
 

 
 

 

 

Functional unknomics: closing the knowledge gap to accelerate 

biomedical research 
 
Joao Rocha1,†, Satish Arcot Jayaram1,†, Tim J. Stevens1,†, Nadine Muschalik1,†, 

Rajen D. Shah2, Sahar Emran1, Cristina Robles1, Matthew Freeman1,3,* and Sean 
Munro1,*. 

 
 
1 MRC Laboratory of Molecular Biology  

Francis Crick Avenue 

Cambridge CB2 0QH, UK 
 
2 Centre for Mathematical Sciences 

University of Cambridge 
Cambridge CB3 0WB 

 
3 Dunn School of Pathology,  

University of Oxford,  
Oxford OX1 3RE 

 
† These authors contributed equally 

 

 
 

* Correspondence: sean@mrc-lmb.cam.ac.uk, matthew.freeman@path.ox.ac.uk 

  

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 28, 2022. ; https://doi.org/10.1101/2022.06.28.497983doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.28.497983
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 2 

Summary 

The human genome encodes ~20,000 proteins, many still uncharacterised. 
Scientific and social factors have resulted in a focus on well-studied proteins, 

leading to a concern that poorly understood genes are unjustifiably neglected. To 
address this, we have developed an “Unknome database” that ranks proteins 

based on how little is known about them. We applied RNAi in Drosophila to 260 

unknown genes that are conserved between flies and humans. About a quarter 
are required for viability, and functional screening of the rest revealed hits for 

fertility, development, locomotion, protein quality control and resilience to stress. 
CRISPR/Cas9 gene disruption validated a component of Notch signalling and two 

genes contributing to male fertility. Our work demonstrates the importance of 
poorly understood genes, provides a resource for future research acceleration, 

and highlights a need for our awareness of ignorance to be protected from erosion 
by automated database annotation.  
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Introduction 

The advent of genome sequencing revealed in humans and other species 

thousands of genes encoding proteins that had not been identified by previous 
biochemical or genetic studies. Since the release of the first draft of the human 
genome sequence in 2000, the function of many of these new proteins has been 

identified. However, despite over twenty years of extensive effort there are also 
many others that still have no known function. The mystery and the potential 

biological significance of these unknown genes is enhanced by many of them 
being well conserved, and many of them being completely unrelated to known 

proteins and thus lacking clues to their function. Analysis of publication trends has 
revealed that research efforts continue to focus on genes and proteins of known 

function, with similar trends seen in gene and protein annotation databases 
(Edwards et al., 2011; Peña-Castillo and Hughes, 2007; Sinha et al., 2018). This is 

despite clear evidence from studies of gene expression and genetic variation that 
many of the poorly characterised proteins are linked to disease, including those 

that are eminently druggable (Oprea et al., 2018; Stoeger et al., 2018).  
This bias in biological research toward the previously studied appears to 

reflect several linked factors. Clearly, funding and peer-review systems are more 
likely to support research on proteins with prior evidence for functional or clinical 

importance; individual perception of project risk, and social aspects of the 
research enterprise no doubt also contribute. In addition, scientific factors have 

been proposed, including a lack of specific reagents like antibodies or small 
molecule inhibitors, and a tendency to focus on proteins which are abundant and 
widely expressed and so likely to be present in cell lines and model organisms 

(Edwards et al., 2011; Stoeger et al., 2018). Finally, some genes may have roles 
that are not relevant to laboratory conditions (Peña-Castillo and Hughes, 2007).  

Whatever the reasons, this bias against the unknown is clear and does not 
appear to be diminishing. This has led to concern that important fundamental or 

clinical insight, as well as potential for therapeutic intervention, is being missed, 
and hence the launch of several initiatives to address the problem. These include 

programs to generate proteome-wide sets of reagents such as antibodies or 
mouse knock-out lines (Muñoz-Fuentes et al., 2018; Thul et al., 2017). In addition, 
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the NIH’s Illuminating the Druggable Genome initiative supports work on 

understudied kinases, ion channels and GPCRs (Rodgers et al., 2018). There have 
been initiatives to develop new means to predict protein function or structure (9-

13). Finally, databases such as Pharos, Harmonizome and neXtProt link human 

genes to expression and genetic association studies with the aim of highlighting 

understudied genes relevant to disease and drug discovery (Duek et al., 2018; 
Nguyen et al., 2017; Rouillard et al., 2016). 

In this work, we have investigated directly the potential biological 

significance of conserved genes of unknown function by developing a systematic 
approach to their identification and characterisation. We have created an 

'Unknome database' that assigns to each protein from a particular organism a 
‘knownness’ score based on a user-controlled application of the widely-used 

Genome Ontology (GO) annotations (Ashburner et al., 2000; 
The Gene Ontology Consortium, 2019). The database allows selection of an 

'unknome' for a particular model organism that can be tuned to reflect the degree 
of conservation in other species, for example allowing a focus on those proteins of 

unknown function that have orthologs in humans or are highly conserved in 
evolution. We use this database to evaluate the human unknome and find that it is 

only slowly shrinking over time. To assess the value of the unknome as a 
foundation for experimental work we selected a set of 358 Drosophila proteins of 

unknown function that are conserved in humans, and used RNA interference to 

test their contribution to a wide range of biological processes. This revealed 
proteins important for diverse biological roles, including cilia function and Notch 
pathway signalling. Overall, our approach has demonstrated that significant and 

unexplored biology is encoded in the neglected parts of the human proteome.  
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Results 

Construction of an Unknome database 

Much of the progress in understanding protein function has come from research in 
model organisms selected for their experimental tractability. Application of this 

research to the proteins of humans requires being able to identify the orthologs of 
these proteins in model organisms. Although it is not certain that orthologs in 
different species have precisely the same function, they generally have similar or 

related functions, implying that work from model organisms at the very least 
provides plausible hypotheses to test. Thus, our Unknome database was 

designed to link a particular protein with what is known about its orthologs in 
humans and popular model organisms.  

A range of methods for identifying orthologs have been developed based 
on sequence conservation and although none are perfect, several achieve an 

accuracy in excess of 70%. We initially used the OrthoMCL database as it 
covered a wide range of organisms (Fischer et al., 2011). However, OrthoMCL was 

not being updated, and so the current Unknome database is based on the 
PANTHER database (version 16.0) which covers over 142 organisms, is currently 

in continuous development, and has a good level of sensitivity and accuracy (Mi et 
al., 2021).  

The heart of the Unknome database has been the development of an 
approach to assigning a “knownness” score to proteins. This is not trivial and is 

inevitably a somewhat subjective measure. Definitions of “known” range from a 
simple statement of activity to an understanding of mechanism at atomic 

resolution, and even well characterised proteins can reveal unexpected extra 
roles. Thus, we designed the database so that the criteria for knownness can be 
user defined, as well as having a default set of criteria. The Gene Ontology (GO) 

Consortium provides annotations of protein function that are well suited to this 
application. Firstly, GO annotation is based on a controlled vocabulary and so is 

consistent between different species, and secondly, it is well structured thus 
allowing a user to apply their own definition of knownness.  

The Unknome database combines PANTHER protein family groups (which 
we term “clusters”) with the GO annotations for each member of the cluster. This 
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includes annotations from humans and the 11 model organisms selected by the 

GO Consortium for their Reference Genome Annotation Project. The sequence-
similar protein clusters (primary PANTHER families) not only contain orthologs, but 

also recent paralogs: duplications within individual species. The knownness score 
for each protein is based upon the number of GO annotations it possesses. 

However, it is important to recognise that GO annotations do not all have equal 
evidential value, and the Unknome database allows users to account for this in 

generating a knownness score. This allows application of greater weights to 
annotations that are more likely to be reliable, such as those from a “Traceable 

Author Statement” rather than those “Inferred from Electronic Annotation” (Figure 
1A). In addition, weighting allows selection of annotations most relevant to 

function. For instance, a protein’s sub-cellular location is often included in its GO 
annotation, but this may not helpfully restrict the range of possible functions, so 

the database provides the option of excluding it when calculating a knownness 
value. The final knownness score of a cluster of proteins is set as the highest 

score of a protein in the cluster (Figure 1B). The Unknome database is available as 
a website (unknome.mrc-lmb.cam.ac.uk) that provides all protein clusters that 
contain at least one protein from humans or any of the 11 model organisms. The 

clusters can be ranked by knownness, and the user can modify this list so as to 
include only those proteins that are present in a particular combination of species, 

such as human plus a preferred model organism (Figure 1C). For each protein 
family, the interface shows the orthologs in its cluster and how the knownness of 

the cluster has changed over time (Figure 1D). These design principles maximise 
the versatility and power of the Unknome database as a tool for researchers from 

different biomedical fields. 
 

Validation of the Unknome database. 

To validate the Unknome database we ranked the 7,463 clusters of orthologs and 

paralogs that contain at least one human protein, a criterion based on our ultimate 
goal of revealing new human biology. Validating the overall approach, the top 10 

scoring proteins have well known roles in development and cell function (Figure 
1E). In contrast, proteins containing one of the “Domains of Unknown Function” 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 28, 2022. ; https://doi.org/10.1101/2022.06.28.497983doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.28.497983
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 7 

defined by the Pfam database were concentrated at the bottom of the range 

(Figure 1F). Clusters with a score of 1.0 or less correspond to 18.3% of all clusters 
but to 36% of the DUFs, and 59% of the related Unknown Protein Function 

(UPFs). The exceptions were typically multidomain proteins of known function 
which contain one domain whose role is unclear. Finally, the total number of 

PubMed entries on each protein shows a good correlation with their current 
knownness (Figure 1G). Overall, we conclude that the calculated knownness score 

provides a useful means to identify proteins of unknown function.  
 

The change of the Unknome over time 

Unlike most databases, the Unknome will shrink over time. The knownness scores 

for clusters containing human proteins have increased across the whole range of 
proteins, but the proportion with a knownness score of 1 or less has only declined 

from 58% to 39% over the last ten years (Figure 2A). This slow progress reflects 
the rather narrow research activity on the proteins: human genes and proteins are 

much more likely to have been published on in the last ten years if they are in 
clusters that were already well known at the start of this period (Figure 2B). This 

gives further support to the notion that research activity tends to focus on what 
has already been studied in depth (Edwards et al., 2011; Pfeiffer and Hoffmann, 

2007). There are 726 human genes whose knownness was zero ten years ago but 
has since increased to above two. The GO terms most enriched in this set are 
mostly associated with cilia, reflecting recent acceleration of progress in studying 

this large and complex structure that is absent from some model organisms such 
as yeast (Figure 2C). Consistent with this, the less known human genes tend to be 

less likely to be conserved outside of vertebrates, suggesting that progress has 
been hampered by there being fewer orthologs that could be found by genetic 

screens in non-vertebrates (Figure 2D). Interestingly, the most highly known 
proteins are also less likely to be conserved outside of metazoans, reflecting the 

fact that many are involved in important developmental pathways or signalling 
events relevant to multicellularity. However, of the 1710 human-containing 

clusters with a current knownness score of less than 2.0, 47% are detectably 
conserved outside of vertebrates and 29% are conserved outside of metazoans 
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(Figure 2E). Interestingly, no one model organism contains all of these, indicating 

that each has a role to play in illuminating the human unknome.  
 

Functional unknomics in Drosophila 

To test the value of the Unknome database, and to pilot experimental approaches 

to studying neglected but well conserved proteins, we selected a set of unknown 
human proteins that are conserved in Drosophila and hence amenable to genetic 

analysis. Drosophila also lack the partial redundancy between closely related 

paralogs that arose in many gene families from the two whole genome 

duplications that occurred early in vertebrate evolution (Holland and Ocampo 
Daza, 2018). A powerful approach to the function of gene in Drosophila is to knock 

down its expression with RNAi and assess the biological consequences (Homem 
et al., 2014; Mummery-Widmer et al., 2009). We thus determined the effect of 

expressing hairpin RNAs to direct RNAi against this panel of genes of unknown 
function.  

We initially selected all genes that had a knownness score of ≤1.0 and are 
conserved in both humans and flies, as well as being present in at least 80% of 

available metazoan genome sequences. Of the 629 corresponding Drosophila 

genes, 358 were available in the KK library that was the best available genome-
wide RNAi library at the time (Table S1) (Heigwer et al., 2018). These stocks were 

crossed to lines containing Gal4 drivers to express the hairpin RNAs in either the 
whole fly or in specific tissues. After testing for viability, the non-essential genes 
were then screened with a panel of quantitative assays designed to reveal 

potential roles in a wide range of biological functions. These included male and 
female fertility, tissue growth (in the wing), response to the stresses of starvation 

or reactive oxygen species, proteostasis, and locomotion. The results of these 
screens are discussed below.  

 

Unknown genes have essential functions 

To determine if the genes were required for viability a ubiquitous driver was used 
to direct RNAi throughout development. For 162 of the 358 genes the resulting 

progeny showed compromised viability with either all (lethal) or almost all (semi-
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lethal) failing to pass beyond pupal eclosion, suggesting that these genes are 

essential for development or cell function (Table S1). However, it was 
subsequently reported that in a subset of the lines in the KK RNAi library the 

transgene was in an integration locus (40D) that itself results in serious 
developmental defects when the transgene is expressed with a GAL4 driver 

(Green et al., 2014; Vissers et al., 2016). Following PCR screening, we removed all 
of the stocks that had this integration site, all but one of them having been been 

lethal in the initial screen. For the remaining 260 genes, the stocks used the 
alternative integration site which is not problematic, with KK stocks having been 

used successfully in a range of different screens (Czech et al., 2013; Homem et 
al., 2014). For these, the RNAi compromised viability in 62 cases (24%). Of these 

62 genes, 12% were also identified in a recent genome-wide screen of genes 
required for viability of S2 cells; in contrast, only 4% of the viable genes were hits 

in the S2 cell screen (Viswanatha et al., 2018). The S2 study estimated that 17% 
of genes known to be essential in flies are also essential in S2 cells, and it is likely 

that using RNAi to knock down gene function underestimates lethality. Our screen 
in whole organisms reveals that, despite several decades of extensive genetic 
screens in Drosophila, there are many genes with essential roles that have eluded 

characterisation.  

Of course, there is more to life than merely being alive. We therefore 
subjected the 198 apparently non-essential genes to a range of phenotypic tests 

to determine if they had detectable roles in a wide range of organismal functions. 
The results of these function screens are described below, followed by a 

validation of selected hits.  
 

Contribution of unknome genes to fertility  

To test fertility, specific GAL4 drivers were used to knockdown the set of 198 

unknown genes in either the male or female germline. Even with collecting data for 
multiple flies per gene, the resulting brood sizes showed some variability, as 

expected for a quantitative measure of a biological process. Thus, for all our 
assays we needed to determine if outliers had a phenotype that exceeded to a 

statistically significant degree the variation intrinsic in the population. To do this, 
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we used statistical tests based on three steps. First, we performed a regression 

on the replicate data for each gene to estimate its parameters and standard errors 
within the assay. Next, an outlier region was determined by fitting the parameter 

estimates for all analysed genes to a normal distribution, which was then used to 
define a boundary for outliers. Finally, for each gene, we tested the hypothesis 

that it falls within the outlier boundary. This approach is described in detail in the 
Supplemental Information. To display the data from the fertility tests, mean brood 

sizes obtained from RNAi-treated males was plotted against those obtained from 
RNAi-treated females for each gene (Figure 3A). Several of the RNAi lines gave a 

substantial reduction in brood size that was sex-specific and highly statistically 
significant. 

- Female fertility 

 Two genes gave a partial, but significant, reduction in female brood size. 

During the course of our work, a mouse ortholog, MARF1, of one of these hits, 
CG17018, was identified in a genetic screen as being required for maintaining 

female fertility, apparently by controlling mRNA homeostasis in oocytes 
(Nishimura et al., 2018; Su et al., 2012; Yao et al., 2018). A recent study of 

CG17018 has confirmed that it is indeed required for female fertility in Drosophila, 
despite lacking some domains present in MARF1. Its appearance as a hit in our 

screen is therefore an encouraging validation of the approach (Zhu et al., 2018). 
The other gene, CG8237, has not previously been linked to fertility, but has a 

mammalian ortholog (FAM8A1) that has been recently proposed to help assemble 
the machinery for ER-associated degradation (ERAD) and so may have an indirect 

effect on oogenesis (Schulz et al., 2017; Zhu et al., 2017). We selected CG8237 
for validation by CRISPR/Cas9 gene disruption as described below.  

- Male fertility 

Seven genes showed near complete male sterility, with five further genes 

gave a reduction in brood size that was statistically significant. In humans, male 
sterility is one of the symptoms associated with primary ciliary dyskinesia (PCD), a 

disorder affecting motile cilia and flagella (Horani et al., 2016). Whilst our analysis 
was in progress, exome-sequencing allowed the identification of many new PCD 

genes (Horani and Ferkol, 2018; Legendre et al., 2021). Interestingly, five of the 
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genes identified in our assay are homologs of human PCD genes (Figure 3B), of 

which CG5155 and CG31320 have since been shown to be required in Drosophila 

for male fertility (Cheng et al., 2013; Diggle et al., 2014). All of these genes 
comprise, or help assemble, the dynein-based system that drives the beating of 

cilia and flagella. In addition, human orthologs of two of the semi-sterile hits in the 
Unknome screen have been found to be mutated in related familial conditions. 

CFAP43 (orthologous to CG17687) is mutated in patients with multiple 
morphological abnormalities of the sperm flagella (MMAF), and CFAP52 

(orthologous to CG10064) is mutated in laterality disorder, a condition caused by 
defects in ciliary beating during development (Coutton et al., 2018; Ta-Shma et al., 

2015). A further semi-sterile hit, CG14183, is an ortholog of DRC11, a subunit of 
the nexin-dynein regulatory complex that regulates flagellar beating in 
Chlamydomonas (Gui et al., 2019). These findings prove the value of the Unknome 

database approach to identifying new genes of biological significance, and 

validate the RNAi-based screening approach. 
Of the four remaining genes that showed male fertility defects, CG11025 is 

now only partially unknown as its human ortholog is a non-catalytic subunit of the 
Kip1 ubiquitination-promoting complex, an E3 ubiquitin ligase (Kravtsova-Ivantsiv 

et al., 2015). CG11025 was recently identified in a genetic screen for defects in 
ciliary traffic, and found to be required for fertility (Li et al., 2020). However, as 

described above, the unknome continues to erode only slowly, and the other three 
genes, CG8135, CG6153 and CG16890, remain poorly understood in any species. 

They are less likely to be flagellar components as they are not predominantly 
expressed in testes and, as described below, two were selected for validation by 

CRISPR/Cas9 gene disruption, along with CG10064 whose ortholog is mutated in 
laterality disorder.  

 

Contribution of unknome genes to tissue growth 

To test the unknome set of genes for roles in tissue formation and growth we 
examined the effect of knocking down them in the posterior compartment of the 

wing imaginal disc, and then compared the area of the posterior compartment of 
the adult wing to that of the control anterior compartment (Figure 3C), a method 
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previously used to detect effects of a range of different genes (Hahn et al., 2013; 

Ibar and Glavic, 2017). As controls, we used Hippo, a negative regulator of tissue 
size, and Chico, a component of the PI 3-kinase pathway that stimulates organ 

growth (Böhni et al., 1999; Irvine and Harvey, 2015). Knockdown of three of the 
unknome genes in the posterior compartment caused a statistically significant 

increase in its area (Figures 3D and 3E). These include CG12090, the Drosophila 

ortholog of mammalian DEPDC5, which was recently found to be part of the 
GATOR1 complex that inhibits the Tor pathway. Mutants in GATOR1 subunits 

promote cell growth by increasing Tor activity (Bar-Peled et al., 2013; Wei et al., 
2016). The other two are CG14905 and CG11103. CG14905 is a paralog of a 

testes-specific gene CG17083, and both are orthologs of mammalian 
CCDC63/CCDC114 that have a role in attaching dynein to motile cilia, although 
CG14905 seems likely to have additional roles as it is ubiquitously expressed 

(Hjeij et al., 2014). CG11103 encodes a small membrane protein that shares a 
TM2 domain with Almondex, a protein with an uncharacterised role in Notch 

signalling (Michellod and Randsholt, 2008). We therefore selected CG11103 for 
further validation by CRISPR/Cas9 as described below.  

A larger number of genes caused a reduced compartment size when 
knocked down (Figure 3D). However, this could arise from a wide range of causes 

and so this is broad ranging assay for protein importance, and indeed mammalian 
orthologs of several of the stronger hits have been subsequently found to act in 

known cellular processes such membrane traffic (CG13957, the ortholog of 
human WASHC4), lipid degradation (CG3625/AIG1) or tRNA production 

(CG15896/PRORP; CG9752/C9orf72). The strongest effect was seen with 
CG5885, an ortholog of a subunit of the translocon-associated protein (TRAP) 

complex that is associated with the Sec61 ER translocon (Russo, 2020). TRAP’s 
role is enigmatic and so it was also selected for CRISPR/Cas9 validation. 

 

Contribution of unknome genes to protein quality control 

The removal of aberrant proteins is a fundamental aspect of cellular metabolism, 
and thereby organismal health, but it is a function that does not necessarily 

contribute substantially to well-screened developmental phenotypes. It also 
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exemplifies our suspicion that a disproportionately high number of the unknome 

set of genes may be involved in quality control and stress response functions, 
which are likely to have been missed by many traditional experimental 

approaches. We therefore tested the unknome gene set for protein quality control 
phenotypes, using an assay based on aggregation of GFP-tagged polyglutamine, 

a structure found in mutants of huntingtin that cause Huntington's disease (Zhang 
et al., 2010). When this Httex1-Q46-eGFP reporter is expressed in the eye, the 

aggregates can be detected by fluorescent imaging (Figure 4A). The RNAi guides 
were co-expressed in the eye to knock down unknome genes, and the number of 

polyQ aggregates quantified. Although there was considerable variation in 
aggregate number, statistical analysis allowed the identification of clear outliers 

among the unknome RNAi set. Most of the genes showing the largest increase in 
aggregates remain of unknown function (CG7785 (SPRYD7 in humans), CG16890 

(FRA10AC1), CG14105 (TTC36), and CG18812 (GDAP2)), although mutation of 
GDAP2 in humans causes neurodegeneration, consistent with a role in quality 

control (Eidhof et al., 2018). More is now known about two of the hits. CG4050 is a 
mammalian ortholog of TMTC3, one of a family of ER proteins recently shown to 
be O-mannosyltransferases; deletion of TMTC3 causes neurological defects 

(Farhan et al., 2017; Li et al., 2018). CG5885 is the ortholog of the SSR3 subunit of 
the TRAP complex that also showed reduced wing size; in mammalian cells the 

TRAP complex is upregulated by ER stress (Russo, 2020). These hits are 
consistent with reports that ER stress can increase cytosolic protein aggregation 

(Hamdan et al., 2017). We selected CG5885 and CG16890 for CRISPR/Cas-9 
validation, as described below.  

 

Contribution of unknome genes to resilience to stress  

Genomes have evolved to deal with many environmental stresses, and again 
these are processes poorly investigated by traditional genetic approaches. We 

therefore tested resilience to stress, following knock down of the unknome set. To 
quantify the viability of large numbers of flies, individual flies were arrayed in 96 

well plates, and the plates maintained on a “flywheel” that rotated them under a 
camera every hour (Figure 4C). Viability was indicated by movement between 
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images, allowing time of death to be determined with an accuracy of +/- one hour 

(Figures 4D and 4E). We applied this method with two challenges likely to be 
associated with different cellular resilience mechanisms: amino acid starvation 

and oxidative stress. 

- Resilience under starvation  

Under conditions of amino acid deprivation, knock down of eight of the unknome 
test set significantly prolonged survival (Figure 4F). Seven of these genes remain 

of unknown function, but interestingly, five have orthologs in other species whose 
localisation or interactions suggest that they have roles in the endosomal system. 

Thus DEF8, the mammalian ortholog of CG11534, has been reported to interact 
with Rab7 (Fujiwara et al., 2016; Gillingham et al., 2014), and TMEM184A 

(CG5850) has been reported to act in the endocytosis of heparin (Pugh et al., 
2016). In addition, the mammalian orthologs of CG4593 and CG9536 (CCDC25 

and TMEM115) are Golgi localized proteins of unknown function, and the yeast 
ortholog of CG13784 (ANY1) has been found to suppress loss of lipid flippases 

that act in endosome-to-Golgi recycling (Ong et al., 2014; Takar et al., 2019). Our 
identification of this cluster of genes with related functions suggests that defects 

in endocytic recycling can prolong survival in starvation, possibly by altering 
autophagy or by reducing signalling from receptors that promote anabolism. The 

other two genes that improved starvation resilience when knocked down have no 
known function in any species, with loss of CG31259 (TMEM135) causing 
mitochondrial defects, and nothing reported for CG3223 (UBL7) (Lee et al., 2016; 

Shibano et al., 2015). One gene, CG15738, caused an increased susceptibility to 
starvation, and it has been found to be an assembly factor for mitochondrial 

complex I, whose loss compromises viability (Zhang et al., 2013).  

- Resilience under oxidative stress 

Resistance to oxidative stress was tested with paraquat, an insecticide widely 
used to elevate superoxide levels in Drosophila (Phillips et al., 1989; Rzezniczak et 

al., 2011). There was considerable variability in the survival times, but eleven 

genes gave a statistically meaningful increase in resistance (Figure 4F). Most of 
these genes remain unknown, but three have since been reported to have 

functions related to oxidative stress signalling. The mammalian ortholog of 
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CG4025 (DRAM1/2) is induced by p53 in response to DNA damage and promotes 

apoptosis and autophagy (Guan et al., 2015). The mammalian orthologs of 
CG13604 (UBASH3A/B) are tyrosine phosphatases that repress SYK kinase, an 

enzyme reported to help protect cells against ROS, with superoxide activation of 
Drosophila Syk kinase signalling tissue injury (Secchi et al., 2015; Srinivasan et al., 

2016; Tsygankov, 2018). Finally, the ortholog of CG3709 in archaea has tRNA 

pseudouridine synthase activity, but the human ortholog PUS10 has been 
reported to be cleaved during apoptosis and promote caspase-3 activity, thus its 

loss may slow apopotic cell death (Jana et al., 2017). Of the other eight hits, five 
remain poorly characterised, one is involved in mitochondrial function and so may 

reduce ROS production, and two are involved microtubule function with no clear 
link to superoxide responses. Although further validation will be required, these 
five genes seem good candidates to have a role in mitochondria or ROS-response 

pathways.  
 

Contribution of unknome genes to locomotion.  

Metazoans benefit from a musculature under neuronal control. We therefore 

addressed the possibility of neuromuscular functions by testing the role of the 
unknome set of genes in locomotion, using the iFly tracking system, in which the 

climbing trajectories of adult flies are quantified by imaging and automated 
analysis (Figure 5A) (Jahn et al., 2011; Kohlhoff et al., 2011). Climbing speed 

declines with age, so the assay was performed at both 8 days and 22 days post 
eclosion. Climbing speeds are inevitably somewhat variable, even in wild-type 

flies, but nonetheless six genes were statistically significant outliers when assayed 
after 8 days (Figure 5B). Two of these genes remain poorly understood, and for 

three of the others recent work indicates a role in muscle or neuronal function. 
These include CG9951, whose human homolog CDCC22 has been recently found 

to be a subunit of the retriever complex that acts in endosomal transport. 
Missense mutations in CDCC22 causing intellectual disability (McNally et al., 

2017; Voineagu et al., 2012). The human ortholog of CG13920 (TMEM35A) is 
required for assembly of acetylcholine receptors (Matta et al., 2017). Finally, 

CG3479 is the gene mutated in the Drosophila outspread (osp) wing morphology 
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allele, and is expressed in muscle; one of its two mammalian orthologs MPRIP has 

been found to regulate actinomyosin filaments (McNabb et al., 1996; Surks et al., 
2005).  

 

Validation of fertility screen hits by gene disruption 

Analysis of gene function by RNAi can be confounded by off-target effects. We 
therefore used CRISPR/Cas9 gene disruption to validate selected hits from two of 

the phenotypic screens. From the fertility screens, three male steriles and one 
female sterile were selected for genetic disruption. Of the male hits, CG10064 and 

CG6153 were both confirmed as being required for male fertility (Figures 6A to 
6D). CG10064 is a WD repeat protein, and mutation of its human ortholog, 

CFAP52, results in abnormal left-right asymmetry patterning, a process known to 
depend on motile cilia (Ta-Shma et al., 2015). Male flies lacking CG10064 

produced motile sperm, but following mating they did appear to not persist in the 
female’s sperm storage organ, the seminal receptacle, indicating that the protein 

is required for the optimal function rather than formation of motile cilia (Bloch Qazi 
et al., 2003). CG6153 comprises a PITH domain that is also found in TXNL1, a 

thioredoxin-like protein that associates with the 19S regulatory domain of the 
proteasome through its PITH domain (Andersen et al., 2009; Wiseman et al., 

2009). Males lacking CG6153 made morphologically normal sperm, but they did 
not accumulate in the seminal vesicle, the organ in which nascent sperm are 
stored prior to deployment, suggesting that they have limited viability (Figures 6E 

to 6J). Neither CG6153, nor its human ortholog PITHD1, are testis specific, and 
indeed orthologs are also present in non-ciliated plants and yeasts, suggesting 

that the protein has a role in an aspect of proteasome biology that is of particular 
importance for maturing viable sperm. Recent work on mouse PITHD1 indicates it 

has a role in both olfaction and fertility (Kondo et al., 2020; Lachén-Montes et al., 
2020). The other male sterile hit, CG16890, and the female sterile hit CG8237 did 

not show reduced fertility when disrupted and presumably represent off-target 
RNAi effects (fig. S1).  
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Wing size hit CG11103 is a regulator of Notch signalling 

Knockdown of gene CG11103 caused alterations in the growth of the wing 
(Figures 4D and 4E). When CG11103 was removed with CRISPR/Cas9, mutant 

females and males were viable without any obvious phenotypes, but females were 
completely sterile. Eggs laid by mutant females were fertilised but failed to 

develop (Figures 7A to 7D). Cuticle preparations and antibody labelling of the pan-
neuronal marker Elav showed a hyperplasia of nervous system at the expense of 

the epidermis (Figures 7F and 7G). This phenotype is characteristic of defects in 
the highly conserved Notch signalling pathway which is required in the Drosophila 

embryo to determine/specify the neuroblasts that give rise to the CNS in a 

process called lateral inhibition. CG11103 contains a TM2 domain that comprises 
two transmembrane domains connected by a short linker (Kajkowski et al., 2001). 

The function of this domain is unknown, but it occurs in two related proteins in 
Drosophila, and all three of the fly proteins have human orthologs (Figure 7B). 

Interestingly, one of these, almondex/CG12127, was identified as a gene required 

for Notch signalling in embryos, although its role remains unclear (Michellod et al., 
2003). The third related gene, CG10795, is also of unknown function, so we 

knocked it out with CRISPR/Cas-9 and discovered that it too showed phenotypes 

indicative of a severe defect in Notch signalling (Figures 7H to 7L). Thus, all three 
proteins are required for a cellular process essential for embryonic Notch function. 

All three human TM2D proteins were hits in a recent genome-wide screen for 
defects in endosomal function (Haney et al., 2018), and endosomes play a critical 
role in Notch signalling. Further work will be required to determine the precise role 

of these proteins, and how it relates to wing growth, but their likely role in 
endosomal function, combined with the existence of related TM2 domain proteins 

in bacteria and archaea, suggest fundamental role in cell function rather than an 
exclusive role in Notch signalling.  

Taken together, this genetic validation data confirms that the RNAi 
screening approach, despite its known caveats, has given accurate phenotypic 

information for at least a substantial subset of the hits from our RNAi screens of 
the unknome set of genes. 
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Discussion 

The totality of scientific knowledge represents the summed activity of numerous 
individual research groups, each focusing on specific questions whose selection 

is influenced by many factors, some scientific and some more socially determined. 
The latter class include issues like a preference for the relative safety, sociability 

and kudos available when working in well-established fields, but is also strongly 
influenced by funding mechanisms. These usually aim to address societal needs 

but are subject to subjective assessment, historical precedent and political 
pressures. In particular, the need to justify proposed research with reference to an 

established body of work, and preliminary data, can restrict investigation into truly 
unknown areas. Putting it more positively, there is potential for scientific progress 

to be accelerated disproportionately by identifying situations where questions are 
being inadvertently and unjustifiably neglected. We have directly addressed here 

an area of long-standing concern: that biological research largely ignores less well 
known, but potentially important, genes (Edwards et al., 2011; Oprea et al., 2018; 

Sinha et al., 2018; Stoeger et al., 2018). Our results support the conclusion that 
this concern is well founded. 

Our approach has been to develop an Unknome database. This has 
confirmed previous observations that poorly understood genes are relatively 

neglected; we also find that this problem is persisting even though there has been 
some progress in assigning functions to some of these genes. Recent 
developments in exome sequencing have allowed the identification of novel 

components of pathways whose genes give a well-defined set of disease 
symptoms, as has been seen with the cilia proteins identified from patients with 

ciliopathies (Horani et al., 2016; Legendre et al., 2021). In addition, the advent of 
the CRISPR/Cas9 system has enabled screens that cover whole genomes (13, 90, 

91). However, such screens are typically performed in cultured cells and hence 

cover only a subset of biological processes, and can also miss genes that have 

closely related, and thus functionally redundant, paralogs (De Kegel and Ryan, 
2019).  

We used the Unknome database to select about 200 genes that appeared 
both highly conserved and particularly poorly understood, and then applied 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 28, 2022. ; https://doi.org/10.1101/2022.06.28.497983doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.28.497983
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 19 

functional assays in whole animals that would be impractical at genome-wide 

scale. Using seven assays, designed to interrogate defects in a broad range of 
biological functions, we found phenotypes for 59 genes, in addition to the 62 

genes we had found to be essential for viability (Table S4). Our approach relied on 
RNAi, but when seven of the hits (corresponding to six genes) were retested with 

CRISPR/Cas9 gene disruption we could validate four, suggesting a true hit rate of 
~50%, a good outcome for an RNAi-based approach. The use of RNAi to knock 

down candidate genes is powerful in this context because it allows for tissue 
specific knock down; moreover, the likely incomplete loss of function achieved by 

RNAi can allow essential genes to reveal otherwise hidden hypomorphic 
phenotypes. Conversely, we note that as CRISPR approaches become ever more 

streamlined and sophisticated, future exploitation of the Unknome database can 
realistically use CRISPR technology to investigate functions of unknown genes.  

An important primary conclusion of our work is that these uncharacterised 
genes have not deserved their previous neglect, a conclusion strengthened by a 

variety of other studies published during the course of our studies, again revealing 
important functions for unknown genes. Again, this highlights the gradual 
shrinking, albeit slowly, of the unknome. Perhaps, most significantly, our database 

provides a powerful, versatile and efficient platform to identify and select 
important genes of unknown function for analysis, thereby accelerating the 

closure of the gap in biological knowledge that the unknome represents. In 
practical terms, the Unknome database provides a resource for researchers who 

wish to exploit the disproportionate opportunities associated with unstudied areas 
of biology. 

Thinking about how to evaluate ignorance of gene function guided our 
bioinformatic approach that allowed selection of a set of genes small enough for 

complex phenotypic screening in a whole animal. At a broader level, we believe 
that acknowledging and evaluating ignorance is an important factor in decisions 

about the relative priority given to addressing the remaining fundamental 
questions in biology, versus translating and exploiting what we already know. 

However, ignorance can only have value if it can be meaningfully measured. 
Developing the Unknome database highlighted a couple of issues that affect our 
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assessment of the state of knowledge of gene function. First, our approach relied 

on identifying orthologs from major organisms used for biological research. 
Although current methods for ortholog identification work well, there is still scope 

for improvement (Altenhoff et al., 2016; Glover et al., 2019; Hu et al., 2011; Wang 
et al., 2017). Our approach also relied on the comprehensive and systematic 

annotation of gene function by the Gene Ontology (GO) Consortium (Ashburner et 
al., 2000; The Gene Ontology Consortium, 2019).  

A second issue that arises from our work is that the current rapid rate of 
genome sequencing has required that most annotation is now automated rather 

than manual. This has led to the development of powerful methods to add 
functional annotation based on similarities to genes from other species (Schnoes 

et al., 2013). However, such methods aim to cumulatively add annotation rather 
than remove disproven conclusions or address contradictions, as this requires 

time-consuming manual curation. Moreover, increasing numbers of functional 
annotations are based on phenotypes from high-throughput screens for genetic 

phenotypes or protein-protein interactions, both of which are prone to generating 
false positives (Schnoes et al., 2013). Thus, genes inevitably accrete annotations 
over time, some of which may be wrong, contradictory or superficial but have little 

prospect of being corrected in the foreseeable future. As a result, the admirable 
aim of adding new gene annotation carries the risk of inadvertently obscuring our 

understanding of what is genuinely unknown.  
An illustration of this problem is the gene CG9536 (TMEM115 in humans). 

This protein has been annotated as having endopeptidase activity based on 
distant sequence similarity to the rhomboid family of intramembrane proteases. 

However, CG9536, and its relatives in other species, lack the conserved residues 
that form the active site in rhomboids, and thus the only thing that can be 

currently concluded about the function of CG9536 is that it is almost certainly not 

a protease (Freeman, 2014). A more extreme case is htt, the Drosophila ortholog 
of huntingtin. This was not in the unknome test set because the extensive study of 

the role of huntingtin in human disease has led to many preliminary suggestions of 
function which have resulted in annotations linked to transcription, transport, 
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autophagy, mitochondrial function etc, and yet the current consensus is that 

huntingtin’s precise cellular role remains uncertain (Saudou and Humbert, 2016).  
 

In conclusion, we find that accurately evaluating ignorance about gene 
function provides a valuable resource for guiding biological studies, and may even 

be important for determining strategies to efficiently fund science. We have 
developed an approach to tackle directly the huge but under-discussed issue of 

the large number of well conserved genes that have no reliably known function, 
despite the likelihood that they participate in major and even possibly completely 

new areas of biological function. We hope that our work will inspire others to 
define and characterise further the unknome, and also to seek means to ensure 

that gene annotation accurately preserves and recognises our current state of 
ignorance.  
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Methods 

Please see Supplemental Information (below). 
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Figure Legends 

 

Figure 1.  The Unknome database 

(A) User interface to weight GO annotations, showing the default weightings we 

used to generate an unknome gene set.  
(B) Calculation of a knownness score for a cluster of orthologs based on the 

highest score in the cluster. 
(C) User interface to list proteins from select model organisms by the knownness 

of their ortholog cluster.  
(D) Information for each cluster showing the distribution across species, links to 
information for the protein from each species, and the change in knownness over 

time. 
(E) The top ten known gene clusters, showing the best known gene in each. All the 

genes are from mouse with the exception of human APP. 
(F) Clusters in the unknome that contain at least one human protein ranked by 

knownness, showing the distribution of proteins that are defined by Pfam as being 
an unknown protein family (UPF) or containing a domain of unknown function 

(DUF).  
(G) Plot of the number of PubMed publications for genes of the indicate range of 

knownness. 
 

Figure 2.  Analysis of trends in knownness 

(A) Change in the distribution of knownness of the 7463 clusters that contain at 

least one human protein. 
(B) Number of papers to appear in PubMed since 2010 on the 7463 clusters 

ranked into deciles based on knownness at 2010. The best known papers in 2010 
received the most publications in subsequent years. 

(C) The 10 largest GO term enrichments for the 726 human proteins whose 
knownness has increased from 0 in 2008 to above 2 in 2018. 

(D) Conservation in model organisms of human genes clustered by knownness.  
(E) Venn diagram showing the distribution of genes from the indicated species in 

the 1842 clusters of knowness <2.0 and which contain at least one human protein.  
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Figure 3.  Testing of the unknome set of genes for roles in fertility and wing 

growth 

(A) Plot of brood sizes obtained from matings in which each gene was knocked 

down in either the male or female germline. Dotted lines indicate outlier 
boundaries, with the genes named being those whose position outside of the 

boundary is statistically significant, error bars show standard deviation and the 
size of the circles is inversely proportional to the p-value (Tables S2 and S3). 

Controls shown are genes known to effect fertility in females (vret), or both males 
and females (Ref1).  

(B) Summary of the significant hits from the test of male fertility, showing the 
human ortholog and the phenotype reported for patients with loss of function 

mutations (PCD, primary ciliary dyskinesia; MMAF, multiple morphological 
abnormalities of the sperm flagella).  

(C) Adult wing illustrating the posterior domain that expresses engrailed during 
development and hence the engrailed-Gal4 driver used to express the hairpin 

RNAs. Also shown are the intervein areas measured to assess tissue growth in the 
anterior and posterior halves of the wing.  

(D) Plot of the mean area of the anterior and posterior intervein areas as in (C) for 
flies in which each gene was knocked down by RNAi in the posterior domain. 

Errors are shown as tilted ellipses with the major/minor axes being the square 
roots of the eigenvectors of the covariance matrix. Dotted lines indicate the outlier 

boundary, with the genes named being those whose position outside of the 
boundary is statistically significant, with the size of the circles being inversely 
proportional to the p-value (Tables S2 and S3). The genes Hippo (growth 

repressor) and Chico (growth stimulator) are included as controls. 

(E) Representative wings from flies expressing hairpin RNA for the indicated genes 
in the posterior domain. Hippo and Chico are controls as in (D), with CG11103 and 

CG5885 showing an increase or decrease in the posterior domain, respectively.  
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Figure 4.  Testing of the unknome set of genes for roles in quality control and 

responses to stress. 

(A) Fluorescence micrograph of an eye from a representative stock expressing 
Httex1-Q46-eGFP under the control of the GMR-GAL4 driver. The GFP fusion 

protein forms aggregates whose number and size increase over time. 
(B) Plot of the mean number of large (>50 pixels) or small (<50 pixels) aggregates 
of Httex1-Q46-eGFP formed after 18 days in flies in which the unknome set of 

genes has been knocked-down by RNAi. Errors are shown as tilted ellipses with 
the major/minor axes being the square roots of the eigenvectors of the covariance 

matrix. Dotted lines indicate an outlier boundary set at 90% of the variation in the 
dataset, with the genes named being those whose position outside of the 

boundary is statistically significant with a p-value <0.05, with the size of the circles 
being inversely proportional to the p-value (Tables S2 and S3). 

(C) Flywheel system apparatus for time-lapse imaging of 96 well plates containing 

one fly per well.  
(D) Use of time-lapse imaging to assay viability. 96 well plates were imaged very 

hour and the movement between frames quantified for the fly in each well. Plots of 
movement size over time allow time point for cessation of movement and hence 

loss of viability to be determined automatically.  
(E) Survival plots obtained with the flywheel for flies on food containing the 
indicated concentration of oxidative stressor paraquat. Increased levels of the 

paraquat shorten survival times. 
(F) Plot of the mean survival time of fly lines in which the unknome set of genes 

has been knocked-down by RNAi and which were then exposed to paraquat to 
induce oxidative stress or were starved for amino acids. Dotted lines indicate an 

outlier boundary set at 80% of the variation in the dataset, with the genes named 
being those whose position outside of the boundary is statistically significant (p-

value <0.05), with error bars showing standard deviation and the size of the circles 

inversely proportional to the p-value (Tables S2 and S3).  

 
 
 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 28, 2022. ; https://doi.org/10.1101/2022.06.28.497983doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.28.497983
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 36 

Figure 5.  Testing the unknome set of genes for roles in locomotion 

(A) iFly tracking system for automatic quantitation of Drosophila locomotion 

(reproduced from Kohlhoff et al (2011) (Kohlhoff et al., 2011)).  
(B) Plot of the mean climbing speeds of fly lines in which the unknome set of 

genes has been knocked-down by RNAi, and the speeds for each line were 
determined after eight days or 22 days post eclosion. The Parkinson’s gene Pink1 

was included as a positive control (Clark et al., 2006). Dotted lines indicate an 
outlier boundary set at 90% of the variation in the dataset, with the genes named 

being those whose position outside of the boundary is statistically significant with 
a p-value <0.1, with error bars showing standard deviation and the size of the 

circles inversely proportional to the p-value (Tables S2 and S3). 

 

Figure 6.  Validation of RNAi male sterility phenotypes using CRISPR/Cas9 

gene disruption 

(A,B) Schematics of the genomic locus of candidate genes, position of CRISPR 

target sites and mutant alleles analysed.  
(C,D) Assessment of male fertility of mutants (homozygous and over a deficiency). 

The graphs show mean values +/- SD of the number of progeny produced by 
mutant males. Three crosses with 5 wild-type virgins and 3 mutant males were 

analysed for each genotype. Wild-type males and/or males carrying in-frame 
mutations were used as controls. Where possible, alleles covering both alternative 

reading frames were analysed.  
(E-G) Widefield fluorescent micrographs of male reproductive systems of control 
and JS27/CG6153 mutants expressing Don Juan-GFP to label sperm (F-G). 

Mutants exhibit empty seminal vesicles, (E’-G’) showing zoomed regions of 
seminal vesicles from E-G (yellow dashed squares).  

(H-J) Widefield phase micrographs of reproductive systems of control and mutant 
males. Sperm are produced in both (asterisks), suggesting that sperm are made in 

the mutant but do not survive. Note that some mutant sperm gets into the 
ejaculatory duct (J). AG: accessory gland, ED: ejaculatory duct, SV: seminal 

vesicle, T: testis. Scale bars, 200 µm (H-I), 100 µm (J). 
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Figure 7.  Investigation of wing growth hit CG11103 using CRISPR/Cas9 gene 

disruption 

(A) Schematic of the genomic locus of candidate CG11103, position of the 
CRISPR target site and the mutant allele analysed. Flies carrying an in-frame 

mutation were used as control.  
(B) Gene tree for TM2 domain proteins in humans and Drosophila, with an 

archaeal TM2 protein as an outlier. Tree built using sequence of TM2 domains 

alone using T-Coffee. A fourth TM2 domain protein is present in Drosophila and 

humans, Wurst/DNAJC22 which has additional TMDs and a DNAJ domain and 
appears to play a role in clathrin-mediated endocytosis (Behr et al., 2007).  
(C-E) Cuticle phenotypes of embryos laid by control females and mutant females 

(homozygous or over a deficiency).  
(F,G) Micrographs of embryos laid by control females and homozygous mutant 

females stained against the pan-neuronal marker Elav. Scale bars: 50 µm.  
(H) Schematic of the genomic locus of CG10795, position of CRISPR target sites 

and the alleles analysed. Flies without an indel were used as control (CG10795_4). 

(I,J) Cuticle phenotypes of embryos laid by control or mutant females.  

(K,L) Micrographs of embryos laid by control or mutant females stained for the 
pan-neuronal marker Elav. Scale bars: 50 µm.  
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Supplemental Information 

 

Figure S1 Testing of RNAi sterility hits using CRISPR/Cas9 gene disruption 

 

STAR Methods 

 

Statistical Supplement 

 

 

Supplemental Tables 

Table S1. Genes selected for unknome screen, related to Figures 3, 4, and 5 

List of Drosophila genes used for the unknome screen and the corresponding 

RNAi stocks.  
 

Table S2. Data points from screens, related to Figures 3, 4, and 5 

Data for individual flies from batches assayed for each genotype in functional 

screens.  
 

Table S3. Mean and variances from screens, related to Figures 3, 4, and 5 

Statistical analysis of batches assayed for each genotype in functional screens, as 

used for plots in figures.  
 

Table S4. Summary of hits from the screens, related to Figures 3, 4, and 5 

Genes whose knockdown gave significant effects in the functional screens.  

 
 

Supplemental Movie 

Movie S1. Lifespan assay in 96 well plate, related to Figure 4 

Representative time-lapse movie of flies in a 96 well plate. Frames captured every 
hour and played at 30 frames/second.  
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Figure S1.  Testing of RNAi sterility hits using CRISPR/Cas9 gene disruption 

(A) Schematics of the genomic locus of candidate JS353/CG16890, position of 
CRISPR target sites and mutant alleles analysed.  

(B) Assessment of male fertility of mutants (homozygous and over a deficiency). 
The graphs show mean values +/- SD of the number of progeny produced by 

mutant males. Three crosses with 5 WT virgins and 3 mutant males were analysed 
for each genotype. WT males and/or males carrying in-frame mutations were used 

as controls. Alleles covering both alternative reading frames were analysed.  
(C) Schematic of the genomic locus of candidate JS40/CG8237, position of the 

CRISPR target site and the mutant allele analysed.  
(D) Assessment of female fertility of mutants (homozygous and over a deficiency). 

The graph shows mean values +/- SD of the number of progeny produced by 
mutant females. Three crosses with 5 mutant virgins and 3 WT males were 
analysed. WT males and males carrying an in-frame mutation were used as 

controls.  
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STAR Methods 

 

Lead contact  

Further information and requests for resources should be directed to and will be 

fulfilled by the lead contacts, Matthew Freeman (matthew.freeman@path.ox.ac.uk) 
and Sean Munro (sean@mrc-lmb.cam.ac.uk). 

 

Materials availability 

Fly stocks generated during this study are available by request to the Lead 
Contact. 

 

Data and code availability:  

Data from the functional screens are available in the main text or the supplemental 
tables. Code for functional assays are available at 

https://github.com/tjs23/unknome. 

 

Experimental Model and Subjects Details 

 

Drosophila 

Hairpin RNAi stocks for the Unknome set were from the KK library of the Vienna 
Drosophila Resource Centre (Table S1). During the course of our studies it was 
reported that the stocks in this library have the transgene in one of two sites in the 

genome (the annotated locus 40D or the non-annotated site 30B), and insertions 
at 40D can cause lethality when the guide RNA is expressed (Green et al., 2014; 

Vissers et al., 2016). PCR analysis with the previously used diagnostic primers 
was applied to 360 of the 365 lines, with the five remaining lines being lethal when 

expressed and so not included in any of the functional screens. This PCR analysis 
revealed that 98 of the 360 lines have the transgene in the problematic 40D site, a 

frequency of 27%, comparable to the 23% (9/39) and 25% (38/150) found 
previously. All but one of these 98 lines gave a lethal or semi-lethal phenotype 

when crossed to the ubiquitous da-GAL4 driver (Table S1). 
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Method Details 

 

Construction of the Unknome database 

The of protein sequence data that we considered corresponds to the reference 

UniProt Proteomes [https://www.uniprot.org/proteomes/] used by the latest 
PantherDB and includes human and 11 model organism species: A. thaliana, C. 

elegans, D. rerio. D. discoideum, D. melanogaster, E. coli (K12), G. gallus, M. 

musculus, R. norvegicus, S. cerevisiae and S. pombe (Mi et al., 2021; UniProt 

Consortium, 2021). 
The Unknome database aggregates relevant information from the listed 

sources and provides a default knownness score for each protein and protein 
family (cluster) and can be (re-)compiled in a few hours. Here PantherDB provides 

the protein family information, via a group of UniProt IDs, that can be combined 
with selected information from UniProt entries; including protein sequence, GO 
terms, PubMed citations, species, gene name(s) and cross-references to species-

specific databases.  
The GO terms present in each UniProt entry are automatically provided by 

the Gene Ontology Annotation (GOA) database [https://www.ebi.ac.uk/GOA] 
(Gene Ontology Consortium, 2021). Evidence terms from the OBO Foundry are 

employed by GO (Smith et al., 2007), and in the Unknome database they were 
weighted according to their evidence codes using the following default values: 

EXP; 0.8, IDA; 0.8, IPI; 0.8, IMP; 0.8, IGI; 0.8, IEP; 0.8, ISS; 0.5, ISO; 0.5, ISA; 0.5, 
ISM; 0.5, IGC; 0.3, RCA; 0.6, TAS; 0.9, NAS; 0.6, IC; 1.0, ND; 0.0, IEA; 0.0, NR; 

0.0, IRD; 0.0, IKR; 0.0, IBA; 0.5, IBD; 0.5. (see 

http://geneontology.org/docs/guide-go-evidence-codes/ for a full description). 

After weighting they were summed to generate a knownness score for each 
protein. The knownness score for the family, as defined by PantherDB, was then 

the maximum score from all the protein members present in the human and model 
organism list. 

All protein GO terms linked in the database were dated according to when 
they were first linked with the UniProt entry, so as to be able to track the historical 

change of knownness. Though this information is not directly accessible within 
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UniProt entries, the GOA database makes this information available via GAF 

format files at ftp://ftp.ebi.ac.uk/pub/databases/GO/goa/UNIPROT/.  
The Unknome database is currently available as SQLite Version 3 files and 

is presented with a web interface at the URL https://unknome.mrc-

lmb.cam.ac.uk/. This website is constructed using the Python module Django 

and provides views on the underlying database with easy filtering by knownness. 
In particular, the site displays the change over time in knownness for each protein 

family, and lists all of the associated dated GO terms. The web site also makes all 
data available for download; from individual protein sequences to the whole SQL 

database file. 
 

Drosophila genetics 

Expression of the RNAi hairpins was driven with either the ubiquitous driver da-

GAL4 driver, or with tissue-specific drivers: en-GAL4 (wing), bam-GAL4-VP16 
(male fertility), MTD-GAL4 (female fertility), and GMR-GAL4 (proteostasis in the 

eye). UAS-Dicer-2 was included in all cases except for the two fertility screens as 
this has been found to improve the efficiency of RNAi (Dietzl et al., 2007). For the 

proteostasis screen, the driver line also contained UAS-Httex1-Q46-eGFP (Zhang 
et al., 2010). In the lethality screen, those crosses that produced no adult progeny 

were defined as ‘lethal’, whilst those where the progeny reached the pharate 
stage but the majority could not hatch, and those that did failed to expand wings 

and did not survive were “semi-lethal”. 
For validation using CRISPR/Cas9, the following fly stocks were used: nos-

phiC3; attP40 (DBSC #25709), nos-phiC3;;attP2 (DBSC #25710), CFD2 (Port et 
al., 2014), TH_attP2 (Port et al., 2015), Df(1)ED7217 (DBSC #8952), Df(2R)BSC268 

(DBSC #26501), Df(2L)BSC812 (DBSC #27383), Df(2L)BSC290 (BDSC #23675), 
Df(3L)BSC374 (BDSC #24398). Spermatids and sperm were labelled with Don 

Juan (dj)-GFP (Santel et al., 1997). 
 

Fertility 

Fertility was monitored using competitive assays, in which one red-eyed fly 

expressing the RNAi and one white-eyed w1118 wild-type fly were placed with 4 
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wild-type flies of the opposite sex. For male fertility the Bam-Gal4 driver was used 

in combination with Dicer, and for female fertility MTD-Gal4 was used without 
Dicer. The flies were allowed to mate for seven days, transferring to fresh vials 

every 2-3 days. After seven days, the parental generation was removed and all 
progeny that emerged from the vial were counted, with eye colour used to 

determine the parent of each. Flies from the RNAi parent were separated, imaged, 
and quantified using Fiji image analysis platform (Schindelin et al., 2012), with a 

custom macro (https://github.com/tjs23/unknome). Individual data for both males 
and females is in Table S2, with the means and the variances errors plotted in the 

figures provided in Table S3.  

 

Wing growth assay 

The genes in the unknome set were knocked down in the posterior half of the 

wing by using an engrailed-GAL4 driver combined with UAS-dcr-2. For each 
cross, at least 10 independent wings were collected, and mounted on a slide 

under a coverslip in 50% glycerol/PBST. Images obtained with a 5 x objective 
were analysed using a Fiji macro to contrast the veins from the rest of the wing 

(https://github.com/tjs23/unknome), and then the areas of specific inter-vein 
regions in the anterior and posterior halves were determined. Individual data is in 

Table S2, with the means and the variances errors plotted in the figures provided 
in Table S3.  

 

Proteostasis assay in the eye 

To interrogate the handling of misfolded proteins, a GFP fusion to part of 
huntingtin with a polyglutamine repeat was expressed in eyes, and the number of 

GFP-positive aggregates determined (Zhang et al., 2010). UAS-Httex1-Q46-eGFP 
was expressed in the eye along with the RNAi using GMR-Gal4. One eye from 

each of nine males per genotype were imaged after 18 days at 25oC, using 3 
males per independent cross. GFP-positive aggregates were quantified with Fiji 
using a custom macro that determined the area of the eye, and then scored 

aggregates that were either smaller or bigger that 50 pixels 
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(https://github.com/tjs23/unknome). Individual data is in Table S2, with the means 

and the variances errors plotted in the figures provided in Table S3.  
 

Survival under stress 

To measure lifespan under stress we developed an automated system for 

following viability over may days. Flies were placed 96 well plates and 
photographed every hour with image analysis then used to identify when the flies 

stopped moving. To prepare the plates, low nitrogen-free fly food was placed at 
the bottom of each well (8 g agar, 50 g glucose, and 5 g pectin per litre with 

0.25% nipagin, antibiotics, and 4 ml/litre propionic acid as preservative). To assay 
oxidative stress, the same food was used with the addition of 7.5 mM paraquat. 

Adult male flies were subdued with CO2 and single flies placed in each well of the 
96 well, with the plate sitting on ice to prevent escape before the plate was full. 

The plate was then sealed with gas permeant film.  
To image the plates over time, they were placed on a circular rotating 

platform, and moved under a camera to be imaged every hour, with three such 
platforms or wheels arranged in a stack. At least 200 adults were assayed for 

genotype, and custom Python scripts used to align the images of each plate and 
then track the movement of the flies in each well 

(https://github.com/tjs23/unknome). Lifespan was defined as the time point after 
the last change in position of the fly in the well. Individual data for both starvation 
and ROS conditions is in Table S2, with the means and the variances errors 

plotted in the figures provided in Table S3.  
 

iFly climbing assay 

The climbing speed of flies was measured using the iFly tracking system in which 

a single camera and mirrors are used to follow the movement of flies in a vial (75, 

76). The RNAi stocks for the unknome set were crossed to the ubiquitous 

daughterless-Gal4 driver, and progeny collected at 8 days and 22 days post-
eclosion. To follow locomotion, eight flies were placed in a vial which was tapped 

to collect them at the bottom, and then vial placed in the iFly apparatus for filming 
over 30 seconds, with this repeated three times. Locomotion velocities were then 
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determined using the iFly tracking software (Kohlhoff et al., 2011). Individual data 

from both 8 days and 22 days is in Table S2, with the means and the variances 
errors plotted in the figures provided in Table S3.  

 

Summary of statistical methods 

The general approach we took is as follows, with full details provided below in a 
Statistical Supplement. We first modelled the distributions of the experimental 

results relating to each of the phenotypes under consideration parametrically. We 
thus formalised the goal of identifying outlying genes as identifying outlying sets of 

parameters corresponding to genes for each of the different phenotypes. Our 
approach involved three steps. First, we performed a regression to obtain 

estimates of the parameters for genes and an estimate of their variance–
covariance matrix whilst controlling for batch and other effects. This was 

important because variability across batches was substantial for several of the 
phenotypes considered. The particular regression model used for this batch 

correction depended on the dataset. 

The next step involved determining an outlier region. To do this, we transformed 

the parameter estimates so they more closely resembled a sample from a normal 
distribution such that an elliptical outlier region was appropriate. This 

transformation was often simply chosen as the identity, but in certain cases 
logistic transformations were used, for example. To describe how this region was 

determined, it will be helpful to fix the phenotype and write 𝜇!, … , 𝜇" for the 

unknown transformed parameters for the genes, where 𝐽 is the total number of 

genes under consideration for that phenotype. Furthermore, let us write 𝜇̂!, … , 𝜇̂" 

for the corresponding (transformed) estimated parameters. Note that the 𝜇# were 

two-dimensional in most examples. 

We modelled the 𝜇# as samples from a mixture of a normal distribution and a 

distribution of outliers, and aimed to estimate the mean and variance matrix of this 

normal distribution to give the center and shape of the outlier region. The mean 
was estimated using a robust mean estimator applied to 𝜇̂!, … , 𝜇̂", such that the 

outlying genes did not influence the estimate. Analogously, we also obtained a 
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robust estimate of the variance of the (𝜇̂#)#$!
"  to better reflect the variance of the 

bulk of the (𝜇#)#$!
" . We then employed a bootstrap approach (Efron and Tibshirani, 

1994), to adjust this variance estimate to account for the sampling variability of the 

(𝜇̂#)#$!
" : the raw robust variance would be an overestimate of the corresponding 

quantity for the true transformed parameters. 

Given the final mean and variance estimates, we took our outlier region to be the 
complement of the elliptical contour of a normal density with this mean and 

variance with a size such that the probability of falling outside the region was 
either 0.05 or 0.1, depending on the dataset. Note that in the cases where the 

parameters 𝜇# were one-dimensional, the ellipse was simply an interval. Finally, we 

performed a bootstrap hypothesis test for each gene 𝑗 with the null hypothesis 

being that 𝜇# falls within the outlier ellipse. We thus obtained 𝑝-values for each 

gene quantifying the evidence that it is an outlier according to the data. Note that 
this measure incorporates both how outlying 𝜇̂# is, but importantly also takes into 

account the fact that 𝜇̂# is a noisy estimate of the true 𝜇#. These 𝑝-values were 

then corrected for multiple testing using the Benjamini–Hochberg procedure 

(Benjamini and Hochberg, 1995). 

 

CRISPR/Cas9-mediated knock-out 

CRISPR target sites were chosen using the CRISPR Optimal Target Finder 
(http://targetfinder.flycrispr.neuro.brown.edu/). pCFD3 was used for BbsI-

dependent gRNA cloning (http://www.crisprflydesign.org/) (Port et al., 2014). 
gRNA transgenics were generated for all candidate genes using BDSC stocks 

#25709 or #25710, depending on the chromosomal location of the target gene. To 
generate indels transgenic gRNA lines were crossed to either CFD2 or TH_attP2. 

DNA microinjections were performed by the University of Cambridge Department 
of Genetics Fly Facility. For generation of CG10795 mutants, gRNAs were cloned 

into pCFD3, and plasmids injected into CFD2 embryos. Stable stocks were 

generated to recover indels for all candidate genes. For genotyping, single males 
were collected and the genomic DNA was isolated using microLYSIS-Plus (Clent 

Life Science). Diagnostic PCRs followed by sequencing identified indels.  
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Fertility assays on CRISPR/Cas9 mutants 

To check male fertility, crosses with 5 Oregon R wild-type virgins and 3 mutant 

males were set up for each genotype. Crosses were kept at 25oC and knocked 
over twice. The total number of offspring was counted for all crosses and the 

mean +/- SD was plotted for each genotype. Deficiencies uncovering the 
candidate genes were used to check for potential off-target effects. To check 

female fertility three crosses with 5 mutant virgins and 3 Oregon R wild-type males 
were set up for each genotype, and processed in the same was as for male 

fertility. A deficiency uncovering CG8237 was used to check for potential off-

target effects.  
 

Analysis of CG11103 and CG10795 embryonic phenotypes 

Overnight egg collections (at 25oC) from CG11103 and CG10795 mutant females 

and males were kept at 25oC for 48 hours. Dead embryos were dechorionated and 
mounted in Hoyer’s Medium. Slides were kept at 65oC for at least 24 hours and 

widefield amges obtained with a Zeiss Axioplan. For examination of Elav 
expression, overnight egg collections from CG11103 and CG10795 mutant 

females and males were dechorionated with bleach and fixed using 4% 

formaldehyde. Embryos were devitellinised using n-Heptane/Methanol. Embryos 
were washed in PBT 0.1% Tween20 and blocked in PBT 0.1% Tween20 plus 5% 

BSA. Mouse anti-Elav (1/20; DSHB), were added over night at 4oC, and then 
embryos washed in PBT 0.1% Tween20. Donkey anti-mouse Alexa 488 (Fisher 

Scientific) was added and left for 2h at RT. Embryos washed in PBT 0.1% 
Tween20, and mounted in Vectashield containing DAPI (Vector Laboratories) and 

imaged on a Zeiss LSM 710 confocal.  
 

Analysis of male seminal vesicles in CG6153 mutants 

Testes from 3-5 days old adult males were dissected in PBS and then either 

directly transferred onto a slide with Schneider’s medium to take live images using 
a Zeiss 710 confocal microscope or fixed in 4% paraformaldehyde for 30 min at 
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RT. PFA was then removed and the testes washed in PBT 0.1% Tween 20. 

Images were taken on a Zeiss stereo-microscope and a Nikon digital camera.  
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Statistical Supplement 
Here we provide further details to complement the outline of the statistical methods presented in the 

STAR Methods section. The approach used consists of three steps: modelling the data to associate 

each gene with statistical parameters; construction of an outlier region in the space of these 

parameters; and performing hypothesis tests to determine whether these parameters fall within this 

region. The material here is similarly organised into three sections describing each of these steps. 

In much of what follows, we consider the experimental setting (i.e. fertility, wing size etc.) to be fixed 
and describe general procedures that we apply, with some modifications, to each of the settings. 

1 Modelling the data 

1.1 General procedure 

The data for each experiment takes the general form (𝑌!" , 𝑥!") ∈ ℝ# ×ℝ$, 𝑖 = 1,… , 𝑛", 𝑗 = 1,… , 𝐽, 

where 𝐽 was the total number of genes, and 𝑑 ∈ {1,2}. Here 𝑌!" corresponds to the 𝑖th measurement 

taken on the 𝑗th gene and the 𝑥!" are associated covariates that may indicate the batch in which the 

measurement was taken, for example. Our goal is to identify outlying genes, and for this purpose 

we first construct a parametric model for the data of the form 

𝑌 ∼ 𝐹(𝜃, 𝜂, 𝑋) 

where 𝑌 and 𝑋 collect together the response of covariates respectively,  𝜃 = (𝜃%, … , 𝜃&) ∈ ℝ#×& are 

the parameters associated the with genes and 𝜂 represents a collection of nuisance parameters 

(e.g. parameters associated with the different batches). The statistical problem at hand then is to 

identify outlying 𝜃". For this we need to introduce a notion of what it means to be an outlier, and then 

propose a methodology for testing for each 𝑗 whether 𝜃" is an outlier. These latter two tasks are 

described in Sections 2 and 3. To do these, we require estimates (𝜃9")"(%
&  of (𝜃")"(%

&  that are 

approximately unbiased and Gaussian with estimated variance Σ9 ∈ ℝ(#⋅&)×(#⋅&). Note that as we are 

only interested in differences between different 𝜃", we are for example free to introduce a sum-to-

zero constraint on these parameters to reduce the overall variance, and we do this throughout. 

Below we present the specific statistical models 𝐹 used for each of the different experimental 

datasets for which (versions of) maximum likelihood estimation then delivers these quantities. All 

computations were performed in R (R Core Team, 2018). 

1.2 Fertility 

Let 𝑌!", ∈ ℤ be the 𝑖th brood size measurement corresponding to female flies with gene type 𝑗 in 

batch 𝑘 for 𝑖 = 1,… , 𝑛", (where 𝑛", may be 0 for some (𝑗, 𝑘)). We will first present our analysis of the 

data on females; analysis for the data on males proceeded similarly. 

To examine the mean–variance relationship (i.e. how 𝔼(𝑌!",) relates to Var(𝑌!",)), we first formed for 

all (𝑗, 𝑘) such that 𝑛", ≥ 2, 
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𝑚", =
1
𝑛",

D𝑌!",

-

!(%

, 𝑠", =
1
𝑛",

D(
-

!(%

𝑌!", −𝑚",).. 

We then regressed 𝑚", on to 𝑠", via the following optimisation: 

𝛽I = arg	min
/∈ℝ!

D 𝑛",
(",):-"#3.

|𝑠", − 𝛽%𝑚", − 𝛽.𝑚",
. |. 

The lack of intercept in this regression encodes the restriction that when 𝔼(𝑌!",) = 0 we must have 

Var(𝑌!",) = 0; the use of the absolute value rather than the more usual squared error loss is to 

account for the exponential-type tails we may expect for the 𝑠",; and the weights 𝑛", reflect the 

variance of the 𝑠",. 

We thus obtained an estimated variance function 𝑉9(𝜇) = 𝛽I%𝜇 + 𝛽I.𝜇. such that  𝑉9(𝔼𝑌!",) ≈ Var(𝑌!",). 

We obtained coefficients 

𝛽I% = 8.229653								𝛽I. = −0.04984021, 

and as 𝛽I. was negative, we were able to express 	𝑉9  as a scaled version of a Bernoulli variance 

function via 

𝑉9(𝜇) = 𝑉Z(𝜇[) =
𝛽I%.

|𝛽I.|
𝜇[(1 − 𝜇[) 

with 𝜇[ = |𝛽I.|𝜇/𝛽I%. To fit a regression model with this form of variance function, we used a quasi-

binomial regression after transforming the data 𝑌!", ↦ 𝑌Z!", = |𝛽I.|𝑌!",/𝛽I%. The transformed data took 

values in [0,1] so we used a logit link and modelled the mean 𝔼𝑌Z!", as 

log a
𝔼𝑌Z!",

1 − 𝔼𝑌Z!",
b = logit(𝔼𝑌Z!",) = 𝜃"% + 𝜂,%. 

To handle zero counts we used the bias correction of (Firth, 1993), as implemented in (Kosmidis, 

2019), which always produces finite parameter estimates. The analysis of the male data was very 

similar, and in the end we obtained estimates (𝜃9")"(%
&  and block diagonal estimated variance matrix 

𝛴9 (as the male and female data were independent). 

1.3 Wing size 

Let 𝑌!", ∈ ℝ. be the 𝑖th measurement on the 𝑗th gene in the 𝑘th batch, defined for 𝑖 = 1,… , 𝑛", 

(where 𝑛", may be 0 for some (𝑗, 𝑘)) with first and second components denoting measurements for 

anterior and posterior wing segments respectively. We used the model 

𝑌!", = 𝜃" + 𝜂, + 𝜀!", 

where 𝜀!", ∼!.!.#.𝒩(0, 𝛴") with Σ" ∈ ℝ.×.. Inspection of the data showed that the correlation matrices 

corresponding to the Σ" vary very little over 𝑗 and the difference is barely detectable by permutation 

tests. We therefore constrained Σ" in the following way: Σ" = 𝐷"%/.Σuniv𝐷"%/. where Σuniv ∈ ℝ.×. is a 

universal correlation matrix and the 𝐷" ∈ ℝ.×. are diagonal matrices with variances corresponding 
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to each gene. 

1.4 PolyQ aggregates 

We first constructed from the available data two quantities from each replicate: the number of 

aggregates with area in pixels greater than 50, and the corresponding number with area less than 

or equal to 50. They form the components of 𝑌!", ∈ ℤ., for which we use quasi-Poisson models with 

log | links as follows. 

a
log(𝔼𝑌!",%)
log(𝔼𝑌!",.)

b = 𝜃" + 𝜂, . 

We performed two separate Poisson regressions for each component of the response. In order to 
avoid issues where parameter estimates from standard maximum likelihood estimation were too 

large, we employed the bias correction of (Firth, 1993), as implemented in (Kosmidis, 2019). To 

estimate the covariance matrix of the parameters, we noted that the working residuals from the 

regressions displayed a covariance that was constant across fitted values from each of the 

regressions. Using this estimated covariance and estimated dispersion parameters we formed a full 

covariance matrix Σ9 ∈ ℝ(.⋅&)×(.⋅&) for all (𝜃9")"(%
& . 

1.5 Survival under stress 

Let 𝑌!",5 and 𝑇!",56  denote the censored survival and censoring times under oxidative stress for the 

𝑖th replicate of gene 𝑗 in batch 𝑘 and wheel 𝑙. We fitted a Cox proportional hazards model of the 

form 

ℎ!",5(𝑦) = exp(𝜃" + 𝜂5)ℎ,(𝑦), 

where ℎ!",5 is the hazard function of the unobserved uncensored version 𝑌!",5∗  of 𝑌!",5, and ℎ, is an 

unspecified baseline hazard function for batch 𝑘. 

We used an analogous model for the data concerning survival times under starvation. 

1.6 Climbing speed 

Let 𝑌!",5 and 𝑍!",5 denote the 𝑖th speed measurement corresponding to gene 𝑗, batch 𝑘 and repeat 𝑙 

for days 8 and 22 respectively. We used the following random effects models: 

𝑌!",5 = 𝜃"% + 𝜂,% + 𝜁",5% + 𝜀!",5% 

𝑍!",5 = 𝜃". + 𝜂,. + 𝜁",5. + 𝜀!",5. 

where 𝜁",58 ∼ 𝒩(0, 𝜎,8. ) and 𝜀!",58 ∼ 𝒩(0, 𝜎8. ), all independently. 

2 Outlier region construction 

From the initial regression, we obtained estimates (𝜃9")"(%
&  for the parameters (𝜃")"(%

&  corresponding 

to each gene, and their associated estimated variance matrix Σ9 ∈ ℝ(#⋅&)×(#⋅&). In order that an 

elliptical outlier region was appropriate, we transformed the estimates depending on their 
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distribution to give 𝜇̂" = 𝑓(𝜃9") where the transform function 𝑓:ℝ# → ℝ# chosen is given in Table 1. 

 

Dataset Transform function 𝒇 
Fertility logistic 

Wing size identity 

PolyQ aggregates exponential 

Survival under Stress identity 

Climbing speed identity 

Table 1; Transform functions used for different datasets. 

Let us write 𝜇" = 𝑓(𝜃") for each 𝑗 = 1,… , 𝐽. We considered 𝑓 as fixed, and as is common in the 

analysis of outliers, considered a model for the 𝜇" as samples from a mixture of a normal 

distribution and an outlier distribution 𝐹out (Hawkins, 1980): 

𝜇" ∼ 𝛾𝒩(𝜇, Σ9) + (1 − 𝛾)𝐹out. 

We assumed the mixture proportion 𝛾 to be greater than 0.5 and that the support of 𝐹out was 

sufficiently far from 𝜇. We used the minimum covariance determinant estimator (Rousseuw and 

Driessen, 1999), as implemented in (Maechler et al., 2018), to give a robust estimate 𝜇̂ of 𝜇 and an 

initial estimate Σ99 of Σ9. Whilst we can expect that 𝜇̂ is a reasonable estimate of 𝜇, Σw9 will be 

substantially inflated by the sampling variability of the (𝜇̂")"(%
& . To correct for this, we employed the 

following bootstrap strategy. 

1. Produce bootstrap samples (𝜃9"
(:))"(%

& ∼ 𝒩((𝜃9")"(%
& , Σ9) for 𝑏 = 1,… , 𝐵. 

2. Form 𝜇̂"
(:) = 𝑓(𝜃9"

(:)) for 𝑗 = 1,… , 𝐽 and 𝑏 = 1,… , 𝐵. 

3. Compute robust covariance estimates Σw9
(%), … , Σw9

(;) based on each of the bootstrap samples 

(𝜇̂"
(%))"(%

& , … , (𝜇̂"
(;))"(%

&  using the minimum covariance determinant estimator. 

4. Set 

Σz9 =
1
𝐵DΣw9

(:)
;

:(%

 

and finally define our final estimate Σ99 of Σ9 by 

Σ99 = Σw9%/.Σz9<%/.Σw9Σz9<%/.Σw9%/.. 

The rationale for this approach is that 

𝐻:ℝ#×# → ℝ#×#																										
													Ω ↦ Σw9%/.Σz9<%/.ΩΣz9<%/.Σw9%/.

 

is a mapping that satisfies Σ99 = 𝐻(Σw9) and 

1
𝐵D𝐻

;

:(%

(Σw(:)) = Σw9 . 
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Thus, we can think of 𝐻 as a corrective transformation that were (𝜇̂")"(%
&  to be a sample from the 

ground truth, gives an approximately unbiased estimate of its (robust) covariance. Applying 𝐻 to Σw9 

should similarly correct it to give a better estimate of Σ9. The reason for generating the bootstrap 

samples at the level of the untransformed parameters is that the Gaussian approximation in step 1 

of the procedure above, which mimics the sampling distribution of the (𝜃9")"(%
& , would typically be 

more reliable than the analogous approximation for the (𝜇̂")"(%
& . 

Given our final estimates 𝜇̂ and Σ99, we set the outlier region to be the complement of the elliptical 

contour of a 𝒩#(𝜇̂, Σ99) density such that the probability of 𝜁 ∼ 𝒩#(𝜇̂, Σ99) falling within the region is 

given by 0.05 or 0.1, depending on the dataset. This outlier region can be mapped to the 𝜃-space 

using the inverse of 𝑓; in the sequel we will refer to this region as 𝑅. 

3 Testing for outliers 

Given outlier region 𝑅 such that all 𝑗 for which 𝜃" ∈ 𝑅 are deemed outliers, we constructed for each 𝑗 

an (approximate) 𝑝-value 𝑝" for the null hypothesis 𝜃" ∉ 𝑅. In the cases where the region was an 

interval, this was straightforward. In the cases where the region was two-dimensional, this was done 

using a bootstrap scheme, the main steps of which were as follows. Denote by 𝐴 the complement of 

𝑅, and also let 𝐴9 be the (elliptical) region 𝑓(𝐴). 

1. Compute via the delta method an estimate Ω�" of the variance of 𝜇̂". 

2. Compute the projection 𝜇[" of 𝜇̂" on to the elliptical region 𝐴9 using the Mahanolobis 

distance with covariance Ω�": 

𝜇[" = argmin
8∈=$

(𝜇̂" −𝑚)>Ω�"<%(𝜇̂" −𝑚). 

(Details for how this is performed are given in Section 4.) 

3. Set 

𝑇" = (𝜇̂" − 𝜇[")>Ω�"<%(𝜇̂" − 𝜇["). 

Also define 𝜃Z" = 𝑓<%(𝜇["). 

4. Let ΣZ" be an estimate of the maximum likelihood estimate of 𝜃" under the null that 𝜃" ∈ 𝐴. 

Generate 𝐵 = 100000 bootstrap samples 𝜃Z"
(%), … , 𝜃Z"

(;) ∼!.!.#.𝒩#(𝜃Z" , ΣZ"). Let 𝜇["
(:) = 𝑓(𝜃Z"

(:)). 

5. Compute bootstrap versions of the test statistic 𝑇": 

𝑇"
(:) = min

8∈=$
(𝜇["

(:) −𝑚)>Ω�"<%(𝜇["
(:) −𝑚). 

6. Then 

𝑝" =
∑ 𝟙{>"(&)3>"}
;
:(%

𝐵  

in a Monte Carlo estimate of the 𝑝-value. To improve the quality of this estimate, we in fact 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 28, 2022. ; https://doi.org/10.1101/2022.06.28.497983doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.28.497983
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 54 

used an importance sampling scheme where initially the 𝜃9"
(:) were generated from a 

mixture of the Gaussian distribution above, and 𝒩#(𝜃9" , ΣZ") (with mixture proportions 0.5); the 

𝟙{>"(&)3>"}
 terms were then weighted according to the importance sampling weights. 

The rationale for this is as follows. The test statistic 𝑇" encapsulates how far 𝜇̂" is from the region 𝐴9 

taking into account the variance of the 𝜇̂" (directions in which 𝜇̂" is highly variable are effectively 

down-weighted). Under the null hypothesis that 𝜃" ∈ 𝐴, we should have 𝜇[" ≈ 𝜇": 𝑓(𝜃") and so the 

bootstrap distribution should approximate the null distribution and thus provide effective calibration 

for 𝑇". 

We finally apply false discovery rate (FDR) correction to the 𝑝-values using the Benjamini–

Hochberg procedure (Benjamini and Hochberg, 1995). Although controlling for batches and the fact 

that the outlier region is determined using the data would make the 𝑝-values dependent, the 

dependence should be weak and thus the Benjamini–Hochberg procedure should at least 

approximately control the FDR. 

4 Ellipse projection 

Here we describe an efficient approach to computing 

𝑥∗ = arg	min	
A∈=

(𝑥 − 𝑧)>𝑀(𝑥 − 𝑧) 

where 𝑀 ∈ ℝ#×# is a symmetric positive definite matrix and ellipsoid 𝐴 = {𝑥: 𝑥>Ω𝑥 ≤ 𝑐} for 

symmetric positive definite Ω ∈ ℝ#×#, 𝑐 > 0 and 𝑧 ∉ 𝐴. Equivalently, the problem is to find the 

minimum 𝑐∗ > 0 such that there exists 𝑥∗ with 

(𝑥∗ − 𝑧)>𝑀(𝑥∗ − 𝑧) ≤ 𝑐∗	and	(𝑥∗)>Ω𝑥∗ ≤ 𝑐. 

By Lagrangian duality, we know there exists 𝜆 that 

𝑥∗ = arg	min	
A∈ℝ(

{(𝑥 − 𝑧)>𝑀(𝑥 − 𝑧) + 𝜆𝑥>Ω𝑥}. 

Consider the eigendecomposition 𝑀 = 𝑃𝐷.𝑃>. Writing 𝑦∗ = 𝐷𝑃>𝑥∗ we have 

𝑦∗ = arg	min	
B∈ℝ(

{∥ 𝑦 − 𝐷𝑃>𝑧 ∥..+ 𝜆𝑦>𝐷<%𝑃>Ω𝑃𝐷<%𝑦}. 

Let the eigendecomposition of 𝐷<%𝑃>Ω𝑃𝐷<% be 𝑈Λ𝑈>. We see that then 

𝑧∗ = (𝐼 + 𝜆Λ)<%𝑈>𝐷𝑃>𝑧 

where 𝑧∗ = 𝑈>𝑦∗ so 𝑥∗ = 𝑃𝐷<%𝑈𝑧∗ and 𝜆 is such that (𝑧∗)>Λ𝑧∗ = 𝑐. 
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