
 

1 
 

Title: GliaMorph: A modular image analysis toolkit to quantify Müller glial cell 1 

morphology 2 

 3 

Short title: Image-Driven Quantification of Retinal Glia Shape  4 

 5 

Elisabeth Kugler1§, Isabel Bravo1, Xhuljana Durmishi1, Stefania Marcotti2, Sara 6 

Beqiri1, Alicia Carrington1, Brian M. Stramer2, Pierre Mattar3,4, and Ryan B. 7 

MacDonald1§ 8 

 9 

1 Institute of Ophthalmology, University College London, 11-43 Bath St, Greater 10 

London EC1V 9EL. 11 

2 Randall Centre for Cell & Molecular Biophysics, King’s College London, New Hunt's 12 

House, London SE1 1UL. 13 

3 Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON 14 

K1H 8M5, Canada. 15 

4 Ottawa Hospital Research Institute (OHRI), Ottawa, ON K1H 8L6, Canada. 16 

 17 

§ Co-corresponding authors: Kugler.elisabeth@gmail.com and 18 

ryan.macdonald@ucl.ac.uk 19 

 20 

ORCIDs:  21 

EK 0000-0003-2536-6140 22 

SM 0000-0002-2877-0133 23 

PM 0000-0002-5708-6218 24 

RM 0000-0003-4194-8925 25 

 26 

Author Contributions: Data Curation – EK, IB, XD, AC, PM, and RM; Methodology, 27 

Software, and Formal analysis – SM and EK; Resources and funding acquisition – 28 

RM; Writing – original draft preparation – EK; Writing – review and editing – all authors.  29 

 30 

Conflict of Interest.  31 

The authors declare that no conflict of interest exists. 32 

 33 

Funding.  34 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 5, 2022. ; https://doi.org/10.1101/2022.05.05.490765doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.05.490765
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

2 
 

This project was funded by a Moorfields Eye Charity Springboard award (GR001208) 35 

funding ECK and a Biotechnology and Biological Sciences David Phillips Fellowship 36 

(BB/S010386/1) awarded to RBM. SM and BMS were funded by the European 37 

Research Council (ERC) under the European Union’s Horizon 2020 research and 38 

innovation programme (grant agreement no. 681808). PM acknowledges funding from 39 

CIHR PJT 166032 and CIHR PJT 166074. The funders had no role in the study design, 40 

data collection, and analysis, decision to publish, or preparation of the manuscript. 41 

 42 

Acknowledgements. 43 

We thank Robert Haase, Jonas Hartmann, Shanna Philip, and Eva-Maria Breitenbach 44 

for sharing ideas on how to improve the workflow and feedback on the manuscript. 45 

We thank the image.sc and Fiji community for ongoing support. The authors are 46 

grateful to Alessandro Felder from UCL Centre for Advanced Research Computing for 47 

guidance on RSE, code sharing, and code testing. 48 

 49 

Key words: retina, Müller glia, glia morphology, zebrafish; development 50 

Graphical Abstract 51 

 52 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 5, 2022. ; https://doi.org/10.1101/2022.05.05.490765doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.05.490765
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

3 
 

 53 

Highlights 54 

• Glial morphology is complex, making it challenging to accurately quantify 3D cell 55 

shape. 56 

• We developed the GliaMorph toolkit for image pre-processing, glial segmentation, 57 

and quantification of Müller glial cells. 58 

• Müller glia elaborate their morphology and rearrange subcellular features during 59 

embryonic development. 60 

• GliaMorph accurately identifies subcellular changes in models with disrupted glia 61 

cells, including zebrafish cadherin2 loss of function and a mouse glaucoma model. 62 

 63 

 64 
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Abstract: 66 

Cell morphology is critical for all cell functions. This is particularly true for glial cells as 67 

they rely on their complex shape to contact and support neurons. However, methods 68 

to quantify complex glial cell shape accurately and reproducibly are lacking. To 69 

address this gap in quantification approaches, we developed an analysis pipeline 70 

called “GliaMorph”. GliaMorph is a modular image analysis toolkit developed to 71 

perform (i) image pre-processing, (ii) semi-automatic region-of-interest (ROI) 72 

selection, (iii) apicobasal texture analysis, (iv) glia segmentation, and (v) cell feature 73 

quantification. Müller Glia (MG) are the principal retinal glial cell type with a stereotypic 74 

shape linked to their maturation and physiological status. We here characterized MG 75 

on three levels, including (a) global image-level, (b) apicobasal texture, and (c) 76 

apicobasal vertical-to-horizontal alignment. Using GliaMorph, we show structural 77 

changes occurring in the developing retina. Additionally, we study the loss of 78 

cadherin2 in the zebrafish retina, as well as a glaucoma mouse disease model. The 79 

GliaMorph toolkit enables an in-depth understanding of MG morphology in the 80 

developing and diseased retina.  81 

 82 

Introduction 83 

While a vast amount of biomedical research relies on microscopy data and image-84 

driven research, methods to objectively as well as reproducibly process cell 85 

morphology are lacking. However, computational analysis is paramount to 86 

understanding cell function and connectivity on a more abstract level, particularly in 87 

complex tissues. Glial cells are some of the most morphologically elaborate cells and 88 

provide a myriad of functions in the central nervous system (CNS) [1], [2]. To fulfil 89 

these critical functions glial cells are precisely shaped to contact neurons, their 90 

synapses, and/or the vasculature. Glial shape is not only pivotal in healthy tissue, but 91 

is altered in numerous neurodegenerative conditions, and can precede neuronal 92 

dysfunction in some cases such as epilepsy [3] or diabetic retinopathy [4]. Hence, 93 

measuring MG morphology in a robust and reliable manner is paramount to our 94 

understanding of CNS development and dysfunction. Current methods for glial cell 95 

morphological analysis often require user input (i.e., manual cell tracing) that might 96 

result in subjective bias, offer crude measurements (i.e., not sub-cellular resolution 97 

and not reproducible detail), or are challenging to adapt to specific biological questions 98 

and dynamic timelapse acquisitions. This leads to a data analysis bottleneck in 99 
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morphological analysis and image-based cell profiling [5], [6]. As such, it is necessary 100 

to develop workflows and high-quality datasets of glial morphologies for robust and 101 

(semi-)automatic analysis of glial shape in healthy and diseased CNS. 102 

 103 

Computationally, glia cell analysis is challenging as glia have highly complex 104 

morphologies [7], [8]. To analyze glia shape for (semi-)automatically, cells are 105 

extracted from images by an image binarization step, called segmentation. However, 106 

due to their elaborate shape, glial cells are more challenging to segment automatically 107 

than for example cells with a simple round shape, such as red blood cells. In addition 108 

to complex MG shape, most glia visualization techniques do not visualize glia cells 109 

consistently but suffer from heterogeneity, such as irregular antibody or fluorophore 110 

accumulation [9], [10]. This inconsistency makes it challenging to segment different 111 

glial subregions equally. Lastly, cells can be described by various different features, 112 

but the relevance and applicability of features depends on the biological question [6]. 113 

In the era of machine learning, defining relevant features could be assumed to be 114 

easily achievable. However, machine learning methods require appropriate training 115 

sets or a priori information. Therefore, conventional image analysis workflows are 116 

required to establish benchmark datasets before machine learning approaches could 117 

be considered. Hence, there is a rationale to develop computational (semi-)automatic 118 

analysis methods to resolve glial cell morphology and status [9].  119 

 120 

As a part of the CNS, the retina serves as a tractable model to study due to highly 121 

stereotypic architecture. The retina consists of 7 main cell types, six neuronal and one 122 

glial cell type called Müller glia (MG). All cells are organized into stereotypic neuronal 123 

layers, creating retinal lamination, with well understood neuronal circuits [11]. MG are 124 

considered molecular and functional homologs to astrocytes [12], as they carry out 125 

numerous physiological roles to support neurons [13], [14] and will emanate elaborate 126 

fine projections to contact synapses [8]. Embryonically, nascent MG cells derive from 127 

retinal progenitor cells, beginning as simple radial cells. These then mature to 128 

morphologically elaborate cells with a highly branched morphology [7], [15]. Mature 129 

MG morphology has been divided into five specific subregions (see Fig. 1C): domains 130 

(1) and (2) consist of the apical regions making up the outer limiting membrane (OLM) 131 

and elaborating within the outer plexiform layer (OPL); domain (3) MG includes the 132 

cell bodies in the inner nuclear layer (INL); domain (4) encompasses the cellular 133 
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protrusions weaving through the inner plexiform layer (IPL); and domain (5) consist of 134 

the basal end feet which contact the underlying vasculature and the inner limiting 135 

membrane [8]. In addition to this apicobasal specialization, MG are organized laterally 136 

to interact with each other and other cell types within the retina. Thereby intercalating 137 

cells in a so-called “tiled” fashion and contacting almost all cells [7], [8]. Thus, MG 138 

morphology is linked to their spatial and functional organization. Moreover, it was 139 

shown that MG shape is indicative of their maturity [7] and health [10]. For instance, 140 

neuronal tissue damage can elicit MG to undergo gliosis, a reactive state whereby 141 

their morphology and gene expression levels are drastically altered; this is observed 142 

in several diseases such as glaucoma [16]. Hence, thorough analysis and 143 

understanding of MG morphology are crucial to the complete understanding of the 144 

overall health and performance of retinal neurons.  145 

 146 

The overall organisation and composition of the retina, including MG function and 147 

structure, are highly conserved between zebrafish and humans [17], [18]. Further, 148 

zebrafish is a well-established model to study retina development and disease [17], 149 

[19]–[21]. The zebrafish retina is suitable for morphological analysis as it is accessible 150 

for advanced imaging, rapidly develops, and is amenable to various manipulation 151 

and/or visualization techniques. These include specific transgenic reporter lines [22] 152 

and antibodies labelling MG marker genes (e.g., Glutamine synthetase, GS) (Fig. 1A). 153 

However, as these labels mark a considerable proportion of MGs in the retina, it is 154 

challenging, both morphologically and computationally, to identify or quantify individual 155 

cells (Fig. 1A’’). Furthermore, MG become increasingly morphologically elaborate 156 

during retinal development (Fig. 1B). Therefore, the zebrafish retina is suitable to 157 

generate the high-resolution imaging data required to develop a computational 158 

workflow to robustly quantify complex glial morphologies.  159 

 160 

Here we establish a workflow, called “GliaMorph”, that allows for the reproducible 161 

assessment of glia shape. GliaMorph is a 3D image analysis toolkit to quantitatively 162 

describe the stereotypic cellular morphology of MG. Specifically, we present (a) an in-163 

depth description of encountered data challenges, (b) steps for image pre-processing 164 

to improve data quality; (c) provide a novel tool for semi-automatic region-of-interest 165 

(ROI) selection to allow comparability between samples and groups, (d) a method to 166 

automatically plot apicobasal textures, (e) a MG segmentation workflow, and (f) a 167 
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workflow for 3D quantification of glia. This allows for three-level image assessment, 168 

namely (a) global image-level, (b) apicobasal texture, and (c) apicobasal vertical-to-169 

horizontal alignment. We apply this to retinas of (i) fully transgenic zebrafish, where all 170 

MG cells are labelled, and to (ii) single-cell transient injected clonal data, where 171 

individual MG cells are labelled. We show that MG become significantly more 172 

morphologically complex throughout their maturation 60 hours post fertilisation (hpf) 173 

96 hpf. We also use CRISPR/Cas9 to manipulate MG morphogenesis at this critical 174 

stage. Cadherin2 (cdh2) [23] crispants present MG morphological disruption in 175 

injected embryos, showing that GliaMorph is capable of detecting sub-cellular 176 

differences in MG shape in the developing zebrafish retina. Finally, we apply 177 

GliaMorph to immunohistochemistry data from the mouse glaucoma model DBA/2J 178 

[24] and detect morphological signs of gliosis, revealing this tool has the potential to 179 

work across species.  180 

 181 

Taken together, our work presents a benchmark for 3D MG analysis across MG 182 

visualization techniques, developmental ages, and species. To allow the method 183 

dissemination, all steps were implemented in the open-source image analysis software 184 

Fiji [25] and the code, as well as example data, are provided. 185 

186 
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Results 187 

Data understanding for reverse experimental design and optimization 188 

When developing image quantification approaches for cell morphology, data 189 

understanding is key for workflow development from a computational point of view. 190 

This is particularly important for understanding MG cell shape, as they have a complex 191 

apicobasal morphology (Fig. 1A). Here we use confocal imaging as it is a  widely used 192 

imaging technique, allowing for sufficient resolution to resolve individual glial sub-193 

domains [26]. The following sections will focus on how we optimized data acquisition 194 

and data quality. To standardize the ROI for image acquisition, we exclusively focus 195 

on the ventro-temporal retina, as regional differences in cell morphologies exist across 196 

the retina in zebrafish (Fig 1A) [27], [28]. MG have five precise subregions where each 197 

fulfils a specific function for nearby retinal neurons [7] (Fig. 1C). Computationally these 198 

regions fall into categories based on their geometries; subregion 1 resembles a 199 

honeycomb structure, allowing MG to interact photoreceptors. Subregion 2 resembles 200 

a fine mesh-like structure, allowing MG to interweave with synaptic terminal of 201 

photoreceptors, bipolar and horizontal cells. Subregion 3 are blob-like cell bodies. 202 

Subregion 4 are mesh-like protrusions in the IPL, and subregion 5 are the sheet-like 203 

endfeet. As these subregions/domains become elaborate over time and are affected 204 

by disease, glia shape is a direct readout of cell status.  205 

 206 

In addition to apicobasal shape differences, MG subregions also are computationally 207 

distinctive concerning levels and patterns of signal (Fig. S1A). This suggests that (a) 208 

either local image processing, specifically tailored to these zones, could outperform 209 

global image processing approaches due to apicobasal inhomogeneity; or (b) that 210 

image pre-processing steps are required to equalize signal across the 3D volume. This 211 

is particularly important, as it is known that confocal-type imaging can suffer from z-212 

axis signal decay, due to light interaction with matter [29]. We thus assessed lateral 213 

intensity profiles (x,y) that showed a homogenous signal distribution (Fig. S1B). 214 

However, as expected, this was not the case for axial (z) intensity profiles (Fig. S1C), 215 

suggesting that the images are not homogeneous in 3D for signal. Next, we wanted to 216 

assess the impact of z-step sampling frequency on data quality as this is an often 217 

overlooked factors for sufficient data quality. Nyquist rate for the widely used 218 

transgenic reporter line Tg(TP1bglob:VenusPest)s940 [30], which specifically labels MG 219 

in the retina [31], was assessed (see Material and Methods for details). Optimized 220 
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image acquisition led to improved data quality and MG were more connected through 221 

the z-axis (Fig. S1E). Lastly, image artefacts due to sample motion, such as cardiac 222 

contraction and muscle movement, can impact 3D quantification results. Indeed, we 223 

found stripe artefacts (Fig. S1F), blurring (Fig. S1G), and inter-plane (Fig. S1H) 224 

motion artefacts to be present when performing in vivo imaging. However, those were 225 

minimal and intra-stack motion correction [32] could be applied for more severe cases, 226 

such as focus drift. Together, this data understanding allowed us to draft required 227 

image processing steps and optimize data acquisition. 228 

 229 

Establishing image comparability between samples within data groups 230 

For robust computation of glial morphology, each image dataset must be processed 231 

identically to allow images to be compared within, and between groups, as well as 232 

between different laboratories, users, or microscopes. Several factors can introduce 233 

variability that may skew results. For example, whole-mount zebrafish imaging 234 

requires samples embedding, which could affect the acquisitions, resulting in imaging 235 

different areas of the retina. This is accompanied by the fact that there are no hard-236 

set standards on sample orientation. Additionally, the above-mentioned z-axis signal 237 

decay and different z-stack sizes between samples make image comparisons 238 

challenging. Together, this means that typically only regionally meaningful data are 239 

acquired. In addition, fields of view (FOV) are often larger than needed and images 240 

cannot be directly compared to each other but require pre-processing to allow 241 

comparable ROIs between samples. We thus developed a semi-automatic approach, 242 

called the subregionTool, which enables ROIs extraction based on manual line 243 

selection (Fig. 2A), which applies to right and left eyes i.e., the reverse (Fig. S2A,B). 244 

Once the ROI is selected, the images are then aligned along the y-axis (Fig. S2C,D). 245 

Then a bounding box is created with the line at the centre (unless the image is too 246 

small; see Fig. S2E,F, and code for details) and the stacks are reduced to the specified 247 

depth (Fig. S2G). For cases where the image is rectangular and not cubic, rotation 248 

can result in decreased image height (Fig. S2H). To avoid this, rotation is suggested 249 

before application of the subregionTool (using the 90DegreeRotation Macro). This 250 

subregionTool is also applicable to other imaging datasets, not only MG, such as 251 

retinal neurons. Hence, we were able to overlap data from different neuronal markers, 252 

as well as images from 24-to-72 hpf including neurons as well as MG (Fig. 2B). To 253 

confirm data comparability, we measured progenitor/MG height, showing high 254 
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similarity in age-matched samples, and that developmental growth of MG is highly 255 

consistent (Fig. 2C; CoV 24 hpf 18.72%, 48 hpf 3.13%, 60 hpf 5.25%, 72 hpf 6.52%; 256 

p<0.0001).  257 

 258 

Reproducible 3D ROIs with minimal user input allowed for the establishment of image 259 

comparability objectively, making sample and group assessments possible. Together, 260 

this facilitates the comparison of MG morphology between images and datasets. 261 

 262 

The image enhancement workflow depends on the acquisition type 263 

When performing fluorescence microscopy, typically the image does not directly 264 

reproduce the object of interest due to artefacts as well as the system impulse function 265 

or convolution of light, called point spread function (PSF) [33]. To restore the object 266 

properties before data processing and object measurements, typically a deconvolution 267 

step is performed. Often deconvolution is done with external software (such as 268 

Huygens from Scientific Volume Imaging), but this can also be achieved with Fiji using 269 

external Plugins. We next examined PSF deconvolution in Fiji and used this 270 

information to design the deconvolutionTool for GliaMorph. For data acquired in 271 

confocal mode (Fig. S3A), theoretical PSFs were established based on transgenic 272 

reporter line-specific fluorophores. Also, the following PSF deconvolution algorithms 273 

were examined, namely Regularized Inverse Filter (Fig. S3B), Landweber (Fig. S3C), 274 

Fast Iterative Shrinkage Thresholding (Fig. S3D), Bounded-Variable Least Squares 275 

(Fig. S3E), and Richardson-Lucy (RL; Fig. S3F), finding RL to be the most applicable 276 

to our data. 277 

 278 

Next, the above deconvolution was implemented into the deconvolutionTool which 279 

allows single-/multi-channel input, selection of fluorophore wavelengths, different 280 

objective numerical aperture (NA), and theoretical or experimental PSF file input. The 281 

deconvolutionTool can be applied to any data acquired on traditional confocal 282 

microscopes.  283 

 284 

As Zeiss AiryScan microscopy allows for sub-diffraction resolution, allowing for 285 

increased detail and increased CNR, we next acquired data with this imaging 286 

paradigm. As expected, this showed 3D deconvolution to outperform 2D 287 

deconvolution, resulting in reduced background (white arrowheads), and high 288 
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deconvolution to result in increased structured noise and grains (black arrowheads; 289 

Fig. S4). 290 

 291 

Together, this emphasizes that not only the imaging (i.e., confocal vs AiryScan) but 292 

also the selected type and parameters of deconvolution can influence data quality for 293 

subsequent data analysis. 294 

 295 

Müller glia apicobasal texture can be visualized using 1D-vectors 296 

We examined whether it was possible to discern different MG zones given the fact that 297 

MG show a stereotypic apicobasal pattern. This was since MG patterns can 298 

computationally be seen as a differential distribution of geometries and intensity (Fig. 299 

3A). However, as the examined data are 3-dimensional (3D), we explored whether 300 

dimensionality reduction from 3D (x,y,z) data to a 1D vector would allow for data 301 

exploration. Thus, we reduced data using the zonationTool (Fig. 3B). This tool 302 

reduces data first in the z-axis, transforms them by 90°, and then performs another 303 

dimensionality reduction. This allows assessment of the intensity distributions or 304 

“zonation" from apical-to-basal across the retina. As the approach is independent of 305 

input data, it can be applied to different labelling approaches of MG as well as other 306 

cell types, such as retinal neurons (Fig. 3C-F).  307 

 308 

We next examined whether MG at different developmental stages are comparable in 309 

size and how this changed over time. There was a significant increase of MG height 310 

from 24-to-96 hpf (p=0.0006, Kruskal-Wallis test; Fig. 3F). When analysing the 311 

coefficient of variation (CoV), variation was low, suggesting comparability between 312 

samples. Briefly, highest CoV was observed at 24 hpf 18.72%, 48 hpf 3.31%, 60 hpf 313 

5.25%, 72 hpf 6.52%, and 96 hpf 5.46%. Analysing MG texture from 24-to-96 hpf, with 314 

normalization to 1920 px to allow direct visual comparison, showed that endfeet are 315 

identifiable from 48 hpf onwards. A clear discrimination between MG cell bodies and 316 

IPL is possible from 72 hpf onwards (Fig. 3G,H). Together, dimensionality reduction 317 

of 3D images using the zonationTool is a user-friendly way to visualize texture and 318 

subregional zones of MG as 1D-vectors. Due to its independence of input data, it 319 

applies to any samples, if image comparability is established. 320 

 321 

GliaMorph allows 3D feature extraction and quantification of MG  322 
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Tg(TP1bglob:VenusPest)s940 is an established transgenic reporter line to visualize MG, 323 

here used this to develop and test the GliaMorph toolkit to quantify 3D cell features. 324 

To examine whether MG features elaborated with maturity, we analyzed data at 72 325 

hpf and 120 hpf. After using the SubregionTool for data comparability, the 326 

ZonationTool was used to plot the apicobasal texture of MGs. This showed growth of 327 

MG in size and downward migration of nuclei (Fig. 4A; cell subdomain 3). To allow for 328 

the assessment of pattern vs intensity-level differences, the zonationTool allows for 329 

normalization (Fig. 4A-C). Thus, one can directly assess intensity levels of treatments 330 

against each other. For example, one could examine this further using histograms for 331 

level and frequency; use area under the curve measurements for peaks and 332 

distributions; use correlations for more local analysis.  333 

 334 

To extract MG in the images, we established the segmentationTool that uses bleach 335 

correction, 8-bit conversion, 3D Median filtering, and Otsu-based thresholding to 336 

produce binary/segmented images.  We then applied the quantificationTool, which 337 

extracts the following global image-level features from the segmented image: (i) image 338 

height: length of y-axis, (ii) MG volume: voxels classified as MG after segmentation, 339 

(iii) density: ratio of total image voxels divided by MG volume voxels (i.e. given as a 340 

fraction of 1). After surface extraction using Canny edge detection, (iv) surface area 341 

is quantified. Using 3D-thinning, the skeleton/centreline was extracted to quantify (v) 342 

network length, (vi) number of branching points, (vii) number of end points, and (viii) 343 

average branch length. Lastly, combining the skeleton with a 3D Euclidean Distance 344 

Map, (ix) the average thickness was analysed. 345 

 346 

Applying the zonationTool to the segmented data showed again an increase in size 347 

and MG cell bodies that were positioned more basally at 120 hpf. Also, clear bands of 348 

apical MG zones (1 and 2) and endfeet are seen (Fig. 4B; subdomain 5). When 349 

plotting the automatically skeletonized images, elaborations of MG from 72-to-120 hpf 350 

were pronounced in the IPL (Fig. 4C; subdomain 4). We quantified MG features with 351 

the quantificationTool at 72 hpf and 120 hpf (Fig. 4D,E). Quantification of MG height 352 

showed a significant increase from 72-to-120 hpf (p=0.0061, Fig. 4F). Surprisingly, 353 

neither MG volume (p=0.2314, Fig. 4G) nor percentage volume coverage were 354 

significantly different from 72-to-120 hpf (p>0.9999, Fig. 4H). However, MG surface 355 

volume (p=0.0004, Fig. 4I) and surface-to-volume ratio were significantly increased 356 
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from 72-to-120 hpf (p=0.0015, Fig. 4J), which suggested that shape complexity 357 

increased over time. The average thickness was significantly decreased from 72-to-358 

120 hpf (p=0.0366, Fig. 4K), which was thought to be due to an increase in the number 359 

of thinner protrusions over time. As expected, skeleton length (p=0.0033, Fig. 4L), 360 

number of junctions (p=0.0025, Fig. 4M), and number of endpoints were statistically 361 

significantly increased from 72-to-120 hpf (p<0.0001, Fig. 4N), while average branch 362 

length was not statistically significantly altered (p=0.1409, Fig. 4O).  363 

 364 

Together, this shows that GliaMorph is suitable to assess MG morphology in complete 365 

transgenic retinas in 3D and allows extraction of biologically meaningful information. 366 

 367 

Visualization of MG membranes supersedes detail visualized with cytosol 368 

reporters 369 

As GliaMorph analysis is based on object intensity and distribution, we next compared 370 

cytosolic or membrane markers for 3D MG morphological analysis. Consequently, a 371 

membrane marker construct was injected into a cytosolic transgenic to achieve mosaic 372 

expression to visualize individual cells (72 hpf; Fig. S6A-C). Visually, the membrane-373 

marker delineated more detail than the cytosol-marker. This is exemplified in regions 374 

such as MG protrusions in the IPL (white arrowheads) or MG honeycombing or 375 

anisotropic scaffolding [34] in the OLM (unfilled arrowhead). The segmentation 376 

approach delivered satisfying outcomes with the membrane-marker, but not the 377 

cytosol-marker (Fig. S6D-F); moreover, with the membrane-marker cell connectivity 378 

and IPL protrusion details were extracted. This was also reflected in the 3D skeleton, 379 

which showed more detail with the membrane-marker (Fig. S6G-I) and resolved cell 380 

domains to a satisfactory level (see Fig. 1C).  381 

 382 

Hence, the “ideal” situation was found to be individual MG clones labelled with a 383 

membrane marker for detail. However, as producing clones can be laborious and not 384 

uniform across different injected animals, we next studied a global transgenic with 385 

membrane-labelled MG Tg(TP1bglob:eGFP-CAAX) u911.  386 

 387 

MG development is defined by apicobasal elaboration and refinement 388 

As membrane labels outperformed cytosolic MG cell labelling in clones, we generated 389 

the stable transgenic line Tg(TP1bglob:eGFP-CAAX)u911. Using this, we analysed MG 390 
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development in a shorter time-frame from 60-to-96 hpf (Fig. 5A-C). This revealed 391 

statistically significant increases in MG height (p<0.0001; Fig. 5D), thickness 392 

(p=0.0466; Fig. 5I), and average branch length (p=0.0018; Fig. 5M), but none of the 393 

other measured parameters.  394 

 395 

This led us to examine our data in a local fashion using apicobasal distributions. This 396 

revealed a significant difference in intensities from 60-to-96 hpf for original (p<0.0001), 397 

segmented (p<0.0001), and skeletonized images (p<0.0001; Fig. 6A). We observed 398 

a downward migration of nuclei, increased MG height, and increased overall 399 

complexity (as indicated by skeleton distributions), particularly in the IPL. We then 400 

examined the alignment of structures in the image (i.e., horizontal vs vertical) that can 401 

be described as image order [35] (Fig. 6B,C), which showed a significant difference 402 

from 60-to-96 hpf (p=0.0049; Fig. 6D). These data suggests that even though features 403 

might not change enough to be extracted globally (Fig. 5), local features are 404 

elaborated and refined over time. As these measurements are based on the 405 

population-level (image-level or global) analysis, we next sought to study cell 406 

heterogeneity and whether measurements of individual cells represent collective 407 

measurements of cell populations. Thus, we visualized and analysed data from 408 

individual clones from 60-to-96 hpf (Fig. 7A). In individual MGs, we saw changes in 409 

retina height, surface-to-volume ratio, skeleton length, and endpoints (Fig. 7B,E,H) 410 

just as we observed at the population level (Fig. 4D,H,I,L). Other parameters such as 411 

volume, surface, and number of junctions were increased in single-cell level 412 

measurements (Fig. 7C,D,G) and branch length was not altered on the single-cell level 413 

(Fig. 7I). 414 

 415 

Together, our data show that single cell and global image-level measurements are in 416 

good agreement, but that batch effects might impact measurement outcomes. For 417 

example, single-cell thickness measurements showed high variability, which was not 418 

observed for global image-level measurements. Conversely, using single-cell 419 

measurements allows for a closer examination of cellular heterogeneity. While precise 420 

measurements can be derived from single-cell analysis, the sampling problem they 421 

introduce becomes important. This highlights that global and single-cell analysis might 422 

answer different biological questions. 423 

 424 
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Loss of cadherin2 leads to altered MG apicobasal feature distribution 425 

We next tested whether GliaMorph would allow us to describe disease-associated glia 426 

changes. Hence, cadherin2 (cdh2 or N-cadherin) was knocked out using 427 

CRISPR/Cas9 technology [36].  We chose  cdh2 as it is a cell surface adhesion 428 

molecule shown to play a role in basal migration of retinal progenitors and MG 429 

formation upon injury in adult zebrafish retinas [23], [37]. This suggested that cdh2 430 

may play a role in the establishment of MG morphology. When quantifying MG 431 

features on the global level, we saw no significant difference in 3D measurements 432 

(Fig. 8C-L). However, analysing the apicobasal texture in the same images, MG were 433 

found to be significantly different in the original (p<0.0001), segmented (p<0.0001), 434 

and skeletonized (Fig. 8M; p=0.0072) data. To further understand this, we performed 435 

directionality analysis based on Fourier Transformation as previously described [35] 436 

(Fig. 8N). This revealed a significant difference in the vertical-to-horizontal cell 437 

alignment (p=0.0221; Fig. 8O), particularly at the apex of MGs and within the IPL. This 438 

suggests that loss of cdh2 did not lead to significant overall changes in MG size or 439 

volume, but that the organization of cell elaboration orientation is impaired. It is 440 

important to note that the examined crispants were mosaic mutants and unlikely to 441 

have a highly penetrant phenotype, which could make it challenging to identify subtle 442 

MG shape changes. To examine whether this is mirrored in single-cell analysis, we 443 

performed the same analysis using single MG clones generated by injection of DNA 444 

constructs with gRNAs (Fig. S7). While MG height was found to be increased in cdh2 445 

crispants (p=0.0049; Fig. S8C), the other parameters were not changed - which was 446 

in agreement with global image-level measurements (Fig. S7C-J). Apicobasal 447 

measurements again showed a significant difference (Fig. S7K-L; both, p<0.0001).  448 

 449 

Together, we show that apicobasal feature analysis is sufficient to detect cell shape 450 

alterations upon loss of cdh2 on a global as well as single-cell level. Using orientation 451 

assessment in addition to apicobasal feature analysis shows that loss of cdh2 does 452 

not only lead to overall shape changes but also affects cell alignment. These data 453 

suggest that GliaMorph could be used to screen for novel molecules involved in glia 454 

shape. 455 

 456 

Apicobasal feature analysis provides insights into mouse glaucoma models 457 
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So far, we applied GliaMorph to transgenic reporter lines labelling MG in the zebrafish 458 

retina. However, many studies where MG morphology is of interest (e.g., in diseased 459 

tissues) may use other models, such as mice, and do not always have a cell-specific 460 

fluorescent transgenic reporter available. Thus, we tested GliaMorph on the retina 461 

from another species (i.e., mice) where MG are visualized with antibody staining. To 462 

assess whether biologically relevant data could be extracted, we collected retinas from 463 

CD1 controls and DBA/2J mice, which develop glaucoma-like phenotypes and exhibit 464 

gliosis [24]. We used the Rlbp1/Cralbp antibody to label the entire MG cell and GFAP 465 

antibody, which is a commonly used marker for gliosis and an indicator of pathology 466 

in retinal degenerative diseases (Fig. 9A,B). When analysing apicobasal distributions, 467 

we found changes in Rlbp1, suggesting that cell morphology and subcellular 468 

arrangements are changed in this glaucoma model (Fig. 9C; original p<0.0001, 469 

segmentation p<0.0001, skeleton p<0.0001). Additionally, we found GFAP to be 470 

upregulated and distributed to a more apical area in glaucoma mice in comparison to 471 

controls (Fig. 9D; original p<0.0001; segmentation p<0.0001; skeleton p<0.0001). 472 

Volume, branching, and size quantifications using the GliaMorph suite showed no 473 

statistically significant difference (Fig. S8). 474 

 475 

Together, this shows that GliaMorph can be used with images from retinas of different 476 

species and antibody staining to observe and quantify MG phenotypes. Specifically, 477 

the GliaMorph texture analysis provides a crucial method to identify MG phenotypes 478 

quickly and robustly in pathology samples stained with antibodies.  479 

 480 

Workflow integration  481 

The GliaMorph toolkit allows the workflow to be individualized for experimental needs 482 

based on its modular construction (Fig. 10). Batch processing allows the selected tools 483 

to be run on whole experimental folders, increasing throughput and automation. 484 

Implementation in the Fiji framework allows cross-platform and licence-free 485 

applicability. Implementing codes as Macros with GUIs allows direct use and alteration 486 

of code, even by users without any coding experience. This is supported by supplying 487 

example data as well as a step-by-step user guide. 488 

  489 

Discussion 490 

The Importance of Imaging Data Quality and Standardization 491 
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We presented a comprehensive data analysis workflow to assess 3D MG morphology. 492 

We show that in-depth data understanding is crucial to analysing data in 3D. We 493 

performed benchmarking and troubleshooting using a variety of experimental 494 

approaches to identify key parameters that must be optimal/optimized for workflow 495 

validity.  The better the data, the better the data analysis output. This is particularly 496 

important when assessing the apicobasal polarity found in MG, which translates to 5 497 

subcellular domains that are biologically and computationally highly distinctive. To 498 

obtain easily comparable datasets, one should pay particular attention to the 499 

standardisation of position during image acquisition. For the samples we examined we 500 

acquired data in the ventro-temporal zone of the right eye (dorsally to the area 501 

temporalis, known as strike zone [38], or high acuity area). This standardization 502 

allowed comparability between samples. Also, image acquisition was standardized to 503 

be at the depth of the vascular inner optic circle with MG being parallel to the imaging 504 

plane. This enabled the complete tracing of MGs rather than analysis of intersections. 505 

However, standardization procedures might differ for samples at other ages, 506 

visualization techniques (e.g., different transgenics, antibodies, microscopes, etc.), or 507 

species.   508 

 509 

To visualize data with a sub-diffraction resolution, we used AiryScan microscopy. We 510 

highlighted challenges in z-axis signal decay, and we suggested that the appropriate 511 

deconvolution is a requirement for fluorescence microscopy, which is in line with 512 

previous work [29], [39]. However, particularly for antibody staining, penetration depth 513 

is a limiting factor in image quality, and can only be addressed to a limited degree with 514 

computational processing. Again, these observations highlight that high input data 515 

quality is pivotal for quantitative image analysis. 516 

 517 

As data are often acquired at different orientations, we achieved data comparability by 518 

employing semi-automatic rotation and 3D subregion selection. Standardization 519 

allowed for dimensionality reduction using the zonationTool to create 1D vectors from 520 

3D data, enabling intuitive and quantitative insights into apical-basal polarity data. 521 

Lastly, employing standardized data, we used fibre-orientation assessment to analyse 522 

vertical-to-horizontal structures in our data.  523 

 524 
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Together, high-quality data, data understanding, and establishing image comparability 525 

allowed for data analysis and quantification on various levels. 526 

 527 

Biological Findings enabled by GliaMorph 528 

GliaMorph allows for multi-dimensional glia analysis, enabling image-level as well as 529 

subcellular assessments that are robust, easy to use and adaptable. 530 

 531 

For 3D morphological analysis, membrane markers generally showed better 532 

visualization vs. cytosolic markers. This was true in clonal and whole-transgenic 533 

analysis. However, when examining a membrane-marker injected into the reporter line 534 

Tg(TP1bglob:VenusPest)s940, occasional mislabelling of the former was observed. We 535 

believe this to be the case as VenusPest is a destabilized fluorophore with a rapid 536 

turnover, while GFP lingers longer. False labelling may label earlier born neurons, 537 

such as amacrine cells (Fig. S6J). Additionally, even though glia shape serves as a 538 

readout of maturity [7] or cell damage [10], plasma membranes can suffer disruption, 539 

interfering with morphological analysis [10].  540 

 541 

Our work further examines cell heterogeneity and compared whether individual cells 542 

represent collective measurements of cell populations. We show that single-cell and 543 

global image-level measurements are in agreement, but that batch effects might affect 544 

measurements. Using different analysis approaches, we performed global image-545 

level, apicobasal texture, and apicobasal orientation measurements. Applying these 546 

different approaches to cdh2 crispants, we show that cdh2 loss leads to MG shape 547 

changes that were restricted to subregions. Applying apicobasal texture analysis to a 548 

mouse disease model, we show that there is an overall shape change as well as 549 

reactive cytoskeletal components in glaucoma. 550 

 551 

Robustness of Application 552 

One aim for data analysis approaches should be robustness across users and data. 553 

Using acquisition standardization and automatic analysis ensures comparability 554 

between age-matched samples. This is exemplified when acquiring two datasets by 555 

two independent investigators and comparing MG volume and skeleton as readout. 556 

This showed neither a significant difference nor bias for both measured parameters. 557 

Thus, even if data are acquired in different samples and by different people, age-558 
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matched analysis is possible (Fig. S9A, B; volume p=0.9211; skeleton p=0.8460). 559 

Similarly, analysis of the same dataset, but by different experimenters does not 560 

bias/change the parameters analysed by GliaMorph (Fig. S9C,D; volume p=0.1934; 561 

skeleton p=0.7363). Additionally, we here presented data acquired by markedly 562 

different approaches, varying experimenters, transgenics/antibodies, 563 

wholemount/sections, different microscopes, and zebrafish/mice. Being able to 564 

perform multi-dimensional data analysis and detect subtle differences that might be 565 

otherwise overlooked using visual or manual assessments, we are confident that 566 

future work can use GliaMorph to aid decipher disease courses and answer questions 567 

such as “Does glial shape alteration precede neuronal dysfunction in 568 

neurodegenerative disease?”. Currently, GliaMorph is designed to perform on single-569 

timepoint acquisitions, but this can easily be adapted if time-points are saved as 570 

individual stacks. Attention must be however paid if motion correction is required as 571 

this has to be applied prior to analysis. Thus, utilizing computational tools there is an 572 

exciting future ahead. 573 

 574 

Applicability to MG in other Species and other cell types 575 

Here we show that GliaMorph can detect sub-cellular MG morphology changes in the 576 

retinas of crispant and disease models. As GliaMorph is modular it allows for 577 

adaptability to other MG visualization techniques. This could be other transgenic 578 

reporter lines or antibody staining, but also data from different species, and potentially 579 

other cell types, including other glial cells. The main bottleneck for transferability is the 580 

segmentation step, which extracts objects from the background. This segmentation 581 

can be performed in 2D (for a 3D stack this would mean slice-by-slice) or 3D (time-582 

series data are traditionally segmented as 3D+t rather than 4D). Importantly, even if 583 

visualizing the seemingly same structure, if the visualization approach differs (e.g., 584 

different transgenic construct), segmentation is unlikely to be transferable between 585 

those [40]. This is because segmentation is influenced by a manifold of factors such 586 

as intensity, colour, texture, and in some cases connectivity. Additionally, data can be 587 

influenced by partial volume effects (i.e., insufficient sampling frequencies), artifacts 588 

(motion artifacts, ring artifacts, autofluorescence) or noise due to sensors or 589 

electronics [41], [42]. Another consideration is the analysis of whole-mount intact 590 

tissues vs. cryo-sectioned tissue data, as the latter tends to be impacted by tissue 591 

rupture. To address some of these aspects, in recent years, machine learning has 592 
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emerged as a meaningful approach for image segmentation, however, it often relies 593 

on having a ground-truth [43], [44], which is still widely lacking in biomedical image 594 

analysis.  595 

 596 

Together, all steps – except image segmentation – of the GliaMorph toolkit are directly 597 

applicable to data other than the ones presented here. However, application to other 598 

data needs to come with the caveat that data often differ in sample preparation (e.g., 599 

different antigen retrievals, bleaching, or fixation) and image properties (e.g., 600 

autofluorescence). As mentioned, the main bottleneck is the segmentationTool (Table 601 

1) which will require optimization for any data analysed other than the ones presented 602 

here. Most of the developed tools will be independent of input data properties such as 603 

microscope-type or cell features (e.g., microglia show a radial structure), see table 1 604 

for more detail. However, for all analyses, good image quality and standardization are 605 

key for meaningful quantifications. 606 

 607 

Table 1. Generalizability of GliaMorph tools. 608 

Analysis Step MG Retinal 

neurons 

(BC, RGC, 

AC) 

Retinal 

Astrocytes 

Brain 

Astrocytes 

Microglia 

Shape relative to 

tissue position 

A-

B 

A-B A-B Radial Radial 

Czi-to-tiff      

deconvolutionTool      

subregionTool      

splitChannelsTool      

zonationTool    Alternative: e.g., Scholl 

analysis 

segmentationTool  adaptions required based on visualization and 

microscopy technique 

quantificationTool      

 609 

Future Work 610 
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We here presented an in-depth analysis workflow to quantify 3D MG morphology. 611 

GliaMorph could be adapted to computationally automatically extract individual MG in 612 

segmented images to derive single-cell based measurements. This is challenging as 613 

cells are physically connected and while humans could potentially visually discern 614 

individual cells, computers often require a priori information or boundary conditions. 615 

On the other hand, unsupervized approaches, such as water-shedding [45], are limited 616 

in applicability to complex shape. However, to examine cell heterogeneity, 617 

computational identification of individual cells by cell separation is a crucial step to be 618 

examined in future work. For many studies, the molecular mechanisms regulating the 619 

establishment and maintenance of MG morphology remain elusive, due to the crude 620 

and/or challenging quantification in mutants. GliaMorph will provide a robust 621 

computational pipeline to analyse and quantify MG shape in genetic mutants or 622 

knockdowns of candidate genes  [9], [37]. Importantly, as techniques develop, future 623 

work will also be looking at integrating multimodal data, such as shape analysis, 624 

calcium data for cell function, and overall animal behaviours. Ultimately, understanding 625 

biological mechanisms at the most fundamental level will be essential to 626 

understanding the processes observed in human vision pathology and how these 627 

could potentially be prevented with the aid of early predictive data analysis. 628 

 629 

Conclusion 630 

We presented a comprehensive image understanding and analysis workflow, which is 631 

modular and open-source in application. Our presented work is an important 632 

benchmark study on how to understand and analyse retinal MG data. 633 

 634 

Material and Methods 635 

Zebrafish Handling and Husbandry  636 

Experiments performed at UCL conformed to UK Home Office regulations and were 637 

performed under Home Office Project Licence PP2133797 held by RM. Maintenance 638 

of adult zebrafish in the fish facilities was conducted in Aquaneering tanks with a 639 

density of 5 animals per litre according to previously described husbandry standard 640 

protocols at 28°C with a 14:10 hours (h) light:dark cycle [46], [47]. Embryos, obtained 641 

from controlled pair- or group-mating, were incubated in E3 buffer (5mM NaCl, 642 

0.17mM KCl, 0.33mM CaCl2, 0.33mM MgSO4) with/without methylene blue and 643 
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0.0045% 1-phenyl 2-thiourea (PTU) [48] applied between 6-24hpf and refreshed at a 644 

minimum of every 24h. 645 

 646 

Zebrafish Strains 647 

To visualize  Müller glia the following transgenics were used: 648 

Tg(tp1bglob:VenusPest)s940 [30], Tg(CSL:mCherry)jh11 (also known as 649 

Tg(tp1bglob:hmgb1-mCherry)jh11 [49]). Retinal ganglion cells, photoreceptors, 650 

amacrine cells and horizontal cells were visualized with Tg(ath5:gapRFP)cu2 (also 651 

known as Tg(atoh7:gap43-mRFP1)cu2 [50]). Bipolar cells were visualized with 652 

Tg(vsx1:GFP)nns5 [51]. Amacrine and horizontal cells were visualized with 653 

Tg(ptf1a:dsRed)ia6 [52] and Tg(ptf1a:cytGFP) [53]. 654 

 655 

Mouse Animal care 656 

All animal husbandry was conducted according to the guidelines of the Canadian 657 

Council on Animal Care, using uOttawa ethical protocols OHRI-2856 and OHRI-3499. 658 

Animals were housed under specific pathogen-free conditions in standard isolation 659 

cages with enrichments. Animals were provided with food and water ad libitum. CD1 660 

mice were obtained from Charles River Laboratories, and DBA2/J mice were obtained 661 

from Jackson Laboratories. Animals of both sexes, aged 335 days to 1 year, were 662 

used in this study. 663 

 664 

Constructs Generation 665 

The expression constructs pTol2-tp1bglob:eGFP-CAAX;cmlc2:eGFP and pTol2-666 

tp1bglob:mCherry-CAAX;cmlc2:eGFP were generated according to the Tol2Kit [54], 667 

using Multisite Gateway Technology. p5E-tp1 was a gift from Nathan Lawson 668 

(Addgene plasmid # 73585) [55] pME-mCherry-CAAX was a gift from Yi Feng’s group. 669 

pME-eGFP-CAAXp3E-polyA and pDestTol2CG2 vectors were obtained from the 670 

zebrafish Tol2Kit. 671 

 672 

Microinjections and Generation of Stable Lines 673 

Microinjections were performed using a borosilicate glass capillary needle (World 674 

Precision Instruments, TW100F-4) connected to a Pneumatic Picopump injector 675 

(World Precision instruments). To generate mosaic labelling of MG, 6.5pg of pTol2-676 

tp1bglob:eGFP-CAAX;cmlc2:eGFP or pTol2-tp1bglob:mCherry-CAAX;cmlc2:GFP 677 
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was co-injected with 25pg of purified capped Tol2 transposase mRNA in a volume of 678 

0.5nL, into one-cell-stage zebrafish embryos. To establish the Tg(tp1bglob:eGFP-679 

CAAX) stable line, injected embryos were screened for GFP expression in the heart 680 

at 48-72 hpf. The F1 generation was screened for eGFP-CAAX expression to identify 681 

founder fish with germline integration and stable transmission to offspring. Positively 682 

identified F1 larvae were grown to adulthood and a stable transgenic line was 683 

established based on F2 generation with the strongest and most pervasive expression. 684 

 685 

Cdh2 CRISPR/Cas9 Injections 686 

CRISPR/Cas9 technology was used to edit cadherin2 (cdh2 or N-cadherin), a gene 687 

known to affect MG morphology [37]. gRNA sequences were predicted using 688 

ChopChop design tool [56] (https://chopchop.cbu.uib.no). To disrupt cadherin2 689 

function, gRNA1: 5’-AATGTTCCGTACGGTAGCGG-3’ and gRNA2: 690 

5’-TAAACGATGTACCGTTCCGG-3’, both targeting exon 1, were picked to be 691 

simultaneously injected. Synthetic gRNAs were obtained from Merck in a two-part 692 

(crRNA:tracrRNA) format. gRNAs were assembled by mixing equimolar amounts of 693 

each crRNA and tracrRNA. gRNAs were then pooled and Cas9 protein (ThermoFisher 694 

Scientific, A36498) was added. For control injections, a solution without crRNA was 695 

prepared. Zebrafish eggs were injected into the yolk, before cell inflation, with 1nl 696 

solution containing 1200pg total gRNAs and 2000pg Cas9 protein.  697 

 698 

Fixation 699 

Embryos were fixed with 4% paraformaldehyde (PFA; ThermoScientific, 28908) in 700 

phosphate buffer saline (PBS) for 2-4h at room temperature. Dehydration was 701 

performed by consecutive 5min washes with 25%, 50%, 75% in PBS and twice 100% 702 

methanol (MetOH). Samples were stored at -20°C in MetOH. Rehydration was 703 

performed in the reverse order and followed by 3x 5min washes in PBS. Fixation was 704 

conducted at 24, 48, 60, 72, 96, and 120hpf (staging based on anatomical features). 705 

 706 

Zebrafish Immunohistochemistry 707 

Embryos were incubated in 1μg/ml of 4′,6-diamidino-2- 532 phenylindole (Roche, Cat# 708 

10236276001) at RT for 10min and washed in PBS 1x. Tg(TP1bglob:VenusPEST; -709 

5.5 ptf1a:DsRed) embryos were fixed in 4% paraformaldehyde overnight at 4°C. 710 

Immunostaining was carried out on whole embryos as previously described [57], with 711 
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heating in 150 mM Tris-HCl pH 9.0 at 70°C and subsequent acetone incubation. 712 

Embryos were then incubated with primary antibodies mouse anti-Gfap (zrf1; ZIRC - 713 

1:100), rabbit anti-Rlbp1 (1:200, 15356-1-AP; Proteintech, Rosemont, Illinois, USA), 714 

mouse anti-Glutamine synthetase (1:200, mab302, Merck, Kenilworth, NJ, USA), 715 

followed with secondary antibodies Goat anti-mouse IgG Alexa Fluor® 647 (A21235; 716 

Thermo Fisher Scientific, Waltham, MA, USA) and Goat anti-rabbit IgG Alexa Fluor® 717 

488 (A11008; Thermo Fisher Scientific, Waltham, MA, USA). 718 

 719 

Mouse Immunohistochemistry 720 

Immunohistochemistry was performed essentially as described previously [58]. Briefly, 721 

eyes were harvested from mice euthanized by CO2 overexposure before cervical 722 

dislocation, and the corneas and lenses were removed. Eye cups were fixed with 4% 723 

paraformaldehyde/PBS for 10 minutes at room temperature. After cryoprotection 724 

overnight in 20% sucrose/PBS, retinas were cut into 18 µm sections. Primary 725 

antibodies were anti-Cralbp (Rlbp1; Fisher antibody MA1-813) and anti-Gfap (Millipore 726 

Sigma AB5804). 727 

 728 

Image Acquisition 729 

Zebrafish images were acquired on the Zeiss LSM 900 with Airyscan 2 using a 40x 730 

water-immersion LD C-Apochromat (NA 1.1) or 63x oil-immersion Plan Apochromat 731 

(NA 1.4). Laser lines 405, 488, 561, 640 nm. Embedding was performed using glass-732 

bottom dishes and 1% low-melting-point (LMP) agarose (Sigma, A9414); which was 733 

covered following solidification with E3. 734 

Mouse data were acquired on a Zeiss LSM900 with Airyscan 2 using a Plan-735 

Apochromat 63x/1.40 Oil DIC f/ELYRA.  736 

 737 

Sampling frequency was assessed for Tg(TP1bglob:VenusPest)s940 using the 738 

Nyquist sampling rules (https://svi.nl/NyquistCalculator; Eq. 1-3). 739 

 740 

𝛥𝑥 =  
𝛥𝑒𝑚

4𝑛∗𝑠𝑖𝑛(𝛼)
      Eq.  1 741 

 742 

𝛥𝑧 =  
𝛥𝑒𝑚

2𝑛∗(1−𝑐𝑜𝑠(𝛼))
      Eq.  2 743 

𝛼 = 𝑎𝑟𝑐𝑠𝑖𝑛 (𝑁𝐴/𝑛)      Eq.  3 744 
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 745 

Image Analysis 746 

Images were analysed using open-source software Fiji [25]. Samples were excluded 747 

from analysis if image quality did not allow for reliable quantification (e.g., significant 748 

intra-plane movement, low CNR due to transgenic reporter weakness, unviable cell or 749 

animal health). Animals were allocated to treatment groups randomly without 750 

selection. Imaging and data analysis were performed unblinded to treatment 751 

allocation, often because the effect of treatment was easily deduced from the 752 

appearance of the micrograph. To overcome subjective bias, objective automized 753 

image analysis was applied where possible. 754 

 755 

Image understanding 756 

Manual measurements of retina size and MG cell bodies were performed using a line 757 

region of interest (ROI; details see workflow document). 758 

Manual measurements of intensity distributions were performed using a line ROI and 759 

plotting intensity values from maximum intensity projections (MIPs). 760 

Contrast-to-Noise Ratio (CNR; Eq. 4) and Signal-to-Noise Ratio (SNR; Eq. 5) were 761 

quantified by the placement of 3-5μm circular ROI at slices of interest at the position 762 

of the cell body, protrusion, and endfoot for mean signal measurement, non-signal 763 

ROIs were placed inside the retina without cellular signal, and background ROI was 764 

placed outside the retina. 765 

𝐶𝑁𝑅 =  
µ𝑠 − µ𝑛𝑠

𝜎𝑏𝑔
     Eq.  4 766 

 767 

𝑆𝑁𝑅 =  µ𝑠  − µ𝑛𝑠     Eq.  5 768 

 769 

Where µs is the mean signal, µns is the mean non-signal, and σbg is the standard 770 

deviation of the background. 771 

 772 

Image Pre-processing 773 

“SubregionTool”- Rotates images to align them along the y-axis, based on manual 774 

line ROI selection (start point at the MG endfeet and end point apically). Following the 775 

rotation, a bounding box is established with a 60 μm default width (x-axis) and box 776 

length is defined by the length of the manual line ROI with an extension of sigma 777 
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(default 10 μm) to allow for the inclusion of the underlying vasculature and 778 

consideration of retinal curvature. The position of the bounding box is determined by 779 

the endpoint of the line ROI following rotation with the following potential cases: [1] 780 

x,y-defined box fits into the image; [2] box overfits on the right, meaning the box will 781 

start at point xT-bT, with xT being the image width and bT being the box width; [3] box 782 

overfits on the right, meaning the box will start at x=0; [4] box overfits on the bottom, 783 

meaning the output image height will be the length of the manual line ROI (error 784 

message “File X sigma could not be attached”, with X being the file name). Next, the 785 

image is cropped in x,y to this size saved, and the stack is reduced to the default 10 786 

μm thickness. Should the stack not be thick enough an error message is produced: 787 

“File X not enough slices for substack”, with X being the file name. 788 

 789 

“90DegreeRotation” - Rotates images 90 degrees to the left or right before 790 

application of the “SubregionTool” and is required when images are rectangular rather 791 

than cubic, potentially resulting in artificial cropping. 792 

N-tuple multi-labelling was established by image merging and false-colour LUTs 793 

application following the application of the “SubregionTool” to the respective embryos. 794 

 795 

“ZonationTool” – Following 8-bit conversion, MIPs (x, y-direction) were produced, 796 

images were transformed 90 degree from the left (Image > stack > reslice; Fig. 3D) 797 

and additional MIPs (z-direction) produced. For intensity plotting, image width can be 798 

scaled to 1920 voxels using bilinear interpolation to allow for comparability between 799 

different images. Line ROI was automatically placed starting from pixel 0 (left-most) to 800 

the image width, intensity profiles were measured and saved (one output file per input 801 

folder). One-voxel wise representation was assigned LUT Fire based on intensity and 802 

saved. Derived measurements were the total image height (IN) and retina height (RN), 803 

whereas retina height is based on sigma added with the SubregionTool. 804 

 805 

Table 1. zonationTool measurements. 806 

Descriptor Variable Comment 

1. Image Height IN Total height of the image 

2. MG Height MGN Radial extension of MG 

 807 
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AiryScan Processing. AiryScan processing was conducted (independent of 808 

transgenic or staining) with Zeiss Zen Blue Software using 3D standard if not otherwise 809 

indicated in the text. Briefly, the processing is performed individually on images 810 

acquired with the 32 detectors, using a non-iterative linear Wiener deconvolution 811 

algorithm [59], [60]. 812 

 813 

As the processing is included in the Zeiss software system, there was no requirement 814 

to include additional steps into GliaMorph. However, we wanted to use this informed 815 

approach to establish the ideal processing before converting to GliaMorph. First, we 816 

examined the impact of AiryScan processing using the settings 2D standard, 3D 817 

standard, and 3D high (Fig. S4A-D). As expected, this showed 3D deconvolution to 818 

outperform 2D deconvolution, as assessed per reduced background (white 819 

arrowheads), and high deconvolution to result in increased structured noise and grains 820 

(black arrowheads). We next assessed this quantitatively using CNR measurements. 821 

This showed that 3D deconvolution indeed outperformed 2D processing and that 822 

reduction of 1μm z-stack step size to 0.19μm, increased the CNR drastically (Fig. 823 

S4E,F). As such, these parameters are feasible and ideal for MG morphological data 824 

in the zebrafish retina.  825 

 826 

“deconvolutionTool”  827 

(1) Point-Spread-Function (PSF) Modelling 828 

Theoretical PSF was modelled using analytical derivation based on Fraunhofer 829 

diffraction using the “Diffraction PSF 3D” Plugin (https://imagej.net/Deconvolution; 830 

https://www.optinav.info/Diffraction-PSF-3D.htm). The objective numerical aperture 831 

(NA) can be changed freely; the following standard suggestions were chosen: 20x Air 832 

NA 0.8, 40x Water NA 1.1, 63x Oil NA 1.4. Fluorophore wavelengths are entered 833 

manually for up to four channels. 834 

 835 

(2) Confocal PSF Deconvolution 836 

Deconvolution of the image y was performed with the Plugin DeconvolutionLab2 [61] 837 

(http://bigwww.epfl.ch/deconvolution/deconvolutionlab2/) 838 

𝑦 = 𝐻𝑥 + 𝑛       Eq.  6 839 

Where y is the data, H is the PSF matrix, x is the image, and n is the added noise 840 

component. 841 
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The following deconvolution algorithms were examined: 842 

(a) Regularized Inverse Filter [62]:  843 

𝑥 =  (𝐻𝑇𝐻 +  𝜆 𝐿𝑇𝐿) −1𝐻𝑇𝑦     Eq.  7 844 

where L is the discretization of the Laplacian operator, T  denotes the adjoint of L and 845 

H, and λ is the regularization factor (set to 1.000E-18).  846 

 847 

(b) Landweber [63] iterative deconvolution: 848 

𝑥(𝑘+1) =  𝑃(𝑅+)𝐾 {𝑥(𝐾) +  ƴ𝐻𝑇(𝑦 − 𝐻𝑥(𝑘))}   Eq.  8 849 

 850 

where P(R+)
K = max(x,0) is the component-wise projection, the number of iterations 851 

Miter (set to 15), and step size parameter ƴ (set to 1.5). 852 

 853 

(c) Fast Iterative Shrinkage Thresholding [64] with the cost function: 854 

C(x) = | y - Hx | + λ |Wx| 1       Eq.  9 855 

 856 

where W represents a wavelet transform and λ is the regularization factor (set to 857 

1.000E-18).  858 

 859 

(d) Bounded-Variables Least Squares, also known as Spark-Parker algorithm [65], 860 

minimizing a least-squares cost function (variables constraint): 861 

arg min
𝛼≤𝑥≤𝛽

||𝐻𝑥 − 𝑦|| 2      Eq.  10 862 

 863 

Where y is the vector of response variables, ||.||2 denotes the Euclidean norm, and 864 

α≤x≤β denote the upper and lower bounds, respectively.  865 

 866 

(e) Richardson-Lucy [66], [67] with the assumption of Poisson noise and the cost 867 

function: 868 

𝐶(𝑥) =  1𝑇𝐻𝑥 −  𝑦𝑇 𝑙𝑜𝑔(𝐻𝑥)    Eq.  11 869 

 870 

with Miter (set to 1 or 5). 871 

 872 

To quantitatively assess image quality, contrast-to-noise ratio (CNR) was quantified. 873 

To account for subcellular differences (Fig. S1A) CNR was measured in several MG 874 
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subdomains (MG cell bodies, protrusions, and endfeet). When examining the impact 875 

of RL iteration numbers visually, 1 iteration was found to preserve MG IPL protrusions 876 

(unfilled arrowhead Fig. S3) but not fully remove retina auto-fluorescence/background 877 

(green arrowhead), while 5 iterations did not fully preserve IPL protrusions but 878 

removed the observed background. This was confirmed when examining image 879 

intensities (Fig. S3H). When quantifying CNR levels, 5 iterations delivered higher CNR 880 

outcomes than 1 iteration (Fig. S3I-K). However, considering the loss of detail in IPL 881 

protrusions with 5 iterations, 1 iteration was used subsequently. 882 

 883 

(3) User choice summary 884 

The above was then integrated into the deconvolutionTool with user choices as 885 

follows: single-/multi-channel, selection of fluorophores by manual input of wavelength 886 

(nm) for up to 4 channels, NA input, and non-/existing PSF file. 887 

 888 

Segmentation 889 

[A] Zebrafish Tg(TP1bglob:VenusPest)s940 and Tg(CSL:mCherry)jh11 890 

Bleach correction was performed using “Simple Ratio Method” with background 0 [68]. 891 

Following, images were converted to 8-bit to allow for the following steps. Smoothing 892 

was performed using a 3D median filter with a radius of 2 voxels [69]. Segmentation 893 

was conducted after the selection of the plane at the middle of the stack with Otsu 894 

thresholding [70] (histogram-derived): 895 

 896 

𝜎𝜔
2 (𝑡) =  𝜔0(𝑡)𝜎0

2(𝑡) +  𝜔1(𝑡)𝜎1
2(𝑡)    Eq.  12 897 

 898 

where ω0 and ω1 are the probabilities of the two classes to be separated with the 899 

threshold (t), calculated from the histogram, and σ0 and σ1 are the class variances, 900 

respectively. For post-processing, 3D median filtering with a radius of 2 voxels and 901 

binarization were conducted for surface smoothing. Additionally, MorpholibJ “Keep 902 

Largest Region” from the IJPB-plugins was used [71]. 903 

 904 

[B] Zebrafish Tg(TP1bglob: TP1bglob:eGFP-CAAX) u911 905 

Prior to segmentation, the "3D Edge and Symmetry Filter" was applied (settings: 906 

"alpha=0.500 compute_symmetry radius=10 normalization=10 scaling=2 improved") 907 
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[72]. As [A] above, with post-processing as follows: 3D hole filling [72] instead of 908 

surface smoothing. 909 

 910 

Quantification 911 

All quantifications were performed using segmented 3D stacks as input. 912 

To quantify the number of MG (NN), three approaches were tested (a) automatic ROI 913 

selection and MG counting, (b) semi-automatic ROI selection and automatic MG 914 

counting, and (c) manual measurements (taken as gold-standard). Briefly, to 915 

automatically select ROI, the ZonationTool was applied to the segmented 3D stacks 916 

to extract the MG cell body position per image, while for the semi-automatic approach, 917 

one rectangular ROI was drawn per experimental group (this assumes that animals 918 

are age-matched and comparable within the group). For automatic cell counting, 919 

stacks were cropped to ROI size in x,y. Then "Distance Transform Watershed 3D" [71] 920 

was applied to separate cell bodies, this was followed by "3D Simple Segmentation" 921 

[72] for binarization, and the BoneJ "Particle Analyser" [73] to quantify the number of 922 

cells. 923 

MG volume (VN) was quantified as the number of object voxels (zero value) in 924 

histogram, multiplied by voxel size, while volume coverage (VCN [%]) was measured 925 

as percentage of image voxels covered with MG object voxels.  926 

Surface (SN) were derived as surface/edge voxels following segmentation, and due to 927 

uncertainty in orientation (i.e. face, edge, or vertices) and normalization (i.e. voxel size 928 

differences between datasets) was given as volume a volume instead of area or 929 

number. Lastly, surface-to-volume (S:VN) ratio was derived as a ratio. 930 

 931 

Centreline extraction was performed in segmented images using the Fiji "Skeletonize 932 

2D/3D" Plugin, based on 3D thinning [74]. Centreline voxels (zero-valued in images) 933 

were quantified for total network length (LN) analysis by quantification of object voxels 934 

(zero value) in histogram. 935 

The "Analyse Skeleton" Plugin in Fiji (Analyse > Skeleton > Analyse Skeleton 2D/3D 936 

[75]) was used to identify and measure the number of junctions (JN), End-Points (EPN), 937 

and average branch Length (BLN) (Analyse > Skeleton > Summarize Skeleton). 938 

 939 

Euclidean Distance Maps (EDMn) of object voxel distance to the nearest background 940 

voxel were produced from binary segmented images using the Fiji plugin "Distance 941 
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Map 3D", which calculates distance in three-dimensional Euclidean space (Eq.10; 942 

Process > Binary > Distance Map in 3D [76]). To quantify thickness (TN), EDMs were 943 

multiplied with extracted skeletons, resulting in a 1D representation of vessel radii as 944 

represented by intensity of voxels (see [77]). 945 

 946 

Table 2: Quantified parameters. 947 

Feature Variabl

e 

Unit Description 

Image Height  IN [µm] Total height of the image 

MG Height  MGN [µm] Radial extension of MG 

Number/Count NN  Number of objects in ROI 

Volume VN [µm3] Volume of object voxel, derived after 

segmentation  

Volume Coverage VCN [%] Percentage of image volume covered 

with MG (lowest = 0; highest = 100) 

Surface SN [µm3] Number of object surface voxels, 

derived after segmentation (given in 

[µm3] for comparability between 

experiments) 

Surface:Volume 

Ratio 

S:VN  Ratio of surface to volume (lowest = 0; 

highest = 1) 

Thickness TN  Distance from the local centreline to the 

corresponding surface  

Skeleton length LN [µm] Skeleton voxels (given in [µm] for 

comparability between experiments) 

# of Junction JN  Number of points where 2/more sub-

branches branch off 

# of Endpoints EPN  Number of blind-ended object points 

Average Branch 

Length 

BL [µm] Average length of individual skeleton 

branches 

 948 

 949 

Fourier Transformation Analysis 950 
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To obtain information on MG alignment, AFT, a previously published open-source tool 951 

for evaluating the alignment of fibrillar structures across different length scales, was 952 

used [35]. This tool allows for local evaluation of alignment by exploiting the 953 

representation of small tiles of the image in the Fourier space. We achieved alignment 954 

analysis of MG by building on the AFT workflow as follows. We used (1) the 955 

SubregionTool to produce equally sized tiff MIPs, (2) “CheckImageSize.ijm” to identify 956 

the largest image, (3) “NormalizeImageSizes.ijm” to make data comparable by top-to-957 

top alignment and attachment of black voxels to achieve image height similarity, using 958 

the largest image as standard – this step also includes an image enhancement step. 959 

We then applied (4) AFT only to non-black/non-background voxels (parameters: 960 

window size 100 px, overlap 50%, neighbour radius 3 vectors (i.e., the neighbourhood 961 

of 7 vectors); save output images – yes; apply filtering – yes; masking – 0, ignore blank 962 

spaces – 1, ignore isotropic regions – 0; mean background 5), and we produced (5) 963 

line-based averages along the apicobasal axis (i.e. use x averages, and iterate over 964 

y-axis). 965 

 966 

Data representation. To visualize data, maximum intensity projections (MIP) were 967 

generated; intensity inversion was applied as appropriate to give the clearest 968 

rendering of relevant structures. Depth-coding was performed with the “Temporal-969 

Color Coder” by Kota Miura (https://imagej.net/plugins/temporal-color-code). 970 

 971 

Statistical analysis 972 

Normality of data was tested using D'Agostino-Pearson omnibus test. Statistical 973 

analysis of normally distributed data was performed using a One-way ANOVA to 974 

compare multiple groups or Student’s t-test to compare two groups. Non-normally 975 

distributed data were analysed with a Kruskal-Wallis test to compare multiple groups 976 

or Mann-Whitney test to compare two groups. Analysis was performed in GraphPad 977 

Prism Version 9 (GraphPad Software, La Jolla California USA). P values are indicated 978 

as follows: p<0.05 *, p<0.01 **, p<0.001 ***, p<0.0001 ****. All data were acquired as 979 

experimental repeats rather than replicates. Based on the mean/SD of the data in the 980 

examined groups in the assays used, post hoc power calculations have shown that 981 

these assays have at least 80% power to detect an effect size of 30% difference 982 

between groups when group sizes are 12/group (alpha = 0.05). Image representation 983 
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was performed using Inkscape (https://www.inkscape.org). All data are available on 984 

request. 985 

 986 

Code and data availability 987 

• Code: https://github.com/ElisabethKugler/GliaMorph 988 

• Example data for #GliaMorph Protocol: 10.5281/zenodo.5747597 989 

• Minimum Example Data: 10.5281/zenodo.5735442 990 

• Double-transgenic Müller Glia Data at 3dpf and 5dpf Zebrafish: 991 

10.5281/zenodo.5938758 992 
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 1233 

Figures1234 

 1235 

Figure 1. MG cells have a highly complex shape that can be visualized by 1236 

specific cellular labels by confocal microscopy.  1237 

(A) Imaging of MG was conducted in the ventro-temporal zebrafish retina to 1238 

standardize the ROI. (A’) MG are the principal glia cell in the retina and can be 1239 

visualized with transgenic reporter lines or immunohistochemistry stainings. (A’’, A’’’) 1240 

Computationally, identifying individual MG cells is challenging as typically all MG cells 1241 

are labelled by transgenic or antibody markers, making it a complex task to identify 1242 

where individual cells start/end. (B) Schematic of individual MG cell morphological 1243 

maturation during early development, showing elaboration of subregions and an 1244 
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increase in protrusions (arrowheads). (C) Maximum intensity projection (MIP) 1245 

micrograph with yellow dotted lines indicating the apicobasal position of retinal layers. 1246 

(C’’) Resliced/transformed section through the yellow dotted lines, visualizing that cell 1247 

subregions have distinct properties along the apicobasal axis, making it challenging 1248 

for computational approaches to be applied throughout the image in the same fashion. 1249 

(C’’) Computational description of MG subregions features. 1250 

 1251 

Figure 2. Image standardization is required for image comparability. 1252 

(A) The subregionTool allows for semi-automatic subregion selection by (i) manual 1253 

line-ROI selection, which is then used to rotate the image (ii), create a bounding box 1254 

(iii), crop the image using this bounding box (iv), and crop the image in z (v) (sigma = 1255 

user-defined basal extension to allow for blood vessel inclusion). (B) Applying the 1256 

subregionTool to images from different transgenic reporter lines, shows that they can 1257 

be made comparable, as exemplified by computationally overlapping them. (C) 1258 

Measurement of progenitor/MG height shows a high similarity in age-matched 1259 

samples, and that developmental growth of MG is highly reproducible between 1260 

samples (CoV 24hpf 18.72%, 48hpf 3.13%, 60hpf 5.25%, 72hpf 6.52%; p<0.0001; 1261 

24hpf n=13 embryos, 48hpf n=5 embryos, 60hpf n=8 embryos, 72 hpf n=8 embryos; 1262 

N=2 experimental repeats; Kruskal-Wallis test; mean ± s.d.). 1263 

 1264 
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 1265 

Figure 3. The ZonationTool enables data reduction to 1D-vectors for apicobasal 1266 

texture analysis.  1267 

(A) MG have subcellular morphological specialisations from the apical (top) to basal 1268 

(bottom) position in the retina. These subregions (1-5), highlighted in boxes, were 1269 

expected to be discernible by distinctive intensity profiles (such as high levels for nuclei 1270 

and lower levels for the IPL). (B) Diagram of the workflow: 3D image stacks were 1271 
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reduced to 2D images, transformed to 1D+z, and again reduced, thus resulting in a 1272 

one-voxel-wise representation of MG data. (C) Apicobasal intensity plot of a double-1273 

transgenic at 75hpf, shows that the subregionTool applies to MG as well as neurons. 1274 

Application to double-transgenics moreover allows understanding of cell relationships 1275 

(n=3). (D) Representative images used for plots in F, showing differences between 1276 

transgenics. (E) Heatmap representation for apicobasal texture analysis of D. (F) 1277 

Retina height measurements from 24-to-96 hpf showing a statistically significant 1278 

increase over time (p=0.0006; not significant (ns) p>0.999; 24hpf n=13 embryos, 48hpf 1279 

n=5 embryos, 60hpf n=8 embryos, 72hpf n=8 embryos, 96hpf n=8 embryos; N=2 1280 

experimental repeats; Kruskal-Wallis test; mean ± s.d.). (G) Intensity profiles from 24-1281 

to-96hpf produced with the zonationTool (solid line depicting mean values; image size 1282 

normalized to 1900 for comparability). (H) Heatmap representation for apicobasal 1283 

texture analysis of H (mean). 1284 
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Figure 4. GliaMorph allows 3D feature extraction and quantification of MG.  1286 

(A) Apicobasal texture plot of original images showing the maturation of MG as 1287 

indicated by changes in subregion 1/2 (white arrow), cell bodies (grey arrow), and 1288 

endfeet (p=0.0862; Mann-Whitney U test; mean). Normalization refers to image 1289 

length, i.e. both images were adjusted to the same length. (B) Apicobasal texture plot 1290 

of segmented images shows similar changes as observed when plotting original data, 1291 

but also indicates IPL maturation (blue arrow) (p=0.0052; Mann-Whitney U test; 1292 

mean). (C) Apicobasal texture plot of skeletonized images, again shows that MG the 1293 

network elaborates over time (p=0.3402; Mann-Whitney U test; mean). (D,E) Workflow 1294 

overview to extract MG features on a 3D global image-level, including depth-coded 1295 

(DC) original images, DC segmentation, thickness (Euclidean distance map; higher 1296 

intensity represents thicker regions), skeleton (MIP dilated for representation), and DC 1297 

surface at 72 hpf and 120 hpf. (F,O) MG morphology significantly matures between 1298 

72hpf and 120hpf. (F) MG height was significantly increased from 72-to-120 hpf 1299 

(p=0.0061; two-tailed unpaired t-test; mean ± s.d.). (G) Volume was not significantly 1300 

changed (p=0.2314; two-tailed unpaired t-test; mean ± s.d.). (H) Volume coverage was 1301 

not significantly changed from (p>0.9999; two-tailed unpaired t-test; mean ± s.d.). (I) 1302 

Surface volume was significantly increased (p=0.0004; two-tailed unpaired t-test; 1303 

mean ± s.d.). (J) Surface-to-volume ratio was statistically significantly increased 1304 

(p=0.0015; two-tailed unpaired t-test; mean ± s.d.). (K) Average thickness was 1305 

significantly decreased (p=0.0366; two-tailed unpaired t-test; mean ± s.d.). (L) 1306 

Skeleton length was statistically significantly increased (p=0.0033; two-tailed unpaired 1307 

t-test; mean ± s.d.). (M) Number of junctions was significantly increased (p=0.0025; 1308 

two-tailed unpaired t-test; mean ± s.d.). (N) Number of endpoints was significantly 1309 

increased (p=<0.0001; two-tailed unpaired t-test; mean ± s.d.). (O) Average branch 1310 

length was not significantly changed (p=0.1409; 72 hpf n=15, 120 hpf n=18; N=2 1311 

experimental repeats; two-tailed unpaired t-test; mean ± s.d.). 1312 
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Figure 5. MG global feature analysis in a stable membrane-visualizing 1314 

transgenic. 1315 

(A-C) Micrographs of original and processed data at 60, 72, and 96 hpf, respectively. 1316 

(D-M) All parameters, except MG height, did not significantly change during the 1317 

studied time frame. (D) MG height was statistically significant increased from 60-96hpf 1318 

(p<0.0001; Kruskal-Wallis test; mean ± s.d.). (E) Volume was not statistically 1319 

significantly changed (p=0.2197; Kruskal-Wallis test; mean ± s.d.). (F) Volume 1320 

coverage was not statistically significantly changed (p=0.7728; Kruskal-Wallis test; 1321 

mean ± s.d.). (G) Surface volume was not statistically significantly changed (p=0.3036; 1322 

Kruskal-Wallis test; mean ± s.d.). (H) Surface-to-volume ratio was not statistically 1323 

significantly changed (p=0.3570: Kruskal-Wallis test; mean ± s.d.). (I) Thickness was 1324 

statistically significant increased from 60-96hpf (p=0.0466; Kruskal-Wallis test; mean 1325 

± s.d.). (J) Skeleton length was not statistically significantly changed (p=0.1095; 1326 

Kruskal-Wallis test; mean ± s.d.). (K) Number of junctions was not statistically 1327 

significantly changed (p=0.0741; Kruskal-Wallis test; mean ± s.d.). (L) Number of 1328 

endpoints was not statistically significantly changed (p=0.0690; Kruskal-Wallis test; 1329 

mean ± s.d.). (M) Average branch length was statistically significant increased from 1330 

60-96hpf (p=0.0018; 60hpf n=11, 72hpf n=12, 96hpf n=13; N=2 experimental repeats; 1331 

Kruskal-Wallis test; mean ± s.d.). 1332 
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 1333 

Figure 6. MG higher-order analysis in a stable membrane-visualizing transgenic. 1334 

(A) Apicobasal intensity plotting showed a statistically significant difference from 60-1335 

96 hpf in original (p<0.0001), segmented (p<0.0001), and skeletonized images 1336 

(p<0.0001; 60hpf n=11, 72hpf n=12, 96hpf n=13; N=2 experimental repeats; Kruskal-1337 

Wallis test; mean). This suggested that subcellular features matured over time. (B-D) 1338 

Using measurements of orientation, showed that the subcellular organization changed 1339 

from a more vertical (1-yellow) to a more horizontal (0.2 – blue) alignment. (B – 1340 

vectors; C - colourized representation of vector angles; D - image order was 1341 
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statistically significantly different from 60-96hpf (p=0.0049; data from 2 experimental 1342 

repeats; Kruskal-Wallis test)). 1343 

 1344 

 1345 

Figure 7. Analysis of glial development using single-cell measurements. 1346 

(A) Segmentation MIPs of clones at 60hpf, 72hpf, and 96hpf clones (representative 1347 

images extracted from 3D stacks). (B) MG height did significantly increase from 60-1348 

to-96hpf (p=0.0006; Kruskal-Wallis test; mean ± s.d.). (C) Volume did significantly 1349 

increase from 60-to-96hpf (p=0.0035; Kruskal-Wallis test; mean ± s.d.). (D) Surface 1350 
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volume did significantly increase from 60-to-96hpf (p=0.0029; Kruskal-Wallis test; 1351 

mean ± s.d.). (E) Surface-to-volume ratio did not significantly change from 60-to-96hpf 1352 

(p=0.9947; mean ± s.d.). (F) Skeleton length did significantly increase from 60-to-1353 

96hpf (p<0.0001; mean ± s.d.). (G) Number of junctions did significantly increase from 1354 

60-to-96hpf (p<0.0001; mean ± s.d.). (H) Number of endpoints did not significantly 1355 

alter from 60-to-96hpf (p=0.0400; mean ± s.d.). (I) Average branch length did not 1356 

significantly alter from 60-to-96hpf (p=0.3320; mean ± s.d.). (J) Thickness did not 1357 

significantly alter from 60-to-96hpf (p=0.8241; 60hpf n=10 cells, 72hpf n=19 cells, 1358 

96hpf n=16 cells; N=3 experimental repeats; Kruskal-Wallis test; mean ± s.d.). (K,L) 1359 

Apicobasal intensity plotting showed a statistically significant difference from 60-96hpf 1360 

in segmented (p<0.0001), and skeletonized images (p<0.0001). 1361 

 1362 
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Figure 8. Loss of cadherin 2 alters apicobasal features. 1364 

(A, B) Maximum intensity projections (MIPs) of controls and cadherin 2 crispants, 1365 

visualizing MG with the transgenic reporter line Tg(TP1bglob:eGFP-CAAX) u911. (C-L) 1366 

Analysis of global image-level features showed no significant difference upon cadherin 1367 

2 loss. (C) MG height was not significantly changed upon loss of cadherin 2 (p=0.9519; 1368 

control n=9, cdh2-/- n=11; N=2 experimental repeats; unpaired Students t-test; mean 1369 

± s.d.). (D) MG volume was not significantly changed upon loss of cadherin 2 1370 

(p=0.6211; control n=9, cdh2-/- n=11; N=2 experimental repeats; unpaired Students t-1371 

test; mean ± s.d.). (E) Volume coverage was not significantly changed upon loss of 1372 

cadherin 2 (p=0.5461; unpaired Students t-test; mean ± s.d.). (F) MG surface volume 1373 

was not significantly changed upon loss of cadherin 2 (p=0.8175; unpaired Students 1374 

t-test; mean ± s.d.). (G) MG surface-to-volume ratio was not significantly changed 1375 

upon loss of cadherin 2 (p=0.0725; unpaired Students t-test; mean ± s.d.). (H) Average 1376 

thickness was not significantly changed upon loss of cadherin 2 (p=0.6422; unpaired 1377 

Students t-test; mean ± s.d.). (I) Skeleton length was not significantly changed upon 1378 

loss of cadherin 2 (p=0.7827; unpaired Students t-test; mean ± s.d.). (J) Number of 1379 

junctions was not significantly changed upon loss of cadherin 2 (p=0.9837; unpaired 1380 

Students t-test; mean ± s.d.). (K) Number of endpoints was not significantly changed 1381 

upon loss of cadherin 2 (p=0.4922 unpaired Students t-test; mean ± s.d.). (L) Average 1382 

branch length was not significantly changed upon loss of cadherin 2 (p=0.6845; 1383 

unpaired Students t-test; mean ± s.d.). (M) Apicobasal texture was significantly 1384 

changed when looking at original (p<0.0001; Mann-Whitney U test), segmented 1385 

(p<0.0001; Mann-Whitney U test), and skeletonized (p=0.0072; Mann-Whitney U test; 1386 

mean) data. This suggested that subcellular components were changed upon loss of 1387 

cadherin 2. (N, O) Using image orientation measurements, showed that feature 1388 

alignment was significantly altered upon cadherin 2 loss – this can be particularly seen 1389 

in the OLM and IPL (p=0.0221; control n=9, cdh2-/- n=11; N=2 experimental repeats; 1390 

Mann Whitney U test; mean). 1391 

 1392 
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Figure 9. Apicobasal texture analysis can be used to study mouse glaucoma 1394 

disease models. 1395 

(A, B) Micrographs of controls and spontaneously glaucomatous DBA/2/J mice. (C) 1396 

Using Rlbpj1 staining to visualize the complete MG structure, shows structural 1397 

changes in glaucoma when analysed using apicobasal texture analysis (original 1398 

p<0.0001; segmentation p<0.0001; skeleton p<0.0001; Mann-Whitney U test; n=7 1399 

stacks from 3 mice each). (D) Using GFAP staining to visualize reactive MG with 1400 

cytoskeletal changes, shows structural changes in glaucoma when analysed using 1401 

apicobasal texture analysis (original p<0.0001; segmentation p<0.0001; skeleton 1402 

p<0.0001; Mann-Whitney U test; n=7 stacks from 3 mice each). 1403 

 1404 

 1405 

Figure 10. GliaMorph workflow overview. 1406 

(A) Using global image-level measurements, 11 different parameters are quantified. 1407 

(B) Using the zonationTool and applying it to original, segmented, and skeletonized 1408 

data allows insights into apicobasal subcellular feature distributions. (C) Using Fourier 1409 

Transformation based analysis allows the assessment of apicobasal subcellular 1410 

orientation distributions. (D) As GliaMorph is modular in its application, workflow 1411 

design is easy and flexible. 1412 
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