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Abstract41

Aim: Linking local population dynamics and species distributions is critical to predicting42

the impacts of climate change. While many studies focus on the mean fitness of populations,43

theory shows that species distributions can be shaped by demographic stochasticity or44

population resilience. Here we examine how mean fitness (measured by invasion rate),45

demographic stochasticity, and resilience (measured by the ability to recover from disturbance)46

constrain populations at the edges compared to the climatic center.47

Location: Europe: Spain, France, Germany, Finland, and Sweden.48

Period: Forest inventory data used for fitting the models cover the period from 1985 to49

2013.50

Major taxa: Dominant European tree species; Angiosperms and Gymnosperms.51

Methods: We developed dynamic population models covering the entire life cycle of 2552

European tree species with climatically dependent recruitment models fitted to forest inventory53

data. We then ran simulations using integral projection and individual-based models to test how54

invasion rates, risk of stochastic extinction, and ability to recover from stochastic disturbances55

differ between the center and edges of species’ climatic niches.56

Results: Results varied among species, but in general, demographic constraints were57

stronger at warm edges and for species in harsher climates. Conversely, recovery was more58

limiting at cold edges. In addition, we found that for several species, constraints at the edges59

were due to demographic stochasticity and recovery capacity rather than mean fitness.60

Main conclusion: Our results highlight that mean fitness is not the only mechanism at61

play at the edges; demographic stochasticity and population capacity to recover also matter for62

European tree species. To understand how climate change will drive species range shifts, future63

studies will need to analyse the interplay between population mean growth rate and stochastic64

demographic processes as well as disturbances.65

1 Introduction66

Given the magnitude of the projected climate changes, the distribution of tree species across Europe67

is likely to change significantly (Cheaib et al. 2012). Understanding how local population dynamics68

control large-scale tree species distributions is crucial to predict range shifts (Schurr et al. 2012).69

However, we still have a very crude understanding of this relationship.70

The Hutchinsonian niche concept states that species ranges correspond to the environmental71

conditions where population performance allows them to persist (Godsoe, Jankowski, Holt & Gravel72

2017; Hutchinson 1978). Although this relationship could also be influenced by other processes,73

such as dispersal and non-equilibrium dynamics (Holt, Keitt, Lewis, Maurer & Taper 2005), most74

empirical studies have focused on the importance of local tree population growth rate for maintaining75

viable populations within the species range (Csergo et al. 2017; Le Squin, Boulangeat & Gravel76
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2021; Purves 2009). However, theoretical studies have demonstrated that the links between species77

distributions and local population dynamics could be more complex than just an effect on mean78

population growth rate (Holt, Keitt, Lewis, Maurer & Taper 2005; Sexton, McIntyre, Angert & Rice79

2009).80

Holt, Keitt, Lewis, Maurer & Taper (2005) proposed three mechanisms that could lead to stable81

range limits. The first mechanism is based on the classical idea that species are present where their82

mean population growth rate allows their presence to be maintained. Previous studies generally used83

density-independent models and were thus estimating mean finite population growth rate (Csergo84

et al. 2017). However, for populations with strong density-dependence, such as trees, invasion85

rate (net reproduction rate when rare) is more appropriate than population growth rate(Le Squin,86

Boulangeat & Gravel 2021; Pagel et al. 2020; Purves 2009). The second mechanism, demographic87

stochasticity, describes the random fluctuations in population size due to probabilistic discrete events88

of individual tree recruitment and death (quantified by the demographic variance, see Melbourne89

2012, for an in-depth definition), which might ultimately result in local extinction. Extinction90

risk increases when demographic variance increases or when the number of individuals decreases91

(Engen, Sæther & Møller 2001). The third mechanism, environmental stochasticity, assumes that92

temporal variations in extrinsic environmental conditions, such as climatic or disturbances, may93

affect population persistence and thus species distribution (Holt, Keitt, Lewis, Maurer & Taper94

2005; Ovaskainen & Meerson 2010). In forest ecosystems, the ability of the population to recover95

from external disturbance is critical (Seidl et al. 2017). The last two mechanisms, demographic and96

environmental stochasticity, could explain why populations experience local extinctions even when97

mean climatic conditions are favorable (Holt, Keitt, Lewis, Maurer & Taper 2005).98

Recently, several studies have assessed how population dynamics drive tree species distributions99

using National Forest Inventories (hereafter NFIs) (Kunstler et al. 2021; Le Squin, Boulangeat &100

Gravel 2021; Purves 2009; Thuiller et al. 2014). However, to our knowledge, there have been no101

systematic tests of the respective roles of demographic and environmental stochasticity for range102

limits of tree species (but see Pagel et al. 2020, for shrub response to fire disturbance in South103

Africa), probably because most studies either ignored recruitment or assumed it was independent104

of climate (Kunstler et al. 2021; Le Squin, Boulangeat & Gravel 2021, but see Purves et al. 2009).105

Recruitment, however, is a key stage of the life cycle to properly explore the role of stochastic106

processes (Grubb 1977; Holt, Keitt, Lewis, Maurer & Taper 2005).107

Here, we assessed the relative importance of the three mechanisms presented above on the108

continental distributions of 25 European tree species. We extended the integral projection model109

(IPM) recently developed for European tree species (Kunstler et al. 2021) by adding110

species-specific climate- and density-dependent recruitment models. The IPMs developed here111

describe the full life cycle of each species. As such they allowed us to estimate metrics of112
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population performance representative of the three mechanisms proposed by Holt, Keitt, Lewis,113

Maurer & Taper (2005) and then test how they differ between the centre and the edges of the114

species climatic niches (see Fig. 1 for an overview of the metrics and the tests). More specifically,115

we tested the following hypotheses: (H1) Mean population performance, measured by the invasion116

rate, decreases at the edge relative to the center (Brown 1984). (H2) The risk of stochastic117

extinction increases at the edge relative to the center because of a higher demographic118

stochasticity and/or a smaller tree density at equilibrium (Holt, Keitt, Lewis, Maurer & Taper119

2005). (H3) The ability to recover from stochastic disturbances decreases at the edge compared to120

the center. The type of constraints operating at the edge is likely to vary between edge types with121

different physiological constraints. Thus, we also tested whether the role of the three mechanisms122

(H1 to H3) differs between the hot and dry edge vs. the cold and wet edge (H4). Finally, we tested123

whether the strength of limitation at the edge is stronger for species’ edges in the extremes of124

European climate (hot edges of hot-distributed species and cold edges of cold-distributed species,125

H5).126

2 Materials and Methods127

2.1 Forest Inventory and climatic data128

National Forest Inventory dataset To fit vital rate functions (growth, survival, and129

recruitment), we used the European forest inventory data compiled in the FunDivEUROPE130

project (Baeten et al. 2013). The dataset contains information on individual trees in 91,528 plots131

across Spain, France, Germany, Sweden and Finland, with records of species identity, diameter at132

breast height (dbh), and status (alive, dead, harvested) at two surveys. These data allow to both133

track individual growth and survival and to describe local competition. The minimum dbh of trees134

was 10 cm and no data were available on either seed production by conspecific adult trees, or135

seedling and sapling growth/survival. We thus did not disentangle the different stages leading to136

the ingrowth of a 10 cm dbh tree (i.e. trees that grew larger than the 10 cm dbh threshold between137

two surveys).138

Survey design varies between countries, but generally plots are circular with variable radii139

depending on tree size (largest radius ranging from 10 m to 25 m, see protocols in Supporting140

Information SI 1). We excluded from the analyses all plots with records of harvesting operations or141

disturbances between the two surveys, which would otherwise influence our estimation of local142

competition.143

Climate variables Following Kunstler et al. (2021), we used two climatic variables known to144

control the physiological performance of trees to fit our vital rates functions: the sum of degree145
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days above 5.5◦C (hereafter sgdd), and the water availability index (wai). wai is calculated as146

(P − PET )

PET
(Ratcliffe et al. 2017), with P the annual precipitation and PET the potential147

evapotranspiration. Daily temperature and P were extracted from Moreno & Hasenauer (2016),148

and PET from the Climatic Research Unit data (Harris, Jones, Osborn & Lister 2014). Climate149

variables were averaged over the years between the two surveys, plus two years before the first150

survey, to account for potential lag effects.151

2.2 Integral Projection Model models152

An IPM predicts the size distribution, n(z′, t + 1), of a population at time t + 1 from its size153

distribution at time t, n(z, t), based on a kernel K(z′, z) (with z and z′ the size at time t and154

t + 1) (Easterling, Ellner & Dixon 2000). Here, we consider size as the diameter at breast height155

(dbh). K(z′, z) can be split into the survival and radial growth kernel P (z′, z) and the fecundity156

kernel F (z′, z), as follows : K(z′, z) = P (z′, z) +F (z′, z). The survival and radial growth (hereafter157

growth) kernel P (z′, z) is defined as P (z′, z) = s(z) ∗ G(z′, z), s being the survival function and G158

the growth kernel. The fecundity kernel F (z′, z) gives the size distribution of newly recruited trees159

at time t+ 1 as a function of the size distribution at time t.160

Below we describe the fitting of the recruitment, growth and survival functions. Each of these161

vital rate functions were fitted separately for each species. The impact of climate on vital rates162

was modelled through two potential alternative shapes: asymptotic or quadratic polynomial. This163

allowed us to capture alternative climate responses such as increasing, decreasing, or bell-shaped.164

To account for uncertainty in the climatic response shape, for each species, we fitted 100 models to165

70% of resampled data and selected each time the best climatic response model based on the Akaike166

information criterion (i.e. lowest AIC; see Burnham & Anderson 2002). Then, we evaluated the167

goodness of fit on the remaining 30% of the data (see SI 2.2). In the remaining analysis we used168

the 100 models to translate the uncertainty in the vital rate functions into the metrics of population169

dynamics.170

Recruitment function We developed a recruitment model that accounted for two main processes:171

fecundity of the conspecific trees (represented by a power function of the basal area of conspecifics),172

and the competitive effect of heterospecific and conspecific (represented by an exponential function173

of their basal area, see SI 2.3). After thorough exploration of different distributions for the number174

of recruited trees, we fitted for each species a model with a negative binomial distribution using175

the approach presented above for the climate response. Because the angle count sampling method176

used in the German NFI makes recruitment analysis difficult, we excluded this country from the177

recruitment analysis. We used country-specific intercepts to account for variance due to national178

specificites (e.g. differences in protocols between NFIs), and an offest for the different number of179
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years between surveys.180

Finally, in the IPM, we included a delay in tree recruitment to account for the time it takes181

for a sapling to reach the minimum dbh, meaning that a newly recruited tree is integrated into the182

population only after 10 years (see SI 2.4).183

Growth and survival functions The radial growth and survival were modelled as functions of184

dbh, basal area of competitors and climatic conditions (sgdd and wai) as well as country-specific185

intercepts (as for recruitment). A normal random plot effect accounting for unexplained variation186

at the plot level was included in the growth model. No random plot intercept was included in the187

survival model, because in most plots no individuals died between the surveys, making the estimation188

of a random plot effect difficult. Growth models were fitted with a log normal distribution. Survival189

models were fitted with a generalized linear model with a binomial error and a complementary log-190

log link with an offset representing the number of years between the two surveys to account for191

variable survey times between plots (Morris, Vesk & McCarthy 2013). Models with interactions192

between the climate variables and both size and competition were also tested, to allow trees to have193

different climatic response depending on their size or their competitive environment. Equations are194

presented in SI 2.2, and more details are given in Kunstler et al. (2021).195

Harvesting is present in all populations and probably leads to a lower natural mortality rate196

compared to unmanaged forests. Thus, a fixed harvest rate was added to natural mortality in the197

kernel P . We chose to use the mean annual probability of harvesting over the entire dataset and not198

to include variability in the harvest rate because we are focusing on the climatic drivers of species199

distribution and not on the effect of management.200

2.3 Simulations of population dynamics201

We simulated dynamics of discretized size distribution Xt (number of individuals per size classes,

corresponding to integration of n(z, t) over each size class) with a matrix formulation of the IPM as

follow:

Xt+1 =
(
P(BAtot

t ) + F(BAhet
t , BAcon

t )
)
× Xt (1)

with P and F the matrices representing the kernel P and F with the dbh range divided into 700202

bins (see SI 2.4 for the numerical integration). Due to the density-dependence of growth, survival,203

and recruitment rates, the matrix P depends on the basal area of competitors at time t: BAtot
t , and204

the matrix F on heterospecific and conspecific basal area, respectively BAhet
t and BAcon

t .205

To explore the effect of demographic stochasticity on the dynamics of small populations, we also206

developed an individual based model (IBM) based on the same vital rate functions as the IPM (see207

SI 2.6). For each species, we ran 100 IBM and IPM simulations using the 100 resampled vital rate208

functions to represent their uncertainty.209
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Equilibrium All population metrics, at the exception of invasion rate, were computed starting210

from equilibrium, because observed tree distributions at the climatic center or edges were highly211

variable. We identified the size distribution at equilibrium Xe for each species and climatic position212

by running simulations with various random initial states until the variations in Xt were negligible.213

There is no direct analytical solution of the equilibrium for density-dependent IPMs. Still, we checked214

that our simulations matched the analytical solution for IPMs with a constant transition matrix P215

calculated at the equilibrium basal area (as proposed by Rebarber, Tenhumberg & Townley 2012;216

Townley, Rebarber & Tenhumberg 2012, see SI 2.5).217

For a small number of species and models, simulations did not reach equilibrium because they218

predicted a continuous increase in basal area. We discarded models that continued to increase above219

200 m2ha−1 of basal area at the end of the simulation (the observed maximum basal area in our220

dataset is 126m2ha−1). As simulations work on continuous population abundances, there is no strict221

extinction. However, there may be very low tree density, which will make the computation of some222

metrics numerically unstable (recovery from perturbations, for example). In the simulations, we223

defined a lower limit for basal area of 1m2ha−1 (corresponding to one tree of 10 cm in a circle of 10224

m diameter) under which populations were not analysed.225

If a simulation did not lead to demographic equilibrium (i.e. basal area less than 1m2ha−1 or226

increasing above 200 m2ha−1), the simulation was discarded from further analysis. Also, we fully227

excluded a species edge from the analysis when less than 50% of the models showed demographic228

equilibrium (see table S7 in Supplementary Information). In total, only about 9% of the resampled229

models did not lead to an equilibrium and 5 % of species’ edges were excluded (see SI 2.5).230

2.4 Population metrics231

2.4.1 Invasion rate232

Invasion rate was used to evaluate mean fitness. In size-structured populations, the invasion rate233

is measured by the net reproductive rate, R0, of a rare invader (Falster, Brännström, Westoby &234

Dieckmann 2017). In our density-dependent IPM, we estimated R0 by assuming the basal area of the235

invader was small and had no density-dependent effects on the matrices F and P. Doing so allowed236

us to use the same equation as for density-independent IPMs (the dominant eigenvalue of the matrix237

F.(I − P−1), see SI 2.7 and Ellner, Childs, Rees, et al. 2016). As we considered that the invader238

was rare, we set the conspecific basal area to a low value of 0.1 m2ha−1 in F . We computed R0239

for two conditions of heterospecific competition: no heterospecific competition (where BAhet = 0),240

and a high level of heterospecific competition (where BAhet = 60 m2ha−1, corresponding to a dense241

closed forest in our data).242
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2.4.2 Demographic stochasticity243

To evaluate the effect of demographic stochasticity, we derived the time to extinction for finite244

populations with 250 IBM simulations for each species, climatic condition, and resampled model.245

We initiated simulations by randomly sampling a finite number of trees from the distribution at246

equilibrium Xe and for a surface of 100 m2 and ran the simulation for 1000 years. Following Grimm247

& Wissel (2004), we extracted the parameter Tm from these simulations, which corresponds to the248

intrinsic mean time to extinction. While this provides estimates of time to extinction for a very249

small population that are likely to be much shorter than for large populations in the field, it has the250

advantage of providing a tool for comparing stochastic extinction between edge and center.251

Then, we derived two metrics that drive time to extinction: the density at equilibrium and252

the demographic variance. Density at equilibrium was computed from long-term simulations, as253

presented above. We computed the demographic variance from time-series of the total reproductive254

values (Engen, Lande, Sæther & Dobson 2009; Jaffré & Le Galliard 2016) estimated with long-term255

IBM simulations (3000 years), on a plot area of 1 ha (see SI 2.7).256

2.4.3 Population disturbance recovery ability257

We used damping time to test a population’s ability to recover from disturbances, and two metrics258

related to short-term responses. Damping time (i.e. the time to converge to a stable size structure259

after a disturbance) is independent of the size structure of perturbations (see computation in SI 2.7).260

This metric, however, does not account for short term transient evolution of the size distribution261

after a disturbance, as it is computed around equilibrium. Analytical metrics that characterize262

population transient dynamics can not be used with density dependent models (Capdevila, Stott,263

Beger & Salguero-Gómez 2020). We, thus, used simulations to derive two other metrics: i) T0 – the264

time for the first return to equilibrium density (regardless of the tree size distribution); and ii) Thalf265

– the time until the perturbation intensity was permanently halved. For each species, we disturbed266

its population at demographic equilibrium by reducing the density of the largest trees (above the267

diameter 66th percentile) by half and then simulated its dynamics for 1,000 years. We extracted the268

two metrics from these simulations. For systems that do not present oscillations (i.e. low damping269

time), these two metrics will be highly correlated.270

2.5 Response at the edge271

Niche center and edge definitions Due to the high correlation between the two climate272

variables, we defined the climatic position of each species along a single climatic gradient, the first273

axis of the principal component analysis of the two climatic variables (as Kunstler et al. 2021). For274

each species, the niche center was the median of the first axis, the hot edge the 5th percentile and275

the cold edge the 95th percentile. To ensure each species’ edges corresponded to valid borders of276
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species distribution, we excluded species and edges where occurrence probability did not decline.277

Occurrence probability was computed using BIOMOD2 (Thuiller, Lafourcade, Engler & Araújo278

2009) using presence/absence data from Mauri, Strona & San-Miguel-Ayanz (2017) (see SI 3.2).279

2.5.1 Tests of response at the edge280

Using the 100 resampled species-specific IPMs, we predicted the seven metrics at the climatic center

(Mcenter), at the hot and dry climatic edge (Mhot), and at the cold and wet climatic edge (Mcold). We

then measured the relative response at the edges as Ωhot = log(
Mhot

Mcenter
) and Ωcold = log(

Mcold

Mcenter
).

For each metric and edge type we tested whether Ω = log(
Medge

Mcenter
) was significantly different from

zero (H1 to H4) using a mixed model with edge type effect (hot or cold) as a fixed effect and a

random species effect:

ΩEdge
sp,i = Kedge

sp + σedge
sp + σ (2)

where Kedge
sp is the edge effect.281

To test whether the mean climatic position of the species influenced its response at the edge282

(H5), we analysed for each metric and edge type the relationship between Ω and the species climatic283

center conditions. We performed a regression between the value of the median climatic condition284

and Ω for each edge (taking into account the variance of the 100 resampled models). In addition,285

we tested the robustness of the relationships to the phylogenetic proximity of the tree species with286

a phylogenetic generalized least squares regression (see SI 5, Symonds & Blomberg (2014)).287

All analysis were conducted in R cran (R Core Team 2021), vital rates were estimated using lme4288

(Bates, Mächler, Bolker & Walker 2014) and glmmTMB (Brooks et al. 2017).289

Out of the 27 tree species analyzed, two were fully discarded: Acer campestre due to the absence290

of equilibrium, and Prunus padus due to the absence of decline in its prevalence at niche borders.291

3 Results292

3.1 Metrics of performance at edges relative to the center293

Invasion rate The invasion rate was generally lower at the hot edge than at the center, both in the294

absence of and at high levels of heterospecific competition, Fig. 2. However, the overall effect across295

all species was stronger at high levels of heterospecific competition. In the absence of competition,296

55% of the studied species had a significantly negative relative response Ω, while at high levels of297

competition 64% had significantly negative Ω (see Table S7). Relative differences at the cold edge298

were not significant, with or without competition.299

Demographic stochasticity The time to extinction was lower at the hot edge compared to the300

center, with Ω significantly negative for 10 out of 22 species (45%) (Fig. 2). Of the two potential301
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drivers of time to extinction, only Ω of tree density was also significantly less than zero at the hot302

edge (11 out of 22 species, 50%). Ω of the demographic variance was not significantly positive at303

the hot edge. No significant effects were detected at the cold edge.304

Population disturbance recovery ability Of the three metrics used to study recovery from305

disturbance, we found a significant effect across all species only for damping time; the damping time306

tended to be longer at the cold edge compared to the center, indicating slower recovery (8 out of307

15 species, 53%) (Fig. 2). There was no difference in damping time between the hot edge and the308

climatic center. Lastly, we found no differences at either edge type for the time to reach equilibrium309

density or the time until the perturbation intensity was permanently halved across all species; we310

found as many species with positive as negative responses.311

11

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 23, 2022. ; https://doi.org/10.1101/2022.08.22.504487doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.22.504487
http://creativecommons.org/licenses/by-nc-nd/4.0/


3.2 High species variability in response at the edge312

There was a high variability in species response at the edge, with several species showing no effect,313

or even a higher mean performance at the edge rather than a decrease. This was particularly true for314

invasion rate without competition, see for example Abies alba or Picea abies in Fig. 3. Interestingly,315

for these species, stochastic processes might compensate for the lack of effect on mean fitness at the316

species level.317

At the hot edge, among the nine species that did not show a decline of mean fitness or had318

contrasted mean fitness response (one metric decreased and the other increased), three were319

constrained by the extinction time (see for example Juniperus thurifera or Quercus petraea in Fig.320

3). At the cold edge, it was the case for three out of ten species (see for example, Pinus uncinata321

or Pinus nigra in Fig. 3).322

3.2.1 Species responses vary with their climatic center323

Part of the variability in species response was related to the position of the climatic center of the324

species. Several metrics of response at the edge were more severely constrained for species with325

niche centers in more extreme climates, Fig. 4. At the hot edge, Ω for the invasion rate without326

competition, tree density, T0 and Thalf were significantly more strongly reduced for species with327

mean climatic positions in hotter and dryer conditions. At the cold edge, only the invasion rate328

without competition showed a significant trend, with a stronger reduction in species with a mean329

climate in colder conditions. These results were robust to the inclusion of phylogenetic structure in330

the residuals; it only affected the relationship of invasion rates at the cold edge, and damping time331

at the hot edge (see SI 5).332

4 Discussion333

Despite considerable variation across species, our results show both a consistent decrease in invasion334

rate and increase in extinction risk at the hot edge across all species. These patterns were not335

observed at the cold edge, where only species occurring in extremely cold climates showed a reduction336

in these two metrics. In contrast, we found a decrease in resilience to perturbation at the cold edge337

in most species.338

4.1 Several demographic processes drive species distribution339

4.1.1 Invasion rate (H1)340

Our results demonstrate a limitation in the invasion rate (here the net reproductive rate R0) at the341

hot edge. This limitation is exacerbated in species that occur in extremely hot and dry climates.342

These results are consistent with those of a previous study which found that lifespan decreased at343
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the hot edge (Kunstler et al. 2021). The reduced net reproductive rate at the hot edge is probably344

the result of this shorter lifespan, but also of the lower recruitment at this edge (observed for345

species occurring in hot climate, see SI 4.1). Previous studies have proposed that competition could346

strengthen the limitation on mean fitness at the edge (see Louthan, Doak & Angert 2015). Here347

we found only weak evidence for this, as competition increased the number of species with reduced348

invasion rate at the edge only from 12 to 14 (see Quercus petraea and Abies alba, Fig. 3).349

We found no clear evidence of a general limitation in invasion rate at the cold edge. Only species350

distributed at the cold extreme of the gradient showed signs of reduced invasion rate (such as Betula351

and Pinus uncinata). This insight emerged in our new model covering the full life cycle, but not in352

Kunstler et al. (2021) who did not report a decrease in survival or lifespan for these species. This353

might be driven by a low recruitment rate at the cold edge for species in extremely cold climates354

(Figure S15 and S16).355

We found that the invasion rate in the absence of competition was more strongly constrained356

in species from harsh extremes of European climate (hot and dry or cold and wet, hypothesis H5).357

In contrast, invasion rate was not limited in climatic conditions typical of temperate regions, where358

productivity is high (Jung et al. 2007).359

Direct comparison with previous studies is difficult as they differ in their way of representing360

species distribution and computing mean fitness (Le Squin, Boulangeat & Gravel 2021; Purves361

2009; Thuiller et al. 2014). However, even if the structure of the model is different from ours, it is362

interesting that Purves (2009), in a study on East North American tree species, found a significant363

decrease in invasion rate at the northern edge but not at the southern edge. The fact that fitness364

decreases occur at the opposite edges for tree species in East North America and in Europe might365

be related to differences in climatic space between these continents. The European southern edge366

corresponds to a hot and dry climate, whereas the southern edge of tree species in East North367

America is not limited by drought (Zhu, Woodall, Monteiro & Clark 2015).368

4.1.2 Demographic stochasticity (H2)369

The mean time to extinction represents an integrative metric of the demographic stochasticity which370

increases when tree density decreases and demographic variance increases (Ovaskainen & Meerson371

2010). At the hot edge among the 10 species showing a shorter time to extinction, this decline could372

be related to a change in either demographic variance or tree density or both. This suggests that373

these two processes reinforce each other to result in a stronger reduction in the time to extinction.374

Our results are also interesting in light of the abundant-center hypothesis (Brown 1984), which375

postulates a decrease in tree density at the edge of a species range. Indeed, our analysis of tree376

abundance at long term equilibrium showed that this hypothesis is far from being supported for all377

edges and species. This is in agreement with previous large-scale analyses of observed tree abundance378
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Dallas, Decker & Hastings (2017), Pironon et al. (2017), and Sagarin & Gaines (2002).379

4.1.3 Population recovery after disturbances (H3)380

Holt, Keitt, Lewis, Maurer & Taper (2005) stated that increases in environmental variability can381

explain range limits despite the absence of a decrease in mean fitness. Here, we explored the role of382

the time to recovery from disturbances. Disturbance is a key component of environmental variability383

for tree species. We found an overall significant increase of damping time at the cold edge. This384

changes in a metric of long term recovery might be connected to the slower tree growth at this edge385

reported by Kunstler et al. (2021). In contrast, the effect for the short and midterm metrics of386

population recovery were extremely variable between species (yet, seven species out of 14 showed a387

longer time to return to the equilibrium density). It is noteworthy that these metrics are extracted388

from simulations that might lead to a higher variability than the analytical approach used for389

damping time. At the hot and dry edge, species variability was extremely large. We found evidence390

of an increase of short and midterm metrics only for species with a climatic center in extreme hot391

and dry conditions.392

A key limitation of our approach on disturbance is that we only explored a single type of393

abstract disturbance, whereas the real disturbance regime might vary across the species range and394

play a role in setting distribution limits (Senf & Seidl 2021; Sheil 2016). In addition, it would be395

crucial to also explore how interannual variability in climatic conditions, another key component of396

environmental variability, affects population dynamics. Estimating how natural disturbances and397

interannual climatic variability might affect tree vital rates and population dynamics at the398

continental scale remains, however, challenging.399

4.2 Stronger constraints at the hot edge (H4)400

At the hot and dry edges, we found that the invasion rate was constrained and we observed increased401

stochastic risk of extinction for numerous species. Conversely, constraints at the cold edge were less402

clear, with an indication of a lower resilience in general and a reduced invasion rate only for species403

in extreme cold conditions.404

These differences might emerge if drought directly results in an increased mortality and higher405

extinction risk, whereas cold stress could reduce vital rates and population dynamics and thus406

mechanically increase its response time to disturbances. These differences might also reflect a degree407

of disequilibrium between the current and potential distribution. Climate change might lead to an408

increase in drought pressure at the hot edge (Carnicer et al. 2011) and in contrast a decrease in409

mortality at the cold edge in Europe (Neumann, Mues, Moreno, Hasenauer & Seidl 2017).410
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4.3 On the challenges of connecting population dynamics and species411

distribution412

It is striking that most studies (including this one) found limited concurrence between mean fitness413

and species distribution (Kunstler et al. 2021; Le Squin, Boulangeat & Gravel 2021; Purves 2009;414

Thuiller et al. 2014). The novelty of our study is that we show that when mean fitness is not415

constrained at the edge, stochastic processes can play a key role. Yet, there is still a large variability416

in species responses, with several species having no clear indication of performance constraints or417

even better performances at edges (Salix caprea and Larix decidua at the hot edge andJuniperus418

thurifera at the cold edge). Several factors might explain the results for these species. First,419

we explored species distribution in climate space using only two key climatic variables. Even if420

these variables discriminate well the distribution of the 25 tree species in Europe (see Fig. S14),421

species distribution might be influenced by other climatic variables, or other abiotic factors such as422

soil variables. Secondly, beside environmental space, species distribution can also be analyzed in423

geographic space (see Pironon et al. 2017). In geographic space, dispersal limitation and decrease424

in suitable habitat availability can also explain species range limits in a metapopulation framework425

(Holt & Keitt 2000). Thirdly, species distributions are not necessarily in equilibrium with current426

climatic conditions. Highly managed species (such as Pinus pinaster or Picea abies) can be planted427

outside their native range. Svenning & Skov (2004) also argued that tree species might still be in428

the process of slow recolonization since the last glacial age. Here, by initiating our simulations at429

equilibrium, we effectively removed all legacy effects. Then, as discussed above, climate warming430

could change constraints at edges (Clark et al. 2021), and explain the difference observed at the hot431

vs. the cold edge. Finally, our ability to capture the complex population dynamics of long-lived432

organisms such as trees is still limited and might explain the poor match with the distribution.433

For instance, our models do not consider potential variability in seed production, juvenile growth434

or survival, which could however also constrain species ranges (Clark et al. 2021). In addition,435

we explored the role of competition in a relative crude way, considering the competitor effect only436

through basal area and ignoring the complexity of multispecies interactions. A full exploration of437

its role would require analysing how the stochastic dynamics of multispecies community constrains438

species range (Godsoe, Jankowski, Holt & Gravel 2017).439

4.4 Conclusion440

Our study is one of the first to tease apart several mechanisms that could lead to species range441

limits using field data across a large set of species at the continental scale. Our results show that442

the mean fitness may not be the only mechanism at play at the edge; demographic stochasticity and443

population recovery ability also matter for European tree species. Thus, to understand how climate444
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change will drive species range shifts, we encourage ecologists to analyse the full life cycle of trees445

and explore how the average population growth rate interacts with stochastic processes and recovery446

from disturbances in driving species ranges.447
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Figure 1: Conceptual figure illustrating the three groups of mechanisms that could limit species

distribution at their edges proposed by Holt et al. (2005) (a, b, and c), and the approach to test

their responses at the hot and dry or the cold and wet edges, and their variation depending on species

climatic center (d, e, and f). (a) Mean fitness is estimated by the invasion rate as the population’s

ability to grow when rare (black lines represent two different population trajectories of invaders

and the red arrows their estimated invasion rates), (b) demographic stochasticity is measured as

the variability of tree density solely due to stochasticity of vital rates and its effect on the risk of

stochastic extinction (lines represents stochastic tree density variations in small populations that

results in extinction for the solid line at the red cross), (c) resilience to disturbance is measured as

the recovery time of a tree population after disturbance (represented by the red arrow). (d) Values

of population performances m for three species at their climatic niche center (black circle), hot and

dry edge (red circle) and cold and wet edge (blue circle) (value along the x-axis represents their

positions on the climatic gradient), (e) index of response at the edge in comparison to the center –

Ωedge for the three species, filled points represent significant species responses and the horizontal line

represents the overall effect allowing to test if there is a general response of Ω across all species, (f)

variations of Ω with species’ climatic niche center (i.e. median of their positions along the climatic

axis). The three graphics present the expected results according to our hypotheses: population

performance decline at the edges which is equivalent to Ω < 0 at each edge, and Ω decrease is

stronger at the hot and dry edges of species occurring in hot climate and at the cold and wet edge

of species occurring in cold climate. See Materials and Methods for a full description of the metrics,

Ω, and the statistical tests.
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Figure 2: Relative metrics Ω by edge. Each symbol represents a species, error bar is the range of

5 and 95 percentiles. Relative metrics significantly different from 0 (see text) are represented by

full circles, otherwise by empty circles. Colored thick horizontal lines represent the edge effect on

relative metrics over all species (variable K in equation 2). Significance of relative metrics over all

species (see text) is shown with a symbol (ns/*)
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Figure 3: Direction and significance of relative differences of the population performance metrics

between edges and climatic center (Ω) for each analysed species at hot and dry edge and the cold

and wet edges. Species are ordered from the one showing a significant reduction of invasion rate

on the left to the one with opposed response on the right. Green indicates significant constraints

on the metric in agreement with the expected direction (expected direction are indicated by - and

+ signs on the left, decrease or increase in the metric), red indicates a significant effect in opposed

direction, and blue indicates a non-significant response.
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Figure 4: Relative differences of the population performance metrics between edges and climatic

center (Ω) along the first principal component axis of species mean climatic conditions. Regression

lines are plotted when significant (p-value below 5%). Species relative metrics significantly different

from 0 (see text) are represented by full circles, otherwise by empty circles.

21

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 23, 2022. ; https://doi.org/10.1101/2022.08.22.504487doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.22.504487
http://creativecommons.org/licenses/by-nc-nd/4.0/


References465

Baeten, L. et al. (2013) A Novel Comparative Research Platform Designed to Determine the466

Functional Significance of Tree Species Diversity in European Forests. en. Perspect. Plant Ecol.467

Evol. Syst., 15, 281–291.468

Bates, D. et al. (2014) Fitting linear mixed-effects models using lme4. arXiv preprint469

arXiv:1406.5823 ,470

Brooks, M. E. et al. (2017) glmmTMB Balances Speed and Flexibility Among Packages for Zero-471

inflated Generalized Linear Mixed Modeling. The R Journal , 9, 378–400.472

Brown, J. H. (1984) On the relationship between abundance and distribution of species. Am. Nat.,473

124, 255–279.474

Burnham, K. P. & Anderson, D. R. (2002) Model selection and multimodel inference, A practical475

information-theoretic approach, Springer New York.476

Capdevila, P. et al. (2020) Towards a comparative framework of demographic resilience. Trends Ecol.477

Evol., 35, 776–786.478

Carnicer, J. et al. (2011) Widespread crown condition decline, food web disruption, and amplified tree479

mortality with increased climate change-type drought. Proc. Natl. Acad. Sci., 108, 1474–1478.480

Cheaib, A. et al. (2012) Climate change impacts on tree ranges: model intercomparison facilitates481

understanding and quantification of uncertainty. Ecol. Lett., 15, 533–544.482

Clark, J. S. et al. (2021) Continent-Wide Tree Fecundity Driven by Indirect Climate Effects. en.483

Nat. Commun., 12, 1242.484

Csergo, A. M. et al. (2017) Less Favourable Climates Constrain Demographic Strategies in Plants.485

Ecol. Lett., 20, 969–980.486

Dallas, T., Decker, R. R. & Hastings, A. (2017) Species are not most abundant in the centre of their487

geographic range or climatic niche. Ecol. Lett., 20, 1526–1533.488

Easterling, M. R., Ellner, S. P. & Dixon, P. M. (2000) Size-specific sensitivity: applying a new489

structured population model. Ecology , 81, 694–708.490

Ellner, S. P., Childs, D. Z., Rees, M., et al. (2016) Data-driven modelling of structured populations,491

Springer.492

Engen, S., Sæther, B.-E. & Møller, A. P. (2001) Stochastic population dynamics and time to493

extinction of a declining population of barn swallows. J. Anim. Ecol., 70, 789–797.494

Engen, S. et al. (2009) Reproductive value and the stochastic demography of age-structured495

populations. Am. Nat., 174, 795–804.496

Falster, D. S. et al. (2017) Multitrait successional forest dynamics enable diverse competitive497

coexistence. Proc. Natl. Acad. Sci., 114, E2719–E2728.498

Godsoe, W. et al. (2017) Integrating Biogeography with Contemporary Niche Theory. Trends Ecol.499

Evol., 32, 488–499.500

22

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 23, 2022. ; https://doi.org/10.1101/2022.08.22.504487doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.22.504487
http://creativecommons.org/licenses/by-nc-nd/4.0/


Grimm, V. & Wissel, C. (2004) The intrinsic mean time to extinction: a unifying approach to501

analysing persistence and viability of populations. Oikos, 105, 501–511.502

Grubb, P. J. (1977) The Maintenance of Species-Richness in Plant Communities: The Importance503

of the Regeneration Niche. Biological Review , 52, 107–145.504

Harris, I. et al. (2014) Updated high-resolution grids of monthly climatic observations–the CRU505

TS3. 10 Dataset. Int. J. Climatol., 34, 623–642.506

Holt, R. D. & Keitt, T. H. (2000) Alternative Causes for Range Limits: A Metapopulation507

Perspective. Ecol. Let., 3, 41–47.508

Holt, R. D. et al. (2005) Theoretical models of species’ borders: single species approaches. Oikos,509

108, 18–27.510

Hutchinson, G. E. (1978) An introduction to population ecology.511
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