustment for multiple comparisons) for the differential expression test across different cell clusters. The 1318 

“Fold change” is the fold change between the max expressed cell type and the second expressed cell type.  1319 

Supplementary Table 2: Differentially expressed isoforms across main cell types. For each isoform 1320 

(“Isoform”), the “Cell type” is the cell type with the highest expression. The “P-value” is the raw p-value for 1321 

the differential expression test across different cell types; and the “Q-value” is the false detection rate (one-1322 

sided likelihood ratio test with adjustment for multiple comparisons). The “Effect size” is the effect size 1323 

between the max expressed cell type and the second expressed cell type.  1324 

Supplementary Table 3: Differentially accessible sites for main cell types. For each peak (“Peak”), the 1325 

“Max cell type” is the cell type with the highest accessibility (“Peak accessibility in max cell type”). The 1326 

“Second cell type” is the cell type with the second highest accessibility (“Peak accessibility in second cell 1327 

type”). The “Fold change” is the fold change between the max accessibility and the second max 1328 

accessibility. The “P-value” is the raw p-value for the differential accessibility test across different cell types, 1329 
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and the “Q-value” is the false detection rate (one-sided likelihood ratio test with adjustment for multiple 1330 

comparisons). 1331 

Supplementary Table 4: Differentially expressed exons across sub-clusters within each main cell type. 1332 

For each sub-cluster (“Cell sub-cluster ID”), the following features of marker genes are listed: gene symbol 1333 

(“Gene name”); Ensembl ID of the gene and the exon (“Exon ID”); false detection rate (one-sided likelihood 1334 

ratio test with adjustment for multiple comparisons) for the differential expression test across different cell 1335 

sub-clusters within each main cell type (“Q-value”); fold change of the marker exon expression between 1336 

the max and second expressed cell sub-cluster (“Fold change”); expression level of the marker exon 1337 

quantified by transcripts per million in max sub-cluster (“TPM in max sub-cluster”). Marker exons are 1338 

defined by Q-value < 0.05, Fold change > 2 and TPM in max subcluster > 50. 1339 

Supplementary Table 5: Gene module analysis results. For each gene module (“Gene module ID”), the 1340 

following information about the genes belonging to that gene module is listed: Ensembl ID (“Gene ID”); 1341 

type of gene (“Gene type”); gene symbol (“Gene name”); UMAP visualization coordinates of the genes 1342 

based on their expression variance across all 359 cell sub-clusters (“UMAP 1”, “UMAP 2”). 1343 

Supplementary Table 6:  Differentially abundant sub-clusters between adult and young samples. Sub-1344 

clusters (“Cell sub-clusters”) abundances were compared between the 3 vs 6 months old groups 1345 

(“Condition”), and the following statistical values are listed: false detection rate (likelihood ratio test with 1346 

adjustment for multiple comparisons) for the differential abundance test across age groups (“Q-value”); 1347 

log2 fold change of the cell sub-cluster abundance between the age groups (“Log2(Fold change)”); the 1348 

number of cells compared in the sub-cluster (“Number of cells”); whether the sub-cluster is upregulated, 1349 

downregulated or there is no significant change (“Final change”, significance was determined by Fold 1350 

change > 2, Q-value < 0.05 and more than 20 cells in both male and female samples). 1351 

Supplementary Table 7: Differentially abundant sub-clusters between aged and adult samples. Sub-1352 

clusters (“Cell sub-clusters”) abundances were compared between the 6 vs 21 months old groups 1353 

(“Condition”), and the following statistical values are listed: false detection rate (likelihood ratio test with 1354 

adjustment for multiple comparisons) for the differential abundance test across age groups (“Q-value”); 1355 

log2 fold change of the cell sub-cluster abundance between the age groups (“Log2(Fold change)”); the 1356 

number of cells compared in the sub-cluster (“Number of cells”); whether the sub-cluster is upregulated, 1357 

downregulated or there is no significant change (“Final change”, significance was determined by Fold 1358 

change > 2, Q-value < 0.05 and more than 20 cells in both male and female samples). 1359 

Supplementary Table 8: Differentially expressed genes between aged and adult for all sub-clusters. For 1360 

each subcluster in the dataset (“Cell subcluster”), the following information is listed: gene symbol (“Gene 1361 

name”); gene Ensembl ID (“Gene ID”); the false detection rate (one-sided likelihood ratio test with 1362 

adjustment for multiple comparisons) for the differential expression test across the age groups (“Q-value”); 1363 

fold change between the max expressed age group and second expressed age group (“Fold change”); 1364 

expression level quantified by transcripts per million in the max age group (“TPM in max condition”); the 1365 

age group where the max expression was detected (“Max condition”). Only significant genes are listed in 1366 

the table, which is defined by Q-value < 0.05, Fold change > 2 and TPM in max condition > 50. 1367 
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Supplementary Table 9: Differentially abundant sub-clusters between wild-type and EOAD model. Sub-1368 

clusters (“Cell sub-clusters”) abundances were compared between the wild-type and EOAD model 1369 

(5xFAD) groups (“Condition”), and the following statistical values are listed: false detection rate (likelihood 1370 

ratio test with adjustment for multiple comparisons) for the differential abundance test between conditions 1371 

(“Q-value”); log2 fold change of the cell sub-cluster abundance between conditions  (“Log2(Fold change)”); 1372 

the number of cells compared in the sub-cluster (“Number of cells”); whether the sub-cluster is upregulated, 1373 

downregulated or there is no significant change (“Final change”, significance was determined by Fold 1374 

change > 2, Q-value < 0.05 and more than 20 cells in both male and female samples). 1375 

Supplementary Table 10: Differentially abundant sub-clusters between wild-type and LOAD model. Sub-1376 

clusters (“Cell sub-clusters”) abundances were compared between the wild-type and LOAD model 1377 

(APOE*4/Trem2*R47H) groups (“Condition”), and the following statistical values are listed: false detection 1378 

rate (likelihood ratio test with adjustment for multiple comparisons) for the differential abundance test 1379 

between conditions (“Q-value”); log2 fold change of the cell sub-cluster abundance between conditions 1380 

(“Log2(Fold change)”); the number of cells compared in the sub-cluster (“Number of cells”); whether the 1381 

sub-cluster is upregulated, downregulated or there is no significant change (“Final change”, significance 1382 

was determined by Fold change > 2, Q-value < 0.05 and more than 20 cells in both male and female 1383 

samples). 1384 

Supplementary Table 11: Differentially expressed genes between wild-type and EOAD model (5xFAD) 1385 

for all sub-clusters. For each subcluster in the dataset (“Cell subcluster”), the following information is listed: 1386 

gene symbol (“Gene name”); gene Ensembl ID (“Gene ID”); the false detection rate (one-sided likelihood 1387 

ratio test with adjustment for multiple comparisons) for the differential expression test across conditions 1388 

(“Q-value”); fold change between the max expressed group and second expressed group (“Fold change”); 1389 

expression level quantified by transcripts per million in the max group (“TPM in max condition”); the 1390 

condition where the max expression was detected (“Max condition”). Only significant genes are listed in 1391 

the table, which is defined by Q-value < 0.05, Fold change > 2 and TPM in max condition > 50. 1392 

Supplementary Table 12: Differentially expressed genes between wild-type and LOAD model 1393 

(APOE*4/Trem2*R47H) for all sub-clusters. For each subcluster in the dataset (“Cell subcluster”), the 1394 

following information is listed: gene symbol (“Gene name”); gene Ensembl ID (“Gene ID”); the false 1395 

detection rate (one-sided likelihood ratio test with adjustment for multiple comparisons) for the differential 1396 

expression test across conditions (“Q-value”); fold change between the max expressed group and second 1397 

expressed group (“Fold change”); expression level quantified by transcripts per million in the max group 1398 

(“TPM in max condition”); the condition where the max expression was detected (“Max condition”). Only 1399 

significant genes are listed in the table, which is defined by Q-value < 0.05, Fold change > 2 and TPM in 1400 

max condition > 50. 1401 

Supplementary Table 13: Metadata of human brain samples included in this study. 1402 

Supplementary Table 14: Differentially expressed genes between control and AD human brain samples 1403 

for each main cell type in each region. For each main cell type (“Main cluster name”) in each region 1404 

(“Region”), the following information is listed: gene symbol (“Gene name”);  the max and the second 1405 

expressed group (“Max condition”, “Second condition”) along with expression level quantified by transcripts 1406 

per million (“TPM in max condition”, “TPM in second condition”) and the fold change (“Fold change”); the 1407 
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false detection rate (one-sided likelihood ratio test with adjustment for multiple comparisons) for the 1408 

differential expression test across the two conditions (“Q-value”). Only significant genes are listed in the 1409 

table, which is defined by Q-value < 0.05, Fold change > 1.5 and TPM in max condition > 50. 1410 

Supplementary files 1411 

Supplementary file 1: Detailed experiment protocols for EasySci-RNA, including all materials and 1412 

equipment needed, step-by-step descriptions, and representative gel images. 1413 

Supplementary file 2: Primer sequences used in the EasySci-RNA experiment, including multiple plates 1414 

of short dT RT primers, random hexamer RT primers, ligation primers and P7 PCR primers. The columns 1415 

indicate the positions on the 96-well plate (Well position), an identifier of the sequence (Name), the full 1416 

primer sequence (Sequence) and the barcode sequence (Barcode). 1417 

Supplementary file 3: Computational pipeline scripts and notes for processing EasySci-RNA data, from 1418 

sequencer-generated files to single-cell gene count matrix. 1419 

Supplementary file 4: Detailed experiment protocols for EasySci-ATAC, including all materials and 1420 

equipment needed, step-by-step descriptions, and representative gel images. 1421 

Supplementary file 5: Primer sequences used in the EasySci-ATAC experiment, including N5/N7 oligos 1422 

used in indexed Tn5 assembly, ligation primers and P7 PCR primers. The columns indicate the positions 1423 

on the 96-well plate (Well position), an identifier of the sequence (Name), the full primer sequence 1424 

(Sequence) and the barcode sequence (Barcode). 1425 

Supplementary file 6: Computational pipeline scripts and notes for processing EasySci-ATAC data, from 1426 

sequencer-generated files to single-cell read files. 1427 

  1428 
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