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Flexible computation is a hallmark of intelligent behavior. Yet, little is known about how neural 13 
networks contextually reconfigure for different computations. Humans are able to perform a new task 14 
without extensive training, presumably through the composition of elementary processes that were 15 
previously learned. Cognitive scientists have long hypothesized the possibility of a compositional neural 16 
code, where complex neural computations are made up of constituent components; however, the neural 17 
substrate underlying this structure remains elusive in biological and artificial neural networks. Here we 18 
identified an algorithmic neural substrate for compositional computation through the study of 19 
multitasking artificial recurrent neural networks. Dynamical systems analyses of networks revealed 20 
learned computational strategies that mirrored the modular subtask structure of the task-set used for 21 
training. Dynamical motifs such as attractors, decision boundaries and rotations were reused across 22 
different task computations. For example, tasks that required memory of a continuous circular variable 23 
repurposed the same ring attractor. We show that dynamical motifs are implemented by clusters of units 24 
and are reused across different contexts, allowing for flexibility and generalization of previously learned 25 
computation. Lesioning these clusters resulted in modular effects on network performance: a lesion that 26 
destroyed one dynamical motif only minimally perturbed the structure of other dynamical motifs. 27 
Finally, modular dynamical motifs could be reconfigured for fast transfer learning. After slow initial 28 
learning of dynamical motifs, a subsequent faster stage of learning reconfigured motifs to perform novel 29 
tasks. This work contributes to a more fundamental understanding of compositional computation 30 
underlying flexible general intelligence in neural systems. We present a conceptual framework that 31 
establishes dynamical motifs as a fundamental unit of computation, intermediate between the neuron 32 
and the network. As more whole brain imaging studies record neural activity from multiple specialized 33 
systems simultaneously, the framework of dynamical motifs will guide questions about specialization 34 
and generalization across brain regions.   35 
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Introduction 36 

Cognitive flexibility is a key feature of the human brain. While artificial systems are capable of outperforming 37 
humans in specific complex cognitive tasks1–3, they so far lack flexibility for rapid learning and task switching. 38 
Therefore, a major open question in the fields of neuroscience and artificial intelligence is how the same circuit 39 
flexibly reconfigures to perform multiple tasks4. 40 

Conceptual models for cognitive flexibility propose a hierarchy of elementary processes that are reused across 41 
similar tasks5,6. According to these models, the neural substrate for computation is modular such that 42 
combinations of previously learned subtasks may be reconfigured to perform unfamiliar tasks. This 43 
combination of subtasks is referred to as compositionality6. For example, a saccade task typically involves a 44 
cue that indicates in which direction to move the eyes. After learning a saccade task, a person could quickly 45 
learn an ‘anti’ version of the same task where the same cue now instructs a saccade in the opposite direction. 46 
This new task may be quickly learned by combining a computational building block for the original task with 47 
a previously learned ‘anti’ building block. These computational building blocks could be considered in task 48 
space or state space. While there is some experimental evidence that neural computation is compositional7,8, a 49 
concrete model for the neural implementation of compositional computation would provide major headway 50 
toward understanding cognitive flexibility for multiple tasks in the human brain. 51 

While the time and effort required to train animals to perform many tasks has proven prohibitive to the 52 
exploration of multitask computation in biological networks, artificial neural networks now present an 53 
opportunity to explore the topic. The study of cognitive tasks through simulations in artificial networks has led 54 
to substantial advances in understanding neural computation in the past decade9–18. However, researchers 55 
typically trained artificial neural networks to perform single tasks in isolation, with few exceptions19–22, 56 
somewhat limiting the insights into biological neural circuits that perform many tasks. One exception to this 57 
trend is Yang et al. 201920, in which the authors trained a single network to perform twenty related tasks and 58 
thereby identified clustered representations in state space that supported task compositionality. Yet, their 59 
analysis left open the critical questions concerning why and how recurrent networks develop a compositional 60 
organization. In this work, we identified the computational substrate that allowed for compositional 61 
computation and answered the nontrivial question of how this computational substrate is flexibly employed in 62 
different contexts.  63 

We examined multitask networks through the lens of dynamical systems. This approach allowed us to explore 64 
the mechanisms underlying computation in a recurrently connected artificial network23. We found that tasks 65 
that required the same computational elements (e.g. memory, categorization, delayed-response) were 66 
implemented by sharing and repurposing dynamical motifs (e.g. attractors, decision boundaries, and rotations). 67 
We demonstrate that the dynamical motifs learned in a multitask network support compositional computation. 68 

Dynamical motifs provided a useful granularity to study network computation. While individual network units 69 
appeared heterogenous and difficult to interpret, dynamical motifs were often interpretable and consistent 70 
across networks. Our framework provides a conceptual building block between the single artificial unit and 71 
the whole network. With the access and control afforded by the use of this simulated ‘model organism’, we 72 
explored how multiple related computations might interact in a single network. This work contributes to a 73 
better understanding of functional specialization in neural networks, and more broadly advances techniques 74 
for reverse-engineering artificial networks and analysis of high-dimensional dynamical systems.  75 

Results 76 

Network Structure 77 
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We implemented a similar input-output structure and learning protocol as in previously examined multitasking 78 
recurrent neural networks (RNNs) 20. These tasks included reaction-timed, delayed response and memory tasks 79 
with contextual integration, categorization, pro and anti response components (see Supp. Fig.1 and Methods 80 
Section 1.2 for task definitions). For every task, the network received three noisy inputs: fixation (1-81 
dimensional), stimulus (4-d), and rule (15-d) (Fig.1a). The fixation input directed the network to either output 82 
zero or respond, similar to fixation cues which instruct rodents, monkeys and humans to keep the eyes and 83 
limbs still. The set of stimuli contained two separate two-dimensional vectors composed of Asinθ and Acosθ, 84 
where each vector encoded a different one-dimensional circular variable (θ1, θ2) scaled by an amplitude A. 85 
Depending on the rule, one stimulus vector may be contextually ignored. The rule input indicates the current 86 
task on any given trial and this information is continuously available to the network throughout each trial. Rule 87 
input was encoded in a one-hot vector where the index associated with the current task was one and all other 88 
indices were zero.  89 

The RNN is defined by  90 

𝜏 !𝒉
!#
=	−𝒉(𝑡) + 𝐹(𝑊$%&𝒉(𝑡) +𝑊'(𝒖(𝑡) + 𝒃'()    (1) 91 

𝒛(𝑡) = 𝑊)*#𝒉(𝑡) + 𝒃)*#                                 (2) 92 

𝜎(𝒉) = ln	(1 + exp(𝒉))              (3) 93 

All inputs, u(t) (20 ✕ 1), enter the system and induce a specific pattern of activity, h(t) (Nrec ✕ 1), in the units 94 
of the RNN (Eq. 1). We refer to this Nrec-dimensional vector, h(t), as the state of the network at time t. The 95 
output, z(t) (3 ✕ 1), is a linear projection of the state (Eq. 2). The output units indicate whether the network is 96 
responding in the first dimension and in which direction on a circle the RNN responds in the next two 97 
dimensions (e.g., saccade direction) (Fig.1a right). For consistency, in the majority of the paper we will focus 98 
on RNNs as described by Eq. 1, using diagonal initialization of Wrec, the softplus nonlinear activation function 99 
(Eq. 3) and L2 activity and weight regularization. We identified shared dynamical motifs in all explored 100 
network designs, and include comparisons to other parameter choices and common network architectures 101 
throughout. All network weights were trained to minimize the squared difference between the network output 102 
and a desired (target) using back propagation through time.  103 

Our approach to studying the trained RNNs was to uncover the underlying learned dynamical systems in order 104 
to mechanistically understand how the networks implement computation. This approach utilizes fixed points 105 
of Eq. 1 23,24 to provide an often interpretable “skeleton” of the complex high-dimensional dynamics 25. By 106 
studying how fixed points change as a function of the inputs that configure the task period at hand, we may 107 
understand if and how these fixed point structures are repurposed for different computations. See Methods for 108 
further details on network setup, training, and fixed point analysis. 109 

Single Task Networks 110 

To lay the groundwork to understand the multitask RNNs, we first trained individual networks to perform each 111 
task in isolation. Every task began with a context period where the rule input indicated which task to perform, 112 
the fixation signal was on, and there was no stimulus information (Fig.1a). Stimulus onset marked the 113 
beginning of the next task period (stimulus) while all other inputs remained constant. In the absence of noise, 114 
inputs to the network were piecewise constant, where every change in the inputs marked the beginning of a 115 
new task period (Fig.1a vertical lines). Therefore, during each task period with unique inputs (e.g. stimulus, 116 
context/memory, response) the network could be treated as a separate, autonomous dynamical system with a 117 
distinct set of fixed points from other task periods. Going forward, we use dynamical motif to mean the high-118 
dimensional nonlinear dynamics around a fixed point skeleton that implements computation for a specified 119 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted August 15, 2022. ; https://doi.org/10.1101/2022.08.15.503870doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.15.503870


input. By examining locally linearized dynamics around the set of fixed points associated with a particular task 120 
period, we learn about the dynamical motifs that implement computation. 121 

For example, in a MemoryPro task (respond in the same direction as the stimulus after a memory period), there 122 
were 4 periods (visually divided by vertical lines Fig.1a). In the first period (context), the rule input indicated 123 
which task the network performed for that trial. In a network trained to perform only the MemoryPro task, the 124 
context period inputs result in one fixed point at the center of a ring of fixed points (Fig.1b). The central fixed 125 
point serves as an initial condition for performing the task computation during the ensuing stimulus 126 
period.  Notice the context period inputs are identical to the memory period (rule and fixation on, stimulus off) 127 
(Fig.1a), so the fixed points are necessarily identical between these task periods. We will show later that the 128 
additional ring of fixed points was relevant to the memory computation during the memory task period. 129 

In the stimulus period, we examined the fixed point structure for each stimulus input separately. Stimulus 130 
period state trajectories for different stimuli diverged from the central initial condition towards stimulus-131 
dependent fixed points, mapping out a stimulus representation that was orthogonal (null) to the response 132 
readout dimension (Fig.1c). While fixed points were identical in the context and memory periods, the network 133 
state interacted with different fixed points due to different initial conditions. During the memory period, the 134 
state evolved toward a ring of fixed points that made up an approximate ring attractor (locally attracting 135 
structure in all dimensions except tangent to the ring, which is neither contracting nor expanding) (Fig.1d). 136 
Together, these fixed points stored the identity of the stimulus orientation based on the initial conditions of the 137 
state at the beginning of the memory period (end of the stimulus period). Finally, in the response period, the 138 
fixation input changed to zero and a new ring attractor emerged (Fig.1e). During the response period, the ring 139 
was oriented such that it had a non-zero dot product with the output weights (Wout) and was therefore output 140 
potent26. The new ring caused the network to respond in the appropriate orientation based on the initial 141 
conditions of the response period (end of the memory period). Thus, the network responded with the 142 
appropriate orientation for this task (φresponse=θstimulus). 143 

What is the relationship between the ring of fixed points in the memory and response periods? To address this 144 
question, we traced locations of the fixed points as we interpolated across memory and response period inputs, 145 
(1-𝜶) umemory + 𝜶 uresponse with 𝜶 in 0.05 increments between 0 and 1. We identified fixed points for each incremental 146 
input setting as a function of 𝜶 (see Methods Section 1.6). We employ this method frequently and call it input-147 
interpolation fixed point identification (shortened to input interpolation). By interpolating across input 148 
conditions for the memory and response periods, we traced how fixed points moved and possibly changed 149 
stability as the dynamical system reconfigured for different task periods.  150 

We interpolated the fixation input from its memory period value (1) to its response period value (0). For every 151 
intermediate input value throughout this interpolation, an approximate ring attractor was present (Fig.1f). The 152 
smooth transition of this fixed point structure implies that each intermediate ring attractor was functionally the 153 
same ring attractor across input conditions. In this single task network, the dynamical motif that performed 154 
memory and response computations was shared across task periods. The ring attractor rotated from output null 155 
space into output potent space when the fixation input changed to zero (Fig.1g). The change in inputs across 156 
task periods shifted the location of the fixed points and thus changed their collective computational purpose. 157 
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Figure 1: Single-task network shared fixed points across task periods. (a) left: Noisy fixation, stimulus 159 
(modality 1 and 2), and rule input time-series (overlayed without noise for clarity.) Noise was used during 160 
training while analyses were performed on running the network without noise. Vertical lines divide task 161 
periods: context, stimulus, memory & response. right: Targets (thick lines) overlaid with outputs of a trained 162 
network (thin lines). (b-e) State space plots for single task network performing MemoryPro task during (b) 163 
context (c) stimulus (d) memory (e) response task periods. State trajectories and fixed points projected onto 164 
the first two principal components (PCs) defined by state evolution for 100 different stimulus conditions during 165 
the stimulus period on the x and y-axes and the output weight vector (from Wout) associated with cosθstimulus on the 166 
z-axis. We visualized fixed point locations for θstimulus=0 (black dots) in all subpanels of Figure 1 and additionally 167 
plotted state trajectories for other stimulus conditions (see Methods Section 1.5 for further details on fixed 168 
point identification). State trajectories (colored lines) colored according to stimulus orientation with θstimulus=0 169 
highlighted in red, starting from ‘x’ and ending with ‘▲’. (f-g) Interpolation between inputs for memory (𝜶=0) 170 
and response (𝜶=1) periods (f) middle: Fixed points for 20 intermediate 𝜶 values (x-axis) projected into top 171 
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two stimulus period PCs (as in b-e) (y and z-axes) with (left) memory 𝜶=0 and (right) response 𝜶=1 fixed 172 
points and trajectories. (g) Fixed points for input-interpolation between memory (blue) and response inputs 173 
(yellow). State trajectories colored according to stimulus orientation. Same axes as (b-e). 174 

Two Task Networks  175 

We then simultaneously trained networks to perform two tasks on interleaved trials. We studied two-task 176 
networks to learn if and how the addition of a second task changed the fixed point structures compared to 177 
single task networks. The MemoryPro and MemoryAnti tasks were both memory guided response tasks that 178 
received identical stimulus inputs. The target outputs in the pro task were the same as the stimulus inputs 179 
(φresponse=θstimulus) whereas in the anti task, targets were in the opposite direction as the stimulus (φresponse=θstimulus+π) (see 180 
Supp. Fig.1 and Methods Section 1.2 for full task definitions). 181 

Input-interpolation across rule inputs for a network trained on the MemoryPro and MemoryAnti tasks revealed 182 
shared fixed points across tasks during the context/memory, stimulus and response periods (Fig.2). Context 183 
period fixed points were similar to the single task network throughout rule input interpolation, with one stable 184 
fixed point that was relevant to the context period and a ring of fixed points that was relevant to the memory 185 
period (Fig.2a-b,e-f). Stimulus period rule input interpolation revealed two separate stable fixed points and an 186 
unstable fixed point between the basins of attraction for each intermediate input condition (Fig.2c-d). The 187 
network state evolved away from the unstable fixed point, which smoothly moved in state space across 188 
interpolated input conditions, resulting in the network state evolving toward a different stable fixed point for 189 
each task. From that point onward, the state interacted with a shared ring attractor across both tasks 190 
(MemoryPro and MemoryAnti) and task periods (memory and response) according to the response direction 191 
(Fig.2e-h). This network flexibly performed two related computations through small changes in fixed point 192 
locations. In addition to shared fixed points across different tasks and task periods, we could identify shared 193 
fixed points across different stimulus conditions for the same task period (Supp Fig.2a-c). In this work, we will 194 
explore how these changes in the location of shared fixed points enable a single network to perform different 195 
computations and why this structure results in a compositional organization of tasks in multitask networks. 196 

One might expect that networks share fixed points due to the limited computational resources in small 197 
networks. We therefore trained networks that were nearly an order of magnitude larger and without noise to 198 
determine how abundant computational resources might change this solution. To our surprise, we found even 199 
large networks without noise still shared dynamical motifs (see Supp Fig.2d-k). We interpret these findings to 200 
mean shared dynamical motifs are not a product of limited resources and rather provide a more universal 201 
solution for multitask computation. 202 
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Figure 2. Two-task networks shared fixed points across related tasks. Fixed points for interpolation 204 
between inputs for MemoryAnti (𝜶=0) and MemoryPro (𝜶=1) tasks during (a,b) context (c,d) stimulus (e,f) 205 
memory and (g,h) response periods. (a) middle: Fixed points for 20 intermediate 𝜶 values (x-axis) projected 206 
into top two PCs defined by state evolution during the context period of the MemoryAnti task (y and z-axes) 207 
with (left) MemoryAnti 𝜶=0 and (right) MemoryPro 𝜶=1 fixed points and trajectories. (b) Fixed points for 208 
rule input-interpolation between tasks, MemoryAnti (blue fixed points, white state trajectory) and MemoryPro 209 
(yellow fixed points, black state trajectory) projected into the top three MemoryAnti context period state 210 
evolution PCs. (c) Same as a for stimulus period, with unstable (open) and stable (closed) fixed points projected 211 
into top PCs defined by fixed points during the memory period of the MemoryAnti task (y-axis) (d) Same as 212 
b for stimulus period, projected into the top three MemoryAnti stimulus period state evolution PCs. (e) Same 213 
as a for memory period, projected into top two PCs defined by fixed points during the memory period of the 214 
MemoryAnti task (y and z-axes) (f) Same as b for memory period, projected into the top two MemoryAnti 215 
stimulus period state evolution PCs (x and y-axes) and the output weight vector (from Wout) associated with 216 
cosθstimulus on the z-axis. (g) Same as a for response period, projected into top two PCs defined by fixed points 217 
during the response period of the MemoryAnti task (y and z-axes) (h) Same as f for response period. 218 

Identifying Dynamical Motifs in 15 Task Networks 219 

To quantify shared structure across a large number of tasks in a single network and also to compare this shared 220 
structure across multiple networks, we developed a modified version of the task variance metric described by 221 
Yang et al. 2019 20. We were motivated to study task periods because changes in the inputs reconfigure the 222 
RNN’s dynamics across different task periods. For example, when the stimulus input turns off in some tasks, 223 
the network goes from processing a stimulus to maintaining a memory of the stimulus. Aside from training 224 
noise, the inputs are static within a task period and therefore the RNN’s dynamics are fixed. Task periods, 225 
therefore, provide the relevant granularity to identify the dynamical motifs that perform distinct computations.  226 

We divided tasks into task periods and computed the variance across stimulus conditions for each unit, 227 
normalized across all task periods (see Methods Section 1.9). The result of this variance analysis was a matrix 228 
of each unit’s normalized variance for each task period of every task (Fig.3a), which we refer to as the variance 229 
matrix in subsequent analyses. We sorted the rows and columns of this matrix based on similarity to better 230 
visualize its inherent structure (see Methods Section 1.10).  231 

The variance matrix can be considered as a map of functional specialization in the network, similar to the 232 
BOLD signal in an fMRI scan, or widefield imaging data. This analysis could be performed directly on neural 233 
data to learn about the computational substructure for multiple tasks in a behaving animal. Sorting the rows 234 
and columns of the variance matrix revealed a blockwise structure, where groups of units had large variance 235 
for groups of task periods with similar computational requirements (Fig.3a). Similar computations can be seen 236 
in the task period color labels (Stimulus1, Stimulus2 - for tasks with two sequential stimulus presentations, 237 
Memory, Response, etc) and in the task names (Category, DecisionMaking, Memory, etc) (Fig.3a, left). For 238 
example, task period cluster #2 (Fig.3a, right) corresponds to reaction timed response task periods (see Supp. 239 
Fig.1 for definitions of all tasks). These tasks receive new stimulus information during a response period that 240 
must be incorporated into the computation immediately. Therefore, the network cannot prepare a response 241 
direction before the fixation cue disappears. On the other hand, in task period cluster #9, the network receives 242 
no new information during the response period and must instead use the memory of the stimulus to produce 243 
the correct output during the response period. These separate blocks in the variance matrix reveal two distinct 244 
clusters of units that contribute to response period dynamics: one for tasks with reaction timed responses and 245 
another for tasks with memory guided responses. Other unit clusters for stimulus (unit cluster k-o, task period 246 
cluster #4-5) and memory (unit cluster a-b, task period cluster #10) computations are apparent in the block-247 
like structure aligned with task period type (Fig.3a task titles and task period color labels to the left of the 248 
variance matrix). 249 
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Block structure in the variance matrix was robust to different network architectures and hyperparameters 250 
(examples in Supp. Fig.3). To quantify task period similarity across networks with different design choices, 251 
we calculated the variance matrix for each trained network. We then sorted task periods according to similarity 252 
of rows in one reference network and computed the correlation matrix of the sorted rows in the variance matrix 253 
for each network (see Methods Section 1.9). The correlation matrix for each trained network revealed the block 254 
wise similarity of task periods (Fig.3c). By comparing the correlation matrices across networks (Pearson 255 
correlation coefficient between correlation matrices, see Methods Section 1.9), we found that trained networks 256 
were more correlated to every other trained network than to untrained networks (Fig.3b right). Higher 257 
correlation across trained networks compared to untrained networks confirmed the block structure in the 258 
variance matrix emerged from learning the task computations rather than from network design choices or the 259 
structure of the inputs. 260 

As we will show, the clusters of the variance matrix arise from shared dynamical motifs across task periods. 261 
This shared structure takes the form of attractors, decision boundaries and rotations. We highlight two different 262 
examples of shared memory dynamical motifs using rule input interpolation (Fig.3d-e) and highlight their 263 
positions in the variance matrix (Fig.3a left of task period names, red and yellow squares). A pair of memory 264 
category task periods are within the same cluster in the variance matrix, suggesting their computations are 265 
performed by a similar set of units (Fig.3a yellow square left: task period cluster #6, unit cluster t). Both 266 
category tasks utilized the same two point attractors for memory of the initial stimulus. Rather than store the 267 
identity of the initial continuous circular stimulus, the network stored which category it must respond to, 268 
regardless of task (Fig.3d). In another example of a shared attractors across tasks, we found a ring attractor that 269 
was shared across several tasks (Fig.3e, Fig.3a task period cluster #9-10, unit clusters a-d). All of these tasks 270 
required the memory of the initial continuous circular stimulus variable. To show that this ring attractor was 271 
shared across tasks, we interpolated across rule inputs for a pair of these tasks (IntegrationModality1 and 272 
IntegrationModality2) and found a similar shared ring structure as in the two task networks (Fig.2e). We 273 
highlight shared category and continuous memory dynamical motifs in networks with different activation 274 
functions in Supp. Fig.4. 275 

In addition to clusters of task periods with similar variance, there are also some task periods that do not cluster 276 
with other task periods. These can be seen in the variance matrix as isolated row segments with high variance 277 
and in the correlation matrices as rows with low correlation across all other task periods. For example, task 278 
period cluster #8 is dedicated to the ReactAnti task, cluster #1 is dedicated to the ReactMatch2Sample task and 279 
cluster #3 is ReactNonMatch2Sample (Fig.3a). In these cases, the computation performed in the unique task 280 
period is so distinct from other computations the network performs, the dynamical motif is not reused across 281 
tasks. The set of tasks that employed unique dynamical motifs was similar across hyperparameter settings 282 
(Fig.3c, Supp. Fig.3). 283 

Motif Alignment to Unit Axes 284 

One notable difference across network hyperparameters was sparsity in the variance matrix. We define sparsity 285 
to be the fraction of entries in the variance matrix below a threshold of 15% maximum unit variance. Networks 286 
with non-negative nonlinear activation functions had sparse task variance matrices whereas networks with the 287 
tanh activation function, which has a range of (-1, 1) did not (Fig.3b middle). We understand this sparsity to 288 
be a function of optimal network performance requiring potentially interfering dynamical motifs to be 289 
organized into orthogonal subspaces. In a network where all units can take only positive values, this 290 
orthogonalization can only occur along unit axes (Supp. Fig.5), thus resulting in sparse variance matrices for 291 
networks with non-negative activation functions. We find clusters to be present in tanh networks, simply not 292 
aligned to unit axes and therefore non identifiable using methods described in Yang et al. 201920. By examining 293 
the correlation matrix and the correlation coefficient across networks, we see that similar clusters are present 294 
in the tanh networks (Fig.3b right, c right).  295 
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Figure 3. Modular organization in 15 task networks was not dependent on activation function or 297 
network initialization. (a) Variance matrix: variance of unit activations across stimulus conditions, 298 
normalized across task periods (columns normalized by the maximum entry in each column). Rows and 299 
columns sorted according to similarity (see Methods Section 1.10). (b) left: Performance across all tasks for 3 300 
networks of each of 12 hyperparameter settings. middle: Sparsity of the task variance measured as the fraction 301 
of entries >15% maximum unit variance. right: Task period correlation matrix (examples shown in c) for 302 
trained and untrained networks are sorted according to rows in a and correlated to trained networks for all other 303 
hyperparameter settings. (c) Correlation matrix of rows in variance matrix (as in a) for 3 different example 304 
networks; rows and columns sorted according to rows in a. Orange and red rectangles highlight discrete 305 
memory (ReactCategoryPro, ReactCategoryAnti) and continuous memory (IntegrationModality1, 306 
IntegrationModality2) tasks respectively. (d) Shared point attractors for two category memory tasks as seen by 307 
input interpolation across tasks during memory period. State trajectories for 8 stimulus conditions (colored by 308 
response direction) starting from ‘x’ in ReactCategoryAnti state evolution PC space for ReactCategoryPro 309 
(black) and ReactCategoryAnti (white) tasks. Rule input interpolation across tasks during memory period with 310 
fixed points for intermediate rule input conditions in filled circles. (e) Same as d for two continuous circular 311 
variable memory tasks, highlighting shared ring attractors. State trajectories starting from ‘x’ in 312 
IntegrationModality2 state evolution PC space for IntegrationModality1 (black) and IntegrationModality2 313 
(white) tasks. 314 

Shared Stimulus Period Dynamical Motifs in 15 Task Networks 315 

 The variance matrix provides a useful overview of which task periods are implemented by similar clusters of 316 
units, but falls short of addressing exactly how these subpopulations implement shared dynamical motifs. 317 
Shared motifs are implemented by organizing the state in the appropriate region of state space to evolve on the 318 
relevant shared dynamical landscape. To walk through this explanation in detail, we focus on stimulus period 319 
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dynamics and highlight two examples, one in which dynamical motifs are shared and another where motifs are 320 
not shared. 321 

Tasks with similar stimulus computations (noisy integration, pro vs. anti, reaction-timed vs. delayed response) 322 
organized their initial conditions for the stimulus period to be nearby in state space and evolved in a similar 323 
way after stimulus onset (see schematic Fig.4a). We visualized this organization of stimulus period initial 324 
conditions in principal component (PC) space defined by the final state of the context period across all tasks 325 
(Fig.4b). To summarize the relationship between initial conditions and the ensuing stimulus dynamics for 326 
different tasks, we compared pairs of trials presented with the same stimulus across different tasks. We plotted 327 
the Euclidean distance between initial conditions against the angle between the state evolution on the first time 328 
step for these pairs of trials (Fig.4c). We observed that pairs of tasks with similar computations had initial 329 
conditions that were closer together and had smaller angles between state trajectories on the first time step of 330 
the stimulus period compared to pairs of tasks with distinct computations. Similar initial conditions for stimulus 331 
onset resulted in shared context dependent stimulus amplification in some networks (Supp Fig.6). In these 332 
cases, the state update was scaled in magnitude according to whether the stimulus input was either modality 333 
one or two, dependent on the position of that state at stimulus onset. 334 

The relationship between context period states and stimulus period trajectory angles across tasks support the 335 
idea that nearby initial conditions allowed tasks with similar stimulus computations to reuse the same 336 
dynamical landscape and therefore evolve in similar ways. To provide further detail, in (Fig.4d-i) we examine 337 
these features in two examples of comparisons between tasks that (1) share the same stimulus period dynamical 338 
motif and then tasks that (2) do not share the same dynamical motif.  339 

In the case of the two categorization tasks, ReactCategoryPro and ReactCategoryAnti, we found a shared 340 
stimulus motif (Figure 4d-f). In the ReactCategoryPro task, the network was trained to respond if both 341 
sequential stimuli were less than or both greater than π; whereas, in the ReactCategoryAnti task the network 342 
was trained to respond if stimuli were on opposite sides of π. In either task, there was a decision boundary at 343 
θstimulus = π. The initial conditions for these tasks were nearby and trajectories during the stimulus period were 344 
aligned (Fig.4c ‘Category Motif’). We quantified stimulus response overlap by computing the fraction of 345 
variance explained for the evolution of the state trajectory on one task by the other task’s PCs (purple) 346 
compared to its own PCs (black) (Fig.4d), revealing that both tasks were performed in an aligned subspace. 347 
Aligned stimulus responses for both category tasks were visualized in PC space defined by the stimulus period 348 
state trajectories of the ReactCategoryPro task (Fig.4e left, right). These analyses revealed that activity evolved 349 
in a qualitatively similar way for trials with the same stimulus conditions on both tasks, suggesting the state 350 
evolution could have occurred on a similar dynamical landscape. 351 

To better understand the relationship between the dynamical landscapes across task contexts, we interpolated 352 
across rule inputs during the stimulus period for both category tasks with the same stimulus input. We 353 
visualized the fixed points for each intermediate rule input configuration (Fig.4e middle). We found that similar 354 
stimulus responses were governed by shared stable and unstable fixed points, demonstrated by the smooth 355 
bridge of fixed points between both tasks. We projected the unstable dimension of each unstable fixed point 356 
into PC space and found this dimension was aligned with the direction of the state evolution and roughly 357 
orthogonal to the decision boundary. (Fig.4e). We defined the most relevant fixed point to be the closest 358 
unstable fixed point to the state at the end of this task period. This simplification of one relevant fixed point 359 
was often necessary to tease apart how relevant dynamics are reconfigured across tasks while several to 360 
hundreds of other fixed points related to computations during other task periods also moved through state 361 
space. A continuous bridge mapped movement of the relevant fixed point, suggesting that rule inputs shifted a 362 
relevant shared fixed point that was reused across both tasks (Fig.4e). We quantified the distance between 363 
consecutive locations of the relevant fixed point for each interpolated input, highlighting the smooth and small 364 
transition of the fixed point location across tasks (Fig.4f). Moreover, the stability of the local linear dynamics 365 
around this shared fixed point was consistent across all intermediate input conditions, as shown by the the 366 
maximal real part of the eigenvalue of the linearized RNN state update around each interpolated fixed point 367 
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location (see Methods Section 1.7) (Fig.4f). This real part of the eigenvalue does not pass below the threshold 368 
of 1, where the fixed point would become stable. We interpret this result to mean that both category tasks reuse 369 
the unstable fixed point that moves the state away from the category boundary. 370 

The DelayAnti and ReactPro tasks were an example pair that did not share any dynamical motifs (Fig.4g-i). 371 
The DelayAnti task began with the context period, followed by a stimulus presentation that signaled the 372 
opposite response direction (φresponse=θstimulus +π), followed by a go cue that signaled when to initiate a delayed 373 
response (see Supp. Fig.1 for all task definitions). The ReactPro task began with the context period, followed 374 
by a stimulus presentation that signaled the same response direction and required an immediate response. 375 
During the context period, the network state evolved toward dissimilar locations for trials of either task and 376 
trajectories during the stimulus period were not aligned (Fig.4c ‘Different Motifs’). We defined the subspace 377 
for the ReactPro task by performing principal components analysis on the state trajectories during the stimulus 378 
period. We projected the DelayAnti task in the same subspace and found that very little variance was captured 379 
by the other task PCs (Fig.4g). We also visualized both tasks in a subspace defined by the first two PCs of the 380 
DelayAnti task and again found very little overlap, suggesting both tasks evolved in mostly non-overlapping 381 
subspaces (Fig.4h right). We interpolated across these two rule inputs during the stimulus period, revealing 382 
that there was a bifurcation where the relevant stimulus-dependent fixed point did not form a continuous bridge 383 
across interpolated rule inputs (Fig.4h middle). We quantified the distance between consecutive fixed points 384 
that were closest to the endpoint of the state trajectory for each interpolated input and identified a large discrete 385 
jump in the location of the relevant fixed point (Fig.4i). We visualized the maximal real part of the eigenvalues 386 
of the linearized RNN state update around each consecutive fixed point, revealing dissimilar local dynamics 387 
around fixed points for interpolated input conditions (Fig.4i). 388 

Taken together, these features suggest that shared dynamical motifs are implemented by evolving the state to 389 
the appropriate region of state space such that it interacts with a shared fixed point across similar task 390 
computations. Category tasks shared both unstable and stable fixed points. On the other hand, stimulus period 391 
dynamics for the DelayAnti and ReactPro tasks evolved in separate subspaces and were governed by different 392 
stable fixed points. These analyses revealed that shared structure was not merely an artifact of all tasks within 393 
the same network. Rather only tasks with similar computations implemented shared dynamical motifs. All 394 
subspace and distance analyses in this section could be experimentally tested on neural data of animals 395 
performing multiple tasks. 396 
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 397 

Figure 4. Tasks with similar stimulus computations were in nearby parts of state space and shared 398 
dynamical motifs. (a) Schematic of analyses in b and c.  (b) The state for each trial (colored dot for each of 399 
20 trials on each task) at the end of the context period (just before stimulus period) projected onto the top two 400 
PCs defined by the state at the end of the context period for all tasks. Trials colored by similar stimulus 401 
computations as given by task definitions: delayed response pro (blue), delayed response anti (red), noisy 402 
integration (gray), categorization (pink) reaction-timed pro (teal) and reaction-timed anti (orange). (c) 403 
Euclidean distance between pairs of trials from different tasks at the end of the context period plotted against 404 
cosine angle between same pair after stimulus onset for a particular stimulus input for one timestep, then 405 
averaged across stimulus angle inputs. Pairs of tasks in d-i circled and labeled, (d-f) ‘Category Motif’: 406 
ReactCategoryPro and ReactCategoryAnti, (g-i) ‘Different Motifs’: DelayAnti and ReactPro (d) Fraction of 407 
variance explained for ReactCategoryPro task by the ReactCategoryAnti task PCs (purple) compared to its 408 
own PCs (black) for 5 trained networks with different random seeds. (e) Rule input interpolation across 409 
category tasks for one stimulus angle. middle: Unstable (open) and stable (closed) fixed points for 20 410 
intermediate 𝜶 values (x-axis) projected onto top two PCs defined by state evolution during the stimulus period 411 
of the ReactCategoryPro task (y and z-axes) with (left) ReactCategoryPro 𝜶=0 and (right) ReactCategoryAnti 412 
𝜶=1 fixed points and trajectories for 8 different stimulus angles (rainbow colors) Expanding dimensions 413 
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around unstable fixed points are visualized as black lines. (f) Euclidean distance between fixed points (black) 414 
and maximum real eigenvalue for the linearization of the state update around each fixed point (purple) for the 415 
single unstable fixed point closest to the state at the end of the stimulus period for 20 consecutive 𝜶 values 416 
between 0 and 1. We analyzed only one unstable fixed point that is most proximal to the end of the state 417 
trajectory for each input condition (see Methods Section 1.7).  (g-f) ‘Different Motifs’: DelayAnti and 418 
ReactPro. Same as (d-i), but for DelayAnti and ReactPro tasks. (i) Euclidean distance between fixed points 419 
(black) and maximum real eigenvalue for the linearization of the state update around each fixed point (purple) 420 
for the single fixed point closest to the state at the end of the stimulus period for 20 consecutive 𝜶 values 421 
between 0 and 1. We analyzed one fixed point that is most proximal to the end of the state trajectory for each 422 
input condition. 423 

Dynamical Motifs Result in Modular Lesion Effects 424 

The authors of Yang et al. 201920 previously found that network lesions affected sets of tasks that shared 425 
computational features. For example, if the output of a particular cluster of units was set to zero, then all tasks 426 
involving a particular computation decreased their performance, while other tasks were unaffected. Their work 427 
left open the major question of why lesion effects were modular. We identified the cause of these modular 428 
lesion effects to be related to the underlying modular dynamical motifs that perform computation.  429 

We examined the impact of lesioning clusters of units described in the variance matrix in Fig.3a. We lesioned 430 
a cluster of units by setting the output of all units within the cluster to be zero throughout a given trial. Clusters 431 
were identified by performing hierarchical clustering on the columns and rows of the variance matrix and 432 
identifying a distance criterion to maximize the ratio of intercluster to intracluster distances, which resulted in 433 
clusters of units a-z (Fig.3a, Methods Section 1.10). 434 

Many unit clusters had high variance for a set of task periods with similar computations. For example, unit 435 
clusters a and c had high variance for memory and response task period clusters 10 and 9 respectively (Fig.3a). 436 
Other unit clusters had high variance for modality 2 stimulus periods (unit cluster k), or anti stimulus periods 437 
(unit cluster f), etc.  438 

In two example lesions, we demonstrate that each unit cluster lesion impacted only a subset of tasks that shared 439 
computational features where units had high variance, reproducing a finding previously reported in Yang et al. 440 
2019. Here, we show that lesions either did or did not impact task-relevant computations depending on whether 441 
the relevant underlying dynamical motif was impacted (Fig.5). A lesion to one cluster only impacted 442 
performance on tasks that included a delay period (Fig.5a,b,e). We visualized state trajectories for a task that 443 
did include a delay period (MemoryPro) and a task that did not include a delay period (ReactPro) in lesioned 444 
(red) and non-lesioned networks (blue)(Fig.5b). State trajectories were dramatically impacted when the delay-445 
related dynamical motif was lesioned during the performance of the MemoryPro task, but not for the ReactPro 446 
task. In a second example, we lesioned a cluster of units with high variance during the performance of anti-447 
response tasks and found there was little to no change in the performance or state trajectories of pro-response 448 
tasks (Fig.5c,d,f). 449 

When a unit cluster was lesioned, all task periods that shared the relevant dynamical motif were impacted. 450 
When tasks did not utilize the dynamical motif impacted by a unit cluster lesion, they were not impacted by 451 
the lesion. For example, MemoryPro stimulus period activity was not impacted by a lesion to the unit cluster 452 
which implemented the memory and response period dynamical motif of the same task (Fig.5e left). The state 453 
evolved toward a stable fixed point in approximately the same location in both the lesioned (red) and full 454 
network (blue) after this cluster was lesioned. However, this lesion resulted in discontinuity of the relevant 455 
ring attractor in the memory and response periods and minimal rotation into output potent space during the 456 
response period (Fig.5e middle, right). Conversely, there was little change in the fixed point structure after a 457 
lesion to the anti-stimulus motif (cluster f) for all task periods during the MemoryPro task (Fig.5f). Taken 458 
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together, results from our lesion studies suggest that modular lesion effects are a result of modular fixed point 459 
structures that implement dynamical motifs. 460 

 461 

Figure 5. Unit cluster lesions had modular effects on task period clusters that shared the same dynamical 462 
motif. (a,c) Fraction performance change after lesion (by setting unit output to zero) to a cluster of units with 463 
high variance on (a) delayed-response (cluster c in Fig.3a) (c) anti-response (cluster f in Fig.3a) relevant task 464 
periods. (b,d) State evolution in (left) PC space defined by the state evolution for the non-lesioned network 465 
and (right) output weight space (from Wout) for (top) task with relevant computational feature (i.e. delay period, 466 
anti-response) and (bottom) task without relevant computational feature for lesioned (red) and non-lesioned 467 
(blue) trials. (e) Fixed points and state trajectories for θstimulus=0 with a lesion to cluster c (red) and non-lesioned 468 
(blue) networks (same as in panel a,b) during (left) stimulus, (middle) memory and (right) response periods 469 
for MemoryPro task projected onto the first two PCs (x and y-axes) defined by state evolution during the 470 
memory period of the MemoryPro task without lesion and the output weight vector (from Wout) associated with 471 
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cosθstimulus on the z-axis. State trajectories in black emanating from ‘x’ and ending with ‘▲’. (f) Same as e with 472 
lesion to cluster f. 473 

Fast Learning of Novel Tasks by Reusing Dynamical Motifs 474 

Networks were able to rapidly learn new tasks sequentially by reconfiguring previously learned dynamical 475 
motifs. We first identified a task where each task period shared a dynamical motif with at least one of the other 476 
14 tasks: MemoryAnti. In this task, the network uses the anti stimulus motif (as shown in two task network, 477 
Fig.2c) and the delayed-response memory motif (as in one and two task networks Fig.1f, 2e,g). We next trained 478 
a network to perform every task except the MemoryAnti task. After learning all input, recurrent and output 479 
weights and biases for other tasks, we trained only the one-hot rule input weights to learn the MemoryAnti 480 
task. This vector of length Nrec maps a single rule input onto the recurrent weights (Fig.6a). By only training the 481 
single rule input weights, we did not interfere with any previously learned dynamical motifs that were 482 
constructed in the recurrent weight matrix, Wrec, enabling learning of new tasks without catastrophic forgetting. 483 
The network was able to learn the MemoryAnti task when previously trained on all other tasks (Fig.6b, black).  484 

To determine if the anti stimulus motif and delayed response motif are sufficient for this effect, we pre-trained 485 
a new network on a key set of tasks that included these motifs: DelayAnti and MemoryPro. These networks 486 
could also sequentially learn the MemoryAnti task with single rule input training (Fig.6b, blue). Pre-training 487 
on this minimal set of tasks with relevant dynamical motifs learned as fast and to similar proficiency as 488 
networks pretrained on all tasks, suggesting the relevant dynamical motifs were sufficient for this effect. 489 
Conversely, if we pretrained the network on two pro tasks that did not include the anti motif (orange) or if we 490 
started from a network with no pre-training (green), networks required many more training steps or could not 491 
learn the MemoryAnti task at all (Fig.6b). 492 

Without pre-training on any tasks that included the anti computation, the network had to learn a new dynamical 493 
motif by modifying only the Nrec-dimensional rule input vector. This resulted in stimulus period state trajectories 494 
that were not highly overlapping with previously learned tasks (Fig.6c). The MemoryAnti stimulus period 495 
relevant fixed point was distinct from the previously learned DelayPro stimulus period relevant fixed point 496 
(Fig.6e,f). However, the network was pre-trained on a task that included a relevant memory period dynamical 497 
motif, the MemoryPro task. Despite learning a new stimulus period anti motif, the network was still able to 498 
reuse the previously learned memory motif. The state converged on the previously learned ring attractor 499 
(Fig.6g-j). This result highlights the modularity of dynamical motifs. 500 

Networks that were pre-trained with the relevant dynamical motifs reused the anti-stimulus and memory 501 
dynamical motifs for fast learning of the novel MemoryAnti task. We found that MemoryAnti state trajectories 502 
were in highly overlapping subspaces with the DelayAnti task during the stimulus period (Fig.6k-l) and with 503 
the MemoryPro task during the memory period (Fig.6o,p). Rule input interpolation between both anti tasks 504 
during the stimulus period (Fig.6m) and memory tasks during the response period (Fig.6q) provided strong 505 
evidence that the fixed point structures were shared.  506 

Tasks with unique motifs that were not shared with other tasks could not be learned as well using this pre-507 
training method compared to full network training. We trained networks on all tasks except one, for each task, 508 
and then trained the rule input weights for the held out task. We compared the training cost of these networks 509 
to single task networks where all weights were trained on only the held out task (Supp Fig.7a,b). 510 

We wanted to better understand the relationship between how well the pre-training method works for a given 511 
task and the uniqueness of its relevant dynamical motifs. We identified tasks with unique response period 512 
motifs using our task period variance matrix (Fig.3a), as rows with low correlations to other rows (task periods 513 
with low correlation to other task periods) (See Methods Section 1.12 for details). Three response task periods 514 
that were dissimilar from all other response periods could not be learned as well by rule input training alone 515 
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(Supp Fig.7c). In summary, we found that rapid learning was not possible in the context of novel tasks with 516 
unique dynamical motifs. These results provide support that rapid learning of novel tasks required 517 
reconfiguration of relevant previously learned dynamical motifs. 518 

 519 

Figure 6. Dynamical motifs were reused for fast learning of novel tasks with familiar computational 520 
elements. (a) Schematic of two stage learning. Networks were pre-trained on a set of tasks while all weights 521 
were plastic. The same network was then trained on a novel task by only learning a single one-hot rule input. 522 
(b) left: Networks were pre-trained on two tasks that include pro and memory motifs (orange), anti and 523 
memory motifs (blue), all motifs (black), no motifs (green). right: Performance during MemoryAnti task 524 
rule input training after pre-training on various sets of motifs for five different networks each. (c-j) Network 525 
pre-trained on DelayPro and MemoryPro tasks (pro and memory motifs) was then trained to perform 526 
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MemoryAnti through weight changes to the MemoryAnti rule input (length Nrec vector). (c) Fraction of 527 
MemoryAnti stimulus period variance explained by MemoryAnti stimulus period PCs (black) and DelayPro 528 
stimulus period PCs (purple) quantifies the extent to which both pro and anti tasks are in a similar subspace 529 
during the stimulus period. (d) Stimulus period state trajectories for DelayPro (white) and MemoryAnti 530 
(black) tasks for 8 different stimulus angles (rainbow colors) projected into PC space (x and y axes) defined 531 
by state trajectories for 100 different stimulus angle inputs during MemoryAnti task and context period state 532 
endpoint difference between both tasks (z-axis). (e) Rule input interpolation across tasks for one stimulus 533 
angle. middle: Unstable (open) and stable (closed) fixed points for 20 intermediate 𝜶 values (x-axis) 534 
projected onto top two PCs defined by state evolution during the memory period of the MemoryAnti task (y 535 
and z-axes) with (left) DelayPro 𝜶=0 and (right) MemoryAnti 𝜶=1 fixed points and trajectories for 8 536 
different stimulus angles (rainbow colors) (f) Euclidean distance between fixed points (black) and maximum 537 
real eigenvalue for the linearization of the state update around each fixed point (purple) for the single fixed 538 
point closest to the state at the end of the stimulus period for 20 consecutive 𝜶 values between 0 and 1. Only 539 
analyzing one fixed point that is most proximal to the end of the state trajectory for each input condition (see 540 
Methods Section 1.7).  (g-j) same as c-f for response period of MemoryPro and MemoryAnti tasks. (k-r) 541 
Network pre-trained on DelayAnti and MemoryPro tasks (anti and memory motifs) was then trained to 542 
perform MemoryAnti task through weight changes to the MemoryAnti rule input (length Nrec vector). (k-n) 543 
same as c-f for stimulus period of DelayAnti and MemoryAnti tasks with pre-training on DelayAnti and 544 
MemoryPro tasks. (o-r) same as c-f for response period of MemoryPro and MemoryAnti tasks with pre-545 
training on DelayAnti and MemoryPro tasks. 546 

Discussion 547 

In this work, we addressed the question of how recurrently connected artificial networks flexibly repurpose 548 
their learned dynamics to perform multiple tasks. Our collection of commonly studied cognitive tasks could 549 
be broken down into an underlying set of subtasks (contextual integration, memory, categorization, anti-550 
response, etc). We showed that networks learned this underlying subtask structure, which resulted in 551 
specialized computational building blocks that we call dynamical motifs, dedicated to each subtask. Using 552 
input interpolation and fixed point analyses, our work showed how dynamical motifs were organized in relation 553 
to one another and often shared across tasks or task periods. Inputs reconfigured the dynamical system in each 554 
task period, resulting in often smooth changes to the dynamical landscape underlying the performed 555 
computation. The motifs necessary to perform each subtask included different types of attractor structures, 556 
input amplifications, decision boundaries and rotations. This modular subtask structure in our set of tasks is 557 
analogous to the structure of language, algebraic thought and other natural behaviors in everyday life 27,28.  558 

Our framework of examining subtask computation through the lens of dynamical motifs made it possible to 559 
explain lesions and learning results described previously 18,20. As in Yang et al. 2019, we found that lesioning 560 
specific unit clusters resulted in specific deficits in sets of tasks that were related computationally. Units within 561 
a cluster had high variance during a set of task periods that shared a dynamical motif. When we lesioned a 562 
given unit cluster, the fixed points that made up the associated dynamical motif were greatly impacted in terms 563 
of their locations and stability. A unit cluster associated with one dynamical motif could be lesioned with little 564 
impact to other computations the network performed. That is, disturbances in the fixed point structure of one 565 
motif had little impact on the fixed point structures that implemented other dynamical motifs. This finding was 566 
surprising given the all-to-all connectivity possible in our networks, as well as the fact that no regularizations 567 
or constraints to induce modularity were employed in the training of the recurrent neural networks. Recent 568 
work on subpopulation structure for the implementation of multiple complex tasks provides insight for these 569 
findings 21,29. 570 

We demonstrated that networks equipped with relevant dynamical motifs were able to repurpose those motifs 571 
in a modular fashion for fast learning of novel tasks. The initial phase of learning novel dynamical motifs was 572 
a slow process. However, given a rich repertoire of previously learned motifs, a network could quickly 573 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted August 15, 2022. ; https://doi.org/10.1101/2022.08.15.503870doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.15.503870


repurpose motifs to perform novel tasks by learning a single input vector. We found that training with 574 
modifiable recurrent weights resulted in faster and higher performance learning of novel dynamical motifs than 575 
training input weights alone (Fig.6b, orange, green). However, sequential task learning with changes to the 576 
recurrent weights leads to catastrophic forgetting 18,30. Our findings suggest a useful lifelong learning strategy 577 
could include two stages of learning. Early in learning, it may be beneficial for highly plastic recurrent 578 
connections throughout the brain to learn novel subtasks (dynamical motifs). Late in learning, reduced 579 
plasticity in recurrent connections and new plastic layers that function as contextualizing inputs could 580 
repurpose previously learned subtasks. This hypothesis is interesting to consider in the context of critical 581 
periods 31 and re-aiming 32. We hypothesize that this two-stage process of slow and fast learning could provide 582 
some intuition for off- and on-manifold brain-machine interface learning results in nonhuman primates 33–35. 583 
Additionally, the ability to repurpose dynamical motifs may inform our thinking about state-of-the-art models 584 
that require pre-training 36. 585 

Our results are based on examining artificial systems, which are missing many of the constraints and 586 
complexities of biological neural circuits. We did not consider diverse cell types or prescribed architectures in 587 
our networks, and only applied noise-corrupted static inputs. We expect our results to inform a larger class of 588 
computational systems, while future work is required to link our findings directly to biological systems. More 589 
broadly, artificial networks have proven to be a valuable new tool for generating hypotheses about possible 590 
solutions to computation in biological networks 9–18. While our learning rules are not biological, we hypothesize 591 
that optimized artificial neural networks and the principles we uncover from them are informative about 592 
biological neural circuits based on principles of optimality and robustness 37. While some constraints changed 593 
the way dynamical motifs were shared, our main finding that they are shared was robust across all types of 594 
networks and hyperparameter choices that we tested, including large networks without noise (Supp Fig.2d-k). 595 
These findings suggest shared motifs are not a result of limited computational resources. We hypothesize that 596 
the modular, compositional organization of dynamical motifs was a result of the modular subtask structure of 597 
our tasks but learning dynamics through gradient descent could play a role. It will be of great interest to further 598 
explore the prevalence of dynamical motifs in other artificial38 and biological systems5,39. 599 

Dynamical motifs underlying modular computation were organized into largely distinct subspaces (Fig.3a, 4g, 600 
6c). This organization of dynamical motifs allowed for both modular lesion effects and rapid learning through 601 
the composition of distinct motifs without interference. In networks with nonlinearities that constrained 602 
activations to be positive, dynamical motifs were aligned to unit axes, highlighting these largely distinct 603 
subspaces.  604 

Fixed point structures often moved in different contexts rather than appear, disappear or change stability 605 
(Fig.1f, 2, 3d-e). For example, we found that during the stimulus task period, a stable fixed point moved in 606 
state space according to the stimulus input orientation (Supp Fig.2a), resulting in the same qualitative fixed 607 
point structure for each stimulus orientation. We found that multitasking networks sometimes employed 608 
parameter bifurcations across input conditions for dissimilar computations. The relationship between high 609 
dimensional parameter bifurcations, composition and computation is an important area of future research; see 610 
for example recent work 40–43.  611 

Fixed points often persisted as we varied the inputs, even when the associated motif was not relevant to the 612 
computational task at hand (Fig.2c). These irrelevant fixed points did not interfere with network computation 613 
because the network state was organized to be more proximal to the task relevant fixed points. This is related 614 
to the idea of sloppiness in under-constrained systems 44–46.  615 

Shared dynamical motifs can be thought of as both modular and continuous. For our broad set of 616 
hyperparameters, dynamical motifs were modular in our networks due to the modularity of subtasks within our 617 
defined collection of tasks (contextual integration, memory, categorization, anti-response, etc). If our set of 618 
tasks was made up of a continuous spectrum of related tasks (e.g. contextual integration of two input modalities 619 
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weighted by a continuous parameter), we might expect to find a dynamical motif that smoothly varies as the 620 
continuous parameter is varied (e.g. a left eigenvector of a line attractor that rotates in accordance with the 621 
weighting). Smoothness of dynamics was a prevalent feature in our networks, where similar computations 622 
were implemented in nearby regions of state space, on a similar dynamical landscape (Fig.4a-c). This feature 623 
of smoothness is consistent with biological noise-robust networks 13,16,47. 624 

Our findings resulted in a number of experimentally testable results. The method of studying unit variance 625 
across tasks 20, which we expanded to task periods to identify units contributing to dynamical motifs, could be 626 
readily performed on neural data (Fig.3a). This analysis could be informative about perturbations to biological 627 
network activity that would most dramatically impact performance on a computation of interest (Fig.5).  Our 628 
findings could apply to biological networks on multiple spatial scales. For example, we could consider multiple 629 
motifs implemented within a cortical region or we could think of different cortical areas as implementing 630 
different motifs. Our approach for training networks sequentially by reusing previously learned dynamical 631 
motifs could be used to determine ideal curricula for training animals on complex tasks. For example, given a 632 
particular task of interest, one could train an artificial network to perform the task and inspect all relevant 633 
dynamical motifs. For example, the ‘anti’ and ‘memory’ motifs were the sufficient set of relevant motifs in 634 
Figure 6b. Based on the task relevant motifs, one could systematically design a set of tasks to learn a sufficient 635 
set of motifs rather than designing a curriculum through guesswork. Additionally, this work highlights the 636 
relevance of reporting training protocols as they likely shape the dynamical motifs that implement 637 
computation48,49. Beyond experimental predictions, our work provides some intuition for why we find functional 638 
specialization in the brain. 639 

In summary, through the lens of dynamical systems, we identified the underlying computational substrate for 640 
clustered representations described previously in Yang et al. 201920 and highlighted a new level of organization 641 
between the unit and the network: groups of units that implement dynamical motifs. More broadly, our findings 642 
highlight the relevance of dynamical systems as a framework to better understand the response properties of 643 
neurons in the brain. As researchers record more whole brain activity, the framework of dynamical motifs will 644 
guide questions about specialization and generalization across brain regions. 645 
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Supplementary Figure 1: Inputs and outputs for each task for one example trial.  One panel for each task. 764 
Top: Noisy fixation, stimulus (modality 1 and 2), and rule input time-series (overlayed without noise for 765 
clarity.) Noise was used during training while analyses were performed on running the network without noise. 766 
Vertical lines divide task periods. Bottom: Targets (thick lines) overlaid with outputs of a trained network 767 
(thin lines).  768 
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Supplementary Figure 2: Fixed point structure is dependent on other tasks the network is trained to 770 
perform. (a) Fixed points for interpolated inputs across stimulus conditions 0°(blue)→45° (yellow), reveals 771 
one fixed point that moves dependent on stimulus input conditions. Trajectories colored according to stimulus 772 
orientation. Additional fixed points are revealed in (b) 2 task networks and (c) 15 task networks. (d-k) Nrec = 773 
1024 network with softplus activation, diagonal initialization and no input noise or private noise (see equations 774 
2 and 7 in Methods for noise definitions). Fixed points for interpolation between inputs for MemoryAnti (𝜶 = 775 
0) and MemoryPro (𝜶 = 1) tasks during (d,e) context (f,g) stimulus (h,i) memory (j,k) and response periods. 776 
(d) middle: Fixed points for 20 intermediate 𝜶 values (x-axis) projected into top PC defined by state evolution 777 
during the context period of the MemoryPro task (y-axis) with (left) MemoryPro 𝜶 = 0 and (right) 778 
MemoryAnti 𝜶 = 1 fixed points and trajectories. (e) Fixed points for rule input-interpolation between tasks, 779 
MemoryPro (blue fixed points, white state trajectory) and MemoryAnti (yellow fixed points, black state 780 
trajectory) projected into the top three MemoryPro context period state evolution PCs. (f) Same as d for 781 
stimulus period, with fixed points projected into top PC defined by the state evolution during the stimulus 782 
period of the MemoryPro task (y-axis) (g) Same as e for stimulus period, projected into the top two MemoryPro 783 
stimulus period state evolution PCs (x and y axes) and the dimension separating both tasks at the end of the 784 
context period (z axis). (h) Same as d for memory period, projected into top two PCs defined by the state 785 
evolution during the memory period of the MemoryPro task (y and z-axes) (i) Same as e for memory period, 786 
projected into the top two MemoryPro memory period state evolution PCs (x and y-axes) and the output weight 787 
vector (from Wout) associated with cosθstimulus on the z-axis.  (j) Same as d for response period, projected into top 788 
two PCs defined by the state evolution during the response period of the MemoryPro task (y and z-axes) (k) 789 
Same as i for response period. 790 
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 791 
Supplementary Figure 3: Example variance matrices for four different networks. Variance matrix: 792 
variance of unit activations across stimulus conditions normalized across task periods. Rows and columns 793 
sorted according to similarity (see Methods Section 1.10). (a) LeakyGRU, softplus activation, diagonal 794 
initialization, Nrec=128 (b) LeakyGRU, tanh activation, diagonal initialization, Nrec=128 (c) LeakyRNN, tanh 795 
activation, random Gaussian initialization, Nrec=128 (d) LeakyRNN, retanh activation, random Gaussian 796 
initialization, Nrec=128. 797 
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Supplementary Figure 4: Discrete and continuous variable memory computations result in two kinds of 799 
shared memory attractors. Networks were trained with softplus activation function for a-f (a) Neural state 800 
trajectories for 8 stimulus conditions (colored by response direction) starting from ‘x’ in IntegrationModality2 801 
PC space for IntegrationModality1 (white) and IntegrationModality2 (black) tasks. (b) Perturb initial condition 802 
for IntegrationModality1 response period state to the memory period final state of either IntegrationModality2 803 
task (Init from shared motif), ReactCategoryAnti (Init from other motif) or IntegrationModality1 (No perturb) 804 
for trials with the same response direction and run the network forward through the response period. One data 805 
point for each of three networks trained with diagonal initialization (filled circles) or with a random gaussian 806 
initialization (open circles). Performance was similar across ‘No perturb’ and ‘Init from shared motif’ 807 
conditions but was dramatically impacted for ‘Init from other motif’ conditions. (c) left:  Correlation across 808 
timesteps throughout an IntegrationModality1 trial. Task period transitions highlighted in white lines.  middle: 809 
Correlation across trials for different stimulus conditions for IntegrationModality1 and IntegrationModality2 810 
tasks at the end of the first stimulus period. right: Correlation across trials for different stimulus conditions for 811 
IntegrationModality1 and IntegrationModality2 tasks at the end of the memory period. Trials are highly 812 
correlated across tasks according to response direction. (d) Same as (a) for two category memory tasks, 813 
ReactCategoryPro (white) and ReactCategoryAnti (black). (e) Perturb initial condition for ReactCategoryPro 814 
response period state to the memory period final state of ReactCategoryAnti task (Init from shared motif), 815 
IntegrationModality1 (Init from other motif) or ReactCategoryPro (No perturb) for trials with the same 816 
response direction and run the network forward through the response period. (f) left: Correlation across 817 
timesteps throughout an ReactCategoryPro trial. Task period transitions highlighted in white lines.  middle: 818 
Correlation across trials for different stimulus conditions for ReactCategoryPro and ReactCategoryAnti tasks 819 
at the end of the stimulus period. right: Correlation across trials for different stimulus conditions for 820 
ReactCategoryPro and ReactCategoryAnti tasks at the end of the memory period. Trials are highly correlated 821 
across tasks according to response direction. (g-l) Same as (a-f) for tanh activation function. (m-r) Same as (a-822 
f) for retanh activation function.  823 
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 824 
Supplementary Figure 5: Positive activation functions align orthogonal motifs to unit axes. (a) Softplus 825 
activation function maps activity to the positive real line. (b) Tanh activation function does not impose 826 
positivity constraints. (c) left: Two activity patterns that are constrained to lie in the positive orthant can only 827 
be orthogonal to one another when aligned to the unit axes. right: Activation functions without positivity 828 
constraints do not constrain activity patterns to unit axes. Note: Either system can use additional dimensions 829 
to orthogonalize representations not aligned to unit axes in an infinitely large network.  830 
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831 
Supplementary Figure 6: Input modulation for context dependent integration (a) Stimulus dependent 832 
network state for both modality 1 (solid) and 2 (dotted) for 5 different tasks where relevant modality is specified 833 
in title for each subpanel. (b) Difference between variance across stimulus conditions for preferred modality 834 
minus variance across stimulus conditions for nonpreferred modality. Preference is defined by task rules. One 835 
line for each of five tasks in three different networks. (c) Context period network state for all 5 tasks projected 836 
onto the first and second PCs defined by variance of the state for each task. (PCA on 5xNrec matrix). 837 
Organization of network states at the end of the context period shows compositional structure. PC1 goes from 838 
modality 1->2 and PC2 separates ContextIntegration vs. Integration decision tasks. (d) Norm of input jacobian 839 
for 24 stimulus conditions spanning [0, 2p) on each of 5 tasks (see Methods Section 1.8). Trials where the 840 
network should prefer modality 1 are black, modality 2 white, multimodal gray. Hyperparameters: LeakyRNN, 841 
softplus activation, diagonal initialization, Nrec=128  842 
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 843 
Supplementary Figure 7: Leave-one-out transfer learning is less effective for tasks with unique 844 
dynamical motifs. (a) Log cost during training single rule input weights for (a) MemoryAnti and (b) 845 
ReactMatch2Sample tasks after pre-training all other weights on all other tasks (gray) and during training all 846 
weights and biases on a single rule (black, 3 lines for 3 different networks with different random reeds). 847 
Single task networks provide a baseline comparison to measure how well the pre-training method works for 848 
any given task. (c) Cost difference between single task networks and transfer learning network (as in a,b) 849 
plotted against task period max correlation (See Methods Section 1.12 for details) early in learning (left) and 850 
late in learning (right) for each task. The fast learning benefit was smaller and the long term cost was 851 
negative (single task networks outperformed transfer learning networks) for tasks with unique dynamical 852 
motifs. Hyperparameters: LeakyRNN, softplus activation, diagonal initialization, Nrec=128 for transfer 853 
learning and single task networks. Task period max correlation was averaged across networks with all 854 
hyperparameter settings in Fig.3b. 855 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted August 15, 2022. ; https://doi.org/10.1101/2022.08.15.503870doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.15.503870


1 Methods856

1.1 Network Structure857

We examined “vanilla” continuous-time RNNs for the majority of this work, although see methods858

subsection on varying hyperparameters and architectures [Section 1.4]. Before time discretization,859

RNN network activity h, a vector of length Nrec, followed the dynamical equation860

τ
dh

dt
= −h+ σ(it), (1)

with the total neuron input it defined as861

it = Wrecht +Winut + bin + ξ. (2)

Win and Wrec were the input and recurrent connection matrices of size Nrec × Nin and Nrec × Nrec.862

These matrices specified the contribution of the inputs and upstream network activity to downstream863

network activity. The bias vector, bin, was of length Nrec. The private noise variable, ξ, was Nrec864

independent Gaussian white noise processes with zero mean and standard deviation of 0.05.865

The state of this system evolved over time according to the current state h and inputs to the system866

u. The nonlinear function σ(·) was chosen to be softplus, tanh or retanh [see Section 1.4 for details].867

The time constant, τ , specified the rate of decay of the network state. After using the first-order Euler868

approximation with a time-discretization step ∆t, we had869

ht+1 = (1− γ)ht + γσ(it), (3)

where γ ≡ ∆t/τ , which we set to 0.2. The full update equation was870

ht+1 = (1− γ)ht + γσ(Wrecht +Winut + bin + ξ). (4)

A set of output units z were read out from the network according to871

zt = Woutht + bout. (5)

Wout was the output connection matrix of size Nout ×Nrec and bout was a bias vector of length Nout.872

All W matrices, Win, Wrec, Wout and bias vectors bin, bout were learned over the course of training873

[see Section 1.3 for details].874

The network received four types of noisy input.875

u = [ufix,umod1,umod2,urule] + unoise (6)

unoise[j] ∼ 0.1
√

2/γ N (0, 1) (7)

The fixation input ufix was 1 when the network was required to fixate and 0 when the network was876

required to respond. The stimulus inputs umod1 and umod2 each a length-2 vector of (A sin θ and877

A cos θ) representing a different “modality" and each modality representing a one-dimensional cir-878

cular variable described by the degree around a circle. The strength of the stimulus inputs varied in879

amplitude according to a. We greatly reduced the dimensionality of the stimulus inputs from the orig-880

inal implementation of these tasks in order to simplify visualizations and analysis. This simplification881

in stimulus inputs required removal of five of the original 20 tasks, because we could no longer present882

multiple stimuli in the same modality simultaneously. The network also received a set of rule inputs883
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encoded in the vector, urule. This vector represented which task the network was supposed to perform884

on each trial as a one-hot vector. The rule input unit corresponding to the current task was 1, while885

other rule input units were 0. Therefore, the number of rule input units was equal to the number of886

tasks trained. The rule unit activation patterns for different rules were orthogonal to each other in this887

1-hot encoding. Therefore, relationships between tasks were learned by the network rather than baked888

into the inputs. Finally, each input had Gaussian noise added to it according to equations (6-7). Here889

the input noise strength was scaled by the factor 0.1. Note this was an order of magnitude greater than890

in previous work, to prevent over-fitting [1].891

In total, there were892

Nin = 1(fixation) + 2(modalities)× 2(A sin θ and A cos θ) + 15(rule) = 20 input units.893

The network projected the state, ht, to an output ring, which contained 2 units (sinϕ, cosϕ) to encode894

response direction on a circle. In addition, the network projected h to a fixation output unit, which895

should be at the high activity value of 1 before the response and at 0 once a response is generated.896

In total, there were897

Nout = 1(fixation) + 1(modality)× 2(sinϕ and cosϕ) = 3 output units.898

1.2 Tasks and performances899

Inputs and outputs for an example trial on each task are shown in Supplementary Figure 1. Fixation900

input was 1 for the duration of the trial until the response period, when fixation input changed to zero.901

Reaction timed tasks never received a go cue; therefore, the fixation input was always at 1 and the902

network was required to break fixation to respond as soon as the relevant stimulus arrived. Target903

fixation output activity was high (ẑ = 0.8) before the response period and low (ẑ = 0) during the904

response period for all tasks. If the activity of the fixation output prematurely fell below 0.5, the905

network was considered to have erroneously broken fixation and the trial was incorrect. The response906

direction of the network was read out in a 2 dimensional vector (sinϕ and cosϕ). The decoded response907

direction was considered correct if it was within π/10 of the target direction.908

Tasks could be divided into periods, where each task period was a segment of sequential time steps909

with continuous inputs (without noise). Each set of inputs reconfigured the network into a new dy-910

namical landscape, with a different fixed point structure. Distinct dynamical landscapes for each input911

condition is a crucial concept for this work and should be emphasized. For all tasks, in the first pe-912

riod (context) the rule input provided the network with information about task context. The onset of913

stimulus information marked a change in the stimulus inputs and the beginning of the next task period914

(stimulus1). All tasks had at least one stimulus period, but some had two stimulus periods. The period915

between the stimulus and response or between two stimuli was the memory period (memory1). If there916

was a second stimulus (stimulus2), sometimes the network was required to respond immediately to the917

second stimulus and in other tasks there was an additional memory period (memory2) before the re-918

sponse period (response). The duration of the context, stimulus1, memory1, stimulus2, memory2, and919

response periods were Tcontext, Tstimulus1, Tmemory1, Tstimulus2, Tmemory2, Tresponse, respectively. We920

adjusted the distribution of task periods to be wider than in previous work and drawn from a uniform921

distribution to prevent the network from predicting task period transitions. These modifications had a922

simplifying effect on fixed point structures).923

U(t1, t2) is a uniform distribution between t1 and t2. The unit for time is milliseconds. Stimuli were924

presented in either modality 1 or 2 at random unless stated otherwise.925
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Delayed Response: (2 tasks) DelayedPro: Move in same direction as stimulus (ϕresponse = θstimulus)926

after delay. DelayedAnti: Move in opposite direction as stimulus (ϕresponse = θstimulus+π) after delay.927

Stimulus remains on throughout stimulus and response periods.928

Tcontext U(300, 700)

Tstim1 U(200, 1500)

Tresponse U(300, 700)

Memory Response: (2 tasks) MemoryPro: Move in same direction as stimulus (ϕresponse = θstimulus)929

after memory. MemoryAnti: Move in opposite direction as stimulus (ϕresponse = θstimulus + π) after930

memory. Stimulus disappears for memory period and remains off during response.931

Tcontext U(300, 700)

Tstim1 U(200, 1600)

Tmemory1 U(200, 1600)

Tresponse U(300, 700)

Reaction Timed: (2 tasks) ReactPro: Move in same direction as stimulus (ϕresponse = θstimulus)932

immediately. ReactAnti: Move in opposite direction as stimulus (ϕresponse = θstimulus + π) immedi-933

ately.934

Tcontext U(500, 2500)

Tresponse U(300, 1700)

Decision Making: (5 tasks) Move in direction of stimulus with largest amplitude. IntegrationModal-935

ity1: Only modality 1 is presented. IntegrationModality2: Only modality 2 is presented. ContextInt-936

Modality1: Both modalities presented, only attend modality 1. ContextIntModality2: Both modalities937

presented, only attend modality 2. IntegrationMultimodal: Both modalities presented, attend both938

modalities equally.939

Tcontext U(200, 600)

Tstim1 U(200, 1600)

Tmemory1 U(200, 1600)

Tstim2 U(200, 1600)

Tmemory2 U(100, 300)

Tresponse U(300, 700)

Delay Match: (4 tasks) Immediately move in direction of θstim2 if sequentially presented pair match.940

ReactMatch2Sample: Match if same angle (θstim1 = θstim2). ReactNonMatch2Sample: Match if941

opposite angle (θstim1 = θstim2 + π). ReactCategoryPro: Match if same category (θstim1, θstim2 < π)942

or (θstim1, θstim2 > π). ReactCategoryAnti: Match if opposite category (θstim1 < π & θstim2 > π) or943

(θstim1 > π & θstim2 < π).944

Tcontext U(200, 600)

Tstim1 U(200, 1600)

Tmemory1 U(200, 1600)

Tstim2/response U(300, 700)
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1.3 Training procedure945

The loss L to be minimized was computed by time-averaging the squared errors between the network946

output z(t) and the target output ẑ(t).947

L = Lmse ≡ ⟨mi,t(zi,t − ẑi,t)
2⟩i,t

Here, i was the index of the output units and t was the index for time. We implemented a mask, mi,t, for948

modulating the loss with respect to certain time intervals. For example, in the first 100 ms of the context949

and response periods there was a grace period with mi,t = 0. During the response period, mi,t = 5 and950

for the rest of the trial mi,t = 1. For the fixation output unit, mi,t was two times stronger than the mask951

for the ϕresponse output units. The training was performed with Adam, a variant of stochastic gradient952

descent [2]. The learning rate ranged from 10−4 (tanh networks) to 10−3 (all other networks). The953

decay rate for the first and second moment estimates were 0.9 and 0.999, respectively. During training,954

we randomly interleaved all the tasks with equal probabilities, except for the ContextIntModality1955

and ContextIntModality2 tasks that appeared five times more frequently to prevent the network from956

integrating both modalities equally. This alternative strategy gave the network an accuracy close to957

75% if trials from these tasks were not over-represented. During training, we used mini-batches of 64958

trials, in which all trials were generated from the same task for computational efficiency. Training was959

terminated when L stopped decreasing, which was generally after 5e7 training steps.960

The network and training were implemented in TensorFlow.961

1.4 Alternative hyperparameters and network architectures962

We trained networks with the following possible hyperparameters and architectures:963

The network architecture was either the leaky RNN architecture defined previously, or the leaky GRU964

architecture [3].965

We explored a number of nonlinear functions σ(·),966

Softplus : σ(x) = ln(1 + ex)

Retanh : σ(x) = max(tanh(x), 0)

Tanh : σ(x) = tanh(x) =
ex − ex

ex + ex

(8)

We initialized each weight matrix from a diagonal matrix,967

Wrec0 = g INrec (9)

or from a random Gaussian968

[Wrec0]ij ∼
g√
Nrec

N (0, 1). (10)

Here, g scaled the values in the initial weights. In networks with the tanh activation function and969

the leaky RNN architecture g = 1 and all other networks g = 0.8. We found that networks with970

the tanh activation function required this higher g value to prevent quenching network activity during971

training.972

To avoid overly complex solutions that didn’t generalize well, we penalized high activity and strong973

weights using an L2 regularization on h and on each weight matrix Win, Wrec, Wout. The hyperpa-974

rameter selection criterion was the highest level of regularization that resulted in >80% performance975
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on held out test data. We found the highest level regularization that still resulted in greater than 80%976

performance on all tasks to be 10−6 for both weight and activity regularization.977

1.5 Fixed Points978

Our networks were high-dimensional nonlinear systems, rendering them difficult to understand intu-979

itively. Examination of these networks was made easier through analysis of fixed points, which are980

locations in state space where the motion of the system is approximately zero. Through a Taylor ex-981

pansion of our dynamical equation, we may see that our nonlinear system can be approximated as a982

linear one around fixed points, h∗:983

dh

dt
= F (h,u)

F (h∗ + δh,u∗ + δu) ≈ F (h∗,u∗) +
∂F

∂h
(h∗,u∗)δh+

∂F

∂u
(h∗,u∗)δu

(11)

The second order terms (not shown) are approximately zero because ∥δh∥2 ≈ 0. The first term,984

F(h∗,u∗) is zero by definition of the fixed point, where h∗ is the location where the update F (h∗,u∗) =985

0. For the majority of this work, with the exception of Supplementary Figure 6, we hold input values986

to their constant value during a task period. We can therefore ignore the last term where δu = 0.987

Therefore, around fixed points, we can approximate our nonlinear dynamical systems as the linear988

system, dδh
dt

≈ ∂F
∂h

(h∗,u∗)δh.989

990

Eigendecomposition of the matrix, ∂F
∂h

(h∗,u∗), reveals in which dimensions of state space the dy-991

namics are contracting, expanding or are marginally stable (ie. neither contracting or expanding).992

Eigenvectors with an associated real part of the eigenvalue λ < 1 are contracting dimensions, λ > 1993

are associated with expanding dimensions and λ ≈ 1 are marginally stable. At a fixed point that is994

contracting in every dimension, the state is at a basin of attraction. This is a particularly useful dy-995

namical system for preparing an optimal initial condition for the next task period. Marginally stable996

dimensions are useful for integrating noisy pulses of stimulus information and for memory of a contin-997

uous variable. Saddle points are contracting in some dimensions, while repulsive in other dimensions.998

Saddle points are useful for decision making along the repulsive dimensions. Repulsive dimensions999

can additionally be useful for keeping the neural state away from a particular region of state space.1000

For example, the neural state must remain outside of output potent space (orthogonal to the readout1001

weights) until the response period.1002

1003

To identify fixed points, we empirically optimized for a set of {h1∗,h2∗, ...} satisfying F (h∗,u∗) = 01004

while defining u∗ by holding the inputs u constant for each task period. Each different input condition1005

reconfigured the RNN into a new dynamical landscape with a different set of fixed points. Therefore,1006

each set of {h1∗,h2∗, ...} was associated with a particular input u∗. At the fixed point h∗ with inputs1007

u∗, the update to the state at the next time point is zero and therefore, the state doesn’t move away1008

from this location. We used the term fixed point to include approximate fixed points, where the up-1009

date is small on the timescale of our task. Our fixed points range between q = 10−3 to 10−15 where1010

q = 1
2
[h∗−f(h∗,u∗)]T[h∗−f(h∗,u∗)]. We included a wide range of q values in order to best highlight1011

relevant dynamics on a case by case basis.1012

1013

We used the Fixed Point Finder package in Tensorflow [4].1014
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1.6 Input Interpolation1015

We examined how fixed point structures moved and changed stability as the dynamical system was1016

reconfigured by different inputs. To do this, we interpolated across pairs of inputs and identified fixed1017

points for each intermediate input condition. For input vectors u1 and u2, we identified fixed points1018

for αu1 + (1− α)u2 where α was varied between 0 and 1 in 0.05 increments.1019

1.7 Analysis of Fixed Points for Interpolated Inputs1020

After input interpolation [see Section 1.6 for details], we wanted to compare fixed points across input1021

conditions in order to track their positions and stability in high dimensional space. However, there1022

were often multiple fixed points, making it difficult to track an individual fixed point across input1023

conditions. We focused on the fixed point closest to the state at the end of a task period of interest1024

(except in Figure 4f, where we focused on the closest unstable fixed point because it appeared more1025

relevant to the nonlinear dynamics - the closest fixed point was stable and was also shared across tasks).1026

Our reasoning was that if the state evolved toward a particular fixed point, it was likely relevant for1027

computation. After identifying fixed points during rule input interpolation, we ran the network forward1028

from the beginning of the context period for each interpolated rule input and identified the fixed point1029

closest to the network state at the end of the task period of interest (stimulus or response period).1030

We refer to this closest fixed point as the ’relevant’ fixed point for a given interpolated input. We1031

calculated the Euclidean distance between relevant fixed points associated with adjacent interpolated1032

input conditions (α1, α2) as:1033

d(α1, α2) = ∥h∗
relevant(α1)− h∗

relevant(α2)∥2. (12)

We also tracked the stability of the relevant fixed point for each interpolated input. To do this, we per-1034

formed eigenvalue decomposition on the Jacobian of the RNN state transition function at the relevant1035

fixed point,1036

∂F

∂h
(h,u)

∣∣∣
h=h∗

relevant(α1),u=u∗(α1)
(13)

The eigenvalue with the maximum real value is informative about whether the relevant fixed point is1037

stable. By tracking the stability over input interpolation, we could identify bifurcations in the dynam-1038

ical landscape.1039

To examine the relevant dynamical motif for a given task period, we defined a ’relevant fixed point’ to1040

be the fixed point closest to the state at the end of the task period. If the input interpolation between α =1041

0 and α = 1 resulted in approximately the same location of the relevant fixed point and approximately1042

the same local dynamics around the relevant fixed point, then we defined the relevant fixed point as1043

being functionally the same across inputs; and therefore, the dynamical motif was shared across input1044

conditions.1045

Alternatively, if the interpolation between α = 0 and α = 1 resulted in a bifurcation of the fixed1046

point structure, then we defined the dynamical motifs to be distinct. We highlight that our definition of1047

distinct motifs was limited in that a different path for consecutive input interpolation might not result1048

in a bifurcation. It will be of great interest to explore ambiguous cases of shared and distinct motifs in1049

future work.1050
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1.8 Effective Input Modulation1051

In previous work, it was identified that relaxation dynamics of the network state could contextually1052

integrate stimulus inputs [5]. We identified some networks that additionally contextually amplified1053

stimulus inputs (Supplementary Figure 6). In order to deconstruct how the signal from one input1054

is contextually amplified, we look at the first order Taylor Series approximation of the state update1055

around a particular input, u∗, and its associated fixed point, h∗:1056

∂F

∂h
(h∗,u∗)δh+

∂F

∂u
(h∗,u∗)δu (14)

The network received contextual rule input during the context period and moved toward a stable fixed1057

point. We took this stable fixed point during the context period to be the initial conditions for the sub-1058

sequent stimulus period. We modelled the initial stimulus input in the ∆ustimulus = ustimulus−ucontext1059

term without changing ∂F
∂u

(hcontext,ucontext) at the context dependent fixed point. We calculate the1060

input response for each stimulus condition for trials spanning [0, 2π) by calculating the norm of the1061

dot product of1062

∥∂F
∂u

(hcontext,ucontext)∆ustimulus∥2. (15)

We found that there was task specific amplification of stimulus modality inputs, where the modality1063

1 (2) input response was larger for tasks where the network must respond according to modality 11064

(2).1065

1.9 Task variance analysis1066

In order to examine the contributions of unit variance to computation in each task period, we used a1067

modified version of the task variance analysis described previously [1]. We ran the network forward1068

for a set of possible stimulus conditions on the task of interest. For example, in the Delayed Response1069

tasks, we presented the network with trials where θstimulus ranged from [0, 2π). In the Decision Making1070

tasks we ran the same network with with θstimulus ranging from [0, 2π) and coherences ranging from1071

0.005 to 0.2. We then computed the variance across possible stimulus conditions for each unit on each1072

task period through time. This was a deviation from [1] in two ways. Firstly, we computed task period1073

variance across stimulus conditions for all task periods separately because we considered each task1074

period as a separate dynamical landscape. Secondly, we computed variance through time rather than1075

averaging across time, because we were interested in the dynamics rather than static representations.1076

Variance during the fixation period was low so we excluded the fixation period from this analysis,1077

and we study it separately in Figure 4b-c. Private noise (ξ in equation 4) was set to zero for this1078

analysis to eliminate the effect of recurrent noise. This analysis was a useful method to uncover unit1079

contributions to network computations because our networks were activity regularized. Given activity1080

regularization, any deviations from zero activity were costly for the network to produce and therefore1081

likely beneficial for task computation. The result of this analysis was a matrix composed of columns1082

of units and rows of task periods, where each index quantified the participation of a given unit to the1083

computation during a given task period. We refer to this matrix as the variance matrix.1084

Correlations between variance matrices were computed by first sorting task period rows according to1085

one reference network. A correlation matrix for each network was computed by finding the Pearson1086

correlation between rows of the variance matrix for that network separately. Each correlation matrix1087

was compared to every other correlation matrix by first flattening the the upper triangle of entries in1088

each correlation matrix. We then calculated the Pearson Correlation between this vector and the same1089

vector associated with each trained network. Both trained and untrained networks were compared to1090
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trained networks in order to determine whether the structure in trained networks emerged due to the1091

input structure or due to learned dynamical motifs.1092

1.10 Clusters1093

We sorted rows and columns of the variance matrix [see Section 1.9 for details] according to similarity1094

using the Ward variance minimization algorithm [6]. This algorithm produced a dendrogram that1095

shows the hierarchical distance between rows or columns of the task variance matrix. In order to obtain1096

discrete clusters, we identified the optimal distance threshold for each dendrogram by computing the1097

silhouette score on the basis of intracluster and intercluster distances. The silhouette score of an unit1098

i was (di,interdi,intra)/max(di,intra, di,inter), where di,intra was the average distance of this unit with1099

other units in the same cluster, and di,inter was average distance between this unit and units in the1100

nearest cluster. The silhouette score of a clustering scheme was the average silhouette score of all1101

units. A higher silhouette score meant a better clustering. We computed the silhouette score for the1102

number of clusters ranging from 3 to 40. The optimal number of clusters k was determined by choosing1103

the k with the highest silhouette score. Clustering results were robust to clustering method and to the1104

network hyperparameters that we explored.1105

1.11 Lesions1106

We lesioned a network unit by setting its projection weights to 0 for all recurrent and output units.1107

When we lesioned a particular network cluster, we lesioned all units within that cluster.1108

1.12 Transfer Learning1109

Networks were pre-trained on a subset of tasks as described previously, where Win, Wrec, Wout and1110

bias vectors bin, bout were learned over the course of training [see Section 1.3 for details]. After this1111

initial stage of training, the network was trained on a held out task. In this second phase of training, all1112

network connections were held fixed except for the rule input weights of the held out task. That meant1113

that in the second phase of learning, only a vector urule∗ of size Nrec within Win changed.1114

In Supplementary Figure 7, we wanted to understand the relationship between how well this transfer1115

learning approach worked and whether the held out task required learning of novel dynamical motifs.1116

We first quantified the extent to which a task required a unique dynamical motif by comparing rows1117

in the variance matrix [see Section 1.9 for details]. We sorted rows according to a reference network1118

and computed the correlation matrix for the variance atlas in each network across all hyperparameter1119

settings in Figure 3b. We then took the average across all correlation matrices. We used this aver-1120

age correlation matrix to inform the average relationship across task periods for all networks that we1121

examined. For each task, we identified the maximum correlation to other tasks for each task period.1122

The most unique task period was that which had the lowest maximum correlation to other task peri-1123

ods. Our hypothesis was that tasks with lower correlation required unique dynamical motifs whereas1124

tasks with higher correlation could be shared across tasks. We then quantified how well our transfer1125

learning method performed for each task. We first trained a network on all but one task in the first1126

stage of learning and then on the held out task in the second stage of learning. We compared the cost1127

during training each task in the second stage of transfer learning to a single task network. Single task1128

networks were trained to perform the task of interest with all weights and biases plastic. We compared1129

the cost at two different points in the training process, (1) early in training in order to determine the1130

benefit from starting with previously learned dynamical motifs and (2) late in training to determine the1131

cost of freezing all weights except the rule input for the task of interest. We then plotted the difference1132
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in cost at these two separate time points against our metric for unique task periods. The fast learning1133

benefit was smaller and the long term cost was negative for tasks with unique dynamical motifs.1134
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