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Abstract 
Epistasis shapes evolutionary outcomes during protein adaptation. In particular, when the effects of single 
mutations or mutational interactions are idiosyncratic, that is, unique to a genetic background, the 
predictability of protein evolution becomes greatly impaired. Here, we unveil a quantitative picture of the 
prevalence and role of idiosyncrasy in protein evolution by analysing 45 protein fitness landscapes, 
generated from seven enzymes. We found that mutational effects and epistasis are highly idiosyncratic 
across the landscapes. Idiosyncrasy obscured functional predictions of mutated proteins when using 
limited mutational data, and often continued to impair prediction upon incorporation of epistatic 
information. We show that idiosyncrasy stems from higher-order epistasis, and highlight examples where 
it permits, or restricts, evolutionary accessibility of certain genotypes. Our work suggests that idiosyncrasy 
deeply confounds predictions in protein evolution necessitating its incorporation into predictive models 
and in-depth exploration of its underlying molecular mechanisms.  
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Introduction 
The evolution of new protein functions often requires the gradual accumulation of adaptive mutations. 
Accordingly, the fixation of multiple mutations along an evolutionary trajectory may cause a rewiring of 
intramolecular amino acid interaction networks that results in non-additive mutational effects, or 
epistasis1–3. Epistasis causes a deviation from smooth, additive, and predictable mutational behaviours 
that – when rendered on a fitness landscape – creates a rugged mountain range with jagged peaks and 
valleys4–6. As evolution proceeds via the stepwise accumulation of single mutations, a rugged landscape 
topography dictates the ‘opening’ or ‘closing’ of accessible mutational paths across the landscape 
towards a given fitness peak7,8. Thus, understanding, let alone predicting, protein evolution requires a 
robust description of epistasis and its ability to distort the sequence-function relationship4. 

One approach to survey intramolecular epistasis in proteins relies on the functional 
characterisation of genotypes encompassing all possible combinations of a mutational subset that 
collectively alter protein function9–11. Such investigations have demonstrated that there are a limited 
number of accessible mutational paths between the starting and endpoint genotypes, highlighting the 
evolutionary constraints exerted by epistasis11–17. Recently, novel statistical approaches have been 
developed to obtain a more quantitative picture of epistasis, including higher-order epistasis (the non-
additive effects of three or more mutations), embedded in these landscapes12–19. These statistical analyses 
typically provide a ‘global’ view of epistasis, where the averages of mutational and epistatic effects are 
captured across the combinatorial space12,15,17. Such global approaches have demonstrated that the 
overall evolutionary changes within a combinatorial fitness landscape can be statistically recapitulated 
using the average effects of all individual mutations, supplemented only by the epistasis between pairwise 
and triplet mutations15,17.  

The global view of fitness landscapes can, however, have substantial shortcomings in scenarios 
where the effects of single mutations and epistasis are highly variable across different genotypes. For 
instance, if the effect of a mutation is idiosyncratic – i.e., showing diverse functional contributions 
depending on the background genotype – its function in each genotype will significantly deviate from its 
global effect across the entire landscape20,21. Since the majority of available mutational datasets 
characterise mutational effects in only a few backgrounds (generally single and double mutants in the 
protein’s wild-type (WT) background) most predictions made in protein evolutionary studies and 
engineering campaigns have the propensity to be heavily skewed by idiosyncrasy. Indeed, if the 
accessibility of a genotype is opened up or closed off by a strong, highly idiosyncratic, mutational effect, 
which is only present in a single (or very few) genotype(s) in the landscape, this idiosyncrasy will 
simultaneously dictate the evolutionary path followed by the protein whilst being lost in the global view, 
as it cannot be attributed to any epistasis captured by global effects. Hence, ubiquitous idiosyncrasy has 
the potential to confound our predictions and our understanding of evolutionary outcomes. However, we 
have little knowledge regarding the prevalence and roles of idiosyncrasy in protein fitness landscapes. If 
prevalent, what causes idiosyncrasy? To what extent does idiosyncrasy impact predictions in protein 
evolution? 

In this study, we address these questions by systematically characterising 45 functionally 
annotated, combinatorially complete (for a subset of mutations), mutational landscapes. We explored the 
levels of idiosyncrasy across protein fitness landscapes and explore its impact on the accessibility of 
adaptive trajectories (Fig. 1). We first inferred idiosyncrasy from the extent of heterogeneity in single 
mutational effects and epistasis in these datasets. We then quantified the levels of WT idiosyncrasy by 
comparing the magnitude of every single mutation and epistatic contribution in the WT genotype to their 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 8, 2022. ; https://doi.org/10.1101/2022.09.07.505194doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.07.505194
http://creativecommons.org/licenses/by-nc-nd/4.0/


average across the landscape. Armed with a global and local statistical model, we unveiled the impact of 
idiosyncrasy on our ability to predict evolutionary- intermediates and endpoints across various fitness 
landscapes. Finally, we examined how idiosyncrasy affects the accessibility of a given evolutionary 
trajectory by permitting or restricting certain paths, and how these patterns translate to the molecular 
level. 

 

Fig. 1 | Analytical pipeline for characterising idiosyncrasy in protein combinatorial landscapes. From left to right, the data from 
empirical studies were processed to reconstruct combinatorial landscapes; in genotypes, 0 and 1 represent ancestral (WT) and 
derived (mutated) positions, respectively. We extracted the functional effect of mutations (∆𝐹) for each position (< 2 mutations), 
and epistasis (ε) for each combination (≥ 2 mutations). Heterogeneity and WT idiosyncrasy for single mutational- and epistatic- 
effects were captured using a statistical metric of spread and WT deviation from the mean (black bars), respectively. The impact 
of idiosyncrasy on evolutionary trajectories was analyzed and translated to the structural and molecular levels, e.g., single 
mutational (yellow) and epistatic (blue) data can be visualized on combinatorial landscapes and a protein structure to shed light 
on their evolutionary relevance. 

Results 
Statistical characterisation of 45 combinatorial landscapes. We collected several experimental studies 
that characterised the changes in protein function for a set of combinatorial mutations along an adaptive 
trajectory. The analyzed fitness landscapes – herein referred to as combinational landscapes – were 
restricted to datasets probing single mutations per position. These studies were filtered to ensure that 
the landscapes explored four or more positions (n ≥ 4) and functionally characterised all possible 
combinations of these mutations (2n variants). Of those studies, we only retained those reporting 
continuous data. Using these cut-offs, we obtained a working set of ten studies exploring seven different 
enzymes (Table 1). For some studies, the mutations were accumulated through directed evolution or 
protein engineering of a novel function (phosphotriesterase, PTE; β-lactamase, OXA-48; nitroreductase, 
NfsA)13,22–24. For the remaining studies, the positions were identified from naturally occurring evolutionary 
trajectories, either through a retrospectively identified path using ancestral sequence reconstruction 
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(methyl-parathion hydrolase, MPH)14,25, the presence of clinically relevant mutations (dihydrofolate 
reductase, DHFR and β-lactamase, TEM-1)11,26–28, or in the case of alkaline phosphatase (AP), by using 
previously characterised active site residue mutations29. The final dataset consisted of 56 unique 
mutations, of which 54 are located within the protein open reading frame, and two are located in a 
promoter region (in DHFR and TEM-1)11,23. These were analyzed in 45 separate combinatorial landscapes 
with a total of 1,504 genotype-phenotype data points, some of which explored a set of positions for the 
same enzyme using a different substrate, inhibitor, or metal cofactor (Table 1 and Supplementary File 1).  

Table 1 | Combinatorial landscapes analyzed in this study 

Enzyme No. of 
mutations Conditions No. of total 

measurements Measured trait Reference 

OXA-48a 4, 6, 6 2, 2, 2  288 IC50 22 

TEM-1b 5, 4 1, 15  272 MIC, Growth rate 11,28 

AP 5 1 32 kcat/KM 29 

NfsAc 7, 7 1, 1 256 EC50 24 

DHFRd 4, 6, 5, 5 5, 1, 2, 2 272 IC50, IC75, kcat/KM and Ki   23,26,27 

MPHe 5 8 256 Lysate activity 25 

PTEf 6 2 128 Lysate activity 13 
a Three mutationally unique trajectories, where each was probed using two inhibitors 
b Ref. 28 explored 15 inhibitors for the same set of four mutations 
c Two separate mutational trajectories for the same protein and substrate 
d Ref. 26 explored four mutations using five different substrates; ref. 27 explored both kcat/KM and KI for two mutational trajectories 
e Ref. 25 explored the same five mutations under eight different metal environments 
f Six mutations were explored using two substrates, one in ref. 13 and one outlined in this study (see Methods) 
 

Next, the mutational data were processed to allow for a streamlined analysis using our 
computational pipeline (see Code Availability). Trajectories that explored different mutational 
combinations for the same enzyme were treated as separate combinatorial landscapes, as were the 
combinatorial landscapes characterising the function of the same subset of mutants across different 
substrates, ligands, or metals. Due to the variety of measured functions, ranging from direct 
physicochemical properties of the enzymes to indirect effects on the cellular phenotype, all enzyme 
functions were normalized relative to their WT background, providing us with the fold-change in enzyme 
function (𝐹), which was then log10 transformed (see Methods). Not accounting for the WT genotypes 
where 𝐹 = 0, we obtained 1,459 𝐹 values for further analysis (Supplementary Data 1). 

Idiosyncrasy in single mutational effects. To paint a comprehensive picture of the prevalence of 
epistasis in the selected proteins, we first extracted the functional effect of every single mutation at a 
given position across all available genetic backgrounds. The data were processed to provide the change 
in function (∆𝐹), or single mutational effect, of a given mutation across every genotype (see Methods). 
In a combinatorially complete fitness landscape of n mutations, a particular mutation occurs in 2n-1 
distinct genetic backgrounds, hence, each combinatorial landscape contains n ×	2n-1 ∆𝐹 values. Using 
this approach, we collected the 4,064 ∆𝐹 (Fig. 2a) and faceted them by the 214 unique mutation- 
substrate/inhibitor/metal pairs, simply referred to as ‘positions’, e.g., the effect of a mutation at the 
same amino acid position for two different substrates is treated as a different ‘position’ (Supplementary 
Data 2). We chose to use a significance threshold of 1.5-fold for all analyses; this was the median error 
rate (calculated as 2 ×	standard deviation, or 2𝜎) for all replicate measurements available in our data. 
Using this threshold, we found that the signs of the ∆𝐹 values were 21% negative, 36% neutral, and 43% 
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positive across all genotypes. This constitutes a relatively even split for the sign of the single mutational 
effects, despite a slight bias toward a positive effect, consistent with the fact that most mutations were 
originally identified due to their beneficial effect on function (Fig. 2a). 

 

Fig. 2 | Descriptive statistics of single mutational effects. a, Distribution of single mutational effects (log10 ∆𝐹) at every position 
across all genotypes for every combinatorial landscape. Dashed lines represent the 1.5-fold significance threshold that 
distinguishes negative, neutral, and positive effects, respectively. b, Distribution of the heterogeneity of the single mutational 
effects (log10 2σ for the distribution of ΔFs) at each of the 214 positions. Dashed lines represent 1.5-, 2-, 5-, and 10-fold significance 
thresholds, respectively. c, Categorisation of the sign-changing behavior in ΔF distribution for each of the 214 mutations. d, 
Distribution of the WT idiosyncrasy quantified by the deviation of each of the 214 ∆𝐹!" from ∆𝐹%%%% at each position. Dashed lines 
representing 1.5-, 2-, 5-, and 10-fold significance thresholds, respectively. 

Next, we characterised the variability in single mutational effects for a given position, herein 
referred to as heterogeneity, by plotting and analysing the spread in the distribution of ∆𝐹  at each 
position (Supplementary File 2). The heterogeneity in ∆𝐹  across different genetic backgrounds 
demonstrates the presence of extensive idiosyncrasy; accordingly, the degree of ∆𝐹 scatter for a position 
across various genotypes reflects the existence of epistasis of pairwise, and likely higher-order, 
interactions. To capture this spread, we computed 2𝜎  for the ∆𝐹  at each position, which should 
encompass ~95% of the heterogeneity and inform on the spread around the mean single mutational effect 
for a given position. We deemed positions to be significantly heterogeneous when their 2𝜎 > 1.5-fold. We 
found that heterogeneity prevails in our dataset: 99% (211/214) of positions exhibit significant 
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heterogeneity (Fig. 2b and Extended Data Table 2). Many positions exhibit much higher heterogeneity 
than the threshold: 70% (150/214) show a 2𝜎 >5-fold, and 53% (114/214) show a 2𝜎 >10-fold (Fig. 2b and 
Extended Data Table 2). We also characterised the extent of sign heterogeneity, i.e., whether the sign of 
the single mutational effect varies between positive, negative, and/or neutral in different genotypic 
backgrounds. Only 12% of the positions showed sign homogeneity (retaining the same sign in all 
genotypes) and the remaining positions showed at least moderate sign heterogeneity, with 8% of 
positions contributing either a neutral or negative effect and 16% of positions displaying either a neutral 
or positive effect. Interestingly, 64% of positions showed full sign heterogeneity, showing background-
dependent variance between positive and negative effects (Fig. 2c and Extended Data Table 2). These 
observations suggest that single mutational effects in the combinatorial landscapes are highly 
idiosyncratic – likely a result of pervasive epistasis. 

Highly heterogeneous ∆𝐹  also suggest that the effect of a mutation can be idiosyncratic in a 
particular background compared to its global effect in the combinatorial landscape. We computed the 
difference in magnitude and sign of ∆𝐹 for a given mutation in the WT background (∆𝐹!") versus the mean 
∆𝐹 (∆𝐹'''') of that mutation across all representative genotypes to determine the levels of WT idiosyncrasy 
(Fig. 2d). For 68% of positions, ∆𝐹!" deviates from ∆𝐹'''' by >1.5-fold (Fig. 2d and Extended Data Table 3), 
while the sign of ∆𝐹#$	remains similar to that of ∆𝐹'''' (only 3% of positions show a significant difference in 
sign). The idiosyncrasy in single mutational effects does not only apply to ∆𝐹!", but also to the ∆𝐹 in other 
genotypes – 59% (2396/4064) of single mutants across every genotypic background also deviated >1.5-
fold from their ∆𝐹'''' (Extended Data Table 4). This suggests that the ∆𝐹!", or ∆𝐹 of any other genotypic 
background, is inaccurately captured by the global effect of that mutation within the combinatorial 
landscape. In other words, the magnitude of a previously observed single mutational effect is likely to vary 
in new genotypic backgrounds due to idiosyncrasy.  

Idiosyncrasy in pairwise- and higher-order epistasis. The extensive idiosyncrasy in ∆𝐹 essentially stems 
from epistasis, therefore, we expanded our survey of idiosyncrasy in single mutational effects to 
interactions between mutations. Epistasis (ε), at any order, can be mathematically defined as the 
additional functional contribution originating from a new mutational interaction relative to all 
constituent lower-order interactions and single mutational effects. For example, our calculation of ε at 
the 3rd order (and higher orders) accounts for ε observed in the 2nd order, in contrast to the traditional 
calculation of the difference between observed function and predicted function using only the sum of 
the single mutational effects. Thus, we used the following equation to calculate 2nd order epistasis 
between mutations: 

 𝜀%&%' = 𝐹%&|%' − 𝐹%& − 𝐹%' (1) 
 

Where p1 and p2 represent the single mutations at hypothetical positions ‘1’ and ‘2’, respectively, p1|p2 
represents the combination of mutations p1 and p2, ε is the epistasis coefficient, and 𝐹 is the normalized 
function. Higher-order epistasis was calculated using a similar approach as in equation 1 (see Methods). 
The extracted ɛ coefficients for all combinations across all landscapes were probed using the same metrics 
applied to the ∆𝐹, to capture the extent of idiosyncrasy in epistasis. 

Compared to the 214 surveyed positions, we extracted 419 pairwise-, 438 triple-, and 267 
quadruple- combinations. Since a few landscapes only covered 4 mutations, 22/267 quadruple 
combinations could not be examined as they only occurred in one genetic background, leaving 245 
quadruple combinations viable for analysis. Ultimately, we collected 8968 values for ε encompassing the 
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2nd to the 4th order (Supplementary Data 3). Surprisingly, we found that nearly all (99% (413/419)) pairwise 
interactions are significantly heterogeneous (Fig. 3a). This proportion decreased at less stringent 
thresholds, nonetheless, even with a 10-fold significance cut-off, 41% of pairwise interactions remained 
significantly heterogeneous (Extended Data Table 2). Interestingly, this trend remains consistent at higher 
orders of epistasis: 96% (420/438) of triple interactions, and 98% (240/245) of the quadruple interactions 
exhibit significant heterogeneity (Fig. 3a). The impact of high heterogeneity in epistasis was also seen in 
their sign variability – for pairwise combinations, 71% (295/419) show full sign heterogeneity (Fig. 3b). 
Only a handful of them (5%) exhibited sign homogeneity, and the remaining combinations were either 
neutral-negative (9%) or neutral-positive (15%). For higher-order combinations, sign heterogeneity 
remains high: 54% for 3rd order, and 52% for 4th order combinations (Fig. 3b and Extended Data Table 2). 
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Fig. 3 | Descriptive statistics of epistasis. a, Histogram of log10 2σ of ε at each order for every mutational combination, with 
annotated dashed lines representing 1.5-fold, 2-fold, 5-fold, and 10-fold significance thresholds, respectively. Data omitted due 
to x-axis scaling can be found in Extended Data Fig. 1a. b, Categorisation of the ε at each order for all mutational combinations 
by sign. c, The distribution of the WT idiosyncrasy in epistasis quantified via the absolute difference of ε#$  from ε% at each 
combination. Dashed lines represent 1.5-, 2-, 5-, and 10-fold significance thresholds, respectively. Data omitted due to x-axis 
scaling can be found in Extended Data Fig. 1b. 

Like single mutational effects, the WT background epistasis (ε!") showed a high deviation from 
the mean (ε') for each combination. More than half (64% (270/419)) of pairwise, (56% (244/438)) of triplet, 
and (62% (153/245)) of quadruplet ε!" deviated from ε' by more than 1.5-fold (Fig. 3c). As with the ∆𝐹, 
this high deviation was also representative of other non-WT backgrounds (Extended Data Table 4). 
Interestingly, more combinations showed significant sign discrepancy in ε!" versus ε' than those for ∆𝐹. 
Although still in the minority, 13% (53/419) of pairwise-, 5% (34/438) of triplet-, and 8% (12/245) of 
quadruplet- interactions had a significantly different sign effect in the ε!"  than the ε'. These findings 
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suggest that epistasis itself remains idiosyncratic, even at increasing orders. The persistence of 
idiosyncrasy at the 3rd and 4th orders of epistasis suggests that epistasis at the 5th (and likely higher) 
order(s) continues to impose a genotypic context dependence even on triplet and quadruplet mutational 
interactions. 

Idiosyncrasy confounds predictability. Given the strong prevalence of idiosyncrasy in single mutational 
effects and epistasis, we asked to what extent does idiosyncrasy impair the predictability of genotypic 
functions in the landscape? We computed functional predictions using two different models and 
examined the discrepancies between them. The first model collected the ∆𝐹!" and ε!"	for every 
position and combination and computed the function at every genotype using the additive assumption 
of that genotype’s constituent ∆𝐹 and ε values (Fig. 4a and Methods). We refer to this as the ‘WT-
background model’, because the model relies on limited data from the WT background, namely ∆𝐹!" 
and ε!", as opposed to any other, or all, ∆𝐹 and ε across the landscape (Fig. 4b). This model is inspired 
by the local view of epistasis16,17, which stems from the stepwise process employed in protein 
engineering and evolutionary studies. We compared the WT-background model to a global model that 
used ∆𝐹'''' and ε'; by averaging ∆𝐹 and ε values across the landscape this model aims to minimize the 
idiosyncratic noise of the system. Our global model of choice was a linear regression with interaction 
terms, simply referred to as the global model, which is conventionally employed in combinatorial 
landscape analyses (Fig. 4a)11,13,14,16,17,25. This comparison aims at exposing how a deviation between 
mutational- and epistatic- effects in WT background versus their corresponding mean effects can 
confound predictions of evolutionary outcomes. 

We computed the predicted functions, using both the WT-background and global models, with 
gradually increasing orders up to the 4th order (Fig. 4a and 4b). To assess the quality of the functional 
prediction performed by each model, we measured the absolute error (AE) of the predicted versus 
observed function for the “endpoint”, or most derived, genotype in each landscape (Fig. 4c and Methods). 
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Fig. 4 | Differences in WT-background and global models. a-b, Predicting the function of an endpoint variant in a hypothetical 
landscape using the WT-background (a) and global (b) model. a, The WT-background only uses epistasis in the WT background to 
extract the epistatic coefficient (ɛxx00) and uses it to predict the function (equation below and Methods). b, The global model 
computes epistatic coefficients for an interaction, here for positions 1 and 2 (β1|2), from the mean epistasis between mutations 
across all genotypes that contain this interaction (equation below and Methods). c, Absolute error of the predicted function (𝐹) 
at orders 1, 2 and 3 (n=45), and at order 4 (n=23). The absolute error means and medians from the global (blue) and WT-
background models (yellow) are shown as black and red bars, respectively. The 1.5-fold significance threshold is depicted as a 
dashed line, with an asterisk (*) marking the model and order with a significant mean (one-sided t-test; p = 9.67 x 10-7 and 1.83 x 
10-12 for global model order 3 and 4, respectively). 

Given the discrepancy in the amount of data accessed by the models, as expected, the mean AE of the 
global model outperformed the WT-background model at the lower orders. In the 1st order, 13% (6/45) 
and 29% (13/45) of variants were successfully predicted by the WT-background and global model, 
respectively. The global model’s prediction accuracy increased with each incorporated order. 
Furthermore, the incorporation of 3rd order information was largely sufficient for predicting the function 
of most endpoint variants below the significance threshold (p < 0.05; Fig. 4b and Extended Data Table 5). 
This suggests that average effects, encompassing relatively minimal epistatic information, can 
recapitulate the topology of the combinatorial landscapes. By contrast, the WT-background model 
showed high AEs with a marginal improvement in median AE, but not mean AE, even upon introducing 4th 
order epistatic information (Fig. 4b and Extended Data Table 5). This poor performance of the WT-
background model suggests that the ∆𝐹!" and ε!" values were not sufficient predictors of the function of 
genotypes with multiple mutations, highlighting how idiosyncrasy confounds functional predictions in 
protein fitness landscapes. 
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Idiosyncrasy disrupts the interpretability of adaptive trajectories. Next, we performed several analyses 
to assess the extent to which idiosyncrasy impairs the predictability of adaptive trajectories. To this end, 
we focused on 11 adaptive landscapes, i.e., landscapes where the substrate or ligand is assumed to be the 
primary selection pressure that led to the accumulation of the probed mutations. For each landscape, we 
retained a single most accessible path, in which the most functionally advantageous mutation is fixed at 
each step. We then computed a predicted function for each genotype along the most accessible path 
using ascending orders of the WT-background model (Fig. 5a and Extended Data Table 6). However, much 
as with the endpoint prediction, we again saw that for most genotypes the WT-background model failed 
to predict function accurately at all orders. Interestingly, some highly mutated genotypes along the 
trajectory were, in fact, better predicted by lower-order information. This indicates that when the WT-
background model incorporates extensive idiosyncrasy at a given order, its predictive power is impaired 
relative to a model with less mutational information (Fig. 5a and Extended Data Table 6).  

Next, we sought to gain a statistical picture elucidating how idiosyncrasy can open or close certain 
evolutionary trajectories in the adaptive landscapes. First, we defined the genotype n+1 as accessible if 
its function increases, or does not decrease by more than 1.5-fold, compared to the ancestral n genotype. 
In other words, we enabled nearly neutral steps to occur by considering that a 1.5-fold decrease in 
function is insignificant. Then, we examined how newly introduced interactions (e.g., 4th order epistasis 
for a quadruple mutant, but not 3rd order or lower) affect the accessibility of a genotype, and marked the 
genotype as ‘affected by epistasis’ if removing the new interaction (ε)*! = 0) meant that the genotype’s 
accessibility was affected. Furthermore, a genotype was considered ‘affected by idiosyncratic epistasis’ if 
its accessibility was affected upon converting the effect of the new epistatic interaction to the average 
epistasis of that interaction (ε)*! = ε') across the landscape. 

By looking at all genotypes across the adaptive landscapes, we found that new epistatic 
interactions affected the accessibility of 49% (288/583) of genotypes. Furthermore, 78% (211/288) of 
these genotypes showed different accessibility specifically due to idiosyncratic epistasis (Fig. 5b). Of 
course, many of these genotypes are unlikely to be accessed at all, as early mutations with greater 
functional contributions will be selected first, consequently affecting the chance of visiting many 
intermediate genotypes. Thus, we further refined our accessibility metrics by focusing on the genotypes 
in the most accessible path for each adaptive landscape. Of these most accessible genotypes, the 
accessibility of 26% (11/42) was significantly affected by new interactions, and 73% (8/11) of those 
genotypes were idiosyncratic. Hence, although in the most accessible trajectories new epistatic 
interactions are generally less likely to affect the accessibility of a genotype, when they do impact the 
evolutionary path, they are usually idiosyncratic.  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 8, 2022. ; https://doi.org/10.1101/2022.09.07.505194doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.07.505194
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

Fig. 5 | Impact of idiosyncratic epistasis on prediction and genotype accessibility. a, Absolute error of the functional prediction 
for each genotype along the most accessible path in 11 adaptive landscapes. Colors indicate the order at which the WT-
background model was used. b, Sankey plot of epistasis and its link to genotype accessibility in adaptive landscapes. Epistasis 
encompasses all ɛ values of newly introduced interactions between ≥ 2 mutations that show > 1.5-fold magnitude in effect. 
Genotypes with new significant epistasis were filtered by their occurrence in the 11 adaptive, or 34 non-adaptive landscapes, 
then by modulation of accessibility by new interactions, and finally by idiosyncrasy.  

Through this analysis, we identified two trajectories exhibiting particularly interesting 
evolutionary dynamics caused by idiosyncrasy, and decided to probe their genetic and molecular 
underpinnings. The first trajectory was the most accessible path along the PTE evolution toward the 
arylesterase activity13,30–32. Along this trajectory, the highest functional peak is reached at genotype 
D233E-H254R-L271F-F306I with ~1,700-fold improvement in function relative to WT (Fig. 6a). The 
accessibility of this genotype is permitted by a strong quadruple epistatic interaction between these 
positions, resulting in a 7.4-fold increase in function relative to the contribution from all single mutational, 
pairwise- and triple- interaction effects (Fig. 6b). Without this 4th order epistasis, this genotype would 
become inaccessible, as it would lead to a ~4.5-fold decrease in function relative to D233E-H254R-F306I. 
Interestingly, this genotype would also be inaccessible if the effect of the quadruple interaction was 
represented by its ε' (Fig. 6b). In fact, ε' captures the incompatibility of the quadruple epistasis with L272M 
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and I313F, illustrating the idiosyncratic nature of this quadruple interaction within the PTE landscape. In 
other words, this idiosyncratic quadruple interaction provides an evolutionary solution that permits 
access to the functional peak, but can quickly become disrupted by negative higher-order epistasis from 
other mutations. Idiosyncrasy can also, on the other hand, be restrictive. In the MPH landscape, five 
adaptive mutations were found to confer methyl-parathion hydrolase activity to MPH14,25. Yet, a pair of 
individually beneficial mutations exhibit negative epistasis when combined: the L72R-F273L interaction 
restricts the transition from the single (F273L) to double mutant (L72R-F273L) due to a ~1.7-fold decrease 
in function (Fig. 6c). However, the mean pairwise epistasis between L72R and F273L is significantly positive 
(+4.0-fold), suggesting that the L72R-F273L pair becomes beneficial later in the trajectory. Indeed, this 
sign change in ε  results from the early fixation of Δ193S, which greatly stabilizes the L72R-F273L 
interaction, and is further reinforced by positive higher-order interactions with H258L and I271T (Fig. 6d). 
Thus, higher-order epistasis appears to be the key mechanism underlying the compensation of this initially 
idiosyncratic antagonism, later fostering the pair’s synergy. These two examples demonstrate how 
idiosyncrasy is a by-product of higher-order interactions – whether synergistic or antagonistic – and how 
it can create localized permissive or restrictive dynamics in combinatorial landscapes that are concealed 
by the reductionism of the global view. 

Lastly, we explored whether the high levels of idiosyncrasy could be explained by other features 
in our adaptive trajectories. For example, it has been debated whether the functional contribution of a 
mutation is affected by the functional magnitude of the genotype in which it occurs33. Indeed, several 
adaptive trajectories in our study exhibited diminishing returns topology, where the functional 
contribution of mutations decreased as they were introduced into fitter, and more derived, backgrounds 
(Extended Data Fig. 2a). This trend has often been attributed to negative epistasis arising between 
mutations that originally appeared beneficial, a phenomenon called diminishing return epistasis18,20,21,34. 
However, upon probing ɛ in the adaptive landscapes, we found no trend in ɛ based on the functional level 
of intermediates, suggesting no evidence of the dominance of diminishing return epistasis (Extended Data 
Fig. 2b). As such, the patterns of diminishing returns observed in the adaptive landscapes are likely the 
result of other mechanisms, such as beneficial mutational exhaustion, whereby the most beneficial 
adaptive mutations are fixed in early rounds of evolution, quickly depleting the pool of beneficial 
mutations as evolution progresses.  

We also explored idiosyncrasy from the context of protein structures. Since intramolecular 
protein epistasis is attributed to the interaction between mutations, we analyzed the spatial proximity 
between the epistatic positions as a function of the magnitude of epistasis between said positions. 
However, we observed no significant correlation between the distance connecting the ɑ-carbons of two 
residues and the absolute magnitude of their pairwise ε (Extended Data Fig. 3). Thus, other factors have 
to be considered when characterising the relationship between spatial proximity of mutations and 
epistasis, for instance, non-specific epistatic effects35, side chain interactions, or perhaps complex 
mutational interactions including conformational dynamics or ligand and substrate relays1. 
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Fig. 6 | Structural representation of idiosyncrasy and its effect on evolutionary trajectory accessibility. a,c, Function of 
genotypes along a, the PTE trajectory toward arylester (2NH) hydrolysis, and c, the MPH trajectory toward parathion-methyl 
(PTM) hydrolysis. Key steps with no epistasis (𝜀 = 0) or with mean epistasis (𝜀 = 𝜀)̅ are highlighted along each trajectory for 
comparison. b, Structure of WT PTE (PDB: 4PCP) overlaid with an evolved PTE variant containing a 2-naphthyl hexanoate (2NH) 
transition state analogue (PDB: 43ET). d, Structure of a derived MPH variant (PDB: 1P9E) with molecular docking of parathion-
methyl (PTM)14. Red bars represent positive epistasis, while blue bars indicate negative epistasis. Idiosyncratic (𝜀) and mean 
epistasis (𝜀 )̅ are displayed for each interaction. Blue and red residues represent destabilizing and stabilizing mutations with 
respect to idiosyncratic epistasis, respectively. The blue and red color coding is consistent across all panels. 

Discussion 
In this study, we demonstrated high levels of idiosyncrasy in both single mutational effects and epistasis 
across 45 combinatorial landscapes representing seven enzymes. The success in predicting the functional 
effects within combinatorial landscapes by the global model, using epistatic coefficients as low as the 3rd 
order (Fig. 4c), may suggest that fitness landscapes (up to seven mutational combinations) can be 
explained by relatively simple interaction terms16,17. In this study, however, we find that the global view 
is not always useful to deconvolute specific evolutionary trajectories, because each mutational path can 
contain idiosyncrasy that permits or restricts the accessibility of certain genotypes. The idiosyncrasy is 
inherently a by-product of higher-order epistasis; thus, higher-order epistasis should not just be perceived 
as an additional epistatic contribution stemming from three or more characterised mutations, but more 
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importantly, as the source of evolutionary idiosyncrasy. Indeed, we observed high idiosyncrasy even in 
the 3rd and 4th orders of epistasis suggesting that epistasis at the 5th – and higher – order(s) is creating 
strong idiosyncrasy which, in turn, leads to a strong deviation between the epistasis arising in a particular 
genotype and its global (or average) effect (Fig. 3c and Extended Data Figs. 3-4). Thus, as a protein 
gradually accumulates mutations, the single mutational effects and epistasis are expected to be steadily 
idiosyncratic, and therefore predicting their evolutionary behaviours at any given genotype is challenging.  

The underlying biophysical basis of idiosyncrasy has yet to be uncovered. We suspect that the 
observed epistatic interactions are partitioned into subnetworks within the grand interaction network of 
the protein, including the protein’s ligands, cofactors, and substrates1,36–38. If the modularity of protein 
epistatic networks is indeed a key factor in dictating idiosyncrasy, and therefore a major component of 
understanding higher-order epistasis, it is essential to combine epistatic analysis with techniques probing 
the molecular and structural bases of these networks39, e.g., using tools such as molecular dynamics 
(MD)38,40 and nucleic magnetic resonance (NMR)41, particularly in the context of interactions through 
other molecules1. By deepening our understanding of these parameters, we may be able to account for 
idiosyncrasy a priori and smoothen the apparent noise in our protein fitness landscapes.  

Our observations also provide important implications for the engineering of new proteins. Recent 
advances in high-throughput mutational characterisation approaches, such as deep mutational scanning 
(DMS), provide access to a large mutational dataset around the WT background but are generally limited 
to single and double mutants42,43. However, engineered targets generally stray further from their 
genotype, and, as we have shown, local information is insufficient for the accurate prediction of 
evolutionary intermediates and endpoints (Fig. 4c and 5a). In some instances, this caveat has been 
overcome using in silico techniques employing co-evolutionary based models such as direct coupling 
analysis44, or natural language processing45, which demonstrate great success in predicting sequences 
with enhanced functions. Albeit, such techniques are currently unsatisfactory when it comes to 
predictions of evolutionary paths towards non-native ligands and substrates. We acknowledge that there 
are more sophisticated machine-learning (ML) based models that may provide greater success in 
functional prediction than the ones used in this study46,47. However, explicit incorporation of higher-order 
epistasis into these models has shown impaired prediction, possibly due to the incorporation of ‘noise’ 
stemming from idiosyncratic effects46. Nevertheless, our results advocate attempts to incorporate 
idiosyncrasy into ML models, or at least warrant an acknowledgement of the ability to which idiosyncrasy 
can distort predictions. Likewise, the prevalence and impact of idiosyncrasy shown in our study reaffirm 
the importance of broader fitness landscape exploration, where ML can also be employed47. We hope that 
in the future it may be feasible to use the predictive power of ML models and broader characterisation of 
fitness landscapes, combined with other biophysical and biochemical inputs such as DMS, structural 
prediction tools, and biophysical analyses, to gain a deeper understanding of idiosyncrasy and higher-
order epistasis, greatly elevating the level of prediction for protein engineering efforts.  
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Methods 
PTE Combinatorial landscape. During the directed evolution of PTE for higher arylesterase activity, we 
previously identified a cluster of six function-altering mutations30–32. Here, we construct one of the 
combinatorial landscapes analysed in this study. We explored these six positions on the genetic 
background of WT PTE (64 variants), and tested all of their combinations for activity against 2-naphthyl 
hexanoate (2NH), as described previously13. Briefly, the 64 variants were constructed by site-directed 
mutagenesis and subcloned into a pET-27-STREP vector13. The variants were then transformed into E. 
coli BL21(DE3) carrying the pGro7 plasmid (Takara, Shiga, Japan) for GroEL/ES chaperones co-
expression48. Variants were individually inoculated in 96-deep well plates containing lysogeny broth (LB) 
media, 100 μg/mL ampicillin, and 34 μg/mL chloramphenicol, then grown overnight at 30°C. Overnight 
cultures were transferred to a new deep well plate containing LB, supplemented with 100 μg/mL 
ampicillin, 34 μg/mL chloramphenicol, 200 μM ZnCl2, and 0.2% (w/v) arabinose for chaperone co-
expression, then induced with 1 mM IPTG. Pellets were lysed with lysis buffer (50 mM Tris-HCl buffer, 
100 mM NaCl, pH 7.5, 0.1% (w/v) Triton-X100, 200 μM ZnCl2, 100 μg/mL lysozyme and 1 μL benzonase 
(25 U/μL) per 100 mL of lysis buffer). Lysates were incubated with 200 μM 2NH + 1 mM Fast Red and 
hydrolysis was monitored at 500 nm. 

Data processing. Data from various studies were compiled and standardized to a spreadsheet format 
described previously13. The values of reported functions were divided by the WT-background function, 
or, in the presence of replicates, by the mean of the WT-background functions, then log10 transformed.  
However, we raised 10 to the power of all the TEM-1 growth rate values from Mira et al. before using 
them in our standard pipeline, as the growth rates from this study are assumed to be additive and not 
multiplicative. All processed files are provided (Supplementary File 1). We also chose not to apply the 
non-linear power transform19,49, which we address in the supplementary material (Supplementary File 
3). 

ΔF and ɛ calculation. Genotypes were represented by a string of amino acids that underwent mutation, 
then encoded using ‘0’ for ancestral states, and ‘1’ for derived states at the given amino acid positions. 
The single mutational effect (ΔF) of a mutation at position i was calculated for each genetic background 
by computing the difference between Fi=0 and Fi=1. The mutational transition for the ΔF is denoted with ‘x’ 
which represents a transition from ‘0’ to ‘1’, e.g., the ΔFx001 represents ΔF of mutating position 1 in the 
position 4 mutant background and is equal to F1001 - F0001. Epistasis (ɛ) between two positions i and j were 
calculated for each genetic background by computing the difference between the ΔFi=x, j=0 and ΔFi=x, j=1. For 
example, the ɛxx00 represents the additional functional contribution of the combination of the first and 
second position in the WT background and is equal to ΔFx100 – ΔFx000. This is equivalent to ΔF1x00 – ΔF0x00. 

As with pairwise interactions, higher-order ɛ was calculated by taking the difference between ɛ of the 
previous order, e.g., ɛxxx0 = ɛxx10 – ɛxx00. 

WT-background model. The function of a genotype was predicted using the WT-background model as a 
sum of all mutational (ΔF) and epistatic (ɛ) effects in the WT-background: 

 
𝐹 =,∆𝐹+𝑥+

,

+-&

+,𝜀+.𝑥+𝑥. +⋯
,

+/.

 (2) 

Where i (and j) represents the index of residue position, xi is either ‘0’ or ‘1’ depending on the mutational 
state of the residue in the given genotype, and F is the function. This is analogous to the biochemical view 
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of epistasis from Poelwijk et al.16, however, our model uses F values that do not represent ΔG of the 
protein or enzymatic reaction. 

Global model. The linear regression model, or global model, employed for epistatic analysis was the same 
as those used previously13,14,25. Briefly, mutations at n residue positions were annotated with variables ‘-
1’ for the ancestral state or ‘1’ for the derived state. These were used as x variables in the linear model, F 
is the log10 transformed and WT-normalized function of the variant. The linear model was constructed 
such that: 

 
𝐹 = 𝛽0 +,𝛽+𝑥+

,

+-&

+,𝛽+.𝑥+𝑥. +⋯+ 	𝜖
,

+/.

 (3) 

Where i (and j) represents the index of residue position, xi is either ‘-1’ or ‘1’ depending on the mutational 
state of the residue in the given genotype, b are the linear coefficients, and 𝜖 is the error16.  

Absolute Error (AE) calculation for the endpoint variant. For each of the 45 combinatorial landscapes, 
the endpoint was selected as the genotype furthest mutationally removed from the WT-background. AE 
of the prediction from each order of the WT background and linear model was calculated using the 
following formula: 

 𝐴𝐸 = 4𝐹123 − 𝐹%4564 (4) 

Where Fobs is the log10 WT-normalized function of the final variant in the landscape, and Fpred is the log10 
WT-normalized predicted function of the final variant. The mean and median of the AEs in Fig. 4c 
represents the arithmetic mean and median of the AEs for each model and order pairing. 

Code and Data Availability 
Data for all combinatorial landscapes are provided in log10-transformed WT-normalized format 
(Supplementary Data 1). Processed data for functional contributions (Supplementary Data 2) and epistasis 
(Supplementary Data 3) are also available. Scripts for individual combinatorial landscape analysis and the 
global statistical analysis are publicly available via GitHub at 
https://github.com/karolbuda/epistasis_analysis_v2. The scripts for plotting epistasis on PDB structures 
were adapted from Miton et al.13. The scripts utilize the R language (https://www.R-project.org/), along 
with R packages: tidyverse (https://CRAN.R-project.org/package=tidyverse), igraph (https://CRAN.R-
project.org/package=igraph), gtools (https://CRAN.R-project.org/package=gtools), e1071 
(https://CRAN.R-project.org/package=e1071), svglite (https://CRAN.R-project.org/package=svglite), 
ggrepel (https://CRAN.R-project.org/package=ggrepel), ggpubr (https://CRAN.R-
project.org/package=ggpubr), and knitr (https://yihui.org/knitr). 
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Extended Data 

 
Extended Data Fig. 1 | Expanded histograms from Figs. 3a and 3c. a, Distribution of log10 2σ of ε at each order for all mutational 
combinations, with annotated dashed lines representing 1.5-fold, 2-fold, 5-fold, and 10-fold significance thresholds, respectively. b, 
Distribution of the WT-background idiosyncratic epistasis quantified via the absolute difference of 𝜀 from 𝜀̅ at each combination. 
Dashed lines represent 1.5-, 2-, 5-, and 10-fold significance thresholds, respectively. 
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Extended Data Fig. 2 | Trends in mutational and epistatic effects with respect to a genotype’s starting function. a, Relationship 
between stating function and mutational functional contribution (∆𝐹) for 11 adaptive landscapes. b, Relationship between stating 
function and epistasis (𝜀) for 11 adaptive landscapes. Lines represent local regressions using the LOESS method. Rho (𝜌) represents 
the spearman correlation coefficient for each landscape. 
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Extended Data Fig. 3 | Trends in pairwise epistasis with respect to alpha carbon distance between the two positions. Only 
epistatic values from the 11 adaptive landscapes were used. Structures were obtained from PDB IDs (3TG0, 3CXK, 6A2K, 5HIF, 
7NMP, 3HBR, 4PCP, 1XPB) for AP, E.coli DHFR, P. falciparum DHFR, MPH, NfsA, OXA-48, PTE, and TEM respectively. Lines 
represent local regressions using the LOESS method. Rho (𝜌) represent the spearman correlation coefficient for each landscape. 

Extended Data Table 1 | Sign variation of the positions’ (1st order) and combinations’ (2nd, 3rd, and 4th orders) DF’s and ɛ 

 Homogeneous Semi-Homogeneous Heterogeneous 

Order Negative Neutral Positive Negative-Neutral Neutral-Positive Negative-Positive 

1 1.4% (3/214) 0.9% (2/214) 9.8% (21/214) 7.5% (16/214) 16.4% (35/214) 64.0% (137/214) 

2 1.2% (5/419) 1.2% (5/419) 3.1% (13/419) 8.8% (37/419) 15.3% (64/419) 70.4% (295/419) 

3 3.7% (16/438) 2.3% (10/438) 11.9% (52/438) 14.6% (64/438) 13.5% (59/438) 54.1% (237/438) 

4 4.5% (11/245) 2.0% (5/245) 4.1% (10/245) 20.4% (50/245) 17.1% (42/245) 51.8% (127/245) 
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Extended Data Table 2 | Percent of positions (1st order) and combinations (2nd, 3rd, and 4th order) that show a 2σ for DF or 
ɛ above the listed thresholds. 

 Threshold 

Order 1.5-fold 2-fold 5-fold 10-fold 

1 98.6% (211/214) 95.8% (205/214) 70.1% (150/214) 53.3% (114/214) 

2 98.6% (413/419) 92.4% (387/419) 60.1% (252/419) 40.6% (170/419) 

3 95.9% (420/438) 85.4% (374/438) 45.4% (199/438) 29.7% (130/438) 

4 98.0% (240/245*) 83.3% (204/245*) 49.8% (122/245*) 24.9% (61/245*) 

* 4th order considers 245 out of the total 267 combinations as some landscapes have a single 4th order data point and a 2σ 
cannot be computed 

Extended Data Table 3 | Percent of positions and combinations that show a WT DF or WT ɛ to mean DF or mean ɛ 
deviation above the listed thresholds. 

 Threshold 

Order 1.5-fold 2-fold 5-fold 10-fold 

1 67.8% (145/214) 51.4% (110/214) 19.6% (42/214) 6.5% (14/214) 

2 64.4% (270/419) 51.6% (216/419) 21.7% (91/419) 6.4% (27/419) 

3 55.7% (244/438) 34.5% (151/438) 18.9% (83/438) 7.3% (32/438) 

4 62.4% (153/245) 33.9% (83/245) 6.9% (17/245) 4.9% (12/245) 

 

Extended Data Table 4 | Percent of genotypes that show a DF or ɛ to mean DF or mean ɛ deviation above the listed 
thresholds. 

 Threshold 

Order 1.5-fold 2-fold 5-fold 10-fold 

1 59.0% (2396/4064) 40.5% (1646/4064) 14.8% (601/4064) 8.1% (331/4064) 

2 52.8% (2466/4672) 34.9% (1630/4672) 13.4% (624/4672) 7.7% (358/4672) 

3 49.3% (1467/2976) 30.7% (913/2976) 11.6% (345/2976) 7.6% (227/2976) 

4 60.0% (627/1120) 34.6% (387/1120) 9.0% (101/1120) 5.0% (56/1120) 

 

Extended Data Table 5 | Mean and median absolute error of the models’ prediction for the derived variant at each model 
order. 

Model 1st Order  2nd Order 3rd Order 4th Order 

Linear 2.9-fold | 2.3-fold 2.0-fold | 1.8-fold 1.3-fold | 1.2-fold 1.1-fold | 1.1-fold 

WT-background 20.5-fold | 8.0-fold 106.2-fold | 63.7-fold 51.1-fold | 9.0-fold 25.5-fold | 4.5-fold 
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Extended Data Table 6 | WT-background model absolute error in predicted log-transformed function (log10 
F) of each variant in the most accessible path by model order. 
   

Order 
 

Predicted 
Variant 

Mutations 
Trajectory 1st 2nd 3rd 4th 5th 6th 

2 DHFR IC75 
0.03 - - - - - 

3 0.46 0.12 - - - - 
2 

DHFR G-Traj. 

0.61 - - - - - 
3 1.26 0.02 - - - - 
4 2.14 1.90 0.36 - - - 
5 3.17 3.04 2.02 0.40 - - 
2 

DHFR R-Traj 

0.61 - - - - - 
3 1.26 0.02 - - - - 
4 1.84 0.83 0.17 - - - 
5 2.43 2.63 1.17 0.50 - - 
2 

MPH Zn PTM 

0.06 - - - - - 
3 0.69 0.00 - - - - 
4 0.55 1.90 0.23 - - - 
5 0.88 3.38 0.85 0.70 - - 
2 

NfsA 20_39 

0.14 - - - - - 
3 0.32 0.01 - - - - 
4 0.44 0.09 0.07 - - - 
5 0.60 1.17 0.27 0.23 - - 
2 

NfsA 36_37 

0.13 - - - - - 
3 0.32 0.17 - - - - 
4 0.47 0.46 0.54 - - - 
5 0.81 0.12 0.88 0.91 - - 
6 0.87 0.33 1.53 1.42 0.74 - 
7 0.91 0.2 0.71 2.23 3.50 1.91 
2 OXA-48 CAZ 

Traj. 1 

0.80 - - - - - 
3 1.07 0.55 - - - - 
4 1.08 0.32 0.27 - - - 
2 

OXA-48 CAZ 
Traj. 2 

0.03 - - - - - 
3 0.18 0.34 - - - - 
4 0.63 0.62 0.38 - - - 
5 0.68 0.70 0.13 0.13 - - 
6 0.61 0.45 0.80 0.72 0.24 - 
2 OXA-48 CAZ 

Traj. 3 

0.50 - - - - - 
3 0.84 0.21 - - - - 
4 0.88 0.50 0.19 - - - 
2 

PTE 2NH 
0.03 - - - - - 

3 0.17 1.00 - - - - 
4 0.58 0.95 0.88 - - - 
2 

TEM MIC 

2.23 - - - - - 
3 3.00 1.47 - - - - 
4 3.23 4.16 1.93 - - - 
5 3.38 4.24 1.27 0.27 - - 
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