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Abstract1

The behavior of microbial communities depends on both taxonomic composition and physical2

structure. Metagenomic sequencing of fecal samples has revealed the composition of human gut3

microbiomes, but we remain less familiar with the spatial organization of microbes between regions4

such as lumen and mucosa, as well as the microbial genes that regulate this organization. To dis-5

cover the determinants of spatial organization in the gut, we simulate mucosal colonization over6

time using an in vitro culture approach incorporating mucin hydrogel microcosms with a complex yet7

defined community of 123 human strains for which we generated high-quality genome assemblies.8

Tracking strain abundance longitudinally using shotgun metagenomic measurements, we observe9

distinct and strain-specific spatial organization in our cultures with strains enriched on mucin mi-10

crocosms versus in supernatant, reminiscent of mucosa versus lumen enrichment in vivo. Our high11

taxonomic resolution data enables a comprehensive search for microbial genes that underlie this12

spatial organization. We identify gene families positively associated with microcosm-enrichment,13

including several known for biofilm and adhesion functions such as efflux pumps, gene expression14

regulation, and membrane proteases, as well as a novel link between a coenzyme F420 hydrogenase15

gene family and lipo/exopolysaccharide biosynthesis. Our strain-resolved abundance measurements16

also demonstrate that incorporation of microcosms yields a more diverse community than liquid-only17

culture by allowing co-existence of closely related strains. Altogether these findings demonstrate18

that microcosm culture with synthetic communities can effectively simulate lumen versus mucosal19

regions in the gut, providing measurements of microbial organization with high taxonomic resolution20

to enable identification of specific bacterial genes and functions associated with spatial structure.21

Main22

Human gut microbiomes consist of diverse microbial taxa [1, 2], with typical complexity ranging on23

the order of over a hundred species in a single individual [3]. Spatial organization of gut microbes is24

linked to community function and host health [4–10] – in particular, different taxa are enriched between25

mucosa and lumen [11–16], and mucosal colonizing bacteria may be particularly able to regulate host-26

microbiome interactions and immunomodulation [17–21]. However, we still lack a high-taxonomic-27

resolution view of ecological differences between lumen and mucosa, and accordingly possess a limited28

understanding of genetic factors underlying this spatial structure. As within-species dynamics exist29

within gut microbiomes [22–25], we hypothesize that distinct spatial organization may (i) occur at the30
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level of individual strains, and (ii) be associated with specific gene families and pathways that regulate31

mucosa versus lumen colonization.32

To test our hypotheses, we develop an integrated experimental-computational workflow that compares33

lumen- and mucosal-like niches within a complex gut community. By using metagenomic sequencing, we34

are able to profile microbes with high taxonomic resolution, enabling strain- and gene-level analysis. We35

use a synthetic 123 strain community modeled closely after the recently published hCom2 community36

[26,27], cultured in vitro with added mucin microcosms to provide a mucosal-like substrate for bacterial37

attachment distinct from the surrounding liquid supernatant [28, 29]. To identify genetic correlates of38

microcosm colonization, we develop a computational workflow that uses a comprehensive search across39

KEGG Orthology (KO) gene families [30] to identify associations between gut spatial organization and40

underlying microbial genotypes, using phylogenetic regression to account for evolutionary relationships41

between taxa [31–33].42

Our approach provides key advantages over existing alternatives: first, by using an in vitro approach43

that allows mucin microcosm and supernatant subpopulations to be independently sampled [29] –44

analogous to mucosa and lumen in vivo – we obtain information on spatial structure missing from stool45

sampling and traditional liquid culture. Independent sampling of lumen and mucosal subpopulations is46

also possible using in vivo human gut biopsy, but the invasiveness of this approach limits sample sizes47

and longitudinal measurements [34]. In contrast, our in vitro platform enables us to sample mucosal-48

and lumen-like community subpopulations across multiple passage timepoints, with statistical replicates.49

Second, using our defined 123-strain community – which we generate high quality genomes for each50

member therein – allows us to emulate the bacterial complexity found in human guts, yet still accurately51

quantify abundance using metagenomic sequencing even between closely related strains. Strain-level52

measurements are critical for enabling gene-level analysis, as they allow genetic comparisons between53

closely related taxa. By comparison, earlier work with microcosms used 16S sequencing of undefined54

communities to produce measurements with more limited taxonomic resolution and did not examine55

genes associated with microcosm colonization [29].56

We demonstrate that this approach yields detailed strain-level measurements of differential spatial or-57

ganization, revealing taxa which are reproducibly enriched or depleted on mucin microcosms relative to58

supernatant. Then, we identify numerous genes and biosynthetic gene clusters that distinguish micro-59
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cosm versus supernatant genomes consistently across phylogenetic lineages, including genes related to60

cell adhesion and biofilm formation whose presence differs between closely related strains with distinct61

microcosm enrichment profiles.62

Results63

Closed genomes enable strain-level metagenomic profiling of complex defined microbial64

communities65

Starting from isolate cultures of 123 bacterial strains that are prevalent in the human gut microbiome66

(Fig. 1A, Table S1), we first generate high-quality, contiguous genomes for all strains other than five67

with closed genomes already. For the other 118 strains, we perform hybrid assembly of long Nanopore68

(median 3.9 × 104 reads/strain) and short Illumina reads (median 1.7 × 106 reads/strain) (Fig. S1,69

Methods), successfully generating closed assemblies with no more than 10 contigs. By contrast, the70

closest available NCBI genome (Fig. 1A) is more fragmented (78/123 comprise more than 10 contigs)71

and less closely related to the strain in our defined community; 20/123 have > 0.1% ANI difference72

to our strain, and 33/123 contain 100 or more differential KEGG Orthology (KO) gene families (see73

Methods, Fig. S2). Thus, our reference database of closed genomes that are exact strain matches is74

critical for accurate strain and gene-level characterization of metagenomic data. Next, isolate strains75

are combined into a single community using anaerobic automated liquid handling (See Methods, Fig.76

S3), and inoculated into cultures containing 0.5% mucin 1% agar microcosms and MEGA media with77

6 3-day passages (Fig. 1B, Methods). As a control, we also culture in parallel the same inoculum78

with MEGA media only, i.e., liquid-only culture. We use metagenomic sequencing of microcosms and79

supernatant sampled independently (1.2 × 107 read pairs per sample) at each passage to quantify strain80

relative abundances (see Methods, Fig. S4). To analyze read libraries with high taxonomic resolution,81

we use NinjaMap [27] with our custom genome database to generate strain-level abundances (Fig. 1C,82

Table S2) – we successfully validate NinjaMap results against lower taxonomic resolution species-level83

abundances generated using Kraken2 [35] with the UHGG database [2] (median R2 = 0.978070 across84

samples, see Fig. S5).85
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Mucin microcosms increase community richness and promote strain-coexistence within86

in vitro cultures87

Next, we characterize differences that result from spatial structure introduced by the incorporation88

of mucin microcosms. In cultures without microcosms, community richness drops from a median of89

113.5/123 detected strains in the inoculum (detection cutoff 0.01% relative abundance, 1% horizontal90

coverage – some strains with non-viable glycerol stocks / isolates did not grow to sufficient ODs, see Fig.91

S7), stabilizing down to a median of 38.5/123 detected strains by the 4 late passages (passages P2-6,92

i.e., days 9-18). By contrast, microcosm cultures seeded with the same inoculum stabilize to a median of93

62.5/123 and 65.5/123 detectable strains on microcosms and supernatant respectively (Fig. 1D). This94

significantly elevated richness ((p < 1−5), see Fig. S6) parallels results from hCom2 inoculated in mice95

(median 56/119 detected strains across 19 mice) [26], suggesting cultures with microcosms provide96

a closer analog to in vivo conditions than do liquid-only cultures. Increased richness is particularly97

noticeable in Firmicutes, Firmicutes_A, and Bacteroidota (see Fig. S6), while total abundance is higher98

for Firmicutes and Firmicutes_A, but lower in Bacteroidota (Fig. 1E).99

Beyond phylum level effects, abundance shifts also occur at strain level. Addition of microcosms increases100

abundance for a diverse set of strains including Bacteroides caccae ATCC-43185, Lactobacillus ruminis101

ATCC-25644, Coprococcus comes ATCC-27758 (which displays extremely sticky / slime phenotype102

in pure culture), two strains in family Marinifilaceae (Butyricimonas virosa DSM-23226, Odoribacter103

splanchnicus DSM-20712), and both sulfur reducing bacteria (Desulfovibrio piger ATCC-29098 and104

Bilophila wadsworthia ATCC-49260 from phylum Desulfobacterota). Some taxa are largely unaffected by105

microcosms, such as three Bifidobacterium strains, while few taxa are negatively affected by microcosms,106

with three closely related Veillonella strains being notable exceptions (see Fig. S8). These strain-level107

abundance shifts do not always align with corresponding phylum-level shifts, emphasizing the value of108

our highly-resolved taxonomic measurements.109

One of the most striking abundance shifts revealed by strain-level analysis is the co-existence of closely110

related strains with the addition of microcosms. In liquid-only culture, Bacteroides dorei DSM-17855111

outcompetes two closely related (ANI > 99%) strains, Bacteroides dorei 5-1-36-D4 and Bacteroides sp.112

9-1-42FAA (Fig. 1F). By contrast, these three strains coexist stably in culture when microcosms are113

present. Other examples can be found between two closely related (ANI ∼ 80%) Firmicutes_A strains:114
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Subdoligranulum sp. 4-3-54A2FAA and Subdoligranulum variabile DSM-15176 (Fig. 1G), and between115

two closely related (ANI ∼ 80%) Firmicutes_C strains: Acidaminococcus fermentans DSM-20731 and116

Acidaminococcus intestini D21 (Fig. 1H). These observations of co-existence (see Fig. S8 for additional117

examples) concur with increased richness detected in microcosm cultures.118

To better understand why community richness increases with mucin microcosms, we additionally grow119

our inoculum in cultures with 1% agar microcosms (plain-agar, i.e., no mucin). We observe that120

plain-agar microcosm culture also exhibits overall enhanced richness compared with liquid-only culture121

(Fig. S6). However, we do note some specific strain-level differences between mucin-agar and plain-122

agar microcosm cultures (See Fig. S7,S8). This suggests that increased richness result largely – but123

not entirely – from having a physical surface to colonize rather than the nutrients provided by mucin.124

These results are reminiscent of similar effects in bacterial biofilms, where increased diversity has been125

attributed to expanded spatial niches and reduced competition [36–38].126
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Figure 1: (Previous page) Microcosm cultures yield stable, diverse communities with coexis-
tence of closely related strains. (A) We generate closed, high quality genomes for each strain in a
123-member microbial community, representative of taxa in the human gut. De novo generated genomes
are more contiguous than closest previously available NCBI genomes, and represent exact matches to
our strains. (B) We use this 123-member community to inoculate cultures incorporating mucin mi-
crocosms as well as non-microcosm controls. We passage (P) each culture 6 times (3 days between
passages), independently sampling bacterial DNA from microcosm, supernatant, and no-microcosm
control at each timepoint for downstream metagenomic sequencing. (C) We use NinjaMap to obtain
community relative abundances from metagenomic sequencing data, here we plot median abundance
of each strain at each passage timepoint, across experimental conditions. (D) Number of detected
strains after culture stabilization (∼P3 and later) is higher in microcosm versus no microcosm cul-
tures, indicating enhanced community richness. Grey dashed line indicates median number of strains
detected (56) using same threshold with the 119-member hCom2 community in mice [26] (E) Addition
of microcosms leads to broad taxonomic shifts in community composition relative to no-microcosm
control, visualized here at phylum level. (F) Strain-resolved abundance patterns of 3 B. dorei strains
(ANI > 99%) in our community demonstrates stable co-existence enabled by addition of microcosms,
compared with dominance of a single B. dorei strain without microcosms. (G) Strain-resolved abun-
dance patterns of 2 Subdoligranulum strains (ANI ∼ 80%) in our community demonstrates stable
co-existence enabled by addition of microcosms. Subdoligranulum variabile DSM-15176 in particular
also exhibits increasing abundance over passage timepoints. (H) Strain-resolved abundance patterns of
2 Acidaminococcus strains (ANI ∼ 80%) demonstrates more stable co-existence when cultured in the
presence of microcosms.

Strains exhibit distinct enrichment profiles between microcosm and supernatant com-127

munities128

We next characterize spatial organization within microcosm cultures by comparing subpopulations sam-129

pled from microcosm and supernatant, testing our hypothesis that strain-level spatial differences occur130

within gut communities. For the 86/123 prevalent strains that are detected in at least 10% of passaged131

samples (see Methods), we quantify a microcosm enrichment score – defined as the log fold change132

in abundance between paired microcosm and supernatant samples (i.e., derived from the same culture133

tube) – for each strain and each passage (Fig. 2A, Table S3). We also calculate a single aggregate,134

normalized log-microcosm-enrichment score for each strain based on late passage measurements (see135

Methods). These scores reflect the preference of each strain to grow on microcosms versus in the136

supernatant, with positive scores indicating microcosm preference.137

Aggregating at phylum level, we observe enrichment toward mucin microcosms in Desulfobacterota,138

Firmicutes (primarily Bacillus-like), and Firmicutes_A (primarily Clostridia-like), and enrichment toward139

supernatant in Actinobacteriota, Bacteroidota, and Firmicutes_C (primarily Negativicutes-like), with140
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no obvious time-dependent signal (Fig. 2B). These results are largely consistent between mucin-agar141

and plain-agar microcosms, with the exception of Desulfobacterota which is not enriched on plain-agar142

microcosms. Certain individual strains also exhibit similar trends, such as Eubacterium ventriosum143

ATCC-27560 which exhibits microcosm preference with mucin-agar microcosms but not plain-agar (Fig.144

S9).145

At strain level, we find a diverse range of enrichment profiles over time (Fig 2A), including several146

strains with opposite enrichment relative to their phylum. For instance, Bacteroides sp. 2-1-22 prefers147

microcosms, while Clostridiales bacterium VE-202-14 from phylum Firmicutes_A prefers supernatant.148

Moreover, closely related strains can exhibit different enrichment phenotypes: Bacteroides dorei 5-1-149

36-D4 and DSM-17855 exhibit similar abundance in supernatant and microcosm (log enrichment scores150

≈ 0), but Bacteroides sp. 9-1-42FAA displays consistent enrichment toward supernatant (log enrichment151

scores < 0, see Fig. 2C). Subdoligranulum variabile DSM-15176 and Acidaminococcus fermentans152

DSM-20731 prefer mucin microcosms more than their respective counterparts, Subdoligranulum sp.153

4-3-54A2FAA (Fig. 2D) and Acidaminococcus intestini D21 (Fig. 2E). These findings support our154

hypothesis that distinct strain-level spatial organization occurs within gut communities.155

Finally, as external validation we compare our in vitro microcosm enrichment results against an in156

vivo dataset [15] with paired mucosal and lumen samples (see Methods, Table S6). We find our157

in vitro microcosm-enrichment strain scores exhibit similarity to in vivo mucosal-enrichment species158

scores within inter-subject variability (Fig. S10, Table S7). We also observe general agreement at159

phylum level: Bacteroidota is enriched toward both supernatant in vitro and lumen in vivo, while160

Firmicutes_A and Firmicutes are enriched toward microcosm / mucosa. However, discrepancies also161

exist, as Actinobacteriota is enriched toward supernatant in vitro and mucosa in vivo (Fig. S10). These162

results suggest that our experimental platform provides a close – though not exact – approximation of163

in vivo structure.164
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Figure 2: Strain level differences exist between mucin microcosm and supernatant communi-
ties. (A) Strains exhibit different microcosm enrichment phenotypes, both within and between clades –
positive (red) scores indicate higher relative abundance on microcosms versus supernatant. (B) Aggre-
gated at phylum level, taxa exhibit evidence of distinct spatial structure: Desulfobacterota, Firmicutes
and Firmicutes_A are enriched on microcosms, while Actinobacteriota, Bacteroidota and Firmicutes_C
are enriched in supernatant. (C) One of the three Bacteroides dorei strains (sp. 9-1-42FAA) exhibits
consistent microcosm depletion relative to the other two strains (5-1-36-D4 and DSM-17855). (D)
Subdoligranulum variabile DSM-15176 exhibits consistent microcosm enrichment relative to the closely
related strain Subdoligranulum sp. 4-3-54A2FAA. (E) Acidaminococcus fermentans DSM-20731 ex-
hibits consistent microcosm enrichment relative to the closely related strain Acidaminococcus intestini
D21. Additionally, microcosm enrichment of Acidaminococcus fermentans DSM-20731 increases with
time towards later passages.
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Phylogenetic regression predicts genes associated with mucosal colonization165

We next test for statistical associations between microcosm enrichment and underlying microbial geno-166

types, evaluating our hypothesis that key microbial genes may regulate spatial organization in the gut.167

Using kofamscan [30] to comprehensively search all genomes against all defined KO families, we gen-168

erate a genotype matrix consisting of 9857 KOs detected in the 86 prevalent strains. Each entry in169

this 86 × 9857 matrix corresponds to maximum kofamscan/hmmer bitscore hit for a particular KO in170

a particular genome (Fig. 3A) – higher scores reflect gene presence. We then test for each of the171

9857 KOs whether its genotype pattern across the 86 strains is significantly associated with the cor-172

responding pattern of microcosm enrichment scores (phenotype). We perform significance tests using173

phylogenetic regression with phylolm [32] to account for evolutionary relationships between strains (see174

Methods).175

Our approach identifies 244 KO families significantly associated with increased enrichment on mucin mi-176

crocosms relative to supernatant applying FDR correction at p<0.01 threshold (Fig. 3B, see also Meth-177

ods, Table S8). Out of these KOs, we highlight several illustrative examples whose genotype patterns178

align with differential microcosm enrichment in the B. dorei, Subdoligranulum and Acidaminococcus179

strains featured in Fig. 2C-E. From the three B. dorei strains, we find two KO gene families in par-180

ticular – K00441 (coenzyme F420 hydrogenase subunit beta [EC:1.12.98.1], Fig. 3C, 4A) and K08217181

(MFS transporter, DHA3 family, macrolide efflux protein, Fig. 4B) – which have strong homology hits182

in Bacteroides dorei 5-1-36-D4 and DSM-17855, but not in Bacteroides sp. 9-1-42FAA. Mapping the183

K00441 coenzyme F420 hydrogenase hits to their genomic loci in 5-1-36-D4 and DSM-17855, we find184

the gene resides in the midst of lipo/exopolysaccharide (LPS/EPS) biosynthesis gene clusters (Fig. 3C).185

Performing gene neighborhood analysis across all 123 strain genomes to search for KOs enriched within186

10 kilobases (kb) of K00441 annotated genes, we find 107 hits (see Methods, Table S5), which are dom-187

inated by KOs with LPS/EPS biosynthesis functions including numerous glycosyltransferase, epimerase,188

sugar-reductase, polysaccharide membrane transporter genes, suggesting a previously uncharacterized189

link between coenzyme F420 hydrogenase and microbial LPS/EPS production.190

Beside K00441 and K08217 in B. dorei, we also note a strong hit to a DEAD box helicase gene fam-191

ily – K14440, SWI/SNF-related matrix-associated actin-dependent regulator of chromatin subfamily192

A-like protein 1 [EC:3.6.4.12] – in Subdoligranulum variabile DSM-15176 (Fig. 4C) and a membrane193
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protease gene family – K14743, membrane-anchored mycosin MYCP [EC:3.4.21.-] – in Acidaminococ-194

cus fermentans DSM-20731 (Fig. 4D) which are absent in their less microcosm-enriched relatives.195

Intriguingly, LPS/EPS biosynthesis [39–43], membrane transporters/efflux pumps [44–50], membrane196

proteases [51–56], and DEAD box helicase gene regulators [41,57–60] all have known links to biofilm for-197

mation and adhesion. Aggregating all 244 microcosm-associated KOs by KEGG BRITE gene categories,198

we identify several BRITE categories enriched for significant KOs, representing antibiotic resistance199

genes, glycosyltranferases (E.C. 2.4), phosphotransferases (E.C. 2.7), transcriptional regulators, and200

proteases (Table S11), further supporting the importance of these gene functions in mucosal coloniza-201

tion.202

Testing for clade-specific effects using within-phylum phylogenetic regression, we find K14440 and203

K14743 to be among the most significant hits in Firmicutes/Firmicutes_A/Firmicutes_C, while K00441,204

K14743 and K08217 are among the most significant hits for Bacteroidota (Table S9). As an external205

validation, we repeat our workflow using the Suez et. al in vivo dataset [15] to identify a list of KOs206

associated with mucosal enrichment (Table S10), and find statistically significant overlap between genes207

associated with microcosm enrichment in vitro and genes associated with mucosal enrichment in vivo,208

(log − odds − ratio = 4.0, p = 9.7 × 10−21, Fig. S11). Thus, we confirm that measurements from209

our in vitro synthetic community cultures are sufficiently detailed to inform a computational gene-level210

analysis of gut spatial organization, revealing that genes related to biofilm formation and adhesion likely211

play key roles in modulating gut microbial structure.212
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Figure 3: Phylogenetic regression identifies genes associated with mucin microcosm enrichment
(A) Phylogenetic regression identifies significant associations between log microcosm enrichment score
(red/blue indicates positive/negative microcosm enrichment respectively) and gene presence absence
patterns (lighter/darker shades of gray indicate gene presence/absence respectively) across the most
prevalent 86 strains detected in passaged samples. We use this model to test a total of 9857 KEGG KO
gene families determined using kofamscan [30], accounting for phylogenetic relatedness between strains
assuming Brownian motion along evolutionary branches. (B) Volcano plot of phylogenetic regression
test, where each dot represents one KEGG KO – horizontal line at FDR=0.01. Horizontal axis is
clipped at 0.1 and 99.9 percentiles, highlighted gene families colored in red. (C) Bacteroides dorei
5-1-36-D4 and DSM-17855 both harbor a coenzyme F420 dehydrogenase gene (KEGG KO K00441,
hmmerbitscore = 190.7, 188.7) colocalized amongst LPS/EPS related gene clusters – these features
are collectively missing from the corresponding region in the Bacteroides sp. 9-1-42FAA genome.
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Figure 4: Phylolm-identified gene families have presence patterns that align with differential
microcosm enrichment (A) Comparison of microcosm enrichment pattern (left) with gene presence
pattern (right) of K00441 coenzyme F420 hydrogenase subunit beta [EC:1.12.98.1], across family Bac-
teroidaceae strains. (B) Comparison of microcosm enrichment pattern (left) with gene presence pattern
(right) of K08217 MFS transporter, DHA3 family, macrolide efflux protein, across family Bacteroidaceae
strains. (C) Comparison of microcosm enrichment pattern (left) with gene presence pattern (right) of
K14743 membrane-anchored mycosin MYCP [EC:3.4.21.-], across phylum Firmicutes_A, Firmicutes_C,
and Firmicutes strains. (D) Comparison of microcosm enrichment pattern (left) with gene presence
pattern (right) of K14440 SWI/SNF-related matrix-associated actin-dependent regulator of chromatin
subfamily A-like protein 1 [EC:5.6.2.-], across phylum Firmicutes_A, Firmicutes_C, and Firmicutes
strains.

13

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 13, 2022. ; https://doi.org/10.1101/2022.09.13.507837doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.13.507837
http://creativecommons.org/licenses/by/4.0/


Strain enrichment on microcosms is associated with presence of lipo/exopolysaccharide213

biosynthesis gene clusters214

To explore mechanisms of community structure beyond individual genes, we next investigate microcosm215

enrichment of biosynthetic gene clusters (BGCs). We use deepBGC [61] to search for BGCs across our216

strain genomes, annotate BGCs based on their KEGG KO presence, and apply hierarchical clustering217

to categorize 1103 detected BGCs into 256 groups with similar KO co-occurrence patterns (Fig. 5A,218

Table S12). We then map presence/absence of each of these 256 BGC-groups against the 86 prevalent219

strains in our experiment (Fig. S12), and apply phylogenetic regression to test for associations between220

microcosm enrichment and BGC-groups.221

Our approach yields a total of 7/256 significant BGC-groups positively associated with microcosm222

enrichment (Fig. 5B), the three largest of which consist of 18 or more BGC representatives (BGC-group223

157 – see Fig. 5C, BGC-group 120, and BGC-group 69). Filtering for the most common KEGG KOs in224

each of these BGC-groups, we discover that BGC-group 157 and BGC-group 120 consist of likely EPS225

related gene clusters, typified by glycosyltransferase, epimerase and other EPS related KOs (Fig 5D,226

Table S13). BGC-group 69 consists largely of gene clusters populated by membrane transporter genes.227

KOs in other microcosm enriched BGC-groups include more polysaccharide related genes (BGC-groups228

198, 186, 161) and AraC transcriptional regulator genes (BGC-group 34). These findings at the BGC-229

level further reinforce our KO-level results, showing that membrane-related functions such as LPS/EPS230

and transporters, as well as key gene regulators, likely regulate spatial organization in our in vitro model231

of the human gut.232

Discussion233

Applying mucin microcosm culture with our defined community of human gut strains, we present here234

the first strain-resolved measurements of spatial structure within the context of a complex gut microbial235

community. By a priori generating a database of high quality closed reference genomes, our approach236

enables high taxonomic resolution abundance measurements using metagenomic sequencing, while ef-237

fectively recapitulating spatial structure in the gut microbiome. These measurements show with high238

taxonomic resolution how a complex gut microbial community is spatially organized upon introduction239
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Figure 5: Strain enrichment on mucin microcosms is associated with exopolysaccharide gene
clusters. (A) Schematic of approach used to generate and group BGCs across strains using deep-
BGC and hierarchical clustering. (B) Volcano plot of phylogenetic regression test, each dot represents
one BGC-group, horizontal line at FDR=0.01 cutoff. Top hit BGC-group 157 highlighted in green.
(C) Comparison of microcosm enrichment pattern (left) with presence pattern (right) of BGC-group
157 across strains in family Bacteroidaceae. (D) Example of a representative gene cluster in BGC-
group 157 from the Bacteroides strain with highest microcosm enrichment score (Bacteroides-sp.2-1-
22_cluster_1_1984776-2023109.1). Gene label colors reflect frequency of KO family among all BGCs
in group – in cases where a gene maps to multiple KOs, * marks mapped KO with highest frequency in
BGC-group.
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of microcosms, demonstrating that microcosms enhance community richness to a level similar to in240

vivo observations, including instances of co-existence between closely related strains. We find clear241

enrichment signals within microcosm cultures where certain strains prefer to grow on the microcosms242

versus in the supernatant, or vice versa. Microcosm enrichment phenotypes can differ significantly even243

between closely related strains, supporting our hypothesis that spatial organization in the gut occurs at244

strain-level and trends would be missed at coarser taxonomic resolution.245

Another benefit of using strain-resolved metagenomics is that we can identify gene families that specifi-246

cally occur in strains with microcosm enrichment (or depletion) phenotypes. We do so using phylogenetic247

regression, a rigorous statistical approach that adjusts for evolutionary relationships between strains. This248

analysis identifies several gene families related to microbial adhesion and biofilm formation, including249

efflux pumps (e.g., K08217) that are known to mediate collective biofilm phenotypes such as quorum250

sensing and antibiotic resistance [44–50], and membrane proteases (e.g., K14743) which can enhance251

motility / colonization on surfaces [51–56]. We also find genes involved in biosynthesis of LPS/EPS252

which are known to mediate bacterial adhesion [39–43], such as glycosyltransferase and epimerase genes,253

as well as a particular gene family K00441 (coenzyme F420 hydrogenase subunit beta [EC:1.12.98.1])254

for which we report significant genomic colocalization with other known LPS/EPS genes, suggesting255

a previously uncharacterized functional link. We also find several groups of biosynthetic gene clusters256

containing membrane transporters and LPS/EPS genes associated with microcosm enrichment. Beyond257

membrane-associated functions, our analysis also highlights regulatory genes such as SWI/SNF DEAD258

box helicases (K14440). Intriguingly, such genes have not only been shown to be involved in biofilm259

formation [41, 57–60], but also specifically drive expression of efflux pumps and LPS/EPS genes [57].260

We speculate that in mucosa-associated taxa, key regulator genes act as master switches for a host of261

bacterial functions that alter outer membrane composition to enhance biophysical interactions with the262

mucosal surface and thus increase mucosal colonization fitness, leading to global spatial organization of263

these taxa towards the mucosa (Fig. 6).264

We conclude by noting several limitations to our work and point to areas for further exploration. First,265

we only show statistical associations – not causal mechanisms – between genotypes and microcosm266

enrichment, meaning hits should be cautiously interpreted as potential genetic factors deserving of267

followup investigation. Synthetic biology in genetically tractable gut strains can be used to test our268
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Figure 6: Schema for how mucosal associated genes may regulate spatial structure. Depiction
of proposed framework where in mucosa-associated taxa, regulatory genes serve as master switches for
microbial functions that increase mucosal colonization fitness such as LPS/EPS, membrane transporters
/ efflux pumps, and proteases.

predictions by altering the expression of identified gene families using gene knockout, knockdown or269

knockin experiments [62–64]. Second, while our in vitro results generally parallel those from earlier in vivo270

work [15,26], we do find limited discrepancies (e.g., microcosm depletion of Actinobacteriota), meaning271

our current platform provides a close but still imperfect replica of the in vivo gut environment. More272

realistic culture conditions can be explored, potentially through modification of media conditions (e.g.,273

addition of bile acids, different carbon sources). Third, our current approach based on metagenomic274

sequencing provides accurate quantification of strain and gene abundance, but it does not assay gene275

expression or spatial localization on microcosms. Future work using gut microbial metatranscriptomic276

analysis [65,66] and multiplexed FISH imaging [67–69] can greatly complement current capabilities and277

mitigate these shortcomings. Fourth, it remains unclear how strain-strain interactions affect structure.278

Follow-on studies with our platform that incorporate strain dropout can address these questions. Finally,279

in addition to strains from healthy Western guts, future work should incorporate taxa found in dysbiotic280

and non-Western guts to explore how spatial structure varies between healthy and diseased states, and281

across global geographic regions. Ultimately we believe the platform presented here has the potential282

to transform the standard for in vitro investigation of gut microbiota, in a manner that recognizes the283

important interplay between spatial structure and strain-level ecology.284

Methods285

Hybrid assembly of microbial isolates286

Strains are cultured in isolation until stationary phase, followed by DNA extraction using phenol chlo-287

roform. DNA is sequenced using both Oxford Nanopore long-read and Illumina short-read sequencing,288
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followed by hybrid assembly using custom bioinformatic workflow (Fig. S2) built using Unicycler [70],289

RScaf [71] and TGS-GapCloser [72] – workflow is available as docker images, see Software availability290

below.291

Community phylogeny292

Phylogenetic tree structure of the community is generated using GTDB-tk [73], using our genome293

assemblies as input.294

Genome annotation and gene classification295

Genomes are annotated using NCBI PGAP [74]. Predicted protein sequences are then mapped using296

kofamscan [30] to the to KEGG Orthology database.297

Mucin microcosm preparation298

Mucin microcosms are prepared similarly to previously described protocols [28, 75], using boiled 0.5%299

porcine mucin (Sigma M2378) and 1% agar (BD 214030) solution solidified onto K1 biofilm carriers (Evo-300

lution Aqua MEDIAK1). Mucin free agar-only microcosms are prepared using 1% agar solution.301

In vitro culture of synthetic community with mucin microcosms302

To construct the full in vitro synthetic community, we first culture each strain in isolation in 1.8 mL of its303

preferred media in a 96 well deep well plate (Table S1). Because of the large range of growth rates and304

stationary phase cell densities, strains are inoculated in a staggered fashion with slow growers inoculated 3305

days prior and fast growers inoculated 1 day before community assembly. Fastidious growers are cultured306

in 10 mL and concentrated to increase final cell density. Individual isolate cultures are sequenced to307

verify purity. On the day of community assembly, cell density for each strain is estimated using OD308

measured on a plate reader (BioTek Epoch). Using this measurement, each strain is normalized to a309

maximum OD of 0.3 using liquid handling robotics. Cultures are pelleted and washed with PBS, and310

then combined to form a mixture of 123 strains (epMotion 5073). Strains are combined in an anaerobic311

environment equipped with automated liquid handling in order to reduce potential cross contamination312

and other human errors when concurrently handling many strains (Fig. S3).313
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Following assembly of our bacterial community, the mixture is used to inoculate cultures in 15 mL314

tubes comprising MEGA media and 5 microcosms each. Cultures are left to grow at 37◦C in anaerobic315

conditions for 3 days without agitation, at which point they are passaged. Passaging consists of trans-316

ferring a single microcosm from the old culture tube to a new culture tube. This process is repeated 5317

times for a total of 6 passages - for each subsequent passage, the previously transferred-in microcosm is318

discarded prior to transferring of a microcosm to the next culture. For liquid-only cultures, inoculating319

loops (Fisherbrand 01-189-165) are used for passaging. Supernatant pellets and microcosm samples are320

saved and frozen at each passage point.321

For each condition, we culture the community in biological triplicate cultures (i.e. 3 separate culture322

tubes). Each culture tube is sampled with technical triplicates – for microcosm samples, we pick 3323

microcosms out of each culture tube to store at −80◦C prior to DNA extraction, while for supernatant324

and liquid-only cultures, we take 3 separate 1mL aliquots from each tube, pellet, then store at −80◦C325

prior to DNA extraction. This yields a total of 9 read libraries for each passage and experimental326

condition. The initial inoculum communities are sampled in duplicate, each sample sequenced 3 times327

each.328

DNA extraction, Library prep and sequencing329

DNA is extracted from pellets and microcosms using ZymoBIOMICS 96 DNA Kit and bead beating with330

0.1mm glass beads (Benchmark Scientific D1031-01). Extracted DNA from each sample is quantified331

in 384 well plates on a fluorescent plate reader (BioTek Neo2) using the Quant-iT PicoGreen assay332

(ThermoFisher). To generate input DNA for our high-thoughput and low-volume Nextera XT library333

preparation process, DNA samples are normalized to at maximum of 0.2 ng/uL in a 384 well plate using334

a low volume cherry picking liquid handler (SPT). Library preparation is done in 384 well plates using a335

low-volume 16 channel liquid handler (SPT) and follows the chemistry of the Nextera XT process but336

in a total volume of 4 uL in order to reduce library preparation cost. Libraries are quantified again using337

the Quant-iT PicoGreen assay and normalized. After pooling and cleaning using Ampure XP beads338

(Beckman), libraries are sequenced on a Novaseq 6000 (Illumina) to a mean depth of 1.2 × 107 read339

pairs per sample. In addition to DNA derived from microbial communities, we also sequenced all input340

strains used to construct the community to ensure strain purity and identity.341

19

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 13, 2022. ; https://doi.org/10.1101/2022.09.13.507837doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.13.507837
http://creativecommons.org/licenses/by/4.0/


Read mapping and abundance estimation342

Read mapping is performed with NinjaMap as previously described [27], using our de novo generated343

genomes as reference database. Briefly, reads are aligned to genome sequences, with only perfect344

unique matches considered in the first round. Ambiguous reads are held in escrow for the first round,345

and subsequently assigned in a statistically weighted manner determined by initial abundance estimates346

from the first round of alignment. This generates relative abundance and horizontal genome coverage347

estimates for each strain in each sample’s read library. We consider a strain present in a sample if it348

exceeds a 1% horizontal coverage and 0.01% relative abundance cutoff. Out of all 270 passage samples349

(6 passages × 5 experimental conditions – mucin-agar microcosms, mucin-agar supernatant, plain-agar350

microcosms, plain-agar supernatant, no-microcosms – × 9 replicates), we use a prevalence cutoff of351

10% presence (i.e. present in 27 or more samples) to focus on the most prevalent strains. For down-352

stream abundance-related analysis, we collapse technical (i.e., within tube) triplicates to their median353

abundance measurements, while considering biological (different culture tubes) triplicate measurements354

separately. Table S2 lists relative abundance and horizontal coverage across strains, passages, replicates355

and experimental conditions.356

Mucosal enrichment calculations357

For each strain, and passage, microcosm enrichment scores are calculated as log ratio of microcosm to358

supernatant abundance, for 3 biological replicates, replacing zeros with half-minimum non-zero value359

prior to taking log. For each strain, a single aggregate microcosm is generated by taking the mean of360

over mean over standard deviation of 12 log ratio scores in the late passages (P3-6, 4 passages × 3361

biological replicates). Table S3 lists enrichment scores per strain.362

Gene neighborhood enrichment test363

Based on results from kofamscan for each gene in each genome, a gene is annotated with a KO-label364

if it exhibits overlap greater than 0.5× coverage with the KO’s pHMM model, as well as a bitscore365

greater than 0.5× the KO’s bitscore threshold. We count the frequency of all annotated KOs within 10366

kb of K00441-labeled genes across the full community genome database. To generate p-value estimate367

of this measured frequency, we compare it against a null distribution generated by 1000 random gene368

20

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 13, 2022. ; https://doi.org/10.1101/2022.09.13.507837doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.13.507837
http://creativecommons.org/licenses/by/4.0/


order permutations. In each of these 1000 permutations, we randomly reassign gene labels within each369

of the 123 genomes prior to conducting frequency counts. p<0.01 indicates 990 or more times out of370

1000, the actual co-occurence of a particular KO within 10 kb of K00441 is greater than random.371

Phylogenetic regression372

For each KO family, and each strain, we determine the maximum hmmer bitscore hit to the KO’s pHMM373

out of all the strain’s proteins. Aggregating across KOs and strains, this yields a strain-by-KO genotype374

matrix, where each entry is the highest bitscore value – higher bitscores indicate gene presence. We375

then test for association between this genotype and microcosm enrichment score (phenotype). While376

such genotype-phenotype tests are in many ways similar to those conducted in genome association377

studies (GWAS), the application of ordinary least squares (OLS) regression, often used in GWAS, is378

not appropriate here due to phylogenetic relationships between strains. These relationships mean that379

assumptions of independence between measurements inherent to OLS are violated. We confirm the380

presence of a non-star phylogeny between strains by generating a phylogenetic tree based on strain381

genomes, using bac120 multiple sequence alignment with GTDB-tk [73] (Fig. 1A). Therefore, to account382

for this phylogenetic relatedness, for each KO we apply phylogenetic regression to test for significant383

association between mucosal enrichment scores and maximum hmmer bitscore (standard scaled) across384

strains. We implement this test using the R package phylolm [32], assuming a Brownian motion385

model along evolutionary branches, using the bac120 phylogenetic tree as input. This generates effect386

size estimates and p-values for every KO. We filter KOs for significance applying a p<0.01 cutoff387

with Benjamini-Hochberg FDR correction. In addition to running phylogenetic regression across all 86388

prevalent strains, we also run these models across subsets of these strains grouped by phylum to search389

for clade-specific hits. For this analysis, we group Firmicutes, Firmicutes_A, Firmicutes_C phyla into a390

single clade.391

Comparison with in vivo dataset392

We analyze from the Suez 2018 [15] dataset all read libraries from untreated (i.e., naive) individuals, for393

whom lumen and mucosal reads were available from cecum, descending colon, and terminal ileum, i.e.,394

a total of 6 read libraries per individual. We first use Kneaddata (part of the Biobakery suite [76]) to395
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perform host (i.e. human) filtering of read sequences, resulting in 13 individuals for which all 6 libraries396

exceed a read depth of 104 reads (Table S6). For these 13 individuals, we obtain abundance estimates397

at all 6 sites by mapping reads to UHGG database using Kraken2 [2,35]. We then calculate normalized398

mucosal enrichment scores for each species defined as log ratio of mucosal to lumen abundance. Score399

are normalized by taking mean-over-standard-deviation across all individuals and sites (13 individuals ×400

3 sites – cecum, descending colon and terminal ileum – for 39 total measurements). We determine gene401

presence absence for these species, across KOs, by using kofamscan to search the UHGG pangenome402

database [2], and then apply phylogenetic regression as described above to test for associations be-403

tween gene presence absence and mucosal enrichment score across UHGG species. The regression uses404

enrichment scores from 676 species detected with greater than 0.01% relative abundance in at least405

10% of in vivo read libraries, which contain a total of 12,822 detected KEGG KO gene families (Table406

S7,S10).407

Extraction and grouping of biosynthetic gene clusters using DeepBGC and hierarchical408

clustering409

DeepBGC [61] is used to extract BGCs from our de novo genomes. For each identified BGC, we generate410

a list of present KOs based on if contained genes map to KO’s pHMM with overlap greater than 0.5×411

coverage, as well as a bitscore greater than 0.5× the KO’s bitscore threshold. We filter out BGCs with412

fewer than 3 present KOs, and then use hierarchical clustering to cluster all remaining BGCs based413

on their binary KO presence/absence profile into 256 BGC-groups, applying a Jaccard distance metric.414

We then map presence of each BGC-group within community strains, and use this presence/absence415

matrix to test for associations with microcosm-enrichment applying phylogenetic regression as described416

above.417

Data availability418

All sequencing data of this study is deposited in the Sequence Read Archive (SRA), accession codes419

pending. Genomes are deposited in Genbank (NCBI), also pending.420
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https://github.com/xiaofanjin/gut-community-microcosms423

Software used for nanopore basecalling and hybrid assembly available at:424
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