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ABSTRACT 1 

Advanced prostate cancers comprise distinct phenotypes, but tumor classification remains 2 
clinically challenging. Here, we harnessed circulating tumor DNA (ctDNA) to study tumor 3 
phenotypes by ascertaining nucleosome positioning patterns associated with transcription 4 
regulation. We sequenced plasma ctDNA whole genomes from patient-derived xenografts 5 
representing a spectrum of androgen receptor active (ARPC) and neuroendocrine (NEPC) 6 
prostate cancers. Nucleosome patterns associated with transcriptional activity were reflected in 7 
ctDNA at regions of genes, promoters, histone modifications, transcription factor binding, and 8 
accessible chromatin. We identified the activity of key phenotype-defining transcriptional 9 
regulators from ctDNA, including AR, ASCL1, HOXB13, HNF4G, and NR3C1. Using these 10 
features, we designed a prediction model which distinguished NEPC from ARPC in patient plasma 11 
samples across three clinical cohorts with 97-100% sensitivity and 85-100% specificity. While 12 
phenotype classification is typically assessed by immunohistochemistry or transcriptome profiling, 13 
we demonstrate that ctDNA provides comparable results with numerous diagnostic advantages 14 
for precision oncology. 15 
 16 
STATEMENT OF SIGNIFICANCE 17 

This study provides key insights into the dynamics of nucleosome positioning and gene regulation 18 
associated with cancer phenotypes that can be ascertained from ctDNA. The new methods 19 
established for phenotype classification extend the utility of ctDNA beyond assessments of DNA 20 
alterations with important implications for molecular diagnostics and precision oncology.   21 
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INTRODUCTION  22 

Metastatic castration-resistant prostate cancer (mCRPC) describes the stage in which the disease 23 
has developed resistance to androgen ablation therapies and is lethal (1). Androgen receptor 24 
signaling inhibitors (ARSI), designed for the treatment of CRPC, repress androgen receptor (AR) 25 
activity and improve survival, but these therapies eventually fail (2,3). Since the adoption of ARSI 26 
as standard-of-care for mCRPC, there has been a prominent increase in the frequency of 27 
treatment-resistant tumors with neuroendocrine (NE) differentiation and features of small cell 28 
carcinomas (4–7). These aggressive tumors may develop through a resistance mechanism of 29 
trans-differentiation from AR-positive adenocarcinoma (ARPC) to NE prostate cancer (NEPC) that 30 
lack AR activity (4,7–10). Additional phenotypes can also arise based on expression of AR activity 31 
and NE genes, including AR-low prostate cancer (ARLPC) and double-negative prostate cancer 32 
(DNPC; AR-null/NE-null) (5,11–13). Distinguishing prostate cancer subtypes has clinical 33 
relevance in view of differential responses to therapeutics, but the need for a biopsy to diagnose 34 
tumor histology can be challenging: invasive procedures are expensive and accompanied by 35 
morbidity, a subset of tumors are not accessible to biopsy, and bone sites pose particular 36 
challenges with respect to sample quality (7,14). 37 

Circulating tumor DNA (ctDNA) released from tumor cells into the blood as cell-free DNA (cfDNA) 38 
is a non-invasive “liquid biopsy” solution for accessing tumor molecular information. The analysis 39 
of ctDNA to detect mutation and copy-number alterations has served to classify genomic subtypes 40 
of CRPC tumors (4,15–21). However, the defining losses of TP53 and RB1 in NEPC do not always 41 
lead to NE trans-differentiation (7,22). Rather, ARPC and NEPC tumors are associated with 42 
distinct reprogramming of transcriptional regulation (8,9,23). Methylation analysis of cfDNA in 43 
mCRPC to profile the epigenome shows promise for distinguishing phenotypes, but requires 44 
specialized assays such as bisulfite treatment, enzymatic treatment, or immunoprecipitation (24–45 
27).  46 

The majority of cfDNA represents DNA protected by nucleosomes when released from dying cells 47 
into circulation, leading to DNA fragmentation that is reflective of the non-random enzymatic 48 
cleavage by nucleases (28,29). Emerging approaches to analyze cfDNA fragmentation patterns 49 
from plasma for studying cancer can be performed directly from standard whole genome 50 
sequencing (WGS) (30–34). cfDNA fragments have the characteristic size of 167 bp, consistent 51 
with protection by a single core nucleosome octamer and histone linkers, but the size distribution 52 
may vary between healthy individuals and cancer patients (35–38). Recent studies have 53 
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demonstrated that the nucleosome occupancy in cfDNA at the transcription start site (TSS) and 54 
transcription factor binding site (TFBS) can be used to infer gene expression and transcription 55 
factor (TF) activity from cfDNA (39–41). However, nucleosome positioning and spacing are 56 
dynamic in active and repressed gene regulation (42–44). A detailed understanding of the 57 
nucleosome organization and positioning patterns associated with transcriptional regulation has 58 
not been fully explored in cfDNA. 59 

A major challenge for ctDNA analysis is the low tumor content (tumor fraction) in patient plasma 60 
samples. By contrast, plasma from patient-derived xenograft (PDX) models may contain nearly 61 
pure human ctDNA after bioinformatic exclusion of mouse DNA reads (36,38). This provides a 62 
resource that is ideal for studying the properties of ctDNA, developing new analytical tools, and 63 
validating both genetic and phenotypic features by comparison to matching tumors. In this study, 64 
we performed WGS of ctDNA from mouse plasma across 24 CRPC PDX lines with diverse 65 
phenotypes. Applying newly developed computational methods, we comprehensively 66 
interrogated the nucleosome patterns in ctDNA across genes, regulatory loci, TFBSs, TSSs, and 67 
open chromatin sites to reveal transcriptional regulation associated with mCRPC phenotypes. 68 
Finally, we designed a probabilistic model to accurately classify treatment-resistant tumors into 69 
divergent phenotypes and validated its performance in 159 plasma samples from three mCRPC 70 
patient cohorts. Overall, these results highlight that transcriptional regulation of tumor phenotypes 71 
can be ascertained from ctDNA and has potential utility for diagnostic applications in cancer 72 
precision medicine. 73 

RESULTS 74 

Comprehensive resource of matched tumor and liquid biopsies from patient derived 75 
xenograft (PDX) models of advanced prostate cancer 76 

We used 26 models from the LuCaP PDX series of advanced prostate cancer with well-defined 77 
mCRPC phenotypes (45). The models consisted of 18 classifieds as ARPC, two classified as AR-78 
low and NE-negative prostate cancer (ARLPC), and six classified as NEPC (Figure 1A, 79 
Supplementary Table S1). For each PDX line, we pooled mouse plasma from seven to ten mice, 80 
extracted cfDNA, and performed deep whole genome sequencing (WGS; mean 38.4x coverage, 81 
range 21 – 85x) (Methods, Figure 1A). We observed that 25 lines had human ctDNA comprising 82 
more than 10% of the sample (mean 52.9%, range 10.6 – 96%) with NEPC samples having 83 
significantly higher human fractions (mean 85.1%, range 77.1 – 96%, two-tailed Mann-Whitney U 84 
test p = 9.6 x 10-4) (Figure 1B, Supplementary Table S1). We used bioinformatic subtraction of 85 
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mouse sequenced reads to obtain nearly pure human ctDNA data (Methods). After subsequent 86 
filtering by human ctDNA sequencing coverage, 24 PDX lines remained for further analysis (16 87 
ARPC, 6 NEPC, 2 ARLPC; mean 20.5x, range 3.8 – 50.6x, Supplementary Table S1). In the 88 
matching tumors, we performed Cleavage Under Targets and Release using Nuclease 89 
(CUT&RUN) to profile H3K27ac, H3K4me1, and H3K27me3 histone post-translational 90 
modifications (PTMs) (46,47) (Supplementary Fig. S1). We hypothesized that nucleosome 91 
organization inferred from ctDNA reflects the transcriptional activity state regulated by histone 92 
PTMs (48). 93 

To study transcriptional regulation in mCRPC phenotypes from ctDNA, we interrogated four 94 
different features: local promoter coverage, nucleosome positioning, fragment size analysis, and 95 
composite TFBSs and open chromatin sites analysis using the Griffin framework (49) (Figure 1A, 96 
Methods). First, we analyzed three different local regions within ctDNA: all gene promoters and 97 
gene bodies and sites of histone PTMs guided by CUT&RUN analysis. For each of the three local 98 
regions, we extracted features of nucleosome periodicity using a nucleosome phasing approach 99 
and computed the fragment size variability; for promoter regions, we also computed the coverage 100 
at the transcription start site (TSS). Next, we analyzed ctDNA at transcription factor binding sites 101 
(TFBSs) and open chromatin regions. For each transcription factor (TF), ctDNA coverage at 102 
TFBSs were aggregated into composite profiles representing the inferred activity (41,49). 103 
Similarly, features in the composite profiles of subtype-specific open chromatin regions were 104 
extracted for analyzing the signatures of chromatin accessibility in ctDNA. Altogether, we 105 
assembled a multi-omic sequencing dataset from matching tumor and plasma for a total of 24 106 
PDX lines, making this a unique molecular resource and platform for developing transcriptional 107 
regulation signatures of tumor phenotype prediction from ctDNA.   108 

Characterizing transcriptional activity of AR and ASCL1 in PDX phenotypes through 109 
analysis of tumor histone modifications and ctDNA  110 

Prostate cancer phenotypes in mCRPC patients have distinct transcriptional signatures and these 111 
are also observed in the LuCaP PDX lines (11). We sought to further characterize the 112 
transcriptional activity in different tumor phenotypes by studying epigenetic regulation via histone 113 
PTMs. We identified broad peak regions for H3K4me1 (median of 17,643 regions, range 1,894 – 114 
64,934), H3K27ac (median 7,093, range 1610 - 34,047), and H3K27me3 (median 8,737, range 115 
2,024 - 42,495) in the tumors of the 24 PDX lines and an additional nine LuCaP PDX lines where 116 
only tumor was available (total of 25 ARPC, 2 ARLPC, and 6 NEPC) (Methods, Supplementary 117 
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Fig. S1, Supplementary Table S2). Using unsupervised clustering and principal components 118 
analysis (PCA), we identified putative active regulatory regions of enhancers and promoters 119 
(H3K27ac, H3K4me1) and gene repressive heterochromatic mark (H3K27me3) that were specific 120 
to ARPC, ARLPC, and NEPC phenotypes (50) (Supplementary Fig. S2A).  121 

AR and ASCL1 are two key differentially expressed TFs with known regulatory roles in ARPC and 122 
NEPC phenotypes, respectively (9,51–53). When inspecting AR binding sites in ARPC tumors, 123 
we observed increased signals from flanking nucleosomes with H3K27ac PTMs compared to the 124 
other phenotypes (area under mean peak profile of 18.46 vs. 15.08 in ARLPC and 10.63 in NEPC) 125 
Figure 2A, Supplementary Fig. S2B, Methods). We also observed the strongest signals at the 126 
nucleosome depletion region (NDR) in ARPC for H3K27ac (1.54 coverage decrease vs. 0.78 for 127 
ARLPC and 0.41 for NEPC). Conversely, in NEPC tumors, we observed stronger signals at 128 
nucleosomes with H3K27ac PTMs flanking ASCL1 binding sites (area under mean peak profile 129 
62.65 vs. 29.18 for ARLPC and 10.83 for ARPC), and stronger NDR signals (2.26 coverage 130 
decrease vs. 0.19 for ARPC and 0.37 for ARLPC). We observed similar trends for H3K4me1 131 
PTMs in the LuCaP PDX lines (Supplementary Fig. S2C).  132 

We analyzed the ctDNA composite coverage profiles at TFBSs to evaluate the nucleosome 133 
accessibility, whereby lower normalized central (±30 bp window) mean coverage across these 134 
sites suggests more nucleosome depletion (Methods). For AR TFBSs, we observed the strongest 135 
signal for nucleosome depletion in ARPC, as indicated by the lowest mean central coverage 136 
(average 0.64, n=16), compared to moderate signals for ARLPC (average 0.88, n=2), and 137 
weakest signals for NEPC (average 0.95, n=6) (Figure 2B). Conversely, the composite coverage 138 
profile at ASCL1 TFBSs showed the strongest nucleosome depletion for NEPC samples (mean 139 
central coverage 0.69) compared to ARLPC (0.86) and ARPC (0.88) (Figure 2C). These 140 
observations were consistent with the differential binding activity by AR and ASCL1 in their 141 
respective phenotypes from tumor tissue (Figure 2A). Furthermore, the ctDNA coverage patterns 142 
of the nucleosome depletion in ctDNA resembled the NDR flanked by nucleosomes with H3K27ac 143 
and H3K4me1 peak profiles, which was exemplified when analyzing only nucleosome-sized 144 
fragments (140 bp – 200 bp) generated by CUT&RUN (Figure 2A, Supplementary Fig. S2B-C). 145 
Together, these results suggest that the nucleosome depletion in ctDNA at AR and ASCL1 146 
binding sites represents active TF binding and regulatory activity in specific prostate PDX tumor 147 
phenotypes. 148 
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Nucleosome patterns at gene promoters inferred from ctDNA are consistent with 149 
transcriptional activity for phenotype-specific genes 150 

We selected 47 genes comprising 12 ARPC and 35 NEPC lineage markers established previously 151 
(4,54) and confirmed by differential expression analysis from PDX tumor RNA-Seq data (Figure 152 
2D, Supplementary Table S3, Methods). To assess the activity of these genes from ctDNA, we 153 
analyzed the ctDNA fragment size in TSSs (± 1 kb window) and gene bodies, and we found that 154 
the differential size variability between phenotypes was positively correlated with relative 155 
expression (Spearman’s r = 0.844, p = 9.4 x 10-14, Figure 2E, Supplementary Fig. S3A, 156 
Supplementary Table S2, Methods). Next, we analyzed the relative ctDNA coverage at the TSS 157 
(± 1 kb) but did not observe an association between the phenotypes (Supplementary Fig. S3B). 158 
However, closer inspection of the ctDNA coverage patterns at the promoters revealed consistent 159 
nucleosome organization for transcription activity and repression (39,55–57) (Figure 2D). 160 
Therefore, we grouped the genes based on differential signals in H3K27me3 histone PTMs, which 161 
are associated with repressed transcription or nucleosome compaction (58). For 25 genes (Group 162 
1) without differential H3K27me3 peaks, including AR, FOXA1, KLK3 and ASCL1, we observed 163 
nucleosome depletion at the TSS consistent with presence of active PTMs, such as for AR (mean 164 
coverage 0.47, n=16) in ARPC and ASCL1 (0.30, n=6) in NEPC samples (Figure 2F, 165 
Supplementary Fig. S4). By contrast, we observed increased coverage at the TSS of AR (1.08) 166 
in NEPC and ASCL1 (0.42) in ARPC, which supports the nucleosome depletion in the absence 167 
of PTMs and inactive transcription. For 22 genes (Group 2) with differential H3K27me3 peaks, 168 
including STEAP1, CHGB and SRRM4, we observed a relatively more consistent increase in 169 
nucleosome occupancy and phasing in the TSS as well as in the gene body for NE-specific genes 170 
(Figure 2G, Supplementary Fig. S5). The neural signaling genes in this group, such as UNC13A 171 
and INSM1, had reduced signals for nucleosome positioning, consistent with the heterogeneous 172 
(‘fuzzy’) nucleosome patterns described for actively transcribed genes (43,59). Interestingly, while 173 
UNC13A was repressed in ARPC tumors, it did not have H3K27ac nor H3K4me1 accessible PTM 174 
marks in NEPC tumors despite being expressed (Supplementary Fig. S3B-C). These results 175 
illustrate that ctDNA analysis can reveal patterns that are consistent with transcriptional regulation 176 
by histone modifications for key genes that define prostate cancer phenotypes. 177 

Phasing analysis in ctDNA reveals nucleosome periodicity associated with transcriptional 178 
activity between CRPC phenotypes 179 

To systematically quantify inter-nucleosomal spacing and predict nucleosome phasing, we 180 
developed TritonNP, a tool utilizing Fourier transforms and band-pass filters on the normalized 181 
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ctDNA coverage to isolate frequency components with periodicities larger than 146 bp (Figure 182 
3A, Supplementary Fig. S6, Methods). This approach allows for calling phased nucleosome 183 
dyad positions to generate an average inter-nucleosome distance from the originating cells, 184 
encapsulating potential heterogeneity in nucleosome occupancy and stability. Regions of inactive 185 
or repressed transcription are expected to have stably bound nucleosomes, resulting in more 186 
periodic (ordered) phasing in the gene body (56,60,61). Conversely, actively transcribed regions 187 
may exhibit overall disordered phasing due to transient nucleosome occupancy, resulting in 188 
relatively aperiodic patterns with variable degrees of nucleosome depletion. In PDX ctDNA, we 189 
observed a larger mean phased-nucleosome distance across 17,946 genes in the ARPC lines 190 
compared to the NEPC lines (median 291.1 bp vs. 282.6 bp, p = 0.027; two-tailed Mann-Whitney 191 
U test, Figure 3B). The phased nucleosome distance was also negatively correlated with the 192 
mean cell cycle progression (CCP) score (Spearman’s rho = -0.563, p = 0.006, Figure 3C, 193 
Methods). These results suggest increased nucleosome periodicity in NEPC ctDNA may 194 
reflecting the condensed chromatin in hyperchromatic nuclei of NE cells (14), and the phasing 195 
analysis may have potential utility for assessing tumor proliferation and aggressiveness (62). 196 

To model the relationship between nucleosome phasing and transcriptional activity more directly, 197 
we further extracted the frequency components corresponding to the inter-nucleosomal distances 198 
of the core dyad with spacer (180 – 210 bp) and without (150 – 180 bp). Then, we computed the 199 
ratio of the mean frequency amplitudes between these components, called the nucleosome 200 
phasing score (NPS), where a higher score corresponded to more ordered nucleosome phasing 201 
and repressed transcription. As an example, HOXB13, which is transcriptionally inactive in NEPC 202 
had higher overall GC-corrected coverage (mean 56.85 depth) and a phased nucleosome 203 
distance of 249 bp with a 1.93 NPS in the LuCaP 93 NEPC PDX (Figure 3A). By contrast, 204 
HOXB13 is actively transcribed in ARPC and had lower coverage (mean 13.54 depth) and a more 205 
disordered phased-nucleosome distance of 332 bp with a 1.63 NPS in the LuCaP 136 ARPC PDX. 206 
When assessing the 47-prostate cancer phenotype marker genes, we observed that the mean 207 
NPS for the 35 NE genes was lower in NEPC lines compared to ARPC (median NPS 1.95 vs. 208 
2.21, p = 0.134; two-tailed Mann-Whitney U test, Figure 3D); although this was not statistically 209 
significant, it was consistent with their active transcription. Conversely, the mean NPS for the 12 210 
AR-regulated genes was lower in ARPC lines compared to NEPC (median NPS 1.82 vs 2.13, p 211 
= 0.070; two-tailed Mann-Whitney U test). In particular, 26 (74%) of the NE genes had lower NPS 212 
in NEPC compared to ARPC (log2 fold-change [ARPC:NEPC] > 0), including seven genes 213 
(ASCL1, CHGB, CHRNB2, GRP, MYCL, XKR7, NEUROD1) that were statistically significant (p 214 
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< 0.05); ten (83%) of the AR-regulated genes had lower NPS in ARPC (log2 fold-change < 0), with 215 
TMPRSS2 being statistically significant (Figure 3E, Supplementary Table S3). These results 216 
illustrate that the NPS captured signals distinguishing key lineage-specific gene markers.  217 

Inferred TF activity from analysis of nucleosome accessibility at TFBSs in ctDNA confirms 218 
key regulators of tumor phenotypes 219 

To characterize the lineage-defining TFs in prostate tumor phenotypes, we considered 220 
nucleosome accessibility at TFBSs in PDX ctDNA. We identified 107 TFs based on the 221 
intersection of 338 TFs analyzed using Griffin and 404 differentially expressed TFs between 222 
ARPC and NEPC PDX tumors (Supplementary Fig. S7, Supplementary Table S3, Methods). 223 
Of these TFs, 38 had significantly different accessibility in ctDNA between ARPC and NEPC 224 
phenotypes (two tailed Mann-Whitney U test, Benjamini-Hochberg adjusted p < 0.05, 225 
Supplementary Table S3). Through unsupervised hierarchical clustering of composite TFBS 226 
central coverage values for the 107 TFs, we observed distinct groups of TFs in PDX ctDNA 227 
(Figure 3F). REST had the largest difference in accessibility as supported by a decrease in 228 
coverage within ARPC models compared to NEPC (log2 fold-change -0.77, adjusted p = 5.7 x 10-229 
4, Supplementary Fig. S8A, Supplementary Table S3). FOXA1, and GRHL2 were significantly 230 
more accessible in ARPC (and ARLPC) samples compared to NEPC (log2 fold-change < -0.57, 231 
adjusted p < 1.3 x 10-3). AR, HOXB13, and NKX3-1 had higher accessibility in ARPC compared 232 
to NEPC (log2 fold-change < -0.37, adjusted p < 1.3 x 10-3), but with only moderate accessibility 233 
in ARLPC, as expected. Interestingly, progesterone receptor (PGR) also had high accessibility in 234 
ARPC (log2 fold-change -0.33, adjusted p = 2.6 x 10-3, Supplementary Fig. S8A). We also 235 
observed a group of ARPC-regulated genes that followed a similar trend, including the 236 
glucocorticoid receptor (NR3C1) and other nuclear hormone receptors (NR2F2, RARG), pioneer 237 
factors GATA2 and GATA3, and nuclear factors HNF4G and HNF1A (log2 fold-change < -0.10, 238 
adjusted p < 0.027, Supplementary Fig. S8A).  239 

For factors that had higher accessibility in NEPC models compared to ARPC and ARLPC, ASCL1 240 
had the largest TFBS coverage difference (log2 fold-change 0.36, adjusted p = 5.7 x 10-4, Figure 241 
2C, Figure 3F). Other TFs, including RUNX1, BCL11B, POU3F2, NEUROG2, and SOX2 also 242 
had higher activity in NEPC (log2 fold-change > 0.06, adjusted p < 0.048, Supplementary Fig. 243 
S8B), although the difference was modest. HEY1, IRF1, and IKZF1 had a similar trend consistent 244 
with increased accessibility in NEPC samples but were not significantly different from ARPC 245 
(adjusted p > 0.10). While NKX2-1 and CEBPA had increased accessibility in NEPC compared 246 
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to ARPC (although not significant with adjusted p = 0.47 and 0.36 respectively), these factors 247 
were also modestly active in ARLPC (Supplementary Fig. S8B, Supplementary Table S3). 248 
Other notable factors such as MYC and ETS transcription family genes (ETV4, ETV5, ETS1, 249 
ETV1) had high accessibility across all phenotypes, while NEUROD1, RUNX3, and TP63 were 250 
inaccessible in nearly all samples. Overall, we identified the accessibility of known prostate cancer 251 
regulators, including ASCL1, NR3C1, HNF4G, HNF1A, and SOX2 (63–65), that have not been 252 
shown before from ctDNA analysis in these tumor phenotypes. 253 

Phenotype-specific open chromatin regions in PDX tumor tissue are reflected in ctDNA 254 
profiles of nucleosome accessibility 255 

Nucleosome profiling from cfDNA sequencing analysis has shown agreement with overall 256 
chromatin accessibility in tumor tissue (37,41,66); however, its application for distinguishing tumor 257 
phenotypes has been limited. We investigated the use of ATAC-Seq data from tumor tissue for 258 
10 LuCaP PDX lines (5 ARPC and 5 NEPC) to inform phenotype differences in chromatin 259 
accessibility (9). We defined an initial set of 28,765 ARPC and 21,963 NEPC differential 260 
consensus open chromatin regions which we further restricted to those that overlapped TFBSs 261 
for 338 TFs, resulting in 15,881 ARPC and 11,694 NEPC sites (Methods, Figure 4A). For ARPC-262 
specific open chromatin sites, we observed decreased overall composite site coverage (+/- 1 kb 263 
window) and central coverage (+/- 30 bp) in the ctDNA for ARPC PDX lines (mean central 264 
coverage 0.75, n=16) compared to NEPC lines (mean 0.96, n=6) and cfDNA from healthy human 265 
donors (mean 0.97, n=14) (Figure 4B, Supplementary Table S3). Conversely, for NEPC-specific 266 
open chromatin sites, coverage was decreased in ctDNA for NEPC lines (mean 0.89) compared 267 
to ARPC lines (mean 1.01) and healthy donors cfDNA (mean 1.00) (Figure 4C, Supplementary 268 
Table S3). These results confirmed that tumor tissue chromatin accessibility can be corroborated 269 
in ctDNA and that ARPC and NEPC phenotypes have distinct ctDNA composite site coverage 270 
profiles. 271 

Comprehensive evaluation of ctDNA features across genomic contexts for CRPC 272 
phenotype classification  273 

To assess the utility of ctDNA nucleosome profiling for informing prostate cancer phenotype 274 
classification, we systematically evaluated four groups of global genome-wide ctDNA features: 275 
phasing, fragment sizes, local coverage profiling, and composite site coverage profiling (Figure 276 
1A). From principal components analysis (PCA), we observed distinct feature signals between 277 
ARPC and NEPC phenotypes for composite TFBS coverage of TFs, NPS of 47 phenotype marker 278 
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genes, and fragment size variability at global sites of PTMs (Figure 4D, Supplementary Fig. 279 
S9A, Supplementary Table S4, Methods). In addition to these features, we also included similar 280 
approaches previously reported, including short-long fragment ratio and local coverage patterns 281 
at the TSS (max wave height between -120bp to 195bp) (30,40) (Methods).  282 

We quantitatively evaluated all combinations of coverage, phasing, and fragment size features 283 
for different genomic contexts to investigate their potential to classify ARPC and NEPC 284 
phenotypes. For each feature set, we conducted 100 iterations of stratified cross-validation using 285 
a supervised machine learning classifier (XGBoost) on ctDNA samples from the 16 ARPC and 6 286 
NEPC models and computed the area under the receiver operating characteristic curve (AUC) 287 
(Methods). First, we evaluated an established set of 10 genes associated with AR activity (5,12). 288 
We observed that the phased nucleosome distance at H3K27ac sites and the central coverage 289 
at TSSs had moderate predictive performance (AUC 0.88) (Supplementary Fig. S9B, 290 
Supplementary Table S4). For the set of 47 phenotype markers, the NPS of gene bodies was 291 
most predictive (AUC 0.98) (Supplementary Fig. S9C Supplementary Table S4). When 292 
considering all PTM sites, promoters, genes, TFs, and open chromatin regions, the best 293 
performing features included mean fragment size at H3K4me1 sites (n=9,750, AUC 1.0) and 294 
promoter TSSs (n=17,946, AUC 1.0), and both open chromatin composite site features (AUC 1.0) 295 
(Figure 4E, Supplementary Table S4).  296 

Accurate classification of ARPC and NEPC phenotypes from patient plasma using a 297 
probabilistic model informed by PDX ctDNA analysis 298 

An important consideration and challenge in analyzing plasma from patients is the presence of 299 
cfDNA released by hematopoietic cells, which leads to a lower ctDNA fraction (i.e., tumor fraction). 300 
Furthermore, the small patient cohorts with available tumor phenotype information make 301 
supervised machine learning approaches suboptimal. Therefore, we developed ctdPheno, a 302 
probabilistic model to estimate the proportion of ARPC and NEPC from an individual plasma 303 
sample, accounting for the tumor fraction (Methods). We focused on the phenotype-specific open 304 
chromatin composite site features and used the PDX plasma ctDNA signals (Figure 4B-C, 305 
Supplementary Table S3) to inform the model. The model produces a normalized prediction 306 
score that represents the estimated signature of ARPC (lower values) and NEPC (higher values). 307 
We applied this method to benchmarking datasets generated by simulating varying tumor 308 
fractions and sequencing coverages using five ARPC and NEPC PDX ctDNA samples each 309 
(Figure 4F, Methods). We achieved a 1.0 AUC at 25X coverage down to 0.01 tumor fraction, 1.0 310 
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AUC at 1X down to 0.2 tumor fraction, and 1.0 AUC at 0.2x coverage at 0.3 tumor fraction, 311 
suggesting a possible upper-bound performance for classifying samples with lower tumor fraction 312 
in plasma (Figure 4G, Supplementary Table S4).   313 

To test the classification performance of the model on patient samples, we analyzed a published 314 
dataset of ultra-low-pass whole genome sequencing (ULP-WGS) of plasma cfDNA (mean 315 
coverage 0.52X, range 0.28-0.92X) from 101 mCRPC patients comprising 80 adenocarcinoma 316 
(ARPC) and 21 NEPC samples (DFCI cohort I) (25). Using the model, which was unsupervised 317 
and used parameters informed only by the PDX analysis, we achieved an overall AUC of 0.96 318 
(Figure 5A, Supplementary Table S5). When considering samples with high (≥ 0.1) and low (< 319 
0.1) tumor fraction, the model had an 0.97 AUC and 0.76 AUC, respectively (Supplementary Fig. 320 
S10A). We identified an optimal overall performance at 97.5% specificity (ARPC) and 90.4% 321 
sensitivity (NEPC) which corresponded to the prediction score of 0.3314 (Figure 5A). These 322 
results were concordant (92.1%) with phenotype classification by cfDNA methylation on the same 323 
plasma samples (Supplementary Fig. S10B, Supplementary Table S5). In another published 324 
dataset of 11 mCRPC samples from 6 patients who had high PSA, treatment with ARSI, or both 325 
(DFCI cohort II) (67,68), the model correctly classified patients as ARPC in 11 (100%) WGS 326 
(~20x) and 8 (73%) ULP-WGS (~0.1x) samples when using the optimal score cutoff (Figure 5B, 327 
Supplementary Table S5).  328 

Next, we analyzed 61 clinical plasma samples from 30 CRPC patients with ARPC, NEPC, and 329 
mixed phenotypes that are representative of typical clinical histories (Supplementary Table S5). 330 
We performed ULP-WGS of cfDNA and selected 47 samples from 30 patients (26 ARPC, 5 NEPC, 331 
and 16 mixed phenotypes) based on tumor fraction and AR copy number status and performed 332 
deeper WGS (mean 22.13X coverage, range 15.15X – 31.79X) (Supplementary Table S5, 333 
Methods). For the 26 samples with ARPC clinical phenotype, we predicted all to be predominantly 334 
ARPC using the score cutoff of 0.3314 (Figure 5C). For NEPC clinical phenotype, all five were 335 
predicted to be NEPC with scores above the cutoff. We also noted a negative association between 336 
the patient ctDNA coverage at open chromatin sites and the tumor fraction for both ARPC 337 
(Spearman’s r = -0.93) and NEPC predictions (Spearman’s r = -1.00), suggesting that the 338 
observed ctDNA signals were likely tumor-specific (Supplementary Fig. S10C). From ULP-WGS 339 
data, we correctly predicted 22 (84%) samples with ARPC clinical phenotype and all five (100%) 340 
samples with NEPC clinical phenotype (Figure 5C). The remaining 16 samples had clinical 341 
histories or tumor histologies that reflected mixed phenotypes such as a tumor with AR-positive 342 
adenocarcinoma intermixed with NEPC (Figure 5C, Supplementary Table S5, Supplementary 343 
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Fig. S11). For 12 samples that included presence of ARPC in the mixed clinical phenotype, 10 344 
(83%) were classified as ARPC at the optimal score cutoff. For all three samples that had 345 
presence of NEPC but no ARPC in the clinical phenotype, the model classified them as NEPC 346 
(Supplementary Fig. S12). Overall, we achieved an accuracy of 100% for WGS (87% for ULP-347 
WGS) data for samples with unambiguous clinical phenotypes. However, the variable predictions 348 
for mixed or ambiguous phenotypes underscore the complexities associated with classification in 349 
patients with advanced prostate cancer where tumor heterogeneity can be observed. 350 

DISCUSSION 351 

To our knowledge, we present the largest sequencing study to date of human ctDNA from mouse 352 
plasma of PDX models. The sequencing of mouse plasma provided a unique opportunity to 353 
comprehensively interrogate the epigenetic nucleosome patterns in ctDNA from well-354 
characterized tumor models. We developed and applied computational methodologies to 355 
construct a multitude of ctDNA features, each of which were associated with the transcriptional 356 
regulation in the LuCaP PDX models across CRPC tumor phenotypes. Using features learned 357 
from the PDX ctDNA, we developed a probabilistic model to accurately classify ARPC and NEPC 358 
phenotypes from patient plasma in three clinical cohorts.  359 

The use of PDX mouse plasma overcomes the challenge of low ctDNA content or incomplete 360 
knowledge of the tumor when studying patient samples and can expedite development of cfDNA 361 
diagnostics, basic cancer research, and clinical translation. Furthermore, the LuCaP ctDNA 362 
sequencing data complements the maturing characterization of CRPC tumor phenotypes from 363 
tissue. In addition to supporting molecular studies of CRPC, the ctDNA data and our approaches 364 
expand on the potential utility of PDX models for translational research. While these data were 365 
focused on ARPC and NEPC phenotypes, this study may serve as a framework for the use of 366 
PDX plasma from additional CRPC phenotypes and other cancers models.   367 

The analysis of the LuCaP PDX ctDNA sequencing data confirmed the activity of key regulators 368 
between ARPC and NEPC phenotypes, including a set of 47 established differentially expressed 369 
gene markers. While gene expression inference from ctDNA has been shown in proof-of-concept 370 
studies (34,40), the PDX ctDNA allowed for a detailed dissection of nucleosome organization 371 
associated with transcriptional activity of individual genes that define the tumor phenotypes. 372 
Previous analytical approaches have profiled nucleosome occupancy from cfDNA (37,66). 373 
However, our assessment of nucleosome stability by means of the Nucleosome Phasing Score 374 
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is the first to capture the highly variable spacing and position of the nucleosome arrays associated 375 
with transcription and tumor aggressiveness (42,62,69).  376 

In addition to the existing molecular profiling available for these models, we now provide 377 
characterization of histone PTMs in LuCaP PDX tumors using CUT&RUN. At regions with these 378 
PTMs on histone tails, we observed expected nucleosome patterns inferred in ctDNA that were 379 
consistent with active or repressed gene transcription. To our knowledge, this is the first time that 380 
ctDNA analysis has been performed in the context of histone PTMs and will provide a blueprint 381 
to develop new approaches for studying additional epigenetic alterations using PDX plasma.   382 

While the regulation of key factors such as AR, HOXB13, NKX-3.1, FOXA1, and REST has been 383 
shown from ctDNA in CRPC (41), we report the differential activity of other key factors in CRPC 384 
for the first time from ctDNA analysis. This included the glucocorticoid receptor (NR3C1), nuclear 385 
factors HNF4G and HNF1A, and pioneering factors GATA2 and GATA3, all of which are 386 
associated with prostate adenocarcinoma (ARPC) (63,65,70). ASCL1 is a pioneer TF with roles 387 
in neuronal differentiation and was recently described to be active during NE trans-differentiation 388 
and in NEPC (9,53). To our knowledge, this study is the first to demonstrate ASCL1 binding site 389 
accessibility and provide a detailed characterization of its transcriptional activity in NEPC from 390 
plasma ctDNA.   391 

We show an expansive analysis of TFBSs for 338 factors in each plasma sample without the need 392 
for chromatin immunoprecipitation or other epigenetic assays. However, we did not find a 393 
significant difference in accessibility for 69 out of the 107 TFs in ctDNA, which may be consistent 394 
with TF activity not necessarily being correlated with its own expression levels (71). On the other 395 
hand, the accessibility of TFBSs may not necessarily indicate true TF activity, such as binding of 396 
multiple factors to the same locus. Moreover, our analysis was based on TFBSs obtained from 397 
public databases; however, prostate phenotype-specific TF cistromes can better guide this 398 
approach. 399 

We applied state-of-the-art computational approaches built on existing and new concepts of 400 
ctDNA data analysis to extract tumor-specific features, including the representation of 401 
nucleosome phasing, periodicity, and spacing associated with transcriptional activity. Other 402 
approaches have also considered regions, such as TSSs, TFBSs, and DNase hypersensitivity 403 
sites (33,37,40,41); however, after a systematic evaluation, we found that ctDNA features in open 404 
chromatin sites derived from ATAC-Seq of PDX tissue (9) provided the highest performance for 405 
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distinguishing CRPC phenotypes. We presented ctdPheno which is an unsupervised probabilistic 406 
model that estimates the proportion of ARPC and NEPC in patient plasma using a statistical 407 
framework informed by idealized parameters from the LuCaP PDX ctDNA analysis. This model 408 
does not require training on patient samples but does require tumor fraction estimates (ichorCNA 409 
(72)) and a prediction score cutoff determined from DFCI cohort I. Another current limitation is the 410 
prediction of only ARPC and NEPC phenotypes; however, the framework can be extended to 411 
model multiple phenotype classes, provided the informative parameters for these additional states 412 
can be learned. Insights from additional datasets such as single-cell nucleosome and accessibility 413 
profiling (73,74) of PDX tumors and clinical samples may improve the resolution for ctDNA 414 
analysis. 415 

Applying the prediction model to patient datasets with definitive clinical phenotypes yielded high 416 
performance despite using low depth of coverage sequencing. In particular, our performance for 417 
the DFCI cohort I was also consistent with the reported phenotype classification results using 418 
ctDNA methylation in the same patients (25). Similarly, in the UW cohort, samples with well-419 
defined clinical phenotypes had perfect concordance from deep WGS data. However, samples 420 
with mixed or ambiguous clinical phenotypes limited our ability to definitively assess the 421 
performance of the model because a subset of cases had complex clinical and histopathological 422 
features. Tumor heterogeneity and co-existence of different molecular phenotypes are common 423 
in mCRPC where treatment-induced phenotypic plasticity may vary within and between tumors in 424 
an individual patient. Larger studies with comprehensive assessment of the tumor histologies will 425 
be needed for developing future extensions of the model to predict mixed phenotypes from ctDNA. 426 

In summary, this study illustrates for the first time that analysis of ctDNA from PDX mouse plasma 427 
at scale can facilitate a more detailed investigation of tumor regulation. These results, together 428 
with the suite of computational methods presented here, highlight the utility of ctDNA for surveying 429 
transcriptional regulation of tumor phenotypes and its potential diagnostic applications in cancer 430 
precision medicine.   431 
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MATERIALS AND METHODS 456 

PDX mouse models 457 

The establishment and characterization of the LuCaP PDX models were described previously 458 
(75). PDXs were propagated in vivo in male NOD-scid IL2R-gamma-null (NSG) mice 459 
(cat#005557). The collection of tumors for the establishment of PDX lines was approved by the 460 
University of Washington Human Subjects Division IRB (IRB #2341). PDX lines were evaluated 461 
using histopathology by at least two expert pathologists, and histological phenotypic subtype 462 
annotations were orthogonally validated based on transcriptome-derived signature marker 463 
expression scores to define phenotypes (4,5,22): adenocarcinoma AR-positive (ARPC), 464 
neuroendocrine positive (NEPC), and AR-low, neuroendocrine negative (ARLPC). Resected PDX 465 
tumors (300-800 mm3) were divided into ~50mg to ~100mg pieces and stored at -80°C. Animal 466 
studies were approved by the Fred Hutchinson Cancer Research Center (FHCRC) IACUC 467 
(protocol 1618) and performed in accordance with the NIH guidelines. For the current study, blood 468 
was collected by cardiac puncture from animals bearing PDX tumors (measurable size 300-800 469 
mm3).  470 

Human subjects 471 

UW cohort: Blood samples were collected from men with metastatic castration resistant prostate 472 
cancer at the University of Washington (collected under University of Washington Human 473 
Subjects Division IRB protocol number CC6932 between years 2014-2021). In this study, 61 474 
plasma samples from 30 patients were analyzed. After initial ultra-low pass whole genome 475 
sequencing (ULP-WGS) analysis, 47 plasma samples from 30 patients were retained for further 476 
high depth of coverage whole genome sequencing (WGS) analysis. All samples were de-477 
identified prior to ctDNA analysis and we employed a double blinded approach for evaluating 478 
clinical phenotype predictions. 479 

DFCI cohort I: Plasma was collected from men diagnosed with mCRPC and treated at the Dana-480 
Farber Cancer Institute (DFCI), Brigham and Women’s Hospital, or Weill Cornell Medicine (WCM) 481 
between April 2003 and August 2021. All patients provided written informed consent for research 482 
participation and genomic analysis of their biospecimen and blood. The use of samples was 483 
approved by the DFCI IRB (#01-045 and 09-171) and WCM (1305013903) IRBs. ULP-WGS data 484 
at mean coverage 0.5x (range 0.3x – 0.9x) for 101 patients were published previously (25). 485 
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DFCI cohort II: Plasma samples in this cohort were collected from men diagnosed with mCRPC 486 
and treated at the Dana-Farber Cancer Institute (DFCI). All patients provided written informed 487 
consent for blood collection and the analysis of their clinical and genetic data for research 488 
purposes (DFCI Protocol # 01-045 and 11-104). WGS data at mean coverage 27x (range 11x – 489 
44x) (67), and ULP-WGS data at mean coverage 0.13x (range 0.07x – 0.18x) (68,72) were 490 
downloaded from dbGAP accession phs001417. Eleven samples from six patients had matching 491 
WGS and ULP-WGS with paired-end reads, necessary for analysis by Griffin. Prostate specific 492 
antigen (PSA, ng/mL) values and treatment at the time of the blood draw were previously 493 
published (68). The six patients were treated for adenocarcinoma using Abiraterone, 494 
Enzalutamide, or Bicalutamide, or the patients had detectable levels of PSA.   495 

Healthy donor plasma cfDNA WGS data used in this study were obtained from previously 496 
published studies. Two samples (HD45 and HD46) with coverage of 13x and 15x, respectively, 497 
were accessed from dbGAP under accession phs001417 (67,72). These donors were consented 498 
under DFCI protocol IRB (# 03-022). Thirteen healthy donor plasma cfDNA WGS data (12 male: 499 
NPH002, 03, 06, 07, 12, 18, 23, 26, 33, 34, 35, 36; 1 female (used in admixtures): NPH004) with 500 
coverages between 13.5x – 27.6x were obtained from the European Phenome Archive (EGA) 501 
under accession EGAD00001005343 (41). 502 

PDX plasma processing 503 

Blood samples were collected from NSG mice bearing subcutaneous PDX tumors at the time of 504 
sacrifice. The PDX lines were maintained at vivaria in the University of Washington and FHCRC. 505 
The blood was processed following methods described for human plasma DNA processing for 506 
subsequent DNA isolation. Blood was collected in purple cap EDTA tubes and processed within 507 
4 hours. All blood samples were double spun using centrifugation at 2500g for 10 minutes followed 508 
by a 16000g spin of the plasma fraction for 10 minutes at room temperature. For each PDX line, 509 
7-10 mouse plasma samples were pooled. Processed plasma samples were preserved in clean, 510 
screw-capped cryo-microfuge tubes and stored at -80°C prior to cfDNA isolation.  511 

Cell-free DNA isolation 512 

The QIAamp Circulating Nucleic Acid Kit was used to isolate cfDNA from PDX mouse-derived 513 
plasma using the recommended protocol. The pooled plasma samples from 7-10 mice for each 514 
PDX line contained ~2-3 mL total plasma volume for each line. The filter retention-based cfDNA 515 
kit method does not implement any fragment size class enrichment. Isolated cfDNA was 516 
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quantified using the Qubit dsDNA HS assay (Invitrogen) and the cfDNA fragment size profiles 517 
were analyzed using TapeStation HS D5000 and HS D1000 assays (Agilent).  518 

Cell-free DNA library preparation and sequencing 519 

For LuCaP PDX mouse plasma samples, NGS libraries were prepared with 50ng input cfDNA. 520 
Illumina NGS sequencing libraries were prepared with the KAPA hyperprep kit, adopting nine 521 
cycles of amplification, and purified using lab standardized SPRI beads. We used KAPA UDI dual 522 
indexed library adapters. Library concentrations were balanced and pooled for multiplexing and 523 
sequenced using the Illumina HiSeq 2500 at the Fred Hutch Genomics Shared Resources (200 524 
cycles) and Illumina NovaSeq platform at the Broad Institute Genomics Platform Walkup-Seq 525 
Services using S4 flow cells (300 cycles). To match with Illumina HiSeq 2500 data, truncated 200 526 
cycles FASTQ files were generated (100 bp paired end reads). 527 

Clinical patient plasma samples collected at University of Washington (UW cohort) were 528 
submitted to the Broad Institute Blood Biopsy Services. Briefly, cfDNA was extracted from 2 mL 529 
double-spun plasma and ultra-low-pass whole genome sequencing (ULP-WGS) to approximately 530 
0.2x coverage was performed. The ichorCNA pipeline was used to estimate tumor DNA content 531 
(i.e., tumor fraction, see below). Forty-seven samples (from 30 patients) had either ≥ 5% tumor 532 
fraction or ≥ 2% tumor fraction with AR amplification observed in ichorCNA and were subsequently 533 
sequenced to deeper WGS coverage (~20x). 534 

Cell-free DNA sequencing analysis and mouse subtraction 535 

All cfDNA sequencing data used in this study were realigned to the hg38 human reference 536 
genome (http://hgdownload.soe.ucsc.edu/goldenPath/hg38/bigZips/ hg38.fa.gz). FASTQ files 537 
were realigned using BWA (v0.7.17) mem (76). The complete alignment pipeline including 538 
configuration settings may be access at 539 
https://github.com/GavinHaLab/fastq_to_bam_paired_snakemake.  540 

For PDX ctDNA whole-genome sequence data, we performed mouse genome subtraction 541 
following the protocol described previously (77), wherein reads were aligned using BWA mem to 542 
a concatenated reference consisting of both human (hg38) and mouse (mm10, GRCm38.p6, 543 
http://igenomes.illumina.com.s3-website-us-east-544 
1.amazonaws.com/Mus_musculus/NCBI/GRCm38/Mus_musculus_NCBI_GRCm38.tar.gz) 545 
reference genomes. Read pairs where both reads aligned to the human reference genome were 546 
retained and all other read pairs were removed. Then, remaining reads were re-aligned to the 547 
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human-only reference. Finally, the GATK best practices workflow was applied to each sample 548 
(78); the complete mouse subtraction pipeline used in this study, including tool versions and 549 
parameters, can be accessed at https://github.com/GavinHaLab/PDX_mouseSubtraction. 550 
Following mouse subtraction samples with < 3X depth were removed for downstream analysis. 551 

Cell cycle progression (CCP) score calculation 552 

The 31-gene cell cycle proliferation (CCP) signature (62) was computed from RNAseq data using 553 
GSVA (79). The single-sample enrichment scores were calculated with default parameters using 554 
genome-wide log2 FPKM values as input for the 31 genes. 555 

Differential mRNA expression analysis 556 

RNA isolation of 102 tumors from 46 LuCaP PDX samples was performed as described previously 557 
(11). RNA concentration, purity, and integrity was assessed by NanoDrop (Thermo Fisher 558 
Scientific Inc) and Agilent TapeStation and RNA RIN >=8 was retained for library preparation. 559 
RNA-Seq libraries were constructed from 1 ug of total RNA using the Illumina TruSeq Stranded 560 
mRNA LT Sample Prep Kit according to the manufacturer’s protocol.  Barcoded libraries were 561 
pooled and sequenced by Illumina NovaSeq 6000 or Illumina HiSeq 2500 generating 50 bp paired 562 
end reads.  Sequencing reads were mapped to the hg38 human reference genome and mm10 563 
mouse reference genomes using STAR.v2.7.3a (80). All subsequent analyses were performed in 564 
R-4.1.0. Sequences aligning to the mouse genome and therefor derived from potential 565 
contamination with mouse tissue were removed from the analysis using XenofilteR (v1.6) (81). 566 
Gene level abundance was quantitated using the R package GenomicAlignments v1.32.0 567 
summarizeOverlaps function using mode=IntersectionStrict, restricted to primary aligned reads. 568 
We used refSeq gene annotations for transcriptome analysis. Transcript abundances (FPKM) 569 
were input to edgeR v3.38.1 (82), filtered for a minimum expression level using the filterByExpr 570 
function with default parameters, and then limma v3.52.1 voom was used for differential 571 
expression analysis of NEPC vs. ARPC and ARLPC vs. ARPC. We then filtered the results using 572 
a list of 1,635 human transcription factors published previously (83), which resulted in 514 genes 573 
with FDR<0.05 and fold change > 3. Out of these 514, deregulation of gene expression for 404 574 
transcription factor genes delineated ARPC from NEPC.  575 

Cleavage Under Targets & Release Using Nuclease (CUT&RUN) 576 

CUT&RUN is an antibody targeted enzyme tethering chromatin profiling assay in which controlled 577 
cleavage by micrococcal nuclease releases specific protein-DNA complexes into the supernatant 578 
for paired-end DNA sequencing analysis. We performed CUT&RUN assays for three histone 579 
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modifications, H3K27ac, H3K4me1, and H3K27me3, according to published protocols (46). We 580 
performed CUT&RUN on LuCaP PDX tumors using ~75mg flash-frozen tissue pieces. 581 

Paired-end (50 bp) sequencing was performed and reads were aligned using bowtie2 v2.4.2 (84) 582 
to the hg38 human reference assembly. Aligned reads were processed as described in the 583 
SEACR protocol (https://github.com/FredHutch/SEACR#preparing-input-bedgraph-files). Peaks 584 
were called using SEACR version 1.3 (47) using “stringent" settings and with reference to paired 585 
IgG controls. BigWig files were prepared using bamCoverage in deepTools 3.5.0 (85). 586 
Genomewide peak heatmap, targeted heatmap, and respective profiles were plotted using 587 
deepTools v3.5.0. bigwig formatted files for each phenotype were obtained using the mean 588 
function in wiggletools 1.2.8. and deepTools computeMatrix. Phenotype-specific informative 589 
region coordinates were obtained from diffBind v3.5.0, and the top 10,000 most significant regions 590 
(all with FDR < 0.05) differentially open between ARPC and NEPC lines were used for 591 
downstream feature analyses (see Gene body and promoter region selection for additional 592 
subsetting criteria applied on a feature-by-feature basis). For heatmaps and profiles the 593 
plotHeatmap function was used. We utilized the "Peak Center" option to derive desired heatmaps. 594 
These steps were all performed for H3K27ac, H3K4me1 and H3K27me3 antibodies. Scaled 595 
heatmap profiles’ area under the curve (AUC) and peak height at the profile center were estimated 596 
using deepStats v0.4 (86) (comparable profiles are scaled to 10 units). 597 

Differential histone post-translational modification (PTM) analysis 598 

Differential PTM analysis was performed with the Diffbind version 2.16.0 package (87) in R-4.0.1 599 
using standard parameters (https://bioconductor.riken.jp/packages/3.0/bioc/html/DiffBind .html). 600 
ARPC, NEPC and ARLPC samples were grouped by histopathological and transcriptome 601 
signature defined phenotypes described in the “PDX mouse models” section (Supplementary 602 
Table S2A). Samples were loaded with the dba function, reads counted with the dba.count 603 
function, and contrast specified as phenotype with dba.contrast and a minimum members of 2. 604 
Differential peak sites were computed with the dba.analyze function with default settings. 605 
Differential peak binding of NEPC and ARLPC was computed against ARPC samples. Unique 606 
binding sites in NEPC and ARLPC were catalogued using bedtools v2.29.2 (88). Intergroup 607 
differentially bound peaks were annotated using ChIPseeker 1.28.3 (89) and 608 
TxDb.Hsapiens.UCSC.hg38.knownGene 3.2.2 in R 4.1.0.  609 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 25, 2022. ; https://doi.org/10.1101/2022.06.21.496879doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.21.496879
http://creativecommons.org/licenses/by-nc-nd/4.0/


   
 

23 

ATAC-Seq analysis 610 

ATAC-Seq sequence data for 15 tumor samples from 10 PDX lines were published previously (9). 611 
These lines included LuCaP PDX lines with ARPC histology (23.1, 77, 78, 81, 96) and NEPC 612 
histology (two replicates each of 49, 93, 145.1, 173.1 and one replicate of 145.2). Paired end 613 
reads were aligned using bowtie2 v2.4.2 (84) to the UCSC hg38 human reference assembly with 614 
the "very-sensitive" "-k 10" settings. Peaks were called using Genrich version 0.6.1 615 
(https://github.com/jsh58/Genrich). Differential binding analysis was performed using Diffbind 616 
version 3.5.0 package in R version 4.1.0. ENCODE blacklisted regions were excluded using hg38-617 
blacklist.v2 (90) (https://github.com/Boyle-Lab/Blacklist). Phenotype specific binding sites were 618 
isolated by first selecting for positive fold change open chromatin enrichment and then using 619 
Intervene 0.6.5 (91) where regions were considered overlapping if they shared at least 1 bp. 620 
Regions with FDR adjusted p-values < 0.05 were then subset to those overlapping the 338,000 621 
established TFBSs (338 TFs x 1,000 binding sites, see Griffin analysis for site selection) by at 622 
least 1 bp using BedTools v2.30.0 Intersect. Only regions that overlapped an established TFBS 623 
were retained. 624 

Nucleosome profiling of ctDNA 625 

Griffin is a method for profiling nucleosome protection and accessibility on predefined genomic 626 
loci (49). Griffin filters sites by mappability, estimates and corrects GC bias on a per fragment 627 
level, and generates GC-corrected coverage profiles around each site. First, griffin takes a site 628 
list and examines the mappability in a window (+/- 5000 bp around each site). Mappability (hg38 629 
Umap multi-read mappability for 50bp reads) was obtained from UCSC genome browser (92) 630 
(https://hgdownload.soe.ucsc.edu/gbdb/hg38/hoffmanMappability/k50.Umap.MultiTrackMappabi631 
lity.bw). Sites with <0.95 mappability were excluded from further analysis. Next, GC bias was 632 
quantified for each sample using a modified version of the approach described previously (93). 633 
Briefly, for each possible fragment length and GC content, the number of reads in a bam file and 634 
the number of genomic positions with that specific length and GC content were counted. The GC 635 
bias for each fragment length and GC content was calculated by dividing the number of observed 636 
reads by the number of observed genomic positions for that fragment length and GC content. The 637 
GC bias for all possible GC contents at a given fragment length was then normalized to a mean 638 
bias of 1. GC biases were then smoothed by taking the median of values for fragments with similar 639 
lengths and GC contents (k nearest neighbors smoothing) to generate smoothed GC bias values. 640 
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After GC correction, nucleosome profiling was performed in each sample. For each mappable site 641 
of interest, fragments aligning to the region ± 5000 bp from the site were fetched from the bam 642 
file. Fragments were filtered to remove duplicates and low-quality alignments (<20 mapping 643 
quality) and by fragment length. Nucleosome size fragments (140-250 bp) were retained. 644 
Fragments were then GC corrected by assigning each fragment a weight of 1/GC_bias for that 645 
given fragment length and GC content and the fragment midpoint was identified. The number of 646 
weighted fragment midpoints in 15bp bins across the site were counted. For composite sites, all 647 
sites of a given type (such as all sites for a given transcription factor) were summed together to 648 
generate a single coverage profile. Individual or composite coverage profiles were normalized to 649 
a mean coverage of 1 in the ± 5000bp region surrounding the site.  Finally, sites were smoothed 650 
using a Savitsky-Golay filter with a window length of 165bp and a polynomial order of 3. The 651 
window ± 1000 bp around the site was retained for plotting and feature extraction (See Griffin 652 
manuscript for further details); when plotting sites, shading illustrates the 95% confidence interval 653 
within sample groups. Features extracted from individual or composite sites included: 654 

a) “mean central coverage,” the mean coverage between -30 to 30 bp relative to the site 655 
center,  656 

b) “mean window coverage,” the mean coverage between -990 to 990 bp relative to the site 657 
center, and  658 

c) “max wave height,” the absolute difference between the minimum coverage within the 659 
window from -120 to 30 bp and maximum coverage in the window from 31 to 195 bp 660 
relative to the TSS. 661 

Analysis of selective transcription factor binding sites (TFBS) 662 

Transcription factor binding site (TFBS) Griffin analysis was conducted with the same TFBS list 663 
utilized in Griffin (49). After intersecting these 338 with 404 differentially expressed TFs identified 664 
through RNA-Seq 107 remained, on which we performed unsupervised hierarchical clustering of 665 
central window mean values (see Griffin analysis). Hierarchical clustering was performed using 666 
the Ward.D2 method with Euclidean distance and complete linkage settings; the groupings were 667 
determined using cutree_cols=2 for columns (LuCaP CRPC phenotypes) and cutree_rows=13 for 668 
rows (TFs) on the dendrograms.   669 

Gene body and promoter region selection 670 

For individual gene body and promoter analyses Ensembl BioMart v104 (hg38) (94) was used to 671 
directly retrieve protein coding transcript start (TSS) and end (TES) coordinates. For promoter 672 
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region analysis the window ±1000 bp relative to the TSS was considered. For gene body analysis, 673 
the region between the TSS and TES was considered. In the case of genes with multiple 674 
transcripts, analyses were limited to the longest transcript resulting in 19,336 regions. In 675 
downstream analysis of LuCaP PDX cfDNA, if any lines did not meet specific criteria in a region 676 
(including differentially open histone modification regions) that feature/region combination was 677 
excluded from analysis, leading to a variable lower number of regions considered based on the 678 
feature. These criteria included requiring at least 10 total fragments in a region for all Fragment 679 
size analysis (see below) and a non-zero number of “short” and “long” fragments for the short-680 
long ratio; short-long ratios less than 0.01 or greater than 10.0 were also excluded as outliers. For 681 
Phasing analysis (see below) we also excluded amplitude components and thus NPS where 682 
individual components were 0, or where the ratio was less than 0.01 or greater than 10.0, 683 
indicative of insufficient coverage. In the case of mean phased nucleosome distance, if no peaks 684 
were identified or the value in a region exceeded 500 (indicative of highly irregular/sparse pileups 685 
also from low coverage) those regions were also excluded. Any region with no coverage in a line 686 
was excluded from all analyses. This resulted in gene lists that differed in numbers between 687 
genomic contexts and feature types. 688 

Fragment size analysis 689 

Fragments were first filtered to remove duplicates and low-quality alignments (<20 mapping 690 
quality) and by fragment length (15-500 bp). In individual genomic loci/windows, we computed 691 
the fragment short-long ratio (FSLR) as the ratio of short (15 - 120 bp) to long (140 - 250 bp) 692 
fragments. We also calculated the mean, median absolute deviation (MAD: 𝑚𝑒𝑑𝑖𝑎𝑛(|𝑋! −693 

𝑚𝑒𝑑𝑖𝑎𝑛(𝑋)|)), and coefficient of variation (CV: "
#
 where σ = standard deviation, μ = mean) of the 694 

fragment length distribution for each selected window. The fragment size analysis code and 695 
implementation used in this study can be accessed at 696 
https://github.com/GavinHaLab/CRPCSubtypingPaper/tree/main/FragmentAnalysis. 697 

Nucleosome phasing analysis (TritonNP) 698 

Fragments were first filtered to remove duplicates and low-quality alignments (<20 mapping 699 
quality) and by fragment length (nucleosome-sized: 140-250 bp). Next we performed fragment-700 
level GC bias correction utilizing the same pre-processing method defined in Griffin. A band-pass 701 
filter was then applied to the corrected coverage in each region of interest by taking the Fast 702 
Fourier Transform (FFT) (scipy.fft v1.8.0) (95) and removing high-frequency components 703 
corresponding to frequency components < 146 bp before reconstructing the signal. This cutoff 704 
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was chosen to ensure that periodic fit signal for downstream evaluation must come from the 705 
minimum possible inter-nucleosome distance, thus excluding peak pileups that would not indicate 706 
an overall trend in nucleosome phasing. Local peak calling was then done on the smoothed signal 707 
to infer average inter nucleosome distance or “phased nucleosome distance” by finding maxima 708 
directly. To quantify clarity of overall phasing we took the average frequency amplitude in two 709 
bands corresponding to a core + linker (180-210 bp) and core only (150-180 bp), with the former 710 
measuring the strength of typically aligned nucleosomes and the latter giving a measure of the 711 
underlying signal strength not coming from either high frequency noise or low frequency shifts in 712 
total coverage. The ratio of these two amplitude averages forms the Nucleosome Phasing Score 713 
(NPS). Because peak locations are assumed to be independent of copy number alterations or 714 
depth, and the NPS by virtue of being a ratio divides out any confounding DNA/depth variation 715 
between sites, both features are taken as agnostic of CNAs or variable depth. Code and 716 
implementation of the method can be found at https://github.com/denniepatton/TritonNP. 717 

ctDNA tumor-normal admixtures and benchmarking 718 

Admixtures for evaluating benchmarking performance were constructed using 5 ARPC (LuCaP 719 
35, 35CR, 58, 92, 136CR) and 5 NEPC (LuCaP 49, 93, 145.2, 173.1, 208.4) lines mixed to 1%, 720 
5%, 10%, 20%, and 30% tumor fraction with a single healthy donor plasma line (NPH004, 721 
EGAD00001005343) at ~25X mean coverage, assuming 100% tumor fraction in post-mouse 722 
subtracted PDX sequencing data. After extracting chromosomal DNA with SAMtools v1.14 (96) 723 
and removing duplicates with Picard (https://broadinstitute.github.io/picard/), SAMtools was used 724 
to merge BAM files. Admixtures were then down-sampled to the number of reads corresponding 725 
to 1X and 0.2X using SAMtools to evaluate (ultra) low-pass WGS performance. During 726 
unsupervised benchmarking of each admixture the healthy and LuCaP line used in the admixture 727 
were excluded from the generation of feature distributions to ensure the model would not learn 728 
from the lines being interrogated. The admixture pipeline used in this study can be accessed at 729 
https://github.com/GavinHaLab/Admixtures_snakemake. 730 

Supervised binary classification of ARPC and NEPC 731 

Binary classification of ARPC and NEPC subtypes using individual region and feature 732 
combinations was conducted using XGBoost v1.4.2 ‘XGBClassifier’ implemented in Python with 733 
default parameters. Features included NPS and Mean Phased Nucleosome Distance (see 734 
Phasing analysis) in histone modification regions, promoters, and gene bodies; fragment size 735 
mean, short-long ratio, and coefficient of variation (see Fragment size analysis) in histone 736 
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modification regions, promoters, and gene bodies; central and window coverage (see Griffin 737 
analysis) in promoters, composite TFBSs, and composite differentially open chromatin regions 738 
identified through ATAC-Seq; and Max Wave Height (See Griffin analysis) in promoters. We 739 
applied stratified 6-fold cross-validation where two ARPC samples and one NEPC sample was 740 
held out in each fold. This was repeated 100 times and performance was computed using area 741 
under the receiver operating characteristic (ROC) curve (AUC) and 95% confidence intervals for 742 
each individual feature and region combination. Code and implementation of the method can be 743 
found at https://github.com/GavinHaLab/CRPCSubtypingPaper/tree/main/SupervisedLearning. 744 

Tumor fraction estimation 745 

Tumor fractions from patient plasma samples were assessed using ichorCNA (72) with binSize 746 
1,000,000 bp and hg19 reference genome. Default tumor fraction estimates reported by ichorCNA 747 
were used. See 748 
https://github.com/GavinHaLab/CRPCSubtypingPaper/tree/main/ichorCNA_configuration for 749 
complete configuration settings. 750 

Phenotype prediction model (ctdPheno) 751 
We developed a probabilistic model to classify the mCRPC phenotype (ARPC or NEPC) in an 752 
individual patient plasma ctDNA sample. This is a generative mixture model that is 753 
unsupervised—it does not train on the patient cohort of interest. However, the model accepts the 754 
pre-estimated tumor fraction from ichorCNA for the given patient ctDNA sample, as well as the 755 
pre-computed ctDNA features values from the LuCaP PDX ctDNA and healthy donor ctDNA as 756 
prior information. For each patient ctDNA sample, it fits the heterogeneous tumor fractions against 757 
the pure PDX LuCaP models.  The expected feature value (mean m and standard deviation s) 758 
from each phenotype k for feature 𝑖 were taken from the mean of LuCaP PDX samples (𝜇!,%), or 759 

taken from the mean of a panel of normals H (𝜇!,&, male only, n = 14; see Healthy Donor cohort) 760 

assuming a Gaussian distribution, is shifted such that the shifted values m’i,k , s’i,k took the form: 761 
𝜇′!,% = 	𝛼𝜇!,% + (1 − 	𝛼)𝜇!,& 762 

𝜎′!,% =	4𝛼𝜎!,%' + (1 − 	𝛼)𝜎!,&'  763 

where a is the tumor fraction estimate for each test sample. In the final model, four features were 764 
used: composite open chromatin regions (central and window mean coverage) for specific 765 
phenotypes (ARPC and NEPC) identified from the LuCaP PDX ATAC-Seq analysis using Griffin 766 
(see Griffin analysis). For each feature i, we then found the probability that the observed sample 767 
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came from a mixture of the tumor-fraction-corrected Gaussian distributions, where 𝜃 is the NEPC 768 
mixture weight: 769 

𝑝!(𝑥|𝜃) = 	𝜃𝑝(𝑥|𝑘 = 𝑁𝐸𝑃𝐶) + (1 − 𝜃)𝑝(𝑥	|	𝑘 = 𝐴𝑅𝑃𝐶) 770 
The 𝜃 parameter is estimated by maximizing the joint log-likelihood L for a given patient sample: 771 

𝜃′ = argmax
(

[𝐿(𝑥|	𝜃)]	 772 

𝑤ℎ𝑒𝑟𝑒	𝐿(𝑥|	𝜃) = 	Jln	[𝑝!(𝑥|𝜃)]
!

 773 

𝜃 has range [0,1], where higher values indicate an increased proportion of the sample having a 774 
NEPC phenotype and was used as the NEPC prediction score metric. Code and implementation 775 
of the method can be found at 776 
https://github.com/GavinHaLab/CRPCSubtypingPaper/tree/main/ctdPheno. 777 

Analysis and classification of clinical patient samples 778 

After establishing feature distributions using the LuCaP PDX lines and normal panel as described 779 
in Generative model, the model was applied to three clinical patient cohorts (see Human subjects 780 
for cohort information). Initial scoring using the model was run on DFCI cohort I, consisting of 101 781 
ULP-WGS samples with paired-end reads. Tumor fraction estimates predicted by ichorCNA and 782 
tumor phenotype classifications were obtained from the original study (25). A prediction score 783 
threshold of 0.3314 for calling NEPC was chosen because it offered an optimal performance for 784 
sensitivity (90%) and specificity (97.5%), where sensitivity is the true positive rate for identifying 785 

NEPC samples M )*
)*+,-

N and specificity is the true negative rate for identifying ARPC samples 786 

M )-
)-+,*

N. Alternative thresholds maximizing sensitivity and specificity were 0.1077, at which 95% 787 

sensitivity was achieved with a lower specificity of 93.8%, and 0.3769 with a lower sensitivity of 788 
81.0% but higher specificity of 98.8%. To compare these predictions with cfDNA methylation 789 
(cfMeDIP-seq) classification on the same plasma samples in DFCI cohort I, the concordance was 790 
computed between the ctdPheno NEPC prediction score and the cfMeDIP NEPC score obtained 791 
from the original study using a 0.15 threshold (25).  792 

We then validated the model on two cohorts, beginning with the already published DFCI cohort II 793 
(67,68,72). We restricted our analysis to eleven samples from six patients with matched ULP-794 
WGS and WGS data with paired-end reads. Tumor fraction estimates from ichorCNA were 795 
obtained from the original study (72). All samples were considered adenocarcinoma (ARPC) 796 
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based on clinical histories (see Human subjects). The scoring threshold of 0.3314, determined 797 
from DFCI cohort I was used for phenotype classification. 798 

For the UW cohort, consisting of 47 samples from 30 patients, ichorCNA was used to estimate 799 
sample tumor fractions as described above, while clinical phenotype was determined from clinical 800 
histories and expert chart review. We evaluated model performance on matched ULP-WGS and 801 
WGS data for unambiguous clinical phenotypes of ARPC and NEPC. The chosen scoring 802 
threshold of 0.3314 was used, and the fraction of correctly predicted ARPC (n=26) and NEPC 803 
(n=5) was computed. The remaining 16 samples with mixed histologies were not evaluated for 804 
performance. 805 

STATISTICAL ANALYSIS 806 

Quantification of and statistical approaches for high-throughput sequencing data analysis are 807 
described in the methods above. When non-parametric distributions (not normally distributed) of 808 
numerical values of a particular parameter in a population were compared (using boxplots or in 809 
tables), the two-tailed Mann-Whitney U test (also known as the Wilcoxon Rank Sum test; 810 
scipy.stats.mannwhitneyu, (95) was used to test if any two distributions being compared were 811 
significantly different, with Benjamini-Hochberg (statsmodels.stats.multitest.fdrcorrection, 812 
https://www.statsmodels.org) correction applied in multiple testing scenarios. All boxplots 813 
represent the median with a centerline, interquartile range (IQR) with a box, and first quartile – 814 
1.5 IQR and third quartile + 1.5 IQR with whiskers. PCA was conducted in Python 815 
(sklearn.decomposition.PCA; https://scikit-learn.org) 816 

DATA AVAILABILITY 817 

LuCaP patient derived xenograft (PDX) sequencing data generated in this study, including 818 
CUT&RUN results and processed cfDNA (cfDNA) sequencing data will be deposited at GEO and 819 
will be publicly available as of the date of publication. LuCaP PDX plasma cell-free DNA whole 820 
genome sequencing data will be deposited in dbGaP. The patient plasma genome sequencing 821 
data generated in this study will be deposited in a public repository and will be publicly available 822 
as of the date of publication. This paper also analyzes existing, publicly available data, including 823 
LuCaP PDX RNA-Seq (GSE199596) and ATAC-Seq data (SE156292). The DOIs and links to 824 
specific tools are available in the methods.  825 

Any additional information required to reanalyze the data reported in this paper is available from 826 
the lead contact upon request.  827 
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Figure 1.  Characterizing advanced prostate cancer through matched tumor and liquid 1106 
biopsies from PDX models 1107 

(A) (top) Both blood and tissue samples were taken from 26 patient-derived xenograft (PDX) 1108 
mouse models with tumors originating from metastatic castration-resistant prostate cancer 1109 
(mCRPC) with AR-positive adenocarcinoma (ARPC), neuroendocrine (NEPC), AR-low 1110 
neuroendocrine-negative (ARLPC) phenotypes. Cell-free DNA (cfDNA) was extracted 1111 
from pooled plasma collected from 7-10 mice and whole genome sequencing (WGS) was 1112 
performed. Following bioinformatic mouse read subtraction, pure human circulating tumor 1113 
DNA (ctDNA) reads remained. From PDX tissue, ATAC-Seq and CUT&RUN (targeting 1114 
H3K27ac, H3K4me1, and H3K27me3) data were generated. (middle) Four distinct ctDNA 1115 
features were analyzed at five genomic region types using Griffin (49) and nucleosome 1116 
phasing methods developed in this study (Methods). (bottom, left) Overview of PDX 1117 
ctDNA features profiled to characterize the mCRPC pathways, transcriptional regulation, 1118 
and nucleosome positioning. ctDNA features were evaluated for phenotype classification. 1119 
(bottom, right) Phenotype classification using a probabilistic model that accounted for 1120 
ctDNA tumor content and informed by PDX features was applied to 159 samples in three 1121 
patient cohorts. 1122 

(B) PDX phenotypes and mouse plasma sequencing. Inclusion status based on final mean 1123 
depth after mouse read subtraction (< 3x coverage were excluded; red dotted line). 1124 
Phenotype status, including 6 NEPC, 18 ARPC (2 excluded), and 2 ARLPC. Average 1125 
depth of coverage before and after mouse subtraction (mean coverage 20.5x; dotted line).  1126 
Percentage of the cfDNA sample that contains human ctDNA after mouse read subtraction. 1127 
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Figure 2. Analysis of tumor histone modifications and ctDNA reveals nucleosome patterns 1129 
consistent with transcriptional regulation in CRPC phenotype-specific genes 1130 

(A) H3K27ac peak signals between ARLPC, ARPC, and NEPC PDX tumor phenotypes at 1131 
10,000 AR binding sites (left) and at ASCL1 binding sites (right). Binding sites were 1132 
selected from the GTRD (97) (Methods). 1133 

(B-C) Composite coverage profiles at 1000 AR (B) and ASCL1 (C) binding sites in ctDNA 1134 
analyzed using Griffin. Coverage profile means (lines) and 95% confidence interval with 1135 
1000 bootstraps (shading) are shown. The region ±150 bp is indicated with vertical dotted 1136 
line and yellow shading. 1137 

(D) Heatmap of log2 fold change in key genes up and down regulated between ARPC and 1138 
NEPC established through RNA-Seq (left) grouped by the type of histone modification 1139 
which dictates translation levels: Group 1 shows genes where the predominate PTM mark 1140 
is attributed to H3K27ac or H3K4me1 active marks in the gene promoters or putative distal 1141 
enhancers, lacking H3K27me3 heterochromatic mark in the gene body; Group 2 features 1142 
gene body spanning H3K27me3 repression marks. Central columns show differential peak 1143 
intensity for each of the assayed histone modifications, separated by whether they appear 1144 
upstream or in the promoter or the body of each gene. On the right the log2 fold change 1145 
between ARPC and NEPC lines’ fragment size coefficient of variation (CV) is shown for 1146 
TSS+/1 1KB windows and respective gene bodies.  1147 

(E) Comparison of the log2 fold change (ARPC/NEPC) of mean mRNA expression vs mean 1148 
coefficient of variation (CV) in the 47 phenotypic lineage marker genes’ promoter regions. 1149 

(F) (top) Illustrations of expected ctDNA coverage profiles for Group 1 genes with and without 1150 
H3K27ac or H3K4me1 modification leading to active and inactive transcription, 1151 
respectively. (bottom) ±1000 bp surrounding the promoter region for AR and ASCL1 in 1152 
ARPC and NEPC. Shown are coverage profile means (lines) and 95% confidence interval 1153 
with 1000 bootstraps (shading). Decreased coverage is reflective of increased 1154 
nucleosome accessibility and thus increased transcription. Dotted line and yellow shading 1155 
highlight the transcription start site (TSS) at -230 bp and +170 bp.  1156 

(G) Illustration of expected ctDNA coverage profiles for Group 2 genes with repressed 1157 
transcription caused by H3K27me3 modifications in the gene body. Neuronal gene 1158 
UNC13A has increased nucleosome phasing in ctDNA of ARPC samples compared to 1159 
NEPC.  1160 
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Figure 3.  Phasing analysis in ctDNA recapitulates nucleosome stability and trends in 1161 
transcriptional activity between CRPC phenotypes 1162 

(A) Illustration of nucleosome phasing analysis using TritonNP for HOXB13, which is 1163 
expressed in ARPC but not NEPC. Fourier transform and a band-pass filter-based 1164 
smoothing method was used to phase and identify peaks (grey dotted lines). Frequency 1165 
components corresponding to > 146 bp (wavelength) are shown in purple. The mean inter-1166 
nucleosome distance was computed from all peaks in the gene body: lower values 1167 
represent more periodic and stable nucleosomes. Nucleosome Phasing Score (NPS) is 1168 
defined as the ratio of the mean amplitudes between frequency components 180-210 bp 1169 
(“core + spacer”, green curve) and 150-180 bp (“core”, red curve). 1170 

(B) Boxplot of mean phased-nucleosome distance in 17,946 gene bodies per ctDNA sample 1171 
for ARPC and NEPC PDX lines. Two-tailed Mann-Whitney U test p-value shown.  1172 

(C) Comparison of the mean phased-nucleosome distance and the mean cell-cycle 1173 
progression (CCP) score (estimated from RNA-Seq) for 16 ARPC and 6 NEPC PDX lines. 1174 

(D) Boxplot of NPS in gene bodies of 47 phenotype-defining genes (35 NE-regulated and 12 1175 
AR-regulated) between ARPC and NEPC lines. Two-tailed Mann-Whitney U test p-values 1176 
shown. 1177 

(E) Volcano plot of NPS log2-fold-change (ARPC/NEPC) in the 47 phenotype-defining genes. 1178 
Genes with significantly higher NPS scores (solid-colored dots (two-tailed Mann-Whitney 1179 
U test, Benjamini-Hochberg adjusted FDR at p < 0.05) and non-significant genes (open 1180 
circle) are shown. 1181 

(F) Hierarchical clustering of the normalized composite central mean coverage at TFBSs from 1182 
the Griffin analysis of ctDNA for 107 TFs in LuCaP PDX lines of ARPC (n=16), NEPC 1183 
(n=6), and ARLPC (n=2) phenotypes. This list of TFs was initially selected as having 1184 
differential expression between ARPC and NEPC from LuCaP PDX RNA-Seq analysis. 1185 
Heatmap colors indicate increased accessibility (low values; yellow, orange, red) and 1186 
decreased accessibility (higher values; black) in ctDNA. TFs with increased accessibility 1187 
in NEPC samples (log2-fold-change > 0.05, Mann-Whitney U test p < 0.05) are indicated 1188 
with red text; increased accessibility in ARPC (log2-fold-change < -0.05, p < 0.05) are 1189 
indicated with blue text.  1190 
 1191 
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Figure 4.  Comprehensive evaluation of ctDNA features throughout the genome for CRPC 1192 
phenotype classification in PDX models 1193 

(A) Volcano plot of log2-fold change of ATAC-Seq peak intensity between 5 ARPC and 5 1194 
NEPC lines; the dotted line demarcates sites by q-value < 0.05. 1195 

(B-C) Composite coverage profiles at open chromatin sites specific to ARPC (B) and NEPC 1196 
(C) PDX tumors analyzed by Griffin. Sites from (A) were filtered for overlap with known 1197 
TFBSs in 338 factors from GTRD (97). Coverage profile means (lines) and 95% 1198 
confidence interval with 1000 bootstraps (shading) are shown. The region ±150 bp is 1199 
indicated with vertical dotted line and yellow shading. 1200 

(D) PCAs of ctDNA features demonstrates grouping between ARPC and NEPC phenotypes: 1201 
(left) Composite central coverage of TFBSs significant for 74 TFs with differential 1202 
accessibility out of 338 factors between ARPC and NEPC (Supplementary Table S4). 1203 
(center) NPS in the gene bodies of the 47 phenotype defining genes. (right) Fragment 1204 
size variability (coefficient of variation) at H3K4me1 histone modification sites (n=9,750). 1205 

(E) Performance of classifying ARPC vs NEPC PDX from ctDNA using supervised machine 1206 
learning (XGBoost) in various region types (all genes, TFBSs, and open regions, 1207 
Methods). Area under the receiver operating characteristic curve (AUC) with 95% 1208 
confidence interval (100 repeats of stratified cross validation) is shown for performance of 1209 
all feature types. 1210 

(F) Example composite coverage profiles at open chromatin sites specific to ARPC (left) and 1211 
NEPC (right) identified in B-C. Simulated admixtures generated using ARPC mixed with 1212 
healthy donor (HD) (left) and NEPC mixed with HD (right) are shown for varying tumor 1213 
fractions. 1214 

(G) Performance for classification on admixtures samples using ctdPheno. Five ctDNA 1215 
admixtures were generated for each phenotype from PDX lines, each at various 1216 
sequencing coverages and tumor fractions. In total, 125 admixtures were evaluated. The 1217 
mean AUC across the 5 admixtures is shown for each configuration. 1218 

  1219 
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Figure 5.  Accurate classification of NEPC phenotypes from plasma in three patient 1220 
cohorts using a probabilistic model (ctdPheno) informed by PDX ctDNA features 1221 

(A) Receiver operating characteristic (ROC) curve for 101 mCRPC patients (DFCI cohort I) 1222 
with ultra-low-pass WGS (ULP-WGS) data. The optimal performance of 90.4% sensitivity 1223 
(for predicting NEPC) and 97.5% specificity (for predicting ARPC) corresponding to a 1224 
prediction score cutoff of 0.3314 is indicated with horizontal and vertical dotted lines, 1225 
respectively. 1226 

(B) Prediction scores for 11 plasma samples from seven patients (DFCI cohort II) with both 1227 
WGS and ULP-WGS data. The 0.3314 score cutoff threshold (dotted line) was used for 1228 
classifying NEPC and ARPC. Tumor fractions were estimated by ichorCNA from WGS 1229 
data. Patients were treated for adenocarcinoma (ARPC) or had high PSA values. 1230 

(C) Prediction scores for 47 plasma samples with clinical phenotypes comprising 26 ARPC 1231 
(blue), 5 NEPC (red), and 16 mixed or ambiguous phenotypes (purple, triangles), including 1232 
double-negative prostate cancer (DNPC; grey). Scores are shown for WGS and ULP-1233 
WGS (0.1X) for the same ctDNA sample. The cutoff threshold of 0.3314 (dotted line) was 1234 
used for classifying NEPC and ARPC. Tumor fractions were estimated by ichorCNA on 1235 
the WGS data. 1236 
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