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ABSTRACT 

Growing evidence report that non-genetic-driven events such as enhancer reprogramming 

promote neoplastic transformation and strongly contribute to the phenotypical heterogeneity of 

cancers as much as genetic variation. In this context, we investigated the role of enhancers in 

sustaining oncogenic transformation in B-Cell Acute Lymphoblastic leukemia in children 

(BCP-ALL), a type of cancer caused by the accumulation of lymphoid progenitor cells in the 

bone marrow and a leading cause of cancer-related mortality in children. Using next-generation 

sequencing (ATAC-seq), we built the most up-to-date map of chromatin accessibility in 

pediatric BCP-ALL. We observed that enhancer activity dynamically changes during cancer 

progression and represents principal phenomena underlying phenotypic–functional 

characteristics of BCP-ALL progression. BCP-ALL patients are dominated by a regulatory 

repertoire (N=~11k) originally represented at diagnosis that shrinks under treatments and 

subsequently re-expands, driving the relapse. We then deployed a wide range of in-vivo, in-

vitro assays, and in-silico analyses to demonstrate the impact of enhancer activity in 

determining the phenotypical complexity. CRISPR-Cas-9-mediated validation of selected 

productive enhancers demonstrated a high capability of these regions to control MYB and 

DCTD oncogenic activities. Taken together, these findings provide direct support to the notion 

that enhancer plasticity is a crucial determinant of the BCP-ALL phenotype.  
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INTRODUCTION  
 

The major obstacle to effective cancer therapy is cancer intra- and inter- heterogeneity. Thus, 

the research of mechanisms that can act transversely across patient characteristics is of 

fundamental importance. A series of genetic events are commonly assumed to sustain the 

cellular substrate in the development of any cancer by supplying the oncogenic potential for 

proliferation and dissemination (1). However, genetic variegation does not entirely explain cell 

phenotypes (2,3). Indeed, recent analysis demonstrates that driver coding mutations rarely 

differentiate in metastatic samples despite the remarkable clinical and morphological 

differences then primaries (1,4). Nevertheless, it is well established that non-genetic-driven 

events, such as enhancer reprogramming, promote neoplastic transformation and strongly 

contribute to the phenotypical heterogeneity of cancers as much as genetic variation (1,5) . In 

addition, pervasive transcription of genomic regions other than protein-coding genes generates 

tremendous non-coding RNA (ncRNA) species far more than previously recognized (6,7). 

Among these, RNAs generated from enhancers (i.e., eRNAs) have attracted particular interest 

due to their potential roles in mediating enhancer-gene interactions and their frequent overlap 

with disease-associated noncoding risk loci (8). Functionally, eRNAs can be considered an 

integral component of active enhancers, facilitating gene activation and/or enhancer-promoter 

loops by interacting with transcriptional activators and co-activators (9-13). Aberrant eRNA 

expression is highly associated with enhancer malfunction and is involved in dysregulation of 

oncogenes (14), tumor suppressor genes (15), as well as in abnormal cellular responses to 

external signals, such as hormone (16), inflammation (17,18) (19) and other stimuli (20,21). 

Numerous eRNAs are cancer type-specific and can be potentially employed for molecular 

diagnosis of cancer types with a significant prognostic utility. Indeed, data from 9000 

sequenced tumors showed a marked prognostic significance of enhancer activation even higher 

than protein-coding genes. (22) .  
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BCP-ALL is the most common malignancy in children, and while highly curable, the 

recurrence rate accounts for ~10% of patients (23). Risk factors for outcome following the first 

relapse have been defined and incorporated into risk stratification schemes: time from 

diagnosis to relapse, site of relapse, immunophenotype, and minimal residual disease (MRD) 

response to reinduction therapy (23). 

Little is known about the chromatin layout of BCP-ALL patients and the relative impact on 

tumorigenesis and drug response. One possibility is that chromatin plasticity affects the 

enhancer activity and engagement of TFs, thus supporting oncogenic pathways (24). Moreover, 

a comparison of chromatin openness variegation in primary, remission and relapse samples 

may provide insights into the biology of arising and response to therapy of cancer (24,25). Here 

we performed genome-wide profiling of the chromatin accessibility landscape of a longitudinal 

cohort of BCP-ALL cases at onset, remission and relapse. Using next-generation sequencing 

(ATAC-seq), we built the most up-to-date map of chromatin accessibility in pediatric BCP-

ALL. Notably, these findings were summarized in a human primary cell line of BCP-ALL, 

associating enhancers activity with important target genes involved in disease transformation 

and progression. Finally, by CRISPR-Cas-9-mediated editing of selected eRNA sequences, we 

demonstrated the direct and effective control of the respective gene target expression. 

Altogether, these results reinforce the fundamental role of enhancers in the genesis and 

evolution of the BCP-ALL. 
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RESULTS 

 

Genome-wide mapping of chromatin accessibility in a longitudinal cohort of pediatric 

BCP-ALL defines the disease stage. 

The cis-regulatory apparatus of BCP-ALL cells has never been described to date. We designed 

the study including 26 cases of BCP-ALL obtained at onset (N=11), remission (N=7), and 

relapse (N=8). To identify the diversity of malignant B cells we selected a control cohort of 

healthy bone marrow (HBM) from 6 age‐matched or adult donors who donated bone marrow 

(BM) for transplantation. All patients were profiled for BCP-ALL most common molecular 

abnormalities using cytogenetics. Interestingly, 64% of diagnosed patients did not carry any 

genetic abnormality, while this frequency dropped to 25% at the relapse (Table 1). We 

calibrated our study by collecting B cells from fresh BM samples, isolating CD19+ cells by 

immunodensity from BM, and then profiling them by using ATAC-seq analysis. This strategy 

aimed to build a genome-wide map of accessible regions and infer the differential regulatory 

activity at accessible sites, ultimately gaining novel insights into BCP-ALL disease states. 

ATAC-seq experiments revealed accessible sites amongst all samples ranging between ~20k 

to ~80k sites, and our mapping strategy produced a cumulative number of 150,123 chromatin 

accessible sites (Fig.1a). Roughly 20% of these sites mapped within 5kb to the closest 

transcription starting sites (TSS) at loci putatively considered as promoters. Interestingly, all 

the selected groups of patients shared same proportion of promoter-like active sites (Extended 

Data Fig.1a). Notably, while healthy tissues were strongly defined by promoter like activity, 

the onset group linearly increased the number of active sites at distal loci (Extended Data 

Fig.1a). Furthermore, promoter activity was equally shared among our cohort (Extended Data 

Fig.1b-c) while the largest part of Cis-Regulatory Elements (CREs) was encoded at distal 

genomic loci accounting for ~80% of the total number of sites. In addition, the onsets exhibit 

a much stronger activity at non-coding and intron regions than the other groups (Extended Data 
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Fig.1b). Taken together our data confirm the notion that phenotypical heterogeneity of a cancer 

cell is defined by the setup of the distant regulatory asset (24). 

Next, we tested the relationship between DNA accessibility landscape and BCP-ALL 

phenotype at different disease stages. Interestingly, we found that the chromatin accessibility 

landscape is a main determinant of patient clustering using Principal Component Analysis 

(PCA). Indeed, patients grouped accordingly to the disease stage. As expected, healthy and 

remission patients clustered homogenously and were very similar, while patients at onset and 

relapse were more heterogeneous, confirming how regulatory regions sustain distinct 

phenotypes in active cancer (Fig.1b). 

 

 

The cis-regulatory activity is a main phenotypical determinant of BCP-ALL 

CREs are distant regulatory elements that are positively associated with gene transcription and 

thus key elements in determining cell phenotype (26,27). To study the process of CREs 

modulation during BCP-ALL progression, we surveyed the variability of each given 150,123 

identified CRE by performing differential analysis amongst patients at healthy, onset, 

remission and relapse groups (Fig.1c). We found evidence of highly diverse epigenetic profiles 

in onset and relapse with at least 10-fold more differentially active CREs than expected by 

chance (Fig.1c, right). As previously observed in other cancer types (28), the prevalent 

differential patterns were exhibited between the healthy vs onset and healthy vs relapse groups, 

while remissions showed only a marginal number of differential sites than healthy (Fig.1d and 

Extended Data Fig.1d). By applying a very stringent threshold of FDR<10-4 of significance, we 

selected 1312 CRE sites upregulated in the onset which strikingly, enriched with ontologies 

specifically associated with Lymphoblastic Leukemia (Fig.1e). Conversely, differential 

analysis between healthy and remission showed a recovery of the healthy-like accessibility 

asset after therapy with only 34 CREs significantly modulated at the remission. Furthermore, 
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we obtained the largest diversification of CREs at the healthy-remission vs relapse analysis 

(Fig.1d, Extended Data Fig.1d-e). A totality of 5883 sites were actively modulated of which 

3644 upregulated in the relapse (Fig.1d bottom). The interrogation of disease ontology showed 

a more robust enrichment of Lymphoid cancer disease and Lymphoblastic disease, suggesting 

a post therapy selection of CREs associated to the cancer phenotype (Fig.1e, Extended Data 

Fig.1f). Overall, these data support the hypothesis that BCP-ALL is sustained by plastic activity 

of CREs which strongly determine the post treatment behavior of cells. 

 

Dissection and tracking of cis-regulatory element activity during BCP-ALL evolution 

The dynamics of cis-regulatory activity during the BCP-ALL span have never been 

comprehensively investigated to date. The use of epigenetic modifications to annotate CRE 

activity has been recently successfully applied (29). Indeed, increasing evidence suggests that 

chromatin accessibility identified by ATAC-seq is strongly linked to CRE activity (30,31). In 

addition, single-cell studies showed that bulk ATAC-seq and histone mark signals (H3K27ac 

and H3K4me3) are proportional to the cell contributing to it (32,33). Thus, each nucleosome 

positioning can be inferred as digital information where the state on/off directly corresponds to 

the single-cell state (34). This suggests that each bulk ATAC-seq signal directly relates to its 

relative clonality within the sequenced sample. Applying this concept to a phenotypically 

homogeneous population of cells for each sequenced samples would provide opportunities to 

deepen the understanding of the clonality of each CRE at any given sample. On this basis, we 

reasoned that a bulk ATAC-seq signal would be an effective tool for identifying CRE activity 

from a cohort of 100% pure CD19+ lymphocytes obtained from BCP-ALL patients. Following 

the strategy recently applied in solid tumors (34) we assigned a clonality score to each putative 

regulatory region identified by ATAC-seq in our patient cohort, coupled by a penetrance score 

which reflects the number of patients in the cohort sharing the activity of any given region 

(Fig.2a). This strategy allowed the dissection of the cis-regulatory activity of any given CRE 
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in our longitudinal patient cohort. Each CRE region received assigned a score of clonality and 

penetrance. We then developed a strategy to identify CRE which were significantly modulated 

during the disease focusing on regions matching these criteria: 1) being positively modulated 

during the passage from healthy to onset, 2) being negatively modulated during onset and 

remission, and 3) being positively regulated between remission to relapse. Then, the selected 

regions were further integrated into a multistep process including: 1) integration with the most 

up to date pan-cancer data to infer high fidelity enhancers and super-enhancers, 2) integration 

with data obtained from an onset BCP-ALL cell line profiled with H3K27ac ChIP-seq, ATAC-

seq, RNA-seq, Promoter-capture-seq followed by experimental validation including CRISPR-

cas KO of the selected CREs (Fig.2a). 

 

The accessibility landscape of BCP-ALL 

We tested whether the identification of CREs was associated with cancer-specific stages. First, 

we classified the repertoire of the regulatory potential at each stage separately. Secondly, we 

annotated the CREs detected and then, calculated the absolute difference of activated 

regulatory repertoire in the groups. Not surprisingly, the onset group enclosed the highest 

number of activated CREs, accounting for more than 120,000 detected sites (Fig. 2b). Roughly 

50k CREs were shared among each disease stage, while 32,118 CREs were present only in the 

onset group. A subset of 15,976 CREs was detected in leukemic samples but not in the healthy 

samples (Fig.2b). Among all sites, 60% were only detected as private or low penetrant in the 

onset group. This percentage fell to 35% in more penetrant regions of the cohort. On the other 

hand, the healthy, remission, and relapse group exhibited less than 10% of detected sites at 

private or low shared regions, suggesting that the onset group is characterized by a larger 

plethora of distinct cell subclones than the other groups (Fig.2c).  

Next, to provide qualitative insights into the relative contribution of each detected CREs to the 

BCP-ALL phenotype, we applied a computational framework that allows dissecting the 
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regulatory heterogeneity of the chromatin accessibility landscape. We observed that penetrance 

and clonality were in strong linear relationship in each sample group (Fig. 2d). Of note, the 

onset group exhibited systematically higher clonality of CREs than the other groups in the 

function of the penetrance index, thus suggesting a larger engagement of sample-specific 

regulatory potential. These observations were further corroborated by a linear regression 

analysis independently performed in each disease group, demonstrating a positive relationship 

between clonality and penetrance (Extended Data Fig.2a). Next, the stratification of the 

chromatin accessibility landscape conferred an advantage in evaluating the significance of the 

heterogeneity seen in the onset in relationship with the other groups. Notably, the onset group 

exhibited higher observed heterogeneity than expected at low penetrance indexes (PI=1-14), 

while highly penetrant CRE were observed more in healthy samples than expected (Fig.2e). 

On the other hand, the remission to relapse stage did not significantly change. 

Taken together, these findings provide direct support to the notion that plasticity of the 

regulatory elements is a key determinant of cancer-specific phenotype, and sub-clonal 

diversification of cancer-specific sites occurs at the passage between a healthy state to the onset 

to then recover to a healthy-like layout after treatment. 

 

The regulatory landscape of BCP-ALL dynamically changes during cancer evolution   

We carried out a phenotype-driven computational analysis to investigate the regulatory 

variability of chromatin openness in patients during BCP-ALL evolution. We hypothesized 

that a subset of regulatory regions was dynamically selected to drive the Onset, Remission, and 

Relapse group phenotype. To test this, we selected highly penetrant regulatory sites driving 

cancer (Fig.3a), showing poor activity in the healthy tissues, dynamically changing their 

relative clonality over time. After tracing the behavior of 150,123 CREs, our strategy identified 

11,083 CREs exhibiting a significant change in clonality, with a marked increase from healthy 

to onset, then a drop after therapy and again an increase from remission to relapse (Fig.3a). In 
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agreement, unsupervised clustering of normalized ATAC-seq enrichment at the selected CREs 

highlighted a surprising similarity between the healthy and remission groups profiles except 

for two samples at the remission, which were clustering to the onset and relapse groups. 

Hierarchical clustering of the relative enrichment of each CRE determined two major clades, 

one including the higher activity of CREs at the onset and relapse (C1 and C2), and one with 

an enrichment higher in healthy and remission (C3 and C4) (Fig.3b). The selected CRE were 

largely penetrant at the onset and private in healthy and remission tissues while more 

heterogeneous at relapse (Extended Data Fig.3a). Of note, ~90% to the selected CREs were 

distal to the closest gene (Extended Data Fig.3b). Functional characterization demonstrated 

that our approach successfully targeted regulatory sites strongly involved in lymphocyte 

activation/differentiation and in sustaining the regulation of genes linked to lymphoblastic 

leukemia, lymphadenopathy, and more generally, auto-immune diseases (Extended Data 

Fig.3c). Moreover, since the accessibility of CREs is largely controlled by transcription factors 

(TFs), we investigated the most enriched binding motifs in our selected sites to identify their 

cognate TFs (Fig.3c). We inferred the TFs putatively binding to the selected CREs by 

performing TF motif analysis. Then, we calculated the observed/expected ratio of the most 

significant in the first clade (C1 and C2 clusters) of sites. Interestingly, the top significant 

identified TFs were well-known drivers of B cell development with established oncogenic 

potential. Indeed, numerous studies have already reported that aberrant modulation of EBF1, 

ETS1, ERG, RUNX transcription factors have profound effects on lymphoid neoplasms 

derived from B cell progenitors (35,36). In sum, this analysis indicates that BCP-ALL 

progression is associated with a plastic reprogramming of the non-coding regulatory landscape 

of cells which involves the recruiting of key regulatory elements of hematopoiesis.  

 

Active enhancers are key elements of BCP-ALL progression 
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The functional characterization of a given CRE is an inherently challenging process. This is 

due to the complexity of the molecular events, the variability in the addiction of TFs, and the 

elusive cross-talks among known and unknown factors that orchestrate gene expression in the 

given time (37). The lack of general rules in identifying and constructing the link between 

CREs and gene target signals encouraged us to apply a conservative approach by focusing on 

productive enhancer elements. Thus, we performed RNA-seq of 4 healthy, 4 onsets and 

measured the productivity at CREs loci which showed upregulation in the previously identified 

as C1 and C2. Unsupervised hierarchical clustering showed marked productivity of eRNA in 

1092 CREs in the onset than healthy samples (Fig.3d top). We then linked these productive 

elements to the closest gene and enrichment analysis strongly enriched to lymphoblastic 

leukemia (FDR< 10-6) and Lymphoid cancer (FDR< 10-3) (Fig.3d bottom). The selected CREs 

were potentially regulating genes previously identified as key determinant of BCP-ALL 

phenotype such as ERG, KMT2A or MYB (38,39). To build a more accurate classification of 

the selected productive enhancer-like CREs, we integrated our analysis with pre-annotated 

productive enhancer and superenhancer (40) together with the accessibility landscape of LAL-

B, a primary cell line generated by manipulation of BM from patient at BCP-ALL onset (41). 

In line with this, 570 enhancers and 117 super enhancers were selected among the C1, C2, C3, 

C4 clusters (Fig.3e). In addition, we noticed that the number of putatively eRNA productive 

sites at each given sample of our cohort was highly heterogeneous and that peaks at the onset 

were generally more clonal (Extended Data Fig.3d). Then, we compared LAL-B accessibility 

profiles with the patient cohort (Extended Data Fig. 3e) and observed 108 active CREs shared 

with C1 and C2 (Fig. 3f), which were linked to key determinants of lymphoid and bone marrow 

neoplasms among which lymphoblastic leukemia was found (FDR<10-3) (Fig.3g). Then, we 

measured the binding of the identified TFs observing that RUNX2, ERG and ETS1 may bound 

to over then 75% of the selected loci (Extended Data Fig.3f). We ultimately measured the pan-

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted May 19, 2022. ; https://doi.org/10.1101/2022.05.18.492497doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.18.492497


   
 

   
 

12 

cancer cell line profiles of H3K27ac at the selected loci (Extended Data Fig.4a) showing a large 

variegation of enhancer activity not specifically lymphoid dependent.  Overall, these data 

demonstrate that a subset of productive and plastic enhancers sustains BCP-ALL phenotype.  

 

Long-range chromatin interactions add functional insights into BCP-ALL primary cell 

line 

Distal regulatory elements function by physically interacting with target genes through 

chromatin looping. However, predicting enhancer-gene interaction in a given cell type context 

lacks general rules that can be uniformly applied (42). Therefore, our primary effort was to 

determine the univocal genes regulated by the selected enhancers. To address the functional 

role of the selected CREs, we first profiled the chromatin interacting landscape of LAL-B cells, 

using in situ-promoter capture HiC (43). This analysis revealed short and long-range 

interactions by analyzing the data at three different map resolutions (5kb, 10kb, 25kb) (Fig.4a). 

Our analysis detected 30190 genomic interactions, of which ~15k were classified as a promoter 

– CRE looping. About 11k loops were detected between 2 non-promoter CREs, while 3745 

loops were observed amongst two known promoters (Fig.4a, left). Interestingly, the detected 

Promoter-CREs interactions were observed at a distance between 50 to 500kb. Only a minority 

of loops were detected at a distance of more than 1000kb from the promoter. Nevertheless, we 

identified only ~1000 interactions at a distance shorter than 50kb (Fig.4a, right). This suggests 

that promoter capture HiC not only identifies loops among a known promoter with unknown 

distal CRE but also captures the full spectrum of superimposed folding states and interactions 

among non-promoter CREs. For example, at the MYC locus, we observed more than 20 direct 

interactions Promoter-CRE and 12 undirect interactions generated by multiple looping towards 

different CREs that ultimately connect to the MYC promoter (Extended Data Fig.5a). Although 

recent data confirm that the enhancer gene-target prediction can be inferred simply by gene 
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proximity at high precision (44), we integrated our Promoter-capture HiC approach with 

ATAC-seq results from patients and LAL-B cell line, and CTCF and Pol2 ChIA-Pet of K562 

cell line to survey every possible enhancer- gene contact (Fig.4b, Extended Data Fig.5a) (Table 

2). Then, we measured the transcriptional and accessibility output (Fig.4b, Extended Data 

Fig.5b) of the selected gene targets in LAL-B cells together with lymphoid cells at three 

differentiation steps (Naïve B-cell, Mem-B cell, and Plasmablast) obtained by healthy 

individuals (45). Applying this strategy, we observed 106 genes exhibiting a marked 

transcriptional output specific to only the LAL-B cells. The selected genes list included genes 

previously implicated to the B type ALL and hematopoietic malignancies such as EBF1, MYB, 

ETS1 and MYC (35,36). (Fig.4b). Next, we sought to quantify and characterize the essentiality 

of the selected genes in the recently screened genome-scale CRISPR–Cas9 loss-of-function 

pediatric cell lines available in the Dependency Map Portal (DEPMAP) (46). Thus, we 

measured the essentiality score (47) of each gene in the whole set of screened cell lines 

(N=~1000 cell lines) which include 11 B-ALL cell lines (Extended Data Fig.5c). We selected 

the top 100 most dependent cell lines of each given gene and counted the number of B-ALL 

cell lines included in the selection (Fig.4c) to identify the genes affecting more specifically 

BCP-ALL fitness than others, observing that two genes were exhibiting a marked specify to 

ALL-B cell lines viability together with a physical enhancer-promoter interaction: DCTD, 

MYB (Fig. 4c-d).  

Collectively, these data show that our strategy captures qualitative properties in BCP-ALL 

evolution. DCTD and MYB enhancer activity marks a dominant phenotypic clone specific to 

the disease process and to its treatment response.     

 

MYB de novo activated enhancers are important regulatory elements in BCP-ALL 
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The transcription factor MYB plays a key role in regulating hematopoiesis (48). Single-cell 

data show that MYB is highly expressed in the myeloid development and epithelial cells while 

transcriptionally silent in most lymphoid cells (Extended Data Fig.6a). However, MYB 

dysregulation is often associated with myeloid and lymphoid hematological neoplasms, 

including acute lymphoblastic leukemia (49,50). In addition, several solid tumors show an 

aberrant expression of MYB (50) (Extended Data Fig. 5b). Of note, qRT-PCR analysis revealed 

increased expression of this gene in Onset and Relapse compared to Healthy and remission 

samples (Extended Data Fig. 5c). 

The main alterations underlying the increased expression of MYB in tumors are caused to 

chromosomal translocations, gene duplications, or juxtaposing active enhancers from other 

genomic regions (51). Recent studies report that MYB expression is tuned by activity of a 

CREs cluster dwelling in the intergenic region spanning the 135 kb between MYB and HBS1L 

genes (52-54). This region contains numerous enhancer elements capable of looping towards 

the MYB promoter and regulating its relative gene expression. (52-54). In particular, genome-

wide association studies (GWAS) report that SNPs within this region affects the normal 

development of erythrocytes and platelets (55-57), and these SNPs are associated to sickle cell 

disease and B thalassemia. Subsequent studies have shown that enhancers at -84 and -71 to the 

MYB promoter are critical regulators of erythropoiesis (57). More recently, enhancers activity 

at -38 and -88 to MYB promoter has been associated with human myeloid leukemia cell lines 

(54). Interestingly, ATAC-seq single-cell analysis of plasma cell and memory B cells shows 

that the enhancer cluster is not accessible while both HBS1L and MYB promoters are in the 

active state (Extended Data Fig.5d). These observations suggest that although MYB gene 

expression is fundamental in developing healthy myeloid cells, it is aberrantly regulated in 

different cancers.  
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Our strategy has identified two enhancer elements within the 135kb MYB-HBS1L region, 

affecting BCP-ALL phenotype. Accordingly, we performed a comprehensive analysis to 

characterize the relationship between the selected enhancer and MYB regulation in the BCP-

ALL context. We first collected healthy and BCP-ALL samples at onset, remission, and relapse 

(N=17 samples) and evaluated MYB protein expression (Fig.5a). Our data clearly show that 

MYB protein significantly emerges in the onset and the relapse samples while dramatically 

reducing in a healthy-like state after treatment. Promoter capture Hi-C sequencing confirmed 

that the selected elements loop toward MYB and HBS1L genes (Fig. 5b). ChIA-Pet data in the 

K562 cells corroborated the hypothesis that the 135 kb MYB-HBS1L intergenic region 

comprises numerous CREs interacting with both genes. These enhancers in our cohort resulted 

nucleosome depleted and eRNA productive (Fig. 5c). Qualitative analysis showed that 51kb 

and 67kb enhancers are rarely clonal in healthy tissues. The clonality score significantly 

increases in the passage from healthy to onset state. Then, they resulted differentially harmed 

by the therapy. Enhancer at 51kb was silenced in 50% of the remissions but was clonal in the 

relapse. The enhancer at 67kb was refractory to the therapy and showed high clonality in 100% 

of the considered samples (Fig. 5c). In addition, we measured the ATAC-seq ratio between 

each enhancer and MYB promoter, showing the marked increase of enhancer clonality in the 

disease stages than in healthy samples (Extended data Fig. 6e). Notably, despite being crucial 

in myeloid leukemia, enhancer at 38kb was active in only a tiny proportion of patients and 

active only in one of our relapse samples. These data prompted us to further characterize these 

two regions by using the CRISPR-Cas9 strategy. We found that inactivation of both these two 

distal enhancers significantly reduced their eRNA transcripts (Figs.5d left and 5e left). While 

the inhibition -51 kb region negatively reduced both the protein and gene production of MYB 

and HBS1L, the inactivation of the -67 kb region was able to inhibit only MYB gene (Figs. 5d 

middle, 5e middle and Extended Data Figs. 6f). Importantly, these results were associated with 
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a significant reduction of growth rate as compared to control cells (Figs. 5d right, 5e right). 

Collectively, our results identify two new selectively activated enhancers in BCP-ALL, which 

significantly modulate MYB expression and tumor cell proliferation together with BCP-ALL 

growth and progression. 

  

DCTD expression is regulated by a distal element in BCP-ALL. 

Our study identified a critical enhancer regulating the Deoxycytidine monophosphate 

deaminase (DCTD) gene expression. DCTD is a key enzyme in the synthesis of genetic 

material which catalyzes the deamination of dCMP to dUMP, the nucleotide substrate for 

thymidylate synthase (58). Since its fundament role, the DCTD gene is ubiquitously expressed 

in all human healthy and neoplastic cells (Extended Figs. 7a, 7b and 7c); however, its relative 

role in cancer is controversial and partially understood. Indeed, TCGA and GETx bulk RNA-

seq data prove that DCTD expression largely varies among different cancers (Extended Fig. 

6c). Interestingly, DCTD is overexpressed in malignant gliomas (59), and DLBC (60) and 

marked as an adverse prognostic factor. In addition, DCTD has long been associated with 

chemoresistance to gemcitabine (61,62). Conversely, the DCTD gene is markedly 

downregulated in Acute Myeloid Leukemia (LAML) (Extended data Fig. 6c). Notably, the 

Cancer Dependency Map (Dep-Map) database revealed that DCTD KO rarely has an impact 

on cell proliferation, and only B-lymphoblastic leukemia cells are affected by the DCTD 

depletion (63) (Figs. 4c, 4d and Extended data Fig. 5c). Data from our cohort showed that the 

expression of the DCTD gene was strongly increased in BCP-ALL patients both at the protein 

and RNA level (Fig.6a and Extended Data 7e), specifically at the onset and the relapse stage. 

DCTD depletion by siRNA affected primary LAL-B cell proliferation (Extended Data 7f). 

ATAC-seq profiling of our patient cohort identified a 108 kb distant region to the DCTD 

promoter (Fig.6c). Promoter capture Hi-C in LAL-B cells confirmed that this region physically 
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interacts with the DCTD promoter (Fig. 6b). Strikingly, this region was found to be much more 

accessible in leukemic patients than in healthy controls, suggesting its involvement in 

increasing DCTD expression in this disease (Fig.6c.). In addition, we demonstrated that the 

identified region was dynamically modulated in dependency on the disease stage (Fig.6c, 

Extended Data Fig.7g). Then, we applied CRISPR KO to the selected regulatory region 

showing significant downregulation of eRNA and DCTD RNA production, followed by protein 

clearance and lower cell proliferation capacity (Fig. 6d). 

Altogether, these data provide evidence that DCTD expression and protein translation are 

driven by a productive enhancer placed 108Kb upstream of DCTD promoter, which is clonally 

amplified during cancer initiation and recurrence.  

 
DISCUSSION 

While many principles of chromatin regulation have been elucidated in cultured cancer cells, 

epigenomic studies of primary cancer are uniquely valuable in capturing the genuine regulatory 

specificity of cancers. In this study, we profiled the cis-regulatory asset of a longitudinal cohort 

of clinically annotated patients to investigate the contribution of enhancers to the emergence 

and progression of BCP-ALL. We demonstrated that BCP-ALL phenotypical heterogeneity is 

sustained by engaging a plethora of previously unknown enhancers. We identified more than 

120,000 active CREs, which contribute to cancer heterogeneity. More importantly, we 

observed dedifferentiation of cells independent of the molecular abnormalities, which 

ultimately converge to surge and repression of chromatin state specific to the BCP-ALL cancer 

stage. Indeed, we identified ~11k stage-specific plastic CREs sustaining BCP-ALL phenotype. 

With a multi-omics integrative approach, we defined the role of these CREs and nominated 

long-range gene-regulatory interactions with the ultimate target genes, of which some, not 

surprisingly, are genes previously implicated in the BCP-ALL and hematopoietic malignancies 

such as EBF1, MYB, ETS1, and MYC and many others. Interestingly our data also uncovered 
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specific driving transcription factors at the selected CREs and provided evidence of how the 

binding grammar converges to only a few key transcription factors, including EBF1, ETS1, 

ERG, and RUNX. On the other hand, we could identify enhancer-gene relationship at loci never 

implicated with lymphoid malignancy. That is the case with MYB and DCTD genes. Indeed, 

we experimentally demonstrated that the identified regions at the genes were dynamically 

modulated in dependency on the disease stage and, more importantly, are a key determinant of 

the target gene transcription and translational output. 

 

The major obstacle to effective cancer therapy is the transcriptional and molecular 

heterogeneity, which stimulate the research of mechanisms able to act transversely across 

patients' characteristics. Results obtained by our epigenetic study show that focus on the CRE 

may overcome the heterogeneity of the samples and the different causes of relapse in response 

to different therapies by individuating regulatory elements that are transversely active among 

the samples. The data generated in this study provide unique opportunities to characterize the 

landscape and functions of CREs across different BCP-ALL stages. We applied our selection 

by integrating eRNA data to identify the productive/activated enhancers. eRNAs are 

increasingly recognized to play important roles in the regulation of gene transcriptional 

circuitry in human cancers. We agree with the notion that eRNAs per se may serve as useful 

and highly precise therapeutic targets for future cancer intervention. This is particularly based 

on the high specificity of eRNA expression across tissues (64), and across cancer types (22,28) 

and provides a superior advantage to being a drug target as its inhibition will not affect other 

irrelevant tissues and, more importantly, does not completely abrogate the expression of target 

genes. In fact, with the aim to verify a regulatory interaction for the predicted peak-to-gene 

links, we applied CRISPR-Cas-9 editing to epigenetically inhibit the eRNA productive 

regulatory elements in BCP-ALL primary cell lines. Editing of the newly identified eRNA 
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sequence controlling the Myb-HBSL1 complex resulted in strong inhibition of blast cell 

viability when compared with the effect exerted by control gRNA. In addition, we successfully 

achieved around 8-fold eDCTD downregulation by two different gRNAs, which led to strong 

downregulation of blast cell proliferation. Long-term observation of eDCTD-edited cells has 

provided evidence of a stable reduction in the proliferation rate that could facilitate the efficacy 

of chemotherapeutic agents. 

 

In conclusion, this study supports the value of the epigenetic approach in identifying new 

tumorigenic elements that could be targeted only on the base of the cancer status. In particular, 

the identification of regulatory elements accessible and functionally relevant only in the 

relapsed phenotype could drive the development of new target therapy. Targeting cancer cell 

states rather than distinct genotypes may therefore represent a way to overcome the extensive 

genetic heterogeneity of cancer. 

 

MATERIALS AND METHODS 

Patients’ characteristics 

Patients with newly diagnosed or relapsed BCP‐ALL were treated at IRCCS Bambino Gesù 

Children's Hospital (Rome, IT). The “newly diagnosed” group consisted of 26 patients (4 

matched patients included), 19 males (73%), and 7 females (27%), with a median age at 

diagnosis of 7,5 years (range 0,4-18). The group of relapsed patients included 8 patients, 7 

males (88%), and 1 female (12%), with a median age at diagnosis of 8,05 years (range 2-18) 

and a median age at relapse of 10.6 (range 4-23). Bone marrows (BMs) used as negative 

controls were obtained from age‐matched or adult healthy donors (HBM) who donated BM for 

transplantation at Bambino Gesù Children's Hospital. The Bambino Gesù Children's Hospital 

Institutional Review Board approved the study (Prot n.495 del 11/04/2019). 
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CD19-sorting selection 

BMs derived from healthy donors and BCP-ALL patients were sorted by CD19 expression to 

select the B-cell compartment and blast cells, respectively. In brief, the whole BM samples 

were incubated with Human B RosetteSep (Stemcell Technologies, CAN) following the 

manufacturer ‘instructions. 

Cell lines, transfections and reagents 

ALL-B cells were obtained by BCP-ALL bone marrow mononuclear cells infected with 

Epstein-Barr virus for immortalization (41). Both cell lines were cultured in RPMI-1640 

medium (Euroclone) supplemented with 10% FBS (Thermo Fisher Scientific), 2mM glutamine 

(Thermo Fisher Scientific) and 40 µg/ml gentamicin. All cell lines were cultured at 37°C, in a 

humidified atmosphere with 5% CO2. Mycoplasma contamination was periodically checked 

by polymerase chain reaction (PCR) analysis, using the following primers: 

Forward: 5’ –ACTCCTACGGGAGGCAGCAGTA- 3’ 

Reverse: 5’ –TCGACCATCTGTCACTCTGTTAAC- 3’ 

Nucleofection experiments of ALL-B cells were carried out using Amaxa 4D-Nucleofector X 

kit L (Lonza) according to the manufacturer’s instructions. Cells were analysed 36h after 

nucleofection by western blot (WB) or quantitative real-time PCR (qRT-PCR).   

CRISPR-Cas9 experiments 

Lentiviral supernatants were generated into HEK293T cells by transient co-transfections of 

lentiviral CAS9-RFP Lenti Plasmid (Merck, USA) construct and appropriate amount of 

packaging vectors (Mission Lentiviral Packaging Mix, Sigma-Aldrich, USA) by TRANS-IT 

(TRANS-IT X2, Dynamic delivery System, Mirus, USA) following the manufacture’s 

protocol. After 48 hours supernatants were collected and employed to LAL-B cells in 

Retronectin (Takara Bionic Otsu, Shiga 520-2193, Japan) pre-coated no tissue culture 24-well 

plates (Falcon, BD, USA). Viral particles were centrifuged at 2000g, 90 minutes, at 32°C. Cells 
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were harvested, washed with PBS (Pan Biotech, DH) and replated in RPMI (EuroClone, IT) 

with 10% FBS (Gibco, USA). After 48 hours, infected cells were sorted following RFP reporter 

signal to obtain a pure population. LAL-B/CAS-9 clone was transduced, following the 

Retronectin protocol, with lentiviral particles carrying single CRISPR guide RNA (Custom 

CRISPR gRNA Plasmid DNA, Merck, USA) directed to DCTD eRNA, -67 kb eRNA and -51 

kb eRNA. CTRL-CRISPR gRNA was used as negative control. 

gRNAs sequences: 

-67 kb cMyb 

5’-AAGAGGAAAAGGCGAGAAT-3’ 

5’-AGAGGAAAAGGCGAGAATC-3’ 

-51 kb cMyb 

5’-TCATTGCTATATGTAGGTA-3’ 

5’-GCAAACGAAACACGACTCC-3’ 

DCTD 

5’-ATACTCACGCCCGAGAGTC-3’ 

5’-AGGCTGCATCATCTTCAAA-3’ 

CTRL 

5’- CGCGATAGCGCGAATATATATT-3’ 

siRNA 

siRNA experiments of DCTD expression were performed by transfecting a specific pool of 

three double-stranded RNA oligonucleotides (siDCTD, cat. n. 1299003 – HSS102676, 

HSS1026777, HSS102678) or a control sequence (siControl, cat. n. 12935300) (Stealth, 

Thermo Fisher Scientific) using Amaxa 4D-Nucleofector X kit L (Lonza).  

An antisense oligonucleotide targeting DCTD eRNA 

(CACGGAGCAUGGCAACCUGCAAACA) was purchased from Eurofins Genomics. 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted May 19, 2022. ; https://doi.org/10.1101/2022.05.18.492497doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.18.492497


   
 

   
 

22 

Total cellular extracts and western blotting 

Total cellular extracts were obtained as described in Bruno et al. (2006) (65). Proteins (25 µg) 

were separated by electrophoresis and transferred onto nitrocellulose membranes. After a 

blocking step in 5% nonfat-dried milk in 0.1% Tween-PBS, membranes were incubated with 

primary antibodies overnight at 4°C. After three washes in 0.1% Tween-PBS, membranes were 

incubated with the appropriate HRP-linked secondary antibodies (Bio-Rad) at room 

temperature for 45 min, washed with 0.1% Tween-PBS and analyzed by chemi-luminescence 

(GE Healthcare Life Science). Images were acquired and quantified using Alliance Mini HD6 

system by UVITEC Ltd, Cambridge, equipped with UVI1D Software (UVITEC, 14-630275). 

The rabbit polyclonal antibodies used were: c-Myb (D2R4Y, Cell Signaling), DCTD 

(ab183607, Abcam), HBS1L (Proteintech). Mouse monoclonal antibody was b-actin (clone 

AC-15, Sigma-Aldrich).  

RNA isolation and quantitative real-time PCR 

Total RNA was isolated from cells using EuroGOLD TriFast reagent (Euroclone) according to 

the manufacturer’s instructions. cDNA was synthesized from equal amount of RNA by reverse 

transcription using M-MLV reverse transcriptase (Thermo Fisher Scientific) and a mixture of 

random primers (Thermo Fisher Scientific). This single-stranded cDNA was then used to 

perform quantitative real-time PCR (qRT-PCR) with specific primers using PowerUP SYBR 

Green 2x Master Mix (Thermo Fisher Scientific) on a 7500 Fast Real-Time PCR System 

(Applied Biosystems), following the manufacturer’s instructions. Data were processed using 

the 7500 software v2.0.6 (Applied Biosystems). Relative fold changes were determined by the 

comparative threshold (DDCt) method using b-actin as endogenous normalization control (66). 

Data are presented as mean ± SD of three independent experiments, performed in duplicate. 

Specific primers employed in qRT-PCR amplifications are listed in Table X. 11846609 

ChIP-sequencing 
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Chromatin immunoprecipitation (ChIP) assays were performed as previously described (Bruno 

T, Cancer Cell, 2002) by using anti-acetyl-Histone H3 (Lys27) antibody (Millipore). Equal 

amounts of precleared chromatin were added to antibody-bound Dynabeads (Thermo Fisher 

Scientific). About 6 ng of the immunoprecipitated chromatin was used to prepare the libraries 

for sequencing by following the manufacturer’s instructions (Swift Bioscences, Cat. No. 

21024). The final libraries were controlled on an Agilent 2100 Bioanalyzer (Agilent 

Technologies) and sequenced in paired-end mode (2x75 bp) with NextSeq 500 (Illumina, CA).  

Promoter capture Hi-C 

Hi-C in the B-ALL cell line was performed using the Arima-HiC Kit according to the 

manufacturer’s instructions. Briefly, 1 x 106 cells were crosslinked with 1% formaldheyde, 

digested with a restriction enzyme cocktail, end-labeled with Biotin-14-dATP and then 

followed by ligation. The ligated chromatin was reverse cross-linked and sonicated using 

Bioruptor ultrasonicator to produce 300-500 bp fragments. Fragmented DNA was then size-

selected to have a size distribution between 200-600 bp, and finally subjected to biotin 

enrichment. DNA libraries were prepared using Accel-NGS 2S Plus DNA Library Kit (Swift 

Bioscences, Cat. No. 21024), and the resulting libraries were amplified using the KAPA library 

amplification kit. Subsequently libraries were hybridized to specific SureSelect XT Human 

capture libraries (Agilent Technologies) and sequenced in paired-end mode (2x75 bp) with 

NextSeq 500 (Illumina, CA). 

RNA-sequencing 

Total RNA was extracted from patient samples using Qiazol (Qiagen, IT), purified from DNA 

contamination through a DNase I (Qiagen, IT) digestion step and further enriched by Qiagen 

RNeasy columns for gene expression profiling (Qiagen, IT). Quantity and integrity of the 

extracted RNA were assessed by NanoDrop Spectrophotometer (NanoDrop Technologies, DE) 

and by Agilent 2100 Bioanalyzer (Agilent Technologies, CA), respectively. RNA libraries 
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were generated using the same amount of RNA for each sample according to the Illumina 

TruSeq Stranded Total RNA kit with an initial ribosomal depletion step using Ribo Zero Gold 

(Illumina, CA). The libraries were quantified by qPCR and sequenced in paired-end mode 

(2x75 bp) with NextSeq 500 (Illumina, CA). For each sample generated by the Illumina 

platform, a pre-process step for quality control was performed to assess sequence data quality 

and to discard low-quality reads. 

ATAC- sequencing 

To profile open chromatin, we used the ATAC-seq protocol developed by Buenrostro et al., 

(38), with minor modifications. Plasma cells were isolated from malignant and control bone 

marrow aspirates. 50,000 cells were washed once with 1X PBS and centrifuged at 500g for 5 

minutes at 4°C. The cell pellet was lysed in ice-cold lysis buffer (10mM Tris-HCl pH 7.4, 

10mM NaCl, 3mM MgCl2, 0.1% IGEPAL CA-630) to isolate the nuclei. If the cell pellet has 

been flash-frozen at -80°C, the morphology of the isolated nuclei was carefully inspected for 

integrity by trypan blue coloration. The nuclei were centrifuged at 500g for 5 minutes at 4°C 

and subsequently resuspended on ice in 50μl transposase reaction buffer containing 2.5μl of 

Tn5 transposase and 25μl of 2xTD buffer (Nextera DNA Sample preparation kit from 

Illumina). After incubation at 37°C for 30 minutes, the samples were purified with MiniElute 

PCR Purification Kit (Qiagen), eluting in 10µl elution buffer (10mM Tris-HCl pH 8). To 

amplify transposed DNA fragments, we used NEBNext High-Fidelity 2x PCR Master Mix 

(New England Labs) and the Customized Nextera PCR Primers. Libraries were purified by 

adding Agencourt Ampure XP (Beckman) magnetic beads (1:1 ratio) to remove remaining 

adapters (left side selection) and double purified (1:0.5 and 1:1.15 ratio) for right side selection. 

Libraries were controlled using a High Sensitivity DNA Kit on a Bioanalyzer (Agilent 

Technologies). Each library was then paired end sequenced (2×75bp) on a NextSeq 500 

instrument (Illumina). 
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COMPUTATIONAL METHODS 

 

ATAC-seq analysis and differential enrichment 

The ATAC-sequencing reads quality was assessed with FastQC v0.11.9 

(http://www.bioinformatics.babraham.ac.uk/projects/fastqc/). Reads were aligned to the reference 

genome hg19 using bowtie v2.3.5.1 (67) with default parameters. The conversion from sam to 

bam file was performed through view function of SAMtools v1.7 (68). BAM files were 

deduplicated with GATK v4.1.9.0 markDuplicates with default parameters. ATAC-seq peaks 

were called by MACS2 v2.2.6 with parameters --format AUTO --nomodel --shift -100 --extsize 

200 -B --SPMR --call-summit -q 0.01 -g hs. BigWig (bw) files were obtained from the 

BedGraph (bdg) files with bedGraphToBigWig v4 (69) with default parameters. Finally, all 

peaks matching blacklisted regions (downloaded from 

https://www.encodeproject.org/files/ENCFF001TDO/@@download/ENCFF001TDO.bed.gz) 

were removed with the function intersect of bedtools suite v2.29.2 (70). 

Multidimensional scaling  

Multidimensional scaling (MDS) was carried out on a normalized table in which each row is a 

peak of the master list and each column represent a different sample. The reads count was 

performed with bedtools multicov v2.29.2. 

The reads count per peak was normalized through the R package edgeR v3.36.0 (71) and the 

obtained TMM was transformed through the log2(TMM+1) formula.  

Finally, MDS was performed with the cmdscale function of stats R package v 4.1.2 applied at 

the samples distance matrix. The distance metric chosen is the following: 

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑀𝑎𝑡𝑟𝑖𝑥[𝑖, 𝑗] =
∑ |	𝐴[, 𝑖] − B[, j]|

𝑛  

Both i and j are samples and n is the total number of peaks. 
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The scatterplot was performed on first-second and first-third components through ggplot2 R 

package v 3.3.5.  

Differential analysis of accessibility profiling of BCP-ALL  

We first built a master list of the accessible regions identified in the profiling of each patient. 

Narrow peak files of each sample were concatenated, sorted and merged with bedtools merge 

function to finally obtain a list of all accessible region’s profiles in at least one patient.  We 

then performed the differential analysis of samples by building a matrix of the peak read count 

of each sample on the master list. In order to accomplish the reads count the master list and all 

the samples’ bam were used as parameter of bedtools multicov. The count normalization was 

performed with the R package edgeR v3.36.0. Two comparisons were performed: Healthy vs 

Onset and Healthy vs Relapse. Peaks with differences in the means were extracted with 

extractTest edgeR function, and the p-value was corrected through the False Discovery Rate 

(FDR) method. Finally, the selected peaks whit FDR <= 0.0001 were divided into four groups 

(-log10(FDR) ≤ 1, -log10(FDR) ≤ 2, -log10(FDR) ≤ 3, -log10(FDR) ≤ 4) and visualized 

through a scatterplot performed with ggplot2 R package. To provide further significance to the 

differential analysis, we performed the randomization of the dataset by applying 100 random 

sample selections. At each iteration, we selected 17 samples randomly selected amongst our 

cohort of BCP-ALL samples (N=32). At each randomized set, we performed differential 

analysis as described above by divide the 17 selected sample into two groups: 6 Healthy and 

11 Onset. Ontology analysis of the differential subset of peaks was performed by using GREAT 

v3.0.0 (72). Peaks annotation was performed on hg19 human genome and the basal plus 

extension was chosen with the following parameters: proximal 5.0 kb, upstream 5.0 kb and 

plus Distal up to 100.0 kb). 

Clonality and Penetrance index scoring strategy and relative analysis 
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The Clonality and Penetrance index are calculated by 2 independent analysis workflows which 

ultimately assigned to each genomic region included into the master list of accessibility the 

Clonality and Penetrance index. The RI is a patient specific standardized metric determined by 

the following formula calculated to the peak repertoire of each sample independently: Nscore= 

((peak read count / peak size)⋅10-6))* 10-3 /total mapped reads (FPKM). The peaks’ read count 

are assessed with bedtools multicov function. Then, peaks in each sample are arranged from 

highest Nscore  to lowest Nscore. The ordered list of Nscoring is divided into percentiles 

ranging from 1 (higher enrichment) to 100 (lower enrichment). All peaks present in the master 

list and absent in the given sample receive assigned RI=0. The penetrance index is assigned to 

each peak of the master list and represents the number of patients sharing each given peak in 

the patient cohort. At each peak is assigned an SI value from 1(only one patient carrying the 

given peak) to 32 (the totality of patients carry the given peak).  

The relation between RI and SI was displayed through a boxplot obtained with the seaborn 

python library v0.11.2. Samples were divided into the relative disease group (Healthy, Onset, 

Remission, and Relapse), and the RI median value was calculated for each peak considering 

only peaks with RI different from 0. 

The linear regression for each status (Healthy, Onset, Remission, and Relapse), the median 

Clonality index, and the Penetrance index data were fitted with the sklearn LinearRegressor 

model. Finally, the R2 was calculated on the fitted model. Moreover, a Linear Regressor and 

R2 were calculated, gathering all the data of each status. Both models and R2 were computed 

through an in-house python script relying on the Scikit-Learn python library v 1.0.2. 

To assess the composition of cancer stages in each SI, we divided peaks from the master list 

into 32 groups (from SI=1 to SI=32). In each group, we calculate the percentage of peaks 

belonging to every disease group (Healthy, Onset, Remission, and Relapse). The stacked bar 

plot was used to display the results. 
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To assess the genomic distance from detected peaks and relative nearest TSS we divided the 

peaks into four lists, one for each disease group, containing only peaks detected in at least one 

sample within each group. We ran each list to the annotatePeaks.pl function included into 

HOMER suite (73). Then, peaks were divided into five groups of distance relative to the closest 

TSS (<5kb , 5kb-20kb, 20kb-100kb, >100kb). Finally, for each group was calculated the 

percentage contribution at each distance group and plot with an in-house R scripts. The 

HOMER results described above were also used to classify peaks according to the genomic 

context. Hence, peaks were divided into six classes (Non-Coding, Promoter, Exon, Intron, TTS, 

and UTR) according to the HOMER output. 

Observed and Expected (O/E) relationship of peaks at disease stage 

We measured the significance of the observed peaks in our cohort and their relationship with 

the disease stage. A count of the observed number of peaks belonging to each Penetrance score 

was performed. The expected number of peaks for each status per SI was calculated applying 

this formula:  

𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑒𝑎𝑘𝑠  =  
𝑇𝑟  ⋅  𝑇𝑐
𝑇𝑟  +  𝑇𝑐 

With: 

Tr: total number of peaks in a row 

Tc: total number of peaks in a column 

Finally, we performed the observed-expected ratio for each disease group per SI. 

Assessment of peak dynamics during BCP-ALL evolution 

Peaks were stratified according to their relative impact in driving cancer onset and relapse. We 

first assigned the median of the Clonality index and the Penetrance index to each peak of the 

master list. The final matrix was then populated with peak coordinates (hg19) at the rows and 

Clonality index median and penetrance index of each status at the columns (eight columns). 

The selection criteria to prioritize the phenotypical peak drivers are the following:  
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Peaks that harbor Onset Penetrance Index ≥ 9 and Healthy Penetrance Index ≤ 3 were selected. 

Peaks that show an increase of at least 20 in the difference between the Healthy Clonality index 

median and Onset Clonality index were selected. Finally, peaks that harbor an increase of at 

least 20 in the difference between the Remission Clonality index median and Relapse Healthy 

Clonality index were selected. Finally, we obtained a list of unique 11.077 unique peaks. 

Enrichment trends of the selected peak at each cancer stage were plotted as a boxplot with an 

in-house r script. 

Density distribution of phenotypically driver peaks 

We measured the relationship of the selected peaks according to the cancer stage by calculating 

the density distribution of the penetrance score. We first calculated the ratio of each peak by 

the number of total samples at the disease stage and obtained a standardized score ranging 

between 0 to 1, where 0 is associated with a silent state and 1 to activation in all the patients in 

the disease stage cohort. Finally, we plotted the density distribution of peaks across the four-

cancer stages through the plot_density function of the ggplot2 R package v 3.3.5. 

Heatmap of peak dynamics during BCP-ALL evolution 

A heatmap was performed to assess the read count of the 11.077 selected peaks across all 32 

samples. First, a read count of these sites was performed through the bedtools multicov v2.29.2 

with standard parameters. The obtained reads count was normalized through the R package 

edgeR v. 3.36.0 in order to obtain the log2(TMM+1) metric. Finally, the TMMs were scaled, 

and the visualization was performed through an R script through the ComplexHeatmap R 

package v. 2.10.0. The cluster detection was accomplished according to the Ward2 hierarchical 

clustering to retrieve four final clusters classified as C1, C2, C3, and C4. The similarity across 

samples was evaluated through the Euclidean distance. 

Transcription Factors Identification 
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Peaks belonging to the selected four clusters above (C1, C2, C3, C4) were analyzed in order to 

infer the putative transcription factor able to bind towards these genomic regions. The HOMER 

findMotifsGenome.pl (parameter: --genome hg19) tool v4.11 was employed. For each of the 

significant transcription factors identified, we calculated the Observed/Expected ratio and 

displayed the data as a circular bar plot with an in-house r script.  

Integration with TCeA portal data 

To infer the number of eRNA productive peaks, we integrated our peak selection with the 

TCeA portal  

(40) (https://bioinformatics.mdanderson.org/Supplements/Super_Enhancer/TCEA_website/) 

by downloading the Canonical Enhancer and Super-Enhancer data from available tumor types. 

We performed the intersection of the 2 datasets with our peak selection with bedtools intersect 

tools v2.29.2.  

Putative eRNA in the BCP-ALL cohort 

In order to assess the amount of actively transcribed enhancers, we performed a bedtools 

intersect between the TCeA eRNA data and the blacklisted MACS2 output narrowpeak file of 

each patient. Finally, we plotted the MACS2 (74) signalValue of the actively transcribed peaks. 

The violin plot was ordered according to the median of the peaks’ enrichment in each patient. 

eRNA identification of RNA-seq BCP-ALL cohort 

Total RNA sequencing was performed to estimate the eRNA expression across 8 samples (4 

Healthy and 4 Onset) at the cancer phenotype's selected regulatory regions. Quality control of 

the RNA-sequencing reads was obtained through FastQC v0.11.9. Reads were aligned to the 

reference genome hg19 using STAR (v. 2.7.9a) (75). The conversion from sam to bam file was 

performed through the view function of SAMtools v1.7. 

 C1 and C2 clusters (N=5216) were extended with the DHS sites downloaded from 

https://personal.broadinstitute.org/meuleman/reg2map/HoneyBadger_release/ to quantify the 
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expression of the non-coding genomic regions across the 11 patient RNAseq. We then removed 

all regions intersecting exonic regions. The read count of the extended non-coding regions 

(N=4935) was evaluated through the multicov function of bedtools v2.29.2 with standard 

parameters.  

The read count standardization was accomplished through the edgeR v. 3.36.0 in order to obtain 

the scaled log2(TMM+1) used for the heatmap visualization. The two distinct clusters were 

carried out by dividing the dendrogram generated from the hierarchical cluster into two 

clusters. Finally, the sites of the target genes were identified according to the nearest gene 

inferred by using the HOMER annotatePeaks.pl (parameter: --genome hg19) function v4.11. 

Promoter-Capture Analysis 

Paired end FASTQ files were aligned against the hg19 genome. The KR-normalized contact 

matrices and the loop annotation were performed with Juicer (76) v 1.9.9. Loops were called 

at 5kb, 10kb, and 25kb resolution. 

We classified each promoter-CRE looping by intersecting the bedpe file generated by Juicer 

and the promoter coordinates (downloaded from 

https://egg2.wustl.edu/roadmap/data/byDataType/dnase/BED_files_prom/regions_prom_E00

1.bed) using bedtools intersect v2.29.2. We calculated the number of interactions in three 

different target-anchor loops (promoter-promoter, promoter-NonCoding, and NonCoding-

NonCoding). Moreover, we assessed the looping length in genomic coordinates according to 

the distance from anchor to targets into five classes (<50kb, 50kb-200kb, 200kb-500kb, 500kb-

1Mb, and >1Mb).   

RNA-seq analysis of LAL-B and B cells during differentiation 

Differential expression analysis across LAL-B cell line and normal B cells (77) (GEO :  

GSE118165 ; Table 1). Samples were aligned to hg19 through STAR and quantified with 

RSEM (78).  Both the alignment and quantification were performed through the nf-core/rnaseq 
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v3.0 from NEXTFLOW v21.05.0-edg (79) with parameters: --aligner star_rsem. The 

quantification files were normalized through the standard edgeR (v 3.36.0) pipeline. Once the 

normalization step was carried out, we selected only the target gene of the selected enhancers 

and compute both the Ward2 hierarchical clustering and the heatmap with the R package 

ComplexHeatmap v 2.10.0. 

Identification of the enhancer-target genes was manually curated by integrating ENCODE data 

(80) (ChIAP-pet, H3k27ac ChIP-seq), RNA-seq from TCGA and Promoter-Capture of LAL-

B. 

ATAC-seq of B cells at multiple differentiation states 

B-cell ATAC-seq FASTQ files were available at the GEO GSE118189 (Table 3). 

The FASTQ quality was assessed with FastQC v0.11.9. Reads were aligned to the reference 

genome hg19 using bowtie v2.3.5.1 with default parameters. The conversion from sam to bam 

file was performed through view function of SAMtools v1.7. BAM files were deduplicated 

with GATK v4.1.9.0 markDuplicates with default parameters. ATAC-seq peaks were called 

by MACS2 v2.2.6 with parameters --format AUTO --nomodel --shift -100 --extsize 200 -B --

SPMR --call-summit -q 0.01 -g hs. BigWig (bw) files were obtained from the BedGraph (bdg) 

files with bedGraphToBigWig v4 with default parameters. Finally, all peaks matching 

blacklisted regions (downloaded from 

https://www.encodeproject.org/files/ENCFF001TDO/@@download/ENCFF001TDO.bed.gz) 

were removed with the function intersect of bedtools v2.29.2. 

An assessment of read count both for LAL-B cell line, and the normal B-cell was performed 

through the bedtools multicov function v2.29.2. Finally, the read count file was standardized 

according to the library size through the edgeR R package v 3.36.0 and plotted through the 

ComplexHeatmap R package v 2.10.0. Both rows and columns of the resulting heatmap were 
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clustered through the Ward2 unsupervised hierarchical clustering methods computing the 

distance through the Euclidean distance.  

Assessment of selected CRE clonality during BCP-ALL evolution 

The clonality trends of the selected enhancer were assessed by analyzing Clonality Index across 

the four cancer stages and depicted as violin plots. 

For each enhancer, the Clonality indexes were plotted, and statistical tests were performed: 

Kruskal-Wallis rank-sum test followed by Dunn's Test. 

Analysis of Transcription Factors (TF) 

We inferred the Transcription factor binding to the selected 111 enhancer, by downloading 32 

ChIPseq of Transcription Factors: AP1: 8 samples, ATF3 : 4 samples, EBF1 : 2 samples ,  

ELK4 : 2 samples, ERG:1 sample, ETS1 : 2 samples,  ETV4 : 3 samples,  FRA2 : 2 samples , 

RUNX1 : 5 samples ,RUNX2 : 2 samples. Data were available in fastq format from the 

ChIPAtlas (81) (all the downloaded files annotation are gathered in the table 5). The fastq 

alignment and ChIP-seq seq peak detection were performed as described in the previous 

sections. For each transcription factor was performed the intersection between the selected 

enhancer and the blacklisted files with bedtools intersect v2.29.2. Finally, we ranked the TF by 

the number of the relative signal matching the selected enhancer. 

  

Pan-cancer analysis of H3K27ac ChIP-seq at selected 130 CREs 

We downloaded all the available cell lines and primary cancer cell lines profiled for H3K27ac 

ChIP-seq available in ENCODE (all the downloaded files annotation are gathered in the table 

6). Peak profiles of each BAM file were obtained as the follows: i) sorted with samtools sort 

v1.7; ii) the duplicated reads were removed with GATK v4.1.9.0 markDuplicates with default 

parameters; iii) the resulting file was indexed through samtools index v1.7; v) peaks were called 

through the MACS2 v2.2. callpeak function (parameters: --format AUTO -B --SPMR --call-
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summits -q 0.01); vi) BigWig (bw) files were obtained from the BedGraph (bdg) files with 

bedGraphToBigWig v 4 with default parameters. We assigned the Clonality Index to each 

significant peak as previously described. Clonality index annotation at the selected 130 CREs 

were shown as a heatmap where rows were arranged to display the enhancer detected in the 

highest number of cell lines at the top. Moreover, Ward2 hierarchical clustering was performed 

on the column and the sample distance was computed with the Euclidean distance.  

Gene dependency analysis 

The fitness scores (CHRONOS) describing the effect caused by CRISPR knockout of 17.393 

genes were downloaded from DepMap Public 21Q3 portal, table name 

CRISPR_gene_effect.csv. The data were restricted to only genes that resulted up-regulated 

from the differential analysis between LALB and B cells (N=106) and then plotted CHRONOS 

score of all available cell lines. The procedure to determine this list of genes was previously 

described. We further selected the genes exhibiting strong dependency specific to only BCP-

ALL cell lines by ranking each CHRONOS score x disease cell lines. Only the genes showing 

lower CHRONOS score (high dependency) to BCP-LL cell lines (697, JM1, SEM, RCHACV, 

NALM6, REH, ROS50, SEMK2, HB1119, NALM16, P30OHK) were retained and plotted 

with an in-house R script. 

Data availability  

The raw sequencing data are available on the ENA portal at accession number PRJEB52642. 
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FIGURE LEGENDS 

 

Fig.1: Differential analysis of BCP-ALL accessibility during cancer progression 

a) Histogram showing the total number of ATAC-seq significant peaks x sample profiled. X-

axis: name of the sample; Y-axis: Absolute number of significant peaks. Color legend: Blue= 

Healthy samples; Green= Samples at Onset; Orange= Samples at Remission; Relapse= 

Samples at relapse. b) PCA of accessibility profiles of our patient cohort. Up: PCA between 

principal component 1 (x-axis) and principal component 2 (y-axis). Down: PCA between 

principal component 1 (x-axis) and principal component 3 (y-axis). Shaded areas in the PCA 

plot represent 90% confidence ellipses. Color legend: Blue= Healthy samples; Green= Samples 

at Onset; Orange= Samples at Remission; Relapse= Samples at relapse. c) Left: Differential 

analyses of accessibility profiles between Healthy vs. Onset (green point) and Healthy vs. 

Relapse (red point). X-axis: different points of significance; Y-axis: Number of differential 

peaks identified in the analyses. Right: Differential analyses were performed by applying 100 

random sampling from the patient cohort. Group sizes matched the Healthy, Onset, and Relapse 

cohort. X-axis: different points of significance; Y-axis: Number of differential peaks identified 

in the analyses. d) MA plot of the differential peak accessibility. Top: Healthy vs. Onset; 

Middle: Healthy vs. Remission; Bottom: Healthy vs. Relapse. X-axis: Log2(Peak mean), Y-

axis: Log Fold Change of the differential accessibility of peaks. N= number of significant 

differential peaks identified in the analysis where logFC>0.7 is upregulation in Healthy; 

logFC<-0.7 is upregulation respectively at Onset (green), Remission (orange), and Relapse 

(red). e) Disease ontology associated with the differential analysis of accessibility. Top: 

Upregulation at the Onset; Middle: upregulation at the Remission; Bottom: upregulation at the 

Relapse. Analysis was performed against Healthy tissues. The analysis is performed with the 

GREAT tool. 
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Fig. 2: Dissection of cis-regulatory heterogeneity of BCP-ALL. 

a) Workflow of the study. From left to right: We profiled 32 samples of BCP-ALL to identify 

putative cis-regulatory regions. With a scoring strategy based on the Clonality and Penetrance 

indices, we dissected the accessibility landscape and prioritized the study toward the most 

clonal/penetrant cis-regulatory sites. Then, these two scores assigned to each CRE were used 

to monitor clonality and penetrance during BCP-ALL evolution by assessing the variation of 

CREs modulation at Healthy> Primary> Remission > Relapse stages. To provide more insights 

into the functional role of the selected CREs, we integrated data from the TCEA portal (cit), 

which provide enhancer RNA-seq profiles from 8928 samples of 33 cancer. Furthermore, we 

integrated a 377MB region of super-enhancer into our selection. We validated several elements 

with CRISPR KO and experimental procedures among all the selected CRE sustaining BCP-

ALL progression. b) Upset plot of detected peaks among the different groups of patients. X-

axis: Intersection combination; Y-axis: the absolute number of detected sites. Color legend: 

Blue= Healthy samples; Green= Samples at Onset; Orange= Samples at Remission; Relapse= 

Samples at relapse; Violet: Barchart of the number of detected sites at each intersection. c) 

Left: Stacked bar chart representing the percentage of significant peaks (x-axis) x group in the 

function of the penetrance index (x-axis); Right: Stacked bar chart representing the percentage 

of peaks x groups in the function of the distance to the closest annotated Transcription Starting 

Site in hg19 reference genome (TSS). Color legend: Blue= Healthy samples; Green= Samples 

at Onset; Orange= Samples at Remission; Relapse= Samples at relapse. d) Boxplots show the 

median Clonality Index value and interquartile ranges for each detected peak x disease stage 

in the function of the Penetrance index. Color legend: Blue= Healthy samples; Green= Samples 

at Onset; Orange= Samples at Remission; Relapse= Samples at relapse. e) Observed/Expected 

(O/E) ratio of peaks (y-axis) at any penetrance score (x-axis) between Healthy vs Onset (left) 
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and Remission vs Relapse (right). Color legend: Blue= Healthy samples; Green= Samples at 

Onset; Orange= Samples at Remission; Relapse= Samples at relapse. 

Fig. 3: Enhancer engagement varies amongst BCP-ALL cancer stages. 

a) Boxplot depicting the Clonality index of the selected CREs at the Healthy, Onset, Remission, 

and Relapse status. Color legend: Blue= Healthy samples; Green= Samples at Onset; Orange= 

Samples at Remission; Relapse= Samples at relapse. Statistical test: Kruskal-Wallis test 

followed by Dunn’s test. Pval= *<10-4. Statistical significance was calculated using a pairwise, 

two-tailed t-test. b) Unsupervised Clustering Heatmap showing z-scaled log2(TMM) score 

enrichment of the selected CREs (N=) in each given patient of the cohort. The analysis 

identified two main branches of data (left) and four main clusters named C1, C2, C3, and C4 

(right). Color legend: Blue= Healthy samples; Green= Samples at Onset; Orange= Samples at 

Remission; Relapse= Samples at relapse. c) Polar bar plot depicting transcription factor motif 

enrichment at C1, C2, C3, and C4 sites. Bar plot representing the Observed/Expected ratio of 

the transcription factor motif at any given C cluster. d) Unsupervised heatmap depicting eRNA 

at selected CREs (C1, C2) not matching exons annotation (hg19). RNA-seq data from the 

sample cohort composed 4 Healthy tissues and four tissues at the Onset. Data were normalized 

and scaled with z-scoring. The window (right) highlights the closest genes (distance ranging 

|10kb| from each CREs) associated with the upregulated regions at the Onset. Disease Ontology 

(bottom) of upregulated CREs at the Onset obtained with GREAT tool. Color legend: Blue= 

Healthy samples; Green= Samples at Onset 

E) Stacked pie chart of C1, C2, 3, C4 selected CREs intersected with ERNA TCeA portal (left) 

and Super-Enhancers TCeA portal (Right). Color legend: Green= C1; Yellow= C2; Blue= C3; 

Red= C4. f) Upset plot of C1, C2, C3, and C4 selected CREs and LALB ATAC-seq peaks. X-

axis: Intersection combination; Y-axis: the absolute number of detected sites at each 
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intersection. g) Disease ontology of 108 CREs in C1 and C2 matching LALB cells. Ontology 

obtained with GREAT tool. 

Fig. 4: Identification of enhancer-target genes in LAL-B. 

a) Barchart summarizes the number of absolute significant interactions of Promoter-Capture 

HiC in LALB cells grouped by annotation of anchor and target in the genomic context (left) 

and the number of absolute interactions specific to only CRE-Promoters (hg19) in LALB 

grouped by range distance (right). Color legend: Red= 5kb resolution; Green= 10kb resolution; 

Violet= 25kb resolution. b) Unsupervised clustering of gene expression (RNA-seq) of LAL-B, 

Naïve-B, Mem-B, and Bulk-B cells (triplicates for each category) obtained from Calderon et 

al. Nat. Gen 2019. Data were normalized and scaled with z-scoring. Genes interrogated in the 

heatmap (N=) are selected by evidence of looping with the 108 selected CREs. Color legend: 

Violet= LAL-B cells; Light grey= Naïve-B; Blu= Mem-B; Grey=Bulk-B cells. c) Plot showing 

the ranked most dependent genes of BCP-ALL among the selected from figure 4B (x-axis) in 

the function of the number of ALL-B cell lines (N=11) ranking at the top 10% of the most 

sensitive cell lines among the total number of available cell lines in the DEPMAP portal at any 

given gene. d) Plots showing the Chronos score of MYB and DCTD genes of the selected ALL-

B cell lines (pink) and all the other cell lines (grey). 

Fig. 5: Myb enhancers sustain BCP-ALL progression 

a) Relative expression of Myb protein determined by Western Blot (WB) in healthy ( N=3), 

onset (N=4), remission (N=5), and relapse (N=5). β-actin was used as loading control. b) 

Chromatin looping identified by Hi-C Promoter-Capture sequencing at the MYB/HBS1L 

genomic window (top), integrated with Pol2 ChIA-PET data of K562 downloaded from 

ENCODE. Selected CRE elements are depicted in the dark brown boxes. Red boxes show 

looping genomic interactors identified by JUICER. c) ATAC-seq, RNA-seq profiles of our 

patient cohort at Healthy Onset, Remission, Relapse (ATAC-seq) and at Healthy and Onset 
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(RNA-seq) at the MYB/HBS1L genomic window, ATAC-seq of LAL-B and H3K27ac ChIP-

seq of LAL-B. Black boxes show the identified CREs within the window. Light grey windows 

highlight selected CREs experimentally validated. Together with violin plots depicting the 

Clonality index of the given CRE in the patient cohort. Pval represented at the top of each 

violin plot group is obtained by applying the Kruskal-Wallis chi-squared The statistical test 

applied: Pairwise Wilcoxon rank-sum test. *= Pval< 0.05. Color legend of violin plot: Blue= 

Healthy samples; Green= Samples at Onset; Orange= Samples at Remission; Relapse= 

Samples at relapse. d) Left, quantitative RT-PCR (qRT-PCR) analysis for Myb expression 

performed in B-ALL cells following CRISPR/Cas-9 of -51 kb region using two different 

gRNAs (#1-#2), compared to a control gRNA. Relative fold changes were determined by the 

comparative threshold (DDCt) method using b-actin as endogenous normalization control. Data 

are presented as mean ± SD of three independent experiments: middle, WB with the indicated 

antibodies in control gRNA and -51 kb gRNA #1 and #2. b-actin was used as loading control; 

right, cell number analysis of control cells and -51 kb depleted cells at different time points. 

Data are presented as mean ± SD of three independent experiments. e) Left, qRT-PCR analysis 

for Myb expression performed in B-ALL cells following CRISPR/Cas-9 of -67 kb region using 

two different gRNAs (#1-#2), compared to a control gRNA. Relative fold changes were 

determined by the comparative threshold (DDCt) method using b-actin as endogenous 

normalization control. Data are presented as mean ± SD of three independent experiments; 

middle, WB with the indicated antibodies in control gRNA and -67 kb gRNA #1 and #2. b-

actin was used as loading control; right, cell number analysis of control cells and -67 kb 

depleted cells at different time points. Data are presented as mean ± SD of three independent 

experiments. **P≤ 0,01, ***P≤ 0,001 by Student’s t-test.  

 

 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted May 19, 2022. ; https://doi.org/10.1101/2022.05.18.492497doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.18.492497


   
 

   
 

41 

Fig. 6: DCTD enhancer is a dominant clone of BCP-ALL progression. 

a) Relative expression of DCTD protein determined by WB in Healthy (N=3), Onset (N=4), 

Remission (N=5), and Relapse (N=5). β-actin was used as loading control. b) Chromatin 

looping identified by Hi-C Promoter-Capture sequencing at the TNEM/DCTD intergenic 

region (top), integrated with Pol2 ChIA-PET data of K562 downloaded from ENCODE. 

Selected CRE element is depicted in the dark brown box. Red boxes show looping genomic 

interactors identified by JUICER at different resolution. c) ATAC-seq, RNA-seq profiles of 

our patient cohort at Healthy Onset, Remission, Relapse (ATAC-seq) and at Healthy and Onset 

(RNA-seq) at the TNEM/DCTD genomic window. Black boxes show the identified CREs 

within the window. Light grey windows highlight selected CREs experimentally validated. 

Together with violin plots depicting the Clonality index of the given CRE in the patient cohort. 

Pval represented at the top of each violin plot group is obtained by applying the Kruskal-Wallis 

chi-squared. The statistical test applied: Pairwise Wilcoxon rank-sum test. *= Pval< 0.05. Color 

legend of violin plot: Blue= Healthy samples; Green= Samples at Onset; Orange= Samples at 

Remission; Relapse= Samples at relapse. d) Left, qRT-PCR analysis of DCTD eRNA 

expression (eDCTD) or DCTD gene expression in B-ALL cells following CRISPR/Cas-9 with 

two different gRNAs (#1- #2) compared to a control gRNA. Relative fold changes were 

determined by the comparative treshold (DDCt) method using b -actin as endogenous 

normalization control. Data are presented as mean ± SD of three independent experiments; 

middle, WB for DCTD in B-ALL cells to evaluate CRISPR/Cas-9 efficiency. b-actin was used 

as loading control; right, cell number analysis was performed in B-ALL cells treated as in D at 

different time points. Data are presented as mean ± SD of three independent experiments. **P≤ 

0,01, ***P≤ 0,001 by Student’s t-test.  
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SUPPLEMENTARY FIGURES   

Supplementary Figure 1. a) Stacked bar chart depicting the percentage of ATAC-seq peaks 

x disease stage (Healthy- Onset- Remission-Relapse) in the function of the genomic distance 

to the closest TSS. Color legend: Blue= Healthy samples; Green= Samples at Onset; Orange= 

Samples at Remission; Relapse= Samples at relapse. b) Stacked bar chart showing the absolute 

number of ATAC-seq peaks at each given genomic annotation in Healthy, Onset, Remission, 

and Relapse groups. Color gradient from Purple to Green: Non-coding, Promoter, Exon, Intron, 

TTS, UTR. Annotation generated with HOMER suite. c) Upset plot of detected peaks at TSS 

(Promoter-like) proximity among the different groups of patients. X-axis: Intersection 

combination; Y-axis: the absolute number of detected sites. Color legend: Blue= Healthy 

samples; Green= Samples at Onset; Orange= Samples at Remission; Relapse= Samples at 

Relapse; Violet: Barchart of the number of detected sites at each intersection. d) MA plot of 

the differential peak accessibility. Left: Remission vs. Onset; Middle: Remission vs. Relapse; 

Right: Relapse vs. onset. X-axis: Log2(Peak mean), Y-axis: Log Fold Change of the 

differential accessibility of peaks. N= number of significant differential peaks identified in the 

analysis where logFC>0.7 is upregulation in Healthy; logFC<-0.7 is upregulation respectively 

at Onset (green), Remission (orange), and Relapse (red). e) Upset plot of differential peaks 

among all the differential analyses performed. X-axis: Intersection combination; Y-axis: the 

absolute number of detected sites. Color legend: Blue= Healthy samples; Green= Samples at 

Onset; Orange= Samples at Remission; Relapse= Samples at relapse. f) Ontologies of the 

differential accessible sites at Healthy vs. Onset (left) and Healthy vs. Relapse right. Top: 

Biological Process; Middle: Disease Ontology; Bottom: Mouse Phenotype. The analysis is 

performed with the GREAT tool. Color scheme: Green= Upregulation at Onset; Red= 

upregulation at Remission g) Upset plot of differential peaks among all the differential analyses 

performed. X-axis: Intersection combination; Y-axis: the absolute number of detected sites. 
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Color legend: Blue= Healthy samples; Green= Samples at Onset; Orange= Samples at 

Remission; Relapse= Samples at relapse. H) Peak signal normalized across the full cohort of 

patients at selected genomic windows. Color legend: Blue= Healthy samples; Green= Samples 

at Onset; Orange= Samples at Remission; Relapse= Samples at relapse. Clonal CREs at the 

Onset and Relapse were further selected. 

 
Supplementary Figure 2 

a) Line plot of the linear regression between clonality index and the penetrance index among 

the four disease groups. y-axis = Clonality index, x-axis = Penetrance index. The coefficient of 

determination of each given linear analysis performed is shown on the bottom right. Color 

legend: Blue= Healthy samples; Green= Samples at Onset; Orange= Samples at Remission; 

Red= Samples at relapse. 

 

Supplementary Figure 3 

a) Density distribution of the selected 11k (C1, C2, C3, C4) CREs in healthy, onset (top) and 

remission and relapse (bottom). Y-axis= CREs density; x-axis= intra group normalized 

penetrance score. Color legend: Blue= Healthy samples; Green= Samples at Onset ; Orange= 

Samples at Remission; Red= Samples at relapse. b) Barchart shows the number of the selected 

peak in relationship with the genomic distance to the closest TSS. c) Gene ontology analysis 

of the selected peaks at three different databases: Biological process (blue); Disease ontology 

(red); Human Phenotype (violet). Significance is depicted on the x-axis (FDR) d) Violin plot 

shows peak enrichment over background at eRNA loci in each sample identified by integrating 

the TCeA portal. Samples are sorted from low (left) to high (right) by the median of peak 

enrichment. e) Upset plot shows the common peaks between the master list of onset, relapse, 

and LAL-B cell lines. Color legend: Green= Samples at Onset ; Red= Samples at relapse; 

Violet= LAL-B. f) Dot plot shows the frequency (y-axis) of the Transcription Factors at the 
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108 selected CRE. Transcription factors are ranked by the number of binding events among 

the selected 108 CREs. 

 
Supplementary Figure 4 

a) Heatmap shows the clonality score of the selected CREs (N=118) from H3k27ac ChIP-seq 

available on 159 cell lines (ENCODE data). Data were gathered by unsupervised clustering at 

the column and supervised at the rows. Column: Cell Lines Rows: CREs are named by the 

closest gene. Color legend: Blue= lower clonality index, Red= higher clonality index; White= 

no signal. 

 

Supplementary Figure 5 

a) Example of Promoter-Capture HiC looping in LAL-B (top) together with signals of (from 

top to bottom) ATAC-seq of LAL-B, CTCF ChiaPet of K562, Pol2 ChiaPet of K562, ATAC-

seq from patients at Healthy, Onset, Remission and Relapse. The genomic window covers the 

coordinates of MYC locus (chr8:127,025,953-130,946,417), reference genome is HG19. Color 

legend: Blue= Healthy samples; Green= Samples at Onset; Orange= Samples at Remission; 

Relapse= Samples at relapse b) The heatmap depicts the unsupervised clutering of ATAC-seq 

data at the C1, C2, C3, C4 selected loci in Naïve-B cell (light grey), Memory B-cell (sky-blue), 

Bulk Bcell (dark-grey) and LAL-B (violet). Enrichment data are log2(Z-scaled). Color legend: 

Blue= low enrichment, Red= high enrichment. c) Dot plot showing the Chronos score (x-axis) 

of the selected genes (N=106 genes) in all the vailable cell lines (grey dots). ALL-B cell lines: 

697, JM1, SEM, RCHACV, NALM6, REH, ROS50, SEMK2, HB1119, NALM16, P30OHK 

are colored violet. 

 

 

 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted May 19, 2022. ; https://doi.org/10.1101/2022.05.18.492497doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.18.492497


   
 

   
 

45 

Supplementary Figure 6 

a) Bar Chart shows the cumulative enrichment of gene expression of single-cell types of the 

most expressing MYB gene. Colors depicts cell groups as follows: Red= Blood and immune 

cell types; Light blue= Undifferentiated cells; Blue= Glandular epithelial cells; Purple= 

endothelial cells; Orange= Pigment cells. Data obtained from Human Protein Atlas portal 

https://www.proteinatlas.org/. b) Box plot shows RNA expression of MYB in cancer tissues 

from TCGA. Data obtained from Human Protein Atlas portal https://www.proteinatlas.org/. c) 

MYB mRNA levels were analyzed by qRT-PCR in bone marrows samples of healthy donors 

(4), or from B-ALL patients at the time of onset (3), remission (3) or relapse (3). Relative fold 

changes were determined by the comparative threshold method (DDCt) using b-actin as 

endogenous normalization control. Data are presented as mean ± SD of three independent 

experiments. ***P ≤0.001. d) Cumulative single-cell ATAC-seq signal in healthy Plasma cells 

(TOP) and Memory B Cells (Bottom) at MYB/HBS1L genomic window. Data obtained from 

http://catlas.org/humanenhancer/#!/. e) Boxplots show the Ratio between peaks (N-score) at 

enhancer at 51kb (left) and enhancer at 67kb (right) and MYB promoter signal in the patient 

cohort. Each dot represents a patient. Color legend: Blue= Healthy samples; Green= Samples 

at Onset; Orange= Samples at Remission; Relapse= Samples at relapse. Statistical tests 

performed: Kruskal-Wallis rank-sum test followed by Dunn's Test. *P≤ 0.05. f) qRT-PCR 

analysis for Myb (left) or HBS1L (right) expression performed in B-ALL cells following 

CRISPR/Cas-9 of -51 kb region or -67 kb region using in each two different gRNAs (#1- #2), 

compared to a control gRNA. Values were normalized with b-actin mRNA levels using DDCt 

method. Data are presented as mean ± SD of three independent experiments.  ***P ≤0.001, **P 

≤0.01 by Student’s t-test.  
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Supplementary Figure 7 

a) Bar Chart shows the cumulative enrichment of single cell gene expression of different cell 

types of the most expressing DCTD gene. Colors depicts cell groups are showed on the right 

legend. Data obtained from Human Protein Atlas portal https://www.proteinatlas.org/. b) 

Protein expression of DCTD. Percentage of patients (y-axis) with high and medium DCTD 

protein level in different cancer cell types. Color code of the barchart  is according to the type 

of normal organ the cancer originates. Data obtained from Human Protein Atlas portal 

https://www.proteinatlas.org/. c) Gene expression of DCTD gene  (y-axis)in cancer (red) vs 

normal (green) tissues in cancer types available on TCGA portal. Cancer types exhibiting 

significance difference are colored red on the cancer type labeL (top). Data obtained from 

GEPIA2 (http://gepia2.cancer-pku.cn/). d) DCTD mRNA levels were analyzed by qRT-PCR 

in bone marrows samples of healthy donors (4), or from B-ALL patients at the time of onset 

(3), remission (3) or relapse (3). Values were normalized with b-actin mRNA levels using DDCt 

method. Data are presented as mean ± SD of three independent experiments.  ***P ≤0.001, **P 

≤0.01 e) Left, WB analysis of total cellular extracts from B-ALL cells transfected with siRNA 

oligonucleotides targeting DCTD (siDCTD) or a control sequence (siControl).  b-actin was 

used as loading control. The same B-ALL cells were analyzed for cell number (middle) and for 

DCTD mRNA levels by qRT-PCR (right). Data are presented as mean ± SD of three 

independent experiments.  ***P ≤0.001, **P ≤0.01. f) RNA expression data as normalized 

transcript per million of reads (y-axis) in cell lines. Color codes are according to the tissue of 

origin of the cell lines. Data obtained from Human Protein Atlas portal 

https://www.proteinatlas.org/. g) Boxplots show the Ratio between peaks (N-score) at the 

selected enhancer and the MYB promoter signal in the patient cohort. Each dot represents a 

patient. Color legend: Blue= Healthy samples; Green= Samples at Onset; Orange= Samples at 
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Remission; Relapse= Samples at relapse. Statistical tests performed: Kruskal-Wallis rank-sum 

test followed by Dunn's Test. *P≤ 0.05. 
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 Newly Diagnosed 
Patients Relapsed Patients 

  N.or median (% or range) N.or median (% or range) 

Number Of Patients 26 (4 matched) 8 

Gender    

Females 7 (27%) 1 (12%) 

Males 19 (73%) 7(88%) 
Age at diagnosis 
(years) 7,5 (0,4 - 18) 8,5 (2 - 18) 

Age at Relapse 
(years) - 10,6 (4 - 23) 

Disease Status    

Diagnosis 26 (100%) - 
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1^ Relapse - 2 (25%) 

2^ Relapse - 5 (62%) 

3^ Relapse - 1 (12%) 
Molecular 
abnormalities    

None 14 (64%) 2 (25%) 

t(12;21) (TEL/AML1) 4 (18%) 1 (12%) 

t(9;22) (BCR/ABL) 1 (4%) 1 (12%) 

t(9;11) 1 (4%) 0 (0%) 

t(3;9) 1 (4%) 0 (0%) 

t(3;20) 1 (4%) 0 (0%) 

t(9;10) 1 (4%) 0 (0%) 

t(5;11) 0 (0%) 1 (12%) 

t(6;9) 0 (0%) 1 (12%) 

t(7;9) 0 (0%) 1 (12%) 

t(11;13) 0 (0%) 1 (12%) 

t(16;1) 0 (0%) 1 (12%) 

t(8;14) 0 (0%) 1 (12%) 

r(KMT2A) 1 (4%) 1 (12%) 

Aneuploidy    

Yes 8  (36%) 5 (62%) 

No 14 (64%) 3 (37%) 

*Defined as chromosome number > or < 46  
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