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Abstract 
 
We present VBASS, a Bayesian method that integrates single-cell expression and de novo 
variant (DNV) data to improve power of disease risk gene discovery. VBASS models disease 
risk prior as a function of expression profiles, approximated by deep neural networks. It learns 
the weights of neural networks and parameters of Poisson likelihood models of DNV counts 
jointly from expression and genetics data. On simulated data, VBASS shows proper error rate 
control and better power than state-of-the-art methods. We applied VBASS to published 
datasets and identified more candidate risk genes with supports from literature or data from 
independent cohorts.  
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Background 
 
About 3% of children are born with congenital anomalies or will develop neurodevelopmental 
disorders (NDD)1. Given the severe consequence of these conditions on reproductive fitness, 
risk variants with large effect are under strong negative selection and therefore have low 
frequency in the population. Recent genetics studies identified hundreds of risk genes of these 
conditions, largely by rare de novo variants2-11, however, the majority of risk genes remain 
unidentified10,12-15, due to challenges in statistical power in analysis of rare variants16.  
 
Cell-type specific gene expression has long been used qualitatively for interpretation of 
biological mechanisms in developmental biology and genetics. Previously we have shown that 
high expression in developing heart and diaphragm is associated with increased burden of de 
novo coding variants in congenital heart disease (CHD)7 and congenital diaphragmatic hernia9, 
respectively. We have also shown that cell-type specific expression in brain is associated with 
plausibility of autism spectrum disorders (ASD) risk genes17,18. It is clear that gene expression 
profile can inform association analysis of rare variants for risk gene discovery. However, the 
ability to improve power in gene discovery using expression data has been hindered by the lack 
of rigorous statistical methods and cell type specific expression data from relevant tissues 
during development. Recent efforts in cell atlas of human and model organisms have been 
generating large amount of single cell expression data of adult tissues19,20 in addition to an 
increase in various developmental stages21-24. Here we describe a novel computational method 
that leverages expression data with probabilistic models to improve statistical power of risk gene 
discovery. 
 
VBASS (Variational inference Bayesian ASSociation), takes a vector of expression profile, such 
as cell-type specific expression from single cell RNA-seq and models the priors of risk genes as 
a function of expression profile of multiple cell types. VBASS uses deep neural networks to 
approximate the function and uses semi-supervised variational inference to estimate the 
parameters. Although optimized for scRNA-seq data, VBASS could also be applied to bulk RNA 
seq data with a simplified framework. We compared the performances of VBASS with extTADA 
under two conditions (bulk and scRNA-seq data) by both simulated and published de novo 
variants datasets to assess error control and statistical power and showed their better 
performances. 
 
Methods 
 
The probabilistic model of VBASS 
VBASS is a Bayesian mixture model with learnable priors (Figure 1). VBASS assumes the 
number of genetic variants of interest (LGD or Dmis de novo variants) in the gene 𝑑!" are drawn 
independently through this generative process, given 𝑀!" being the aggregated background 
mutation rate for variant type 𝑣 in gene 𝑔 and 𝑥! being the cell type specific gene expression 
profiles in gene 𝑔: 

𝜋! = 𝑓#(𝑥!) 

𝑦!~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝜋!) 

𝑘!" = 6𝑘"
777	𝑖𝑓	𝑦! = 1
1	𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
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𝜃!" = 6𝜃"
777	𝑖𝑓	𝑦! = 1
1	𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

𝛾!"~ 6
𝐺𝑎𝑚𝑚𝑎C𝑘!" , 𝜃!"E	𝑖𝑓	𝑦! = 1

1	𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

𝑑!"~F
𝑃𝑜𝑖𝑠𝑠𝑜𝑛C𝛾!" ∗ 𝑀!"E	𝑖𝑓	𝑦! = 1
𝑃𝑜𝑖𝑠𝑠𝑜𝑛C𝑀!"E	𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

𝜋! is a gene specific prior probability of being disease risk. 𝑦! is a binary random variable that 
indicates whether the gene is a risk gene or not. It is also used to generate a mixture of 
posterior probabilities on effect size 𝛾!".  
 
We use neural network 𝑓# to infer 𝜋! from gene expression data 𝑥! with KL penalty of a fixed 
Bernoulli prior (Figure 1). By default, we used a 32-dim encoding module, followed by a 2-dim 
sampler module for 𝜋, respectively. Each module consists of a linear layer followed by ELU 
activation and layer normalization layers. We apply the same reparameterization trick as 
conventional variational autoencoders in 𝑓# with Bernoulli sampler25. 
 
𝛾!" is a random variable that denotes the enrichment rate of damage variant 𝑣 in the patient 
cohort, which is also known as the relative risk of this gene. 𝛾!" is drawn independently through 
Gamma distribution 𝑝(𝛾!"|𝑘!" , 𝜃!"). 𝑘!" , 𝜃!" are conditioned on 𝑦!, under null they are equal to 1 
while under alternative, they are equal to 𝑘"777 and 𝜃"777, respectively. We assume 𝑘"777 and 𝜃"777 are 
shared across all disease risk genes to reduce the number of parameters.  
 
The loss function is given by the evidence lower bound (ELBO), 

𝐸𝐿𝐵𝑂 = −𝐾𝐿[𝑞(𝑦|𝑥)||𝑝(𝑦)] − 𝔼$%𝑦&𝑥' logC𝑝(𝑑|𝑦)E 
 
The KL penalty term regularized the gene-specific prior 𝜋 by the hyperparameter 𝜋7 (Figure 1), 
which reflects the average proportion of risk genes: 

𝐾𝐿[𝑞(𝑦|𝑥)||𝑝(𝑦)] = 𝐾𝐿[𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑦|𝜋; 𝑓#(𝑥))||𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑦|𝜋7)] 
 
The expectation term quantified the log likelihood of 𝑑 conditioned on 𝑦 integrated on the 
distributions parameterized by 𝜋: 

𝔼$%𝑦&𝑥' logC𝑝(𝑑|𝑦)E = X𝑃𝑜𝑖𝑠𝑠𝑜𝑛C𝑑Y𝛾 ∗ 𝑀; 𝑘"777, 𝜃"777E ∗ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑦|𝜋; 𝑓#(𝑥))𝑑𝑦 
𝑓# , 𝑘"777, 𝜃"777 are the parameters to learn, we use stochastic gradient decent to estimate them. The 
estimated parameters were used to calculate the posterior probability of association (PPA) for 
each gene being risk or not: 

𝑃𝑃𝐴 =
𝜋! ∗ 𝐺𝑎𝑚𝑚𝑎𝑃𝑜𝑖𝑠𝑠𝑜𝑛C𝑑!"Y𝑘"777, 𝜃"777,𝑀!"E

𝜋! ∗ 𝐺𝑎𝑚𝑚𝑎𝑃𝑜𝑖𝑠𝑠𝑜𝑛C𝑑!"Y𝑘"777, 𝜃"777,𝑀!"E + C1 − 𝜋!E ∗ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛C𝑑!"Y𝑀!"E
 

 
For conditions where gene expression data 𝑥! is a scalar, i.e., bulk RNA-seq data or average 
expression data of a certain cell type in scRNA-seq data, we could rewrite 𝑓# as a function with 
sigmoid shape, corresponding to a linear transformation with sigmoid activation: 
 	

𝑓#(𝑥!) = 𝜋7 ∗ 𝑆𝑖𝑔𝑚𝑜𝑖𝑑(𝑥!|𝐴, 𝐵, 𝐶) 



 5 

𝑆𝑖𝑔𝑚𝑜𝑖𝑑(𝑥!|𝐴, 𝐵, 𝐶) = 𝐶 +	
𝐿

1 + 𝐴 ∗ exp	(−𝑥! + 𝐵)
 

𝐿 = (1 − 𝐶) ∗
𝐴

log(exp(𝐴) + exp(𝐴 ∗ 𝐵)) − log	(exp(𝐴 ∗ 𝐵) + 1)
 

while the other parts of the model remain the same. 
 
Given PPA of all genes, we calculate Bayesian false discovery rate (FDR) by estimated false 
discovery proportion following the method described in He et al., 201312: 

FDR( =
∑ (1 − PPA))(
)*+

𝑘
 

Where	𝑖 is the rank index of genes (start with highest PPA), and FDR( 	is the estimated FDR of 
the gene ranked at 𝑘. 
 
Parameter inference for VBASS 
The parameters of VBASS could be inferenced with either unsupervised or semi-supervised 
training. For the scalar version, there are only six parameters to be estimated, 𝜋7, 𝜃"777, 𝑘"777, 𝐴, 𝐵, 𝐶, 
which is possible for complete unsupervised training via MCMC. In practice, we used rstan 
package with 4 chains and 2000 iterations. For the neural network version, it is better to train in 
a semi-supervised manner to avoid converging issues. In practice, we trained the model with 
two training steps. First, we pre-trained our model using known risk genes labeled as positives 
and genes that harbor LGD variants in control cohort as negatives, replacing the Bernoulli KL 
penalty with cross-entropy loss26. The known risk genes (59 in total) were randomly picked from 
SFARI27 (release 2021 Q4) scored 1 genes, while negative controls (86 in total) were picked 
from genes with LGD variants in a control cohort14 (Table S1). During pre-training we set large 
learning rate to make the model converge faster. The parameters estimated from pre-training 
were then used as initial values in the second step, unsupervised training, which uses all genes 
without labels with reduced learning rate after each epoch. In practice, we used 50 epochs of 
semi-supervised pretraining and 60 epochs of unsupervised training. After training, we 
calculated PPA for all genes using the estimated parameters. For the simulation dataset, we 
estimated FDR on all genes to measure the statistical power. For the real dataset, we removed 
the known risk genes selected as positives in training when we estimate FDR to identify 
candidate risk genes. 
 
De novo variants (DNV) and gene expression data 
We obtained DNV data sets from a publication on congenital heart disease (CHD)13 of 2,645 
parent-offspring trios (Table S2) and a preprint on autism spectrum disorder (ASD)11 of 16,616 
trios (Table S3). The latter is a combined data set from exome or whole genome sequencing 
data of the SPARK consortium28, Simons Simplex Collection29, Autism Sequencing 
Consortium30, and MSSNG31. The gene expression rank was based on bulk RNA-seq data of 
mouse developing heart at E14.5, inspired from previous publications6,7. We obtained single cell 
RNA-seq data of human fetal midbrain and prefrontal cortex from two publications21,22. We used 
the combination of developmental time and cell ontology annotations as described in the two 
publications to define cell types. Small clusters of cell types with less than 10 single cells were 
removed. For each gene and cell type, we calculate the proportion of cells that express the 
gene as input to VBASS. 
 
 
Annotation of de novo variants and background mutation rate calculation 
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We used ANNOVAR32 and VEP33 to annotate variants, protein-coding consequences, and 
predicted damaging scores for missense variants. We classified variants as LGD (likely gene 
disrupting, including frameshift, stop gained/lost, start lost, splice acceptor/donor), Dmis 
(Damage missense variants, defined by REVEL34 score ≥ 0.5), missense, or synonymous. For 
each variant type, we calculated the expected number of variants based on a background 
mutation rate model7,35 given the sample size. In-frame deletions/insertions (multiple of 3 
nucleotides) and other splice region variants were excluded in the following analysis. Variants in 
olfactory receptor genes, HLA genes or MUC gene family were excluded in further analysis. 
 
Generation of simulation datasets 
We simulated two datasets to test VBASS’s performance with bulk and scRNA-seq datasets, 
respectively. For the first scenario, we first estimate the parameters based on real dataset and 
then used the estimated hyperparameters to generate the simulated dataset based on the 
Bayesian mixture model. Specifically, we randomly assigned 3.7% of genes as risk gene, then 
we drew the covariates (gene expression rank) of risk genes from the sigmoid distribution 
function. The de novo damage variants were drawn from Gamma-Poisson distribution with 
relative risk of 20 and 12 for LoF and Dmis, respectively. For non-risk genes, we drew 
covariates from a uniform distribution and de novo variants from Poisson distribution. We did the 
simulation under different sample sizes ranging from 2,645 to 20,000. For each sample size 
setting, we simulated 100 datasets and fit both models on each simulated dataset independently 
to estimate the hyperparameters, which were used to calculate the posterior probability of 
association (PPA) and then a Bayesian false discovery rate (FDR) by false discovery proportion 
implied by it. We performed single-tail Poisson tests independently on each simulated dataset to 
show the baseline statistical power, where the FDR were calculated by the Benjamini-Hochberg 
(BH) method. 
 
For the second scenario, the simulation is based on real single cell dataset, where we created a 
non-linear function that maps cell-type specific expression to prior of being risk with following 
steps. First, we did a singular value decomposition (SVD) on the expression data of 59 known 
ASD risk genes (picked randomly from SFARI27 scored 1 genes) and 86 negative control genes 
(picked randomly from genes with LGD variants in control cohort14) (Table S3). Next, we fit a 
logistic regression model with elastic net penalty on the eigen vectors that explain 95% of the 
variance. The regression model was applied to all other genes and the output probabilities were 
squared and scaled to have an average of 3.2%, which matches the average proportion of risk 
genes estimated from extTADA model. This value served as a simulated prior of being risk, from 
which disease risk genes were randomly sampled. The de novo damage variants were drawn 
from Gamma-Poisson distribution for disease risk genes while Poisson distribution for non-risk 
genes with same sample size and relative risk as in real ASD dataset. We performed the 
simulation 50 times with same simulated prior and disease risk genes, then estimated the 
hyperparameters and calculate the PPA and Bayesian false discovery rate (FDR) independently 
on each simulated dataset for both models. 
 
Results 
 
VBASS model disease risk association with both genetics and expression data 
VBASS is a Bayesian mixture model with learnable priors (Figure 1). We model the number of 
genetic variants of interest (e.g., LGD or Dmis de novo variants) in the gene as a sample drawn 
independently through mixture of Poisson and Gamma-Poisson (Negative binomial) 
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Distributions. Such Gamma-Poisson distribution has been proved useful in modeling the sparse 
de novo variant data12,36. Instead of using a naïve prior that all genes share the same probability 
of being disease risk, we assume that this prior should be gene specific and could be inferred 
from the spatiotemporal expression data of fetal development of corresponding organ. In 
VBASS, we model this prior 𝜋! as a function of expression profiles 𝑥! that could be 
approximated with a neural network 𝑓# (Figure 1 and Methods). With such approximation it is 
possible to take the advantage of the state-of-art stochastic gradient descent method37. 𝑦! is a 
binary random variable that indicates the risk status of a gene, which follows a Bernoulli 
distribution of 𝜋! and constrained with Kullback–Leibler divergence over average proportion of 
disease risk gene, 𝜋7. This penalty term could be replaced by a cross-entropy loss term if the 
label of gene is known, making it possible for semi-supervised training26. 𝛾!" is a random 
variable that denotes the relative risk of damage variant 𝑣 in the patient cohort. It is drawn 
independently through a Gamma distribution 𝑝(𝛾!"|𝑘!" , 𝜃!"). We assume this distribution is 
shared across all disease risk genes (Methods).  
 
VBASS could also take bulk RNA seq data of certain organ or cell type as input when prior 
knowledge of its disease risk association is available. For example, the increased burden of 
damage variants of high heart expression genes in CHD7. In that case 𝑥! is a scalar and 𝑓# 
could be parameterized by three parameters (𝐴, 𝐵, 𝐶) that corresponds for a linear 
transformation followed by sigmoid activation (Methods). This sigmoid-shape function could 
quantify the fact that genes with higher expression in the corresponding organ or cell type are 
more likely to harbor disease risk variants. 
 
We trained VBASS in a semi-supervised manner with stochastic gradient descent method to 
estimate the parameters (Methods). While for the simplified version with scalar input, VBASS 
can be trained in a completely unsupervised manner with MCMC (Methods). The estimated 
parameters were used to calculate PPA and FDR for all genes (Methods). 
 
VBASS showed better power than extTADA on simulated data with bulk RNA-seq 
expression 
We tested the performance of VBASS and extTADA on simulated CHD dataset (Methods). As 
expected, both models showed good false discovery control and local false discovery control 
(Sup Fig. 1). VBASS outperformed extTADA with better recall under same precision level 
(Figure 2A) under sample sizes from 2,645-20,000. Although the difference in power decreases 
with increasing sample size, VBASS still outperformed extTADA by roughly 10% increase of 
recall at sample size of 10,000, which is feasible for CHD in the next few years.  
 
To test the power of VBASS with respect to the size of genes, we calculated the recall rate at 
same significance levels (FDR ≤ 0.05) on both models for genes with different mutation rates. 
VBASS showed better statistical power especially for genes with higher mutation rates under 
small sample sizes (Figure 2B). As the sample size increases, the power difference of VBASS 
and extTADA becomes smaller on large genes, while VBASS still outperforms extTADA on 
medium-mutation-rate genes (Figure 2B). Overall, our simulation results showed that VBASS 
can increase the statistical power for prioritizing disease risk genes by estimating risk prior as a 
function of expression.  
 
VBASS showed better power than extTADA on simulated data with scRNA-seq 
expression 
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We ran VBASS and extTADA separately on the simulation dataset (Method). Both models 
showed good false discovery control (Figure 3A). To test the statistical power of VBASS and 
extTADA, we plotted the precision-recall curve using the output posterior probabilities from 
VBASS, extTADA and the real parameters we used in simulation. VBASS outperformed 
extTADA with higher recall under same precision (Figure 3B). Further comparison showed 
good correlation between the prior value 𝜋7!	informed by VBASS and real 𝜋! we used in 
simulation (Figure 3C), indicating that VBASS could reconstruct the prior of being risk through 
single cell expression data. Moreover, we assessed the association between expression profile 
𝑥 and 𝜋 via spearman correlation, the result of VBASS is close to real values (Figure 3D).  
Overall, those results showed that our model can not only reach higher statistical power on 
simulation data set than extTADA but also uncover the association between cell type expression 
profiles and disease risk. 
 
VBASS identified novel CHD candidate risk genes on published DNV data 
We applied VBASS to a CHD data set with DNVs from 2645 trios13. We used the mouse 
embryonic E14.5 heart bulk RNA-seq data to set gene expression rank percentile6,7. The 
estimated distribution of expression rank under null and alternative hypothesis showed most of 
the risk genes are enriched in rank percentile ≥ 75% (genes with rank percentile ≥ 0.75 are 
roughly 3 times more likely to be risk than other genes) (Figure 4A; Table 1), consistent with 
previous burden analysis of de novo variants7. With FDR ≤ 0.1, we identified 49 candidate risk 
genes. In contrast, using the original TADA method, we were able to identify only 40 candidate 
genes (Figure 4B-C, Table 2, Table S4). Among the gene that only detected by VBASS, FLT4 
was reported to be a risk gene via combined analysis of de novo and inherited variants in the 
original paper, while TSC1 and FBN1 were in their curated CHD gene dataset from literature 
search13,38. CHD4 was reported to be significantly associated with CHD in a UK CHD cohort of 
1891 probands8, while 3 (FRYL, SETD5, KMT2C) have both LoF and missense variants 
carriers, 2 (GANAB, KDM5A) have only missense variants carriers in that cohort. Furthermore, 
4 (CHD4, SETD5, KMT2C, FBN1) are significantly associated with neurodevelopmental 
disorders39, while 11 (CHD4, FRYL, GANAB, SETD5, MINK1, ANK3, KMT2C, IQGAP1, TSC1, 
KDM5A, FBN1) have both LoF and missense variants carriers, and 2 (CAD, SLIT3) have only 
missense variants carriers in that cohort. Overall, these genes have additional genetic evidence 
in other cohorts and are plausible candidates. These results indicate that the assumption of 
VBASS is biologically sound and suggests its higher statistical power even in lower cohort size.  
 
VBASS identified novel ASD candidate risk genes on published DNV data 
Previous studies have shown that gene expression in multiple cell types in the brain is 
associated with ASD risk17,18,40. This is in part what motivated the design of VBASS. We 
obtained ASD DNV data from a recent preprint15 that combined exome and genome data from 
four studies (see Methods), and single cell RNA-seq data of human fetal midbrain and prefrontal 
cortex from two publications21,22. We applied VBASS and extTADA to the full ASD data set with 
16616 trios. VBASS identified 122 genes with PPA above 0.8 (Table S5). To compare the 
performance in identification of novel candidate risk genes, we removed the known risk genes 
used in training and calculate Bayesian FDR of all other genes with VBASS and extTADA 
(methods). Then we compared the candidate genes identified by VBASS and extTADA at 
significance level 0.05 and 0.1 (FDR ≤ 0.05 and FDR ≤ 0.1 respectively). At significance level 
0.05, VBASS identified 51 genes (Table S6), among which 5 were not identified as candidates 
by extTADA (Fig. 5A, Table S6). Among the 5 genes, 2 (DLG4, PAX5) were reported to be risk 
genes in SFARI27 data base (release 2021 Q4) with score of 1 while not in our training gene list. 
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METTL23 is a transcriptional partner of GABPA and essential for human recognition41, and 
disruption of METTL23 was reported to cause mild autosomal recessive intellectual disability42. 
ATF4 was reported to have significant altered expression in the middle frontal gyrus of ASD 
subjects43. At significance level 0.1, VBASS identified 75 genes (Table S6), where 6 were not 
identified by extTADA (Figure 5A, Table S6). Among the 6 genes, 2 (ZMYND8 CASZ1) were 
scored 1 in SFARI data base and CMPK2 was scored 3. LMTK3 was reported to cause 
behavioral abnormalities such as locomotor hyperactivity and reduced anxiety in mice knock-out 
models44,45. Furthermore, 7 out of the 11 genes identified only by VBASS (DLG4, METTL23, 
SPRY2, LMTK3, PFN2, CASZ1, ZMYND8) have additional genetic evidence in related 
cohorts39. There were six genes (CCDC40, FUBP3, PRKAR1B, SIN3A, ITGB5, PMM2) 
identified only by extTADA but not by VBASS, likely because of their low detection rates or co-
expression strength with other candidates in the single cell datasets. Finally, we studied what 
are the cell types that associated the most with disease risk. According to spearman correlation 
analysis, oculomotor / trochlear nucleus (hOMTN), GABAergic neurons (hGaba) and 
dopaminergic neurons (hDA1) in gestation week 9-10 are more associated with autism risk, 
while microglia cells and endothelial cells (hEndo) are less associated with autism risk (Figure 
5B). This observation is consistent with previous evidence of abnormalities in GABAergic 
neurons and synapses in neurodevelopmental disorders characterized by a shared 
symptomatology of ASD symptoms46, while reductions in GABA have been reported in several 
brain regions in children with ASD47,48. There were also evidences that dopaminergic 
dysfunctions were associate with autistic-like behavior49,50.	
 
Discussion 
 
In this study, we described VBASS for identification of candidate risk genes by joint analysis of 
de novo variants of cases and gene expression profile of normal samples. The core idea of the 
method is that prior probability of a gene increase disease risk is a function of expression profile 
in relevant cell types, and that we can estimate the parameters of the function from the data in 
an empirical Bayesian framework. For bulk RNA-seq data, we set the function to be a sigmoid 
function with three parameters. For scRNA-seq data, we use deep neural networks to 
approximate the function and learn the contribution of cell types jointly with genetic data. Using 
simulation, we showed that VBASS have accurate error rate control and better statistical power 
than existing methods under both scenarios.  
 
We applied VBASS to a published CHD DNV data set and estimated that high-expression 
genes are approximately 3 times more likely to be risk genes than low-expression genes in 
developing heart. We identified 14 more candidate risk genes, 6 of which have additional 
support in independent cohorts. We applied VBASS to a published ASD DNV data set and 
identified 5 and 6 more candidate genes at significance level 0.05 and 0.1 respectively, 8 of 
them have literature support or additional genetic evidence in neurodevelopmental disorders. 
Moreover, we showed that gene expression profiles of GABAergic neurons and dopaminergic 
neurons during gestation week 9-10 are strongly associated with autism risk, indicating their 
potential roles in neural circuits formation.  
 
VBASS is based on the biological hypothesis that gene expression level in relevant cell or tissue 
types informs the plausibility of being a disease risk gene. The bulk-RNA seq version is 
optimized for a single expression profile that is informative of disease risk, such as bulk RNA 
sequencing data for congenital heart disease. The single cell RNA-seq version is optimized for 
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the conditions in which multiple cell types and time points are associated with disease risk. One 
alternative approach to improve power based on informative non-genetic data is to calculate p-
values for each gene using genetic data and then optimize FDR estimation using non-genetic 
data as covariates51-53, While it is a generalizable approach, these methods require p-values to 
have proper distributions (uniform) under the null. In the analysis of de novo or ultra-rare 
variants, the data is usually too sparse to support a proper distribution of p-values under the 
null. VBASS does not have this limitation.  
 
A limitation of VBASS is that it only estimates the association of cell types with disease risk. It is 
not designed to answer questions about whether a certain cell type confers causality in the 
diseases caused by risk variants. Additionally, the performance of VBASS is partially 
determined by how well the expression data captures true expression states of genes. In this 
study, we used average expression of genes in cells within a cell type inferred from single cell 
data. This approach has limitations in representing rare and transient cellular states. More 
advanced representation, like RNA velocity54,55, together with more comprehensive 
measurements of cell types may improve the model.  
 
Finally, we note the inference part of VBASS is not limited to scRNA-seq data but could be 
extended to other functional genomics modalities of genes, such as single cell ATAC-seq data 
or regulator-targets information without much modification of architecture.  
 
Conclusions 
We developed VBASS, a new computational method that integrates expression data with 
Bayesian probabilistic models to improve statistical power of risk gene discovery. It showed 
proper error rate control and better power than current Bayesian methods in simulation and real 
datasets. VBASS is freely available for academic use at: https://github.com/ShenLab/VBASS. 
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Figures

Figure 1. Model architecture. The architecture of VBASS. The input could be either a vector of 
single cell expression profile or a scalar of bulk expression profile. For the vector input, 𝑓# is a 
neural network to inference the gene specific parameter 𝜋!, while for the scalar input, it could be 
simplified to a sigmoid function with four parameters, 𝐴, 𝐵, 𝐶, 𝜋7. 𝜋! will parameterize the 
distributions of 𝑦!. This distribution will be penalized by a Bernoulli prior via KL penalty term. 
This model also takes predefined labels as input, where 𝑦! is given by one-hot encoding of the 
labels and the Bernoulli KL penalty is replaced with a cross-entropy loss on the real label. 
𝑘!" , 𝜃!" are two random variables conditioned on 𝑦! that reconstruct the parameters of Gamma-
Poisson distribution for 𝑑!".  
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Figure 2. Performance comparison of scalar version VBASS and extTADA on simulation. A) 
Precision-recall in two models, only show the part with FDR ≤ 0.2 for extTADA and VBASS, only 
show the part with FDR ≤ 0.01 for Poisson test. B) Comparison of recall (y-axis) for genes sets 
with different mutation rates (x-axis) 
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Figure 3. Performance of single cell version VBASS on simulation data. A) Plot of true false 
discovery rate (real.FDR, y axis) at different FDR cutoff (x axis) estimated by extTADA and 
VBASS. B) Comparison of precision recall for extTADA and VBASS, only shown for the part 
with FDR ≤ 0.5. C) Scatter plot of disease risk prior (𝜋) that we assigned in simulation (y-axis) 
and informed by VBASS (x-axis). Genes were colored by labels and whether used in semi-
supervised training, where TN and TP correspond to true negative and true positive, 
respectively. D) Comparison of correlation between real disease risk prior and cell type 
expression (y-axis) versus correlation between VBASS informed prior and cell type expression 
(x-axis). Each dot represents a cell type.  
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Figure 4. Performance comparison of VBASS and extTADA on CHD data. A). Function of 
disease risk prior on expression rank percentile estimated by VBASS. B). Genes identified by 
VBASS and extTADA at significance level 0.1. C). FDR of genes in extTADA (y-axis) and 
VBASS (x-axis), genes were colored by significance in both models (red), only in VBASS 
(purple) or only in extTADA (green) at significance level 0.1 (FDR ≤ 0.1).  
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Figure 5. Performance comparison of VBASS and extTADA on ASD data. A). FDR of genes in 
extTADA (y-axis) or VBASS (x-axis). B). Spearman correlation between cell type expression 
and disease risk prior (𝜋). The cell types from two single cell data sets were separated and 
ordered by correlation with 𝜋 respectively.  
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Tables 
 
Table 1. Estimated VBASS parameters in CHD data. Mean, posterior mean; sd, standard error; 
2.5% and 97.5%, confidence interval; n_eff, effective sample number in MCMC; Rhat, 
convergence diagnostic in MCMC.  

mean sd 2.50% 97.50% n_eff Rhat 
𝝅𝟎 0.04 0.01 0.03 0.05 1845.42 1.00 
𝑨 104.15 87.67 20.01 351.78 2263.73 1.00 
𝑩 0.74 0.02 0.71 0.78 2136.99 1.00 
𝑪 0.28 0.10 0.09 0.47 2093.73 1.00 

𝜸&𝑳𝑮𝑫 19.95 5.43 10.32 31.87 2745.30 1.00 
𝜸&𝑫𝒎𝒊𝒔 11.79 3.60 5.81 19.36 3013.96 1.00 
𝜷&𝑳𝑮𝑫 0.84 0.02 0.82 0.89 2193.48 1.00 
𝜷&𝑫𝒎𝒊𝒔 0.90 0.07 0.83 1.07 2144.47 1.00 

 
Table 2. Genes identified by VBASS but not extTADA. dn_LGD, de novo LGD variants; 
dn_Dmis, de novo Dmis variants.  

Gene 
Symbol dn_LGD dn_Dmis VBASS FDR Expression 

Rank extTADA FDR 

CHD4 0 3 0.033 0.990 0.119 
FRYL 2 0 0.036 0.837 0.123 

GANAB 1 1 0.039 0.934 0.133 
SETD5 1 1 0.043 0.949 0.138 
FLT4 2 0 0.047 0.734 0.102 
CAD 0 3 0.051 0.853 0.161 

MINK1 0 2 0.054 0.875 0.144 
ANK3 2 0 0.062 0.948 0.177 
SLIT3 1 1 0.066 0.860 0.183 

KMT2C 1 2 0.069 0.792 0.188 
IQGAP1 0 2 0.073 0.856 0.172 

TSC1 1 1 0.080 0.728 0.110 
KDM5A 0 2 0.084 0.859 0.194 
FBN1 0 3 0.089 0.928 0.212 
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Supplemental materials 
 
Supplementary Table 1. Labels of genes for VBASS in semi-supervised training. 
 
Supplementary Table 2. De novo variants of 2645 CHD trios in Jin et al 2017. 
 
Supplementary Table 3. De novo variants of 16616 ASD trios in Zhou et al 2021. 
 
Supplementary Table 4. Posterior probabilities of all genes calculated in CHD cohort by VBASS 
and extTADA. 
 
Supplementary Table 5. Posterior probabilities of all genes calculated in ASD cohort by VBASS 
and extTADA. 
 
Supplementary Table 6. Posterior probabilities of all genes calculated in ASD cohort by VBASS 
and extTADA. Removed positive training genes when calculating FDR. 
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