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Developing personalized diagnostic strategies and targeted treatments requires a deep un-

derstanding of disease biology and the ability to dissect the relationship between molecular

and genetic factors and their phenotypic consequences. However, such knowledge is frag-

mented across publications, non-standardized research repositories, and evolving ontologies

describing various scales of biological organization between genotypes and clinical pheno-

types. Here, we present PrimeKG, a precision medicine-oriented knowledge graph that pro-

vides a holistic view of diseases. PrimeKG integrates 20 high-quality resources to describe

17,080 diseases with 4,050,249 relationships representing ten major biological scales, includ-

ing disease-associated protein perturbations, biological processes and pathways, anatomi-

cal and phenotypic scales, and the entire range of approved and experimental drugs with

their therapeutic action, considerably expanding previous efforts in disease-rooted knowl-

edge graphs. In addition, PrimeKG supports artificial intelligence analyses of how drugs

might target disease-associated molecular perturbations by containing an abundance of ‘in-

dications’, ‘contradictions’, and ‘off-label use’ drug-disease edges lacking in other knowledge

graphs. We accompany PrimeKG’s graph structure with text descriptions of clinical guide-

lines to enable multimodal analyses.
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Background & Summary
Precision medicine takes a personalized approach to disease diagnosis and treatment that ac-

counts for the variability in genetics, environment, and lifestyle across individuals1. To be pre-

cise, medicine must revolve around data and learn from both biomedical knowledge and health

records2. Nevertheless, many barriers to linking and efficiently exploiting medical information

across healthcare organizations and biological scales slow down the research and development of

individualized care2. While many have acknowledged the difficulties in linking existing biomed-

ical knowledge to patient-level health records2–5, few realize that biomedical knowledge is it-

self fragmented. Biomedical knowledge about complex diseases comes from different organi-

zational scales, including genomics, transcriptomics, proteomics, molecular functions, intra- and

inter-cellular communications, phenotypes, therapeutics, and environmental exposures. For any

given disease, information from various organizational scales is scattered across individual publi-

cations, non-standardized data repositories, evolving ontologies, and clinical guidelines. Develop-

ing networked relationships between these sources can support research in disease-rooted precision

medicine.

A resource that comprehensively describes the relationships of diseases to biomedical en-

tities would enable the large-scale, data-driven study of human disease. Understanding the con-

nections between diseases, drugs, phenotypes, and other entities could open the doors for many

types of research to leverage recent computational advances, including but not limited to the study

of disease phenotyping6–8, disease etiology9, disease similarity10, disease diagnosis11–13, disease

treatments14, drug-disease relationships15–17, mechanisms of drug action18 and resistance3, drug

repurposing19–21, drug discovery22, 23, adverse drug events24, 25, combination drug therapies26, and

so forth. Many researchers have developed knowledge graphs for individual diseases that have

helped advance computational precision medicine within their respective disease area27–42. Nev-

ertheless, the costs and extended timelines of these individual efforts demonstrate a need for a

systematic data resource that could unify existing biomedical knowledge to enable the investiga-

tion of diseases at scale.

While many primary data resources contain information about diseases, consolidating them

into a comprehensive, disease-rich, and functional knowledge graph presents three challenges.

Firstly, existing approaches to network analysis of diseases require expert review and curation of

data in the knowledge graph29, 30, 43. While incredibly detailed, such efforts require substantial man-

ual labor and expensive expert input, making them difficult to scale. Secondly, there lacks a con-
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sistent representation of diseases across biomedical datasets and clinical guidelines. Rather than

have a standardized disease ontology, database developers select the ontology that best suits their

function from a multitude of biorepositories44–54. Because each set of disease vocabulary was tai-

lored for some to serve a unique purpose, their disease encodings overlap unsystematically and are

often in conflict. For instance, ICD codes50 are optimized for medical billing whereas MedGen53,

PhenoDB51, and Orphanet48 focus on rare and genetic diseases. Moreover, expertly curated disease

descriptions in medical knowledge repositories do not follow any naming conventions 48, 55. The

lack of standardized disease representations and the multimodal nature of the datasets makes it

challenging to harmonize biomedical knowledge at scale. Thirdly, the definition of a ‘unique’ dis-

ease remains medically and scientifically ambiguous. For instance, while autism spectrum disorder

is considered a medical diagnosis, the condition has many subtypes linked to clinically divergent

manifestations56, 57. Clinically studied disease subtypes often do not correlate clearly with those de-

fined in disease ontologies. Although only three subtypes of autism have be clinically identified57,

the Unified Medical Language System (UMLS)46 describes 192, the Monarch Disease Ontology

(MONDO)44 describes 37, and Orphanet48 describes 6. The challenge in reconciling disease enti-

ties is only exacerbated by the variety of synonyms and abbreviations available for any particular

disease58 and the difficulty in linking structured disease entities to unstructured names in text59.

Meaningful disease entity resolution across multimodal, non-standardized datasets is critical for

developing knowledge graphs that will be useful for downstream precision medicine tasks.

While drug repurposing remains the focus of knowledge graph development33, 37, 39, 42, 60–62,

considerable effort has been devoted to building knowledge graphs from biomedical literature28, 31, 40

and clinical records29, 30, 34, 63. For example, the SPOKE network is a seminal effort that linked

many heterogeneous biomedical databases to build a disease-centric knowledge graph38. Although

SPOKE is limited to about 200 diseases and lacks multimodal connections between textual clin-

ical guidelines and tabular molecular data, it has enabled many precision medicine efforts, in-

cluding Nelson et al.35 who overlaid individual patient-level information onto SPOKE’s biomed-

ical knowledge. Most recently, an initiative from the White House led to the development of

The COVID-19 Open Research Dataset (CORD-19)64. CORD-19 was able to empower data-

driven medicine during the pandemic by facilitating the development of neural search engines for

healthcare workers65, 66 and provided insights into drug repurposing targets 67. Collectively, these

knowledge graphs have lent themselves to a variety of scientific discoveries68, 69, methodological

innovations70–72 and biomedical benchmarking32, 36, 73. Large-scale knowledge graphs have facili-
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tated fruitful research across various problems faced by the biomedical community. Nevertheless,

due to the medical heterogeneity of diseases, the multimodal nature of disease information, and

the incompatibility of existing disease biorepositories, knowledge graphs focused on diseases have

not achieved the scale or impact of many other efforts in this space.

Here, we present the Precision Medicine Knowledge Graph (PrimeKG), a knowledge graph

providing a holistic and multimodal view of diseases. We integrate 20 high-quality resources,

biorepositories, and ontologies to curate this knowledge graph. PrimeKG systematically captures

information about 17,080 diseases with 4,050,249 relationships representing ten major biological

scales, including disease-associated perturbations in the proteome, biological processes and path-

ways, anatomical and phenotypic scales, and the entire range of approved and experimental drugs

together with their therapeutic action, considerably expanding previous efforts in disease-rooted

knowledge graph creation. We demonstrate that disease nodes in our multi-relational knowledge

graph are densely connected to every other node type, including phenotypes, exposures, and seven

others. We tune PrimeKG specifically to support artificial intelligence analyses to better understand

how drugs might target disease-associated molecular perturbations by including an abundance of

‘indications’, ‘contradictions’, and ‘off-label use’ drug-disease edges, which are usually missing

or sparse in other knowledge graphs. We supplement PrimeKG’s rich graph structure with textual

descriptions of clinical guidelines for drug and disease nodes to enable multimodal analyses. Fi-

nally, we address the disease entity resolution challenge by improving the correspondence between

diseases in PrimeKG and disease subtypes found in the clinic, making PrimeKG-based analyses

medically meaningful.
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Methods
The Precision Medicine Knowledge Graph (PrimeKG) is heterogeneous, with 10 types of nodes

and 30 types of undirected edges. To develop PrimeKG, we retrieved and collated the 20 primary

data resources (detailed in Data Records section) as visualized in Figure 2a, identified relations

across these resources as shown in Figures 2b and 2c, harmonized them into a rich, heterogeneous

network as illustrated in Figure 2c, and augmented the drug and disease nodes in this network with

textual descriptions as depicted in Figure 2d.

A. Curating primary data resources

To develop a comprehensive knowledge graph to study diseases, we considered 20 primary re-

sources and a number of additional repositories of biological and clinical information. Figure 2a

provides an overview of all 20 resources. We selected datasets that provided widespread coverage

of biomedical entities, including proteins, genes, drugs, diseases, anatomy, biological processes,

cellular components, molecular functions, exposures, disease phenotypes and drug side effects.

These were high-quality datasets, either expertly curated annotations such as DisGeNet and Mayo

Clinic, widely-used standardized ontologies such as Mondo Disease Ontology, or direct readouts

of experimental measurements such as Bgee and DrugBank. A complete list of primary resources

along with their processing steps is listed in the Data Records section. All our data curation and

processing approaches are transparent, fully reproducible, and can be continually adapted as indi-

vidual data resources evolve and new data become available.

B. Standardizing and harmonizing data resources

To harmonize these primary data resources into PrimeKG, we selected ontologies for each node

type, harmonized datasets into a standardized format, and resolved overlap across ontologies.

Defining node types and selecting common ontologies. Our knowledge graph consists of 10

types of nodes. The node types ‘drug’, ‘disease’, ‘anatomy’ and ‘pathway’ are respectively en-

coded as terms in DrugBank, Mondo, UBERON, and Reactome. Genes and proteins are treated as

a single node type, ‘gene/protein’, and identified by Entrez Gene IDs. The node types ‘biological

process’, ‘molecular function’, and ‘cellular component’ are defined using Gene Ontology terms.

Disease phenotypes extracted from HPO and drug side effects extracted from SIDER are collapsed

into a single node type, ‘effect/phenotype’, that is encoded using HPO IDs. Finally, ‘exposure’

nodes are defined using the ExposureStressorID field, which contains MeSH identifiers provided

by the Comparative Toxicogenomics Database. This is illustrated in Figure 2a where each database
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is coloured by the node type it defines. Moving forward, we interchangeably refer to ‘gene/protein’

nodes as proteins and ‘effect/phenotype’ nodes as phenotypes.

Harmonizing external data resources. We mapped the aforementioned processed datasets to

ensure that all nodes were defined in their respective common ontologies. Next, we identified

sources of information across different primary resources for each node type to maximise the

number of relationships in PrimeKG (see Figure 2b). We then restructured the datasets to follow

the following format. For each node in the knowledge graph, we provide ‘node index’ which is a

unique index to identify the node in our KG; ‘node id’ which indicates the identifier of the node

from it’s ontology; ‘node type’ which indicates the node type as defined in our knowledge graph;

‘node name’ which indicates the name of the node as provided by the ontology; and ‘node source’

which indicates the ontology from which ‘node id’ and ‘node name’ fields were extracted. For

each edge in the knowledge graph, we provide ‘relation’ which is the name of the edge type that

connects the two nodes; ‘x index’ which links to the ‘node index’ field; and ‘y index’ which also

links to ‘node index’. Finally, we renamed columns for consistency, dropped rows with NaN

values, dropped duplicated edges and removed self loop edges from each individual dataset.

Resolving overlap between phenotype and disease nodes. Since both the Mondo Disease On-

tology and Human Phenotype Ontology were developed by the Monarch Initiative, there was con-

siderable overlap between phenotype nodes and disease nodes across the various datasets. Over-

lapping nodes were defined as effect/phenotype nodes in HPO that (i) had the same ID number

as disease nodes in Mondo and (ii) could be mapped from HPO to Mondo using cross-references

found in the Mondo ontology. To avoid duplicate nodes, these overlapping phenotype nodes were

converted to disease nodes by manipulating edges in various datasets as follows. Let us define the

set of overlapping phenotype nodes as P . Phenotype-phenotype edges extracted from the HPO on-

tology were converted to phenotype-disease edges if one phenotype node was in P and to disease-

disease edges if both phenotype nodes were in P . These converted edges were then dropped from

the original phenotype-phenotype resource. Protein-phenotype edges extracted from DisGeNet

were converted to protein-disease relations if the phenotype node was in P and removed from the

group of protein-phenotype edges. Finally, for disease-phenotype and drug-phenotype relations,

we dropped any edges where the phenotype was in P . Adding these edges to drug-disease rela-

tions would only introduce unnecessary noise to the indication, contraindication, and off-label use

edges.
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C. Building Precision Medicine Knowledge Graph (PrimeKG)

To construct the network structure of PrimeKG, we merged the harmonized primary data resources

into a graph and extracted it’s largest connected component as shown in Figure 2c. We integrated

the various processed, curated datasets and cleaned the graph by dropping NaN and duplicate

edges, adding reverse edges, dropping duplicates again and removing self loops. This version

of the knowledge graph is available on our Harvard Dataverse as ‘kg raw.csv’. To ensure that

our knowledge graph was well-connected and did not have any isolated pockets, we extracted its

largest connected component. This giant component retained 0.99998% of edges that were present

in the original graph. The largest connected component of the knowledge graph is available on our

Harvard Dataverse as ‘kg giant.csv’.

D. Supplementing drug nodes with clinical information

As shown in Figure 2d, we extracted both textual and numerical features for drug nodes in the

knowledge graph from DrugBank and Drug Central. Features from DrugBank mapped directly

to the knowledge graph since drugs were coded using DrugBank identifiers. Some features had

unique attributes for each drug, such as ‘state’, ‘indication’ and ‘mechanism of action’, and others

had numerous attributes for each drug, such as ‘group’ and ‘ATC level’. The latter set of features

were converted to single text descriptions by joining features using conjunctions such as ‘;’ and

‘and’. Features in Drug Central were mapped to DrugBank IDs using their CAS identifiers, from

the vocabulary that was retrieved from DrugBank. Once all features were mapped, text processing

involved removing all tokens that are references in DrugBank (for example “[L64839]”) with the

help of regular expressions. For the half-life feature, we nullified locations where the text men-

tioned that no data was available. Finally, we converted numerical features into textual descriptions

in order to standardize the feature set.

As an example, let us explore the features available for Prednisolone. Prednisolone is a glu-

cocorticoid similar to cortisol used for its anti-inflammatory, immunosuppressive, anti-neoplastic,

and vasoconstrictive effects. Prednisolone has a plasma half life of 2.1-3.5 hours. Prednisolone is

indicated to treat endocrine, rheumatic, and hematologic disorders; [...] and other conditions like

tuberculous meningitis. Corticosteroids binding to the glucocorticoid receptor mediates changes

in gene expression that lead to [...]. Prednisolone’s protein binding is highly variable, [...]. Corti-

costeroids bind to the glucocorticoid receptor, inhibiting pro-inflammatory signals, and promoting

[...]. Prednisolone is a solid. Prednisolone is part of Adrenal Cortex Hormones ; Adrenals ; [...]
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Prednisolone is approved and vet approved. Prednisolone uses Prednisone Action Pathway [...]

The molecular weight is 360.45. Prednisolone has a topological polar surface area of 94.83. The

log p value of is 1.42.

E. Supplementing disease nodes with clinical information

As shown in Figure 2d, we extracted textual features for diseases nodes in the knowledge graph

from the Mondo Disease Ontology, Orphanet, Mayo Clinic, and UMLS. Features from all these

sources were mapped to the ‘node id’ field of disease nodes, that was defined using the Mondo

Disease Ontology. Since disease nodes were grouped as described in Technical Validation section,

many diseases defined in the Mondo Disease Ontology (i.e., many ‘node id’ values) were collapsed

into a single node (i.e., unique ‘node index’ values). Since disease features are mapped to Mondo

identifiers, or the ‘node id’ field, it is possible for a single disease node in the knowledge graph,

defined by a unique ‘node index’, to have multiple feature values for a given feature. We provide

the available features in their entirety since we did not have the medical authority to summarize

them into single descriptors.

Disease definitions from the Mondo Disease Ontology were directly extracted from the on-

tology file and unique for each ’node id’. Disease descriptions extracted from UMLS were mapped

from CUI terms to Mondo and as a result, numerous for each ’node id’. We removed tokens that

were references and URLs from UMLS disease descriptions using regular expressions. From Or-

phanet, we extracted definitions, prevalence, epidemiology, clinical description, and management

and treatment. We mapped the features from Orphanet IDs to Mondo, and as a result, there were

multiple for each ’node id’. We used regular expressions to fix formatting errors in the prevalence

and epidemiology features.

We extracted the following disease features from Mayo Clinic’s website: symptoms, causes,

risk factors, complications, and prevention. Since the Mayo Clinic web-scrapping did not provide a

unique identifier in any ontology, we mapped disease names in Mayo Clinic to those in the Mondo

Disease Ontology. To develop this mapping, we used a strategy for grouping disease names that

is described in detail in the technical validation. Briefly, we conducted automated string matching

followed by manual approval of disease name mappings based on their BERT embedding simi-

larity. Automated string matching involved approving exact matches and encapsulated matches,

where the name in Mayo was completely present in the name in Mondo. During processing of

the symptoms feature, we used regular expressions to extract the end of the text description that

explained when to see the doctor as a new and separate feature. Finally, we cleaned the text for
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formatting errors.

As an example of the depth and breadth of information covered by the disease features, let’s

explore Hepatic Porphyria. Per the Mondo Disease Ontology, Hepatic Porphyria is a group of

metabolic diseases due to deficiency of one of a number of liver enzymes in the biosynthetic path-

way of heme. They are characterized by [...]. Clinical features include [...]. The UMLS has a very

similar disease description. According to Orphanet, it’s a rare sub-group of porphyrias character-

ized by the occurrence of neuro-visceral attacks with [...]. In the majority of European countries,

the prevalence of acute hepatic porphyrias is around 1/75000. In 80% of cases the patients are

female. All acute hepatic porphyrias can be accompanied by neuro-visceral attacks that appear

as [...]. The attacks are most commonly triggered by [...]. When an acute attack is confirmed,

urgent treatment with an injection of [...]. According to Mayo Clinic, signs and symptoms of acute

porphyria may include: Severe abdominal pain, [...], Seizures. All types of porphyria involve a

problem in the production of heme [...] and a shortage of a specific enzyme determines the type

of porphyria. In addition to genetic risks, environmental factors may trigger development of [...].

Examples of triggers include: Exposure to sunlight, [...]. Possible complications depend on [...]

During an attack, you may experience [...] Although there’s no way to prevent porphyria, if you

have the disease, avoid [...]. When to see a doctor, [...].
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Data Records
We proceed with a detailed description of the 20 primary data resources used to build PrimeKG.

Bgee gene expression knowledge base in animals. Bgee74 contains gene expression patterns

across multiple animal species. We retrieved gene expression data for humans from ftp://ftp.bgee

.org/current/download/calls/expr calls/Homo sapiens expr advanced.tsv.gz on 31 May 2021.

Processing involved keeping only gold quality calls and ensuring that the anatomical entities were

coded using the UBERON ontology. To extract only highly expressed genes in the anatomical

entity, we empirically filtered the data to keep data with expression rank less than 25,000. After

processing, we had 1,786,311 anatomy-protein associations where gene expression was found to

be present or absent.

Comparative Toxicogenomics Database. The Comparative Toxicogenomics Database (CTD)75

is focused on the impact of environmental exposures on human health. We retrieved information

about exposures (05/21 version) from http://ctdbase.org/reports/CTD exposure events.csv.gz on

9 Jun 2021. Processing involved removing header comments from the csv file. After processing,

our data contained 180,976 associations of exposures with proteins, diseases, other exposures,

biological processes, molecular functions, and cellular components.

DisGeNET knowledgebase of gene-disease associations. DisGeNET76 is a resource about the

relationships between genes and human disease that has been curated by experts. We retrieved

curated disease-gene associations (version 7.0) from https://www.disgenet.org/static/disgenet a

p1/files/downloads/curated gene disease associations.tsv.gz on 31 May 2021. The raw data file,

‘curated gene disease associations.tsv’ was not processed further and contains 84,038 associations

of genes with diseases, and phenotypes.

Disease Ontology. Disease Ontology47 groups diseases in many meaningful clusters by using

clinically relevant characteristics. For instance, diseases are grouped by anatomical entity. We

retrieved the ontology from https://raw.githubusercontent.com/DiseaseOntology/HumanDisea

seOntology/main/src/ontology/HumanDO.obo on 29 Jun 2021. The raw data ‘HumanDO.obo’

is mapped to disease nodes in our knowledge graph. Since the Mondo Disease Ontology is not

grouped anatomically or by clinical speciality, this will allow users of PrimeKG to explore disease

nodes in a medically meaningful format.

DrugBank. DrugBank77 is a resource that contains pharmaceutical knowledge. We retrieved the

complete database (version 5.1.8) from https://go.drugbank.com/releases/5-1-8/downloads
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/all-full-database on 31 May 2021. Processing involved using the beautiful soup package to

extract synergistic drug interactions. The processed data contains 2,682,157 associations. We also

extracted drug features from the raw data. For over 14,000 drugs, we construct 12 drug features,

including group, state, description, mechanism of action, ATC code, pharmacodynamics, half life,

protein binding, and pathway.

We also retrieved information about drug targets from https://go.drugbank.com/releases

/5-1-8/downloads/target-all-polypeptide-ids, about drug enzymes from https://go.drugbank.

com/releases/5-1-8/downloads/enzyme-all-polypeptide-ids, about drug carriers from https:

//go.drugbank.com/releases/5-1-8/downloads/carrier-all-polypeptide-ids, about drug transporters

from https://go.drugbank.com/releases/5-1-8/downloads/transporter-all-polypeptide-ids all

on 31 May 2021. Processing involved combining all four resources and mapping gene names

from UniProt IDs to NCBI Gene IDs using vocabulary retrieved from HNCG gene names https:

//www.genenames.org. The processed data contains 26,118 drug-protein interactions.

Drug Central. Drug Central78 is a resource that curates information about drug-disease interac-

tions. We retrieved the Drug Central SQL dump from https://drugcentral.org/ActiveDownload

on 1 Jun 2021. The database was loaded into Postgres SQL and drug-disease relationships were

extracted. The processed data contains 26,698 indication edges, 8,642 contraindication edges, and

1,917 off-label use edges. We also extracted drug features from the Drug Central SQL dump from

the ‘structures’ and ‘structure type’ tables. We extracted features for over 4500 drugs, represent-

ing each drug with features including topological polar surface area (TPSA), molecular weight and

cLogP. As an example, the features for Atorvastatin are: organic structure, molecular weight of

558.65, TPSA of 111.79 and a ClogP value of 4.46.

Entrez Gene. Entrez Gene79 is a resource maintained by the NCBI that contains vast amounts of

gene-specific information. We retrieved data about relations between genes and Gene Ontology

terms from https://ftp.ncbi.nlm.nih.gov/gene/DATA/gene2go.gz on 31 May 2021. Processing

involved using the goatools package80 to extract relations between genes and Gene Ontology terms.

The processed data contains 297,917 associations of genes with biological processes, molecular

functions, and cellular components.

Gene Ontology. The Gene Ontology81 network describes molecular functions, cellular compo-

nents, and biological processes. We retrieved the ontology from http://purl.obolibrary.org/obo/

go/go-basic.obo on 31 May 2021. Processing involved using the goatools package80 to extract
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information for gene ontology terms and relations between go terms. The processed data contains

71,305 hierarchical associations between biological processes, molecular functions, and cellular

components.

Human Phenotype Ontology. The Human Phenotype Ontology45 (version hpo-obo@2021-04-

13) provides information on phenotypic abnormalities found in diseases. We retrieved the on-

tology from http://purl.obolibrary.org/obo/hp.obo on 31 May 2021. Processing involved

parsing the ontology file to extract phenotype terms in the ontology, parent-child relationships

and cross references to other ontologies. The processed data contains disease-phenotype, protein-

phenotype, and phenotype-phenotype edges. We also retrieved expertly curated annotations from

http://purl.obolibrary.org/obo/hp/hpoa/phenotype.hpoa on 31 May 2021. Additionally, we

extracted 218,128 curated positive and negative associations between diseases and phenotypes.

Mayo Clinic. Mayo Clinic is a nonprofit academic medical center and biomedical research insti-

tution focused on integrated health care55. On it’s website https://www.mayoclinic.org/diseases-co

nditions, Mayo Clinic has curated information about symptoms, causes, risk factors, complications

and prevention of 2,227 diseases and conditions. We web-scraped this data and extracted descrip-

tions for these diseases and conditions using the mayo.py and diseases.py scripts on 28 March

2021. The raw data is available at ‘mayo.csv’.

For example, we extracted features of ‘Atrial fibrillation’ from Mayo Clinic. ‘Some people

with atrial fibrillation have no symptoms [...] others may experience signs and symptoms such as:

Palpitations, Weakness, [...] and Chest Pain. The disease occurs when ‘the two upper chambers

of your heart experience chaotic electrical signals [...] As a result, they quiver. The AV node is

bombarded with impulses trying to get through to the ventricles’. Certain factors may increase your

risk of developing atrial fibrillation including age, heart disease, [...] and obesity. Complications

include: ‘the chaotic rhythm causing blood to pool in your atria and form clots [...] leading to a

stroke. [...] Atrial fibrillation, especially if not controlled, may weaken the heart and lead to heart

failure’. To prevent atrial fibrillation, it’s important to live a heart-healthy lifestyle [...] which may

include increasing your physical activity, [...]. These snippets represent only an overview of over

three pages of descriptive features available on Atrial Fibrillation.

Mondo Disease Ontology. Since the Mondo Disease Ontology44 harmonizes diseases from a wide

range of ontologies, including OMIM, SNOMED CT, ICD, and MedDRA, it was our preferred

ontology for defining diseases. We retrieved the ontology from http://purl.obolibrary.org/obo/mo
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ndo.obo on 31 May 2021. Processing involved parsing the ontology file to extract disease terms in

the ontology, parent-child relationships, subsets of diseases, cross references to other ontologies,

and definitions of disease terms. The processed data contains 64,388 disease-disease edges.

Orphanet. Orphanet48 is a database that focuses on gathering knowledge about rare diseases. The

Orphanet website https://www.orpha.net/consor/cgi-bin/Disease Search List.php?lng=EN has

curated information about definitions, prevalence, management and treatment, epidemiology, and

clinical description for 9348 rare diseases. We web-scraped this data and extracted disease features

using code available at orpha.py on 10 May 2021.

For instance, the rare disease Hurler syndrome with Orphanet ID 93473 has the following

features. Hurler syndrome is the most severe form of mucopolysaccharidosis type 1, a rare lysoso-

mal storage disease, characterized by skeletal abnormalities, cognitive impairment, heart disease,

[...] and reduced life expectancy. The prevalence of the Hurler subtype of MPS1 is estimated at

1/200,000 in Europe and one in a million in general. The clinical manifestation of the disease in-

cludes ‘ musculoskeletal alterations, cardiomyopathy, [...] and neurosensorial hearing loss within

the first year of life’. Management of the disease is multidisciplinary: ‘Hematopoietic stem cell

transplantation is the treatment of choice as it can prolong survival. [...] Enzyme replacement ther-

apy (ERT) with laronidase [...] is a lifelong therapy which alleviates non neurological symptoms.’.

These descriptions only represent a brief snapshot of the expertly curated knowledge available in

Orphanet.

Four integrated resources of physical protein-protein interactions. Protein-protein interac-

tions are composed of experimentally-verified interactions between proteins. The interactions

we consider are diverse in nature and include signalling, regulatory, metabolic-pathway, kinase-

substrate and protein complex interactions, which are considered as unweighted and undirected.

We use the human PPI network compiled by Menche et al.82 as the starting resource. This re-

source integrates several protein-protein interaction databases, including TRANSFAC for regula-

tory interactions83, MINT and IntAct for yeast to hybrid binary interactions84, 85, and CORUM for

protein complex interactions86. Additionally, we retrieve protein-protein interaction information

from from BioGRID87 and STRING88 databases. We also consider the human reference interac-

tome (HuRI) generated by Luck et al.89, specifically, we use the HI-union, a combination of HuRI

and several related efforts to systematically screen for protein-protein interactions. The processed

data contains 642,150 edges.
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Reactome pathway database. Reactome90 is an open-source, curated database for pathways. We

retrieved information about pathways from https://reactome.org/download/current/ReactomePa

thways.txt, relationships between pathways from https://reactome.org/download/current/Reacto

mePathwaysRelation.txt and pathway-protein relations from https://reactome.org/download/curr

ent/NCBI2Reactome.txt on 31 May 2021. Processing involved extracting ontology information

such as hierarchical relationships and extracting pathway-protein interactions. The processed data

contains 5,070 pathway-pathway and 85,292 protein-pathway edges.

Side effect knowledgebases. The Side Effect Resource (SIDER)91 contains data about adverse

drug reactions. We retrieved side-effect data (SIDER 4.1 version) from http://sideeffects.embl.d

e/media/download/meddra all se.tsv.gz and SIDER’s drug to Anatomical Therapeutic Chemical

(ATC) classification mapping from http://sideeffects.embl.de/media/download/drug atc.tsv on

31 May 2021. Processing involved extracting all side effects where the MedDRA term was coded

at the ”PT” or preferred term level, and then mapping drugs from STITCH ID to ATC ID. The

processed data 202,736 contains drug-phenotype associations.

Uberon multi-species anatomy ontology. Uberon92 is an ontology that contains information

about the human anatomy. We retrieved the ontology from http://purl.obolibrary.org/obo/ub

eron/ext.obo on 31 May 2021. Processing involved extracting information about anatomy nodes

and the relationships between them. The processed data 28,064 hierarchical relationships between

anatomy nodes.

UMLS knowledgebase. The Unified Medical Language System (UMLS) Knowledge Source46

contains information about biomedical and health related concepts. We retrieved the complete

UMLS Metathesauras from https://download.nlm.nih.gov/umls/kss/2021AA/umls-2021AA-metat

hesaurus.zip on 31 May 2021 in ‘.RRF’ format. To map UMLS CUI terms to the Mondo Disease

Ontology, we used the ‘MRCONSO.RRF’ to extract UMLS Concept Unique Identifier (CUI) terms

in English. We mapped UMLS CUI terms to Mondo terms in two ways. Firstly, we directly

extracted cross references between the two from the Mondo ontology. Secondly, we indirectly

mapped UMLS to Mondo using OMIM, NCIT, MESH, MedDRA, ICD 10 and SNOMED CT as

intermediate ontologies.

Further, we used ‘MRSTY.RRF’ and ‘MRDEF.RRF’ files to extract definitions for UMLS

terms. Of the 127 semantic types present in the ‘MRSTY.RRF’ file, we selected 11 that belonged

to the Disorder semantic group in a manner that was consistent with prior work. 93 These semantic
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types were Congenital Abnormality, Acquired Abnormality, Injury or Poisoning, Pathologic Func-

tion, Disease or Syndrome, Mental or Behavioral Dysfunction, Cell or Molecular Dysfunction,

Experimental Model of Disease, Signs and Symptoms, Anatomical Abnormality, and Neoplastic

Process. We then used the ‘MRDEF.RRF’ file to extract definitions for CUI terms from sources

that were in English.

Additional vocabularies. We retrieved gene names and mappings between NCBI Entrez IDs and

UniProt IDs from https://www.genenames.org/download/custom/ on 31 May 2021. We retrieved

the DrugBank drug vocabulary from https://go.drugbank.com/releases/5-1-8/downloads/all-dru

gbank-vocabulary on 31 May 2021. These were used to map nodes in the knowledge graph to

consistent ontologies.
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Technical Validation
As part of the technical validation, we explore the structure and connectivity of PrimeKG.

Characterizing Precision Medicine Knowledge Graph

PrimeKG contains 129,375 nodes and 8,100,498 edges. Figure 1a shows a schematic overview of

the graph structure, containing 10 types of nodes and 30 types of edges. We provide a breakdown

of the number of nodes by node type and the number of edges by edge type in Tables 1 and 2,

respectively. Figure 1b demonstrates that disease nodes are densely connected to other node types

in the knowledge graph. Tables 3 and 4 show statistics on the number of features available for drug

and disease nodes. Disease features include information on disease prevalence, symptoms, causes,

risk factors, epidemiology, clinical description, management and treatment, complications, preven-

tion, and when to see a doctor. Drug features include molecular weight of chemical compounds,

indications, mechanisms of action, pharmacodynamics, protein binding events, and pathway in-

formation. This extensive clinical information describing the entire range of drugs and diseases

is a unique characteristic of PrimeKG that makes PrimeKG stand out among its peer knowledge

graphs. Figure 1c provides an example of the supporting information that is available across these

features.

A case study in autism to evaluate the relevance of PrimeKG to clinical presentation of autism

For downstream inferences made using PrimeKG to be conducive to studying human disease,

disease nodes in PrimeKG would need to be medically relevant. To this end, we next analyze

if PrimeKG’s representation of diseases strongly relates to their clinical presentation by carrying

out a case study on autism spectrum disorder. We were motivated to investigate autism because it

not only has incredible clinical heterogeneity94–96 but this heterogeneity has also been studied to

identify clinically meaningfully subtypes56, 57. We gauged the relevance of disease nodes related

to autism in PrimeKG in two steps: first, by performing the entity resolution for autism concepts

across all relevant primary data resources (see Methods), and second, by examining the relationship

between these autism concepts and clinical subtypes of autism.

We start by exploring whether autism disease nodes in PrimeKG reconciled the variation

in autism concepts across databases and ontologies. For example, as demonstrated in Figure 3a,

MONDO disease ontology has 37 disease concepts related to autism, whereas the UMLS has 192

autism-associated concepts and Orphanet has 6 autism-associated concepts. Although it is not

immediately clear how these concepts relate to each other, we cannot develop a coherent knowl-
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edge graph without establishing connections between these concepts. To this end, we overcome

this challenge by defining all nodes using the MONDO disease ontology and mapping all other

vocabularies to diseases in MONDO as outlined in Figure 3a.

Finally, before using MONDO disease concepts as disease nodes in PrimeKG, we need to

assess whether autism disease concepts in MONDO correlate with clinical subtypes of autism.

Autism has been shown to manifest as three clinical subgroups characterized primarily by seizures,

multisystem and gastrointestinal disorders, and psychiatric disorders57. However, it was unclear

how the 37 autism disease concepts in MONDO (see Figure 3a) relate to the three clinically de-

fined subtypes. There were many disease concepts in autism, such as ‘Autism, susceptibility to, 1’,

‘Autism, susceptibility to, 2’, ‘Autism, susceptibility to, x-linked’, etc., with no apparent clinical

meaning, suggesting that disease nodes in MONDO do not correspond one-to-one to clinical man-

ifestation of autism. For this reason, we developed a strategy to group diseases from MONDO into

medically relevant and coherent nodes in PrimeKG. We proceed with describing and evaluating

that strategy.

Computational approaches to grouping disease nodes

As demonstrated in our case study of autism, disease concepts in MONDO may not correlate well

with medical subtypes. MONDO contains many repetitive disease entities with no apparent clinical

correlation. For this reason, we were motivated to group diseases in MONDO into medically

relevant entities. Ideally, we would have preferred to leverage expertise across a wide variety

of disease areas when grouping these concepts. However, this approach was time-consuming,

expensive, and challenging to execute at scale. Further, disease sub-phenotyping is a relatively

new paradigm, and so we anticipated low consensus among medical experts on what constitutes a

unique disease.

Since manually grouping diseases with expert supervision was not feasible, we took a semi-

automated unsupervised approach to group disease concepts in PrimeKG. Advances in natural

language processing, specifically the Bidirectional Encoder Representations from Transformers

(BERT) model97, allowed us to study similarity between disease concept names. We grouped

disease concepts with nearly identical names into a single node with string matching and BERT

embedding similarity97–101.

We identified disease groups using a string matching strategy across disease names102. In this

strategy, we selected a disease that ended with a number, or a roman numeral, or any alphanumeric

phrase with a length of less than 2, or ‘type’ as the second-last word. Once such a disease was
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selected, we extracted the primary disease phrase by dropping the ending and used this phrase

to find matches. Matches included diseases with the same initial phrase and those containing

all phrase words with no other words regardless of word order. For the latter matching criteria,

the words ‘type’ and ‘(disease)’ were ignored. In this manner, we grouped disease concepts in

MONDO with string matching.

We further tightened groupings identified using string matching by exploring word embed-

ding similarities between disease names, which is visualized in Figure 3b. In natural language

processing, word embeddings have been widely and successfully used to resolve conflicting and

redundant entities in an unsupervised manner102–104, and deep language models such as BERT97

can produce semantically meaningful word embeddings. Specifically, ClinicalBERT105 is a BERT

language model that encodes medical notions of semantics because it has been pre-trained on

biomedical knowledge from PubMed106 and discharge summaries from MIMIC-III107. We used

ClinicalBERT to extract word embeddings for disease group names identified during string match-

ing. We also defined similarity between two disease names as the cosine distance between their

ClinicalBERT embeddings. Then, after applying an empirically chosen cutoff of similarity≥ 0.98,

we manually approved the suggested disease matches and assigned names to the new groups. Fi-

nally, these groupings were applied to the knowledge graph.

After this process, 22,205 disease concepts in MONDO were collapsed into 17,080 grouped

diseases, which has resulted in a higher average edge density across diseases and more clinically

relevant disease nodes. We anticipate that PrimeKG is a powerful dataset with this grouping be-

cause disease representations are concentrated and robust, which, in turn, can enable biological

insights gleaned from PrimeKG to be medically relevant.

Conclusion

The potential uses of PrimeKG are vast. PrimeKG describes drug features on a deeper biologi-

cal level and disease features on a deeper clinical level, which can be used to explain genotype-

phenotype associations in terms of genes, pathways, or any other nodes in an extensive knowledge

graph, like PrimeKG. Consequently, PrimeKG can be paired with deep graph neural networks108

to discover new disease biomarkers, characterize disease processes, hone disease classification,

identify phenotypic traits, predict biological mechanisms, and repurpose drugs. With the imple-

mentation of machine learning functionality, we anticipate that PrimeKG and similar knowledge

graphs will become critical tools in advancing precision medicine.
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Data availability. PrimeKG is hosted on Harvard Dataverse with the following persistent iden-

tifier https://doi.org/10.7910/DVN/IXA7BM. We have deposited the knowledge graph along with

all relevant intermediate files at this repository.

Code availability. The PrimeKG’s project website is at https://zitniklab.hms.harvard.edu/proj

ects/PrimeKG. The code to reproduce results, together with documentation and tutorials, is avail-

able in PrimeKG’s Github repository at https://github.com/mims-harvard/PrimeKG. In addition,

the repository contains information and Python scripts to build new versions of PrimeKG as the

underlying primary resources get updated and new data become available.
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Figure 1: Overview of PrimeKG. a) Shown is a schematic overview of the various types of nodes in PrimeKG and the
relationships they have with other nodes in the graph. b) All disease nodes in PrimeKG shown in a circular layout together
with disease-associated information. All relationships between disease nodes and any other node type are depicted here.
Disease nodes are densely connected to four other node types in PrimeKG through seven types of relations. c) Shown is
an example of paths in PrimeKG between the disease node ‘Autism’ and the drug node ‘Risperidone’. Intermediate nodes
are colored by their node type from panel a. We also display snippets of text features for both nodes to demonstrate the
multimodality of PrimeKG. Abbreviations - MF: molecular function, BP: biological process, CC: cellular component, APZ:
Apiprazole, EPI: epilepsy, ABP: abdominal pain, + / - associations: positive and negative associations.
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Figure 2: Building PrimeKG. The panels sequentially illustrate the process of developing the Precision Medicine Knowl-
edge Graph. a) Shown are 20 primary data resources curated to develop PrimeKG. The colors indicate which database was
used to define each node type. b) Primary resources are colored by each node type for which they possess information. c)
Illustrated is the process of harmonizing these primary resources to extract relationships between node types. d) The left
side illustrates PrimeKG and the right side shows all the textual sources of clinical information on drugs and diseases. The
node type legend is consistent across the figure. Abbreviations - MF: molecular function, BP: biological process, CC: cel-
lular component, PPI: protein protein interactions, DO: disease ontology, MONDO: mondo disease ontology, Entrez: entrez
gene, GO: gene ontology, UMLS: unified medical language system, HPO: human phenotype ontology, CTD: comparative
toxicogenomics database, SIDER: side effect resource.
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Figure 3: Reconciling autism disease nodes into more medically relevant entities. a) The left side shows three clinically
determined subtypes of autism. The right side shows autism-related disease terms across three ontologies: MONDO, UMLS,
and Orphanet. While we can identify mappings across the ontologies, it is unclear how the terms in any ontology connect
to clinical subtypes. b) Illustration on how we use a language model, ClinicalBERT, to map terms from MONDO into a
latent embedding space. Because the language model can group synonyms in the embedding space, we can cluster MONDO
terms with similar semantic and medical meaning by calculating cosine similarity between embeddings of disease concepts.
These clusters are created to develop disease groupings as shown on the right in panel b. Abbreviations - MONDO: MONDO
disease ontology, UMLS: unified medical language system.

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 10, 2022. ; https://doi.org/10.1101/2022.05.01.489928doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.01.489928
http://creativecommons.org/licenses/by-nc/4.0/


Node Type Count Percent (%)

Biological process 28,642 22.1
Protein 27,671 21.4
Disease 17,080 13.2
Phenotype 15,311 11.8
Anatomy 14,035 10.8
Molecular function 11,169 8.6
Drug 7,957 6.2
Cellular component 4,176 3.2
Pathway 2,516 1.9
Exposure 818 0.6

Total 129,375 100.0

Table 1: Statistics on nodes in PrimeKG.

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 10, 2022. ; https://doi.org/10.1101/2022.05.01.489928doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.01.489928
http://creativecommons.org/licenses/by-nc/4.0/


Relation type Count Percent (%)

Anatomy - Protein (present) 3,036,406 37.5
Drug - Drug 2,672,628 33.0
Protein - Protein 642,150 7.9
Disease - Phenotype (positive) 300,634 3.7
Biological process - Protein 289,610 3.6
Cellular component - Protein 166,804 2.1
Disease - Protein 160,822 2.0
Molecular function - Protein 139,060 1.7
Drug - Phenotype 129,568 1.6
Biological process - Biological process 105,772 1.3
Pathway - Protein 85,292 1.1
Disease - Disease 64,388 0.8
Drug - Disease (contraindication) 61,350 0.8
Drug - Protein 51,306 0.6
Anatomy - Protein (absent) 39,774 0.5
Phenotype - Phenotype 37,472 0.5
Anatomy - Anatomy 28,064 0.3
Molecular function - Molecular function 27,148 0.3
Drug - Disease (indication) 18,776 0.2
Cellular component - Cellular component 9,690 0.1
Phenotype - Protein 6,660 0.1
Drug - Disease (off-label use) 5,136 0.1
Pathway - Pathway 5,070 0.1
Exposure - Disease 4,608 0.1
Exposure - Exposure 4,140 0.1
Exposure - Biological process 3,250 < 0.1
Exposure - Protein 2,424 < 0.1
Disease - Phenotype (negative) 2,386 < 0.1
Exposure - Molecular function 90 < 0.1
Exposure - Cellular component 20 < 0.1

Total 8,100,498 100.0

Table 2: Statistics on edges in PrimeKG.

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 10, 2022. ; https://doi.org/10.1101/2022.05.01.489928doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.01.489928
http://creativecommons.org/licenses/by-nc/4.0/


Source Type of feature Count Unique Percent (%)

Drug Central78
Molecular weight 2,797 2,308 35.2
TPSA 2,718 2,718 34.2
cLogP 2,574 980 32.3

DrugBank77

Group 7,957 7,903 100.0
State 6,517 6,463 81.9
Category 5,431 5,431 68.3
Description 4,591 4,565 57.7
Indication 3,393 3,076 42.6
Mechanism of action 3,242 3,161 40.7
ATC 4 2,818 1,040 35.4
ATC 3 2,818 2,818 35.4
ATC 2 2,818 2,818 35.4
ATC 1 2,818 2,818 35.4
Pharmacodynamics 2,659 2,617 33.4
Half life 2,063 1,893 25.9
Protein binding 1,669 1,487 21.0
Pathway 598 598 7.5

Table 3: Statistics on drug features in PrimeKG. The count column refers to the number of features including
duplicates and the unique column refers to the number of unique features.

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 10, 2022. ; https://doi.org/10.1101/2022.05.01.489928doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.01.489928
http://creativecommons.org/licenses/by-nc/4.0/


Source Type of feature
Unprocessed KG Processed KG

Count Unique Count Unique

Combined Combined 40,068 18,152 39,800 14,252

MONDO Disease Ontology44 Definition 15,238 15,238 15,238 12,001

UMLS46 Description 28,468 8,689 25,374 6,964

Orphanet48

Definition 6,564 6,548 6,562 5,645
Prevalence 3,989 3,989 3,500 3,430
Epidemiology 2,350 2,348 2,335 2,026
Clinical description 2,294 2,292 2,293 1,972
Management and treatment 1,732 1,731 1,722 1,553

Mayo Clinic55

Symptoms 6,642 5,789 5,140 4,470
Causes 6,629 5,776 5,128 4,459
Risk factors 6,284 5,501 4,898 4,299
Complications 5,011 4,455 3,792 3,396
Prevention 2,529 2,273 1,907 1,776
When to see a doctor 5,862 5,234 4,531 4,058

Table 4: Statistics on disease features in the knowledge graph. Unprocessed KG refers to the initial knowledge
graph assembled from datasets. Processed KG refers to the fully processed PrimeKG, and includes disease group-
ings. The count column refers to the number of features including duplicates and the unique column refers to the
number of unique features.
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