1 Regulation of Store-Operated Ca²⁺ Entry by IP₃ Receptors Independent of Their

2 Ability to Release Ca²⁺

3

4 Pragnya Chakraborty^{1,2}, Bipan Kumar Deb^{1,3}, Colin W. Taylor^{4,*} and Gaiti Hasan^{1,5,*}

5

- ⁶ ¹National Centre for Biological Sciences, Tata Institute of Fundamental Research,
- 7 Bellary Road, Bangalore, 560065, India.
- ⁸ ²SASTRA University, Thanjavur, Tamil Nadu, 613401, India.
- ⁹ ³Present address: Department of Molecular and Cell Biology, University of California,
- 10 Berkeley, CA, 94720, USA.
- ⁴Department of Pharmacology, University of Cambridge, Cambridge, CB2 1PD, UK.

12

- 13 ⁵Lead Contact
- ^{*}Correspondence: cwt1000@cam.ac.uk, gaiti@ncbs.res.in

15

17 ABSTRACT

Loss of ER Ca²⁺ activates store-operated Ca²⁺ entry (SOCE) by causing STIM1 to 18 unfurl domains that activate Orai1 channels in the plasma membrane at membrane 19 contact sites (MCS). In human neurons, SOCE evoked by thapsigargin to deplete ER 20 Ca²⁺ is attenuated by loss of IP₃Rs, and restored by expression of IP₃Rs even when 21 they cannot release Ca²⁺, but only if the IP₃Rs can bind IP₃. In cells expressing pore-22 dead IP₃Rs, IP₃ enhances SOCE evoked by partial store depletion without enhancing 23 Ca²⁺ release. Proximity ligation assays establish that IP₃Rs enhance association of 24 25 STIM1 with Orai1 in cells with empty stores; this requires an IP₃-binding site, but not a 26 pore. Over-expressing STIM1, or extended synaptotagmin-1 to exaggerate MCS, circumvents the need for IP₃Rs. Thus, IP₃ binding to IP₃Rs stimulates SOCE by both 27 mediating ER Ca²⁺ release and promoting STIM1-Orai1 interactions. Convergent 28 regulation by IP₃Rs may tune SOCE to respond selectively to IP₃. 29 30 31

Keywords: Ca²⁺ signaling, extended synaptotagmin, human neural progenitor cell, IP₃
 receptor, membrane contact site, neuron, Orai, proximity ligation assay, STIM, store operated Ca²⁺ entry

35 **INTRODUCTION**

The activities of all eukaryotic cells are regulated by increases in cytosolic free Ca²⁺ 36 concentration ($[Ca^{2+}]_c$), which are almost invariably evoked by the opening of Ca²⁺-37 permeable ion channels in biological membranes. The presence of these Ca²⁺ 38 channels within the plasma membrane (PM) and the membranes of intracellular Ca²⁺ 39 stores, most notably the endoplasmic reticulum (ER), allows cells to use both 40 intracellular and extracellular sources of Ca^{2+} to evoke Ca^{2+} signals. In animal cells, 41 the most widely expressed Ca²⁺ signaling sequence links extracellular stimuli, through 42 their specific receptors and activation of phospholipase C, to formation of inositol 43 1,4,5-trisphosphate (IP₃), which then stimulates Ca^{2+} release from the ER through IP₃ 44 receptors (IP₃R) (Foskett *et al.*, 2007; Prole and Taylor, 2019). IP₃Rs occupy a central 45 role in Ca^{2+} signaling by releasing Ca^{2+} from the ER. IP₃Rs thereby elicit cytosolic 46 Ca^{2+} signals, and by depleting the ER of Ca^{2+} they initiate a sequence that leads to 47 activation of store-operated Ca²⁺ entry (SOCE) across the PM (Putney, 1986; 48 Thillaiappan et al., 2019). SOCE occurs when loss of Ca²⁺ from the ER causes Ca²⁺ to 49 dissociate from the luminal Ca²⁺-binding sites of an integral ER protein, stromal 50 interaction molecule 1 (STIM1). STIM1 then unfolds its cytosolic domains to expose a 51 region that binds directly to a Ca²⁺ channel within the PM, Orai, causing it to open and 52 53 Ca²⁺ to flow into the cell across the PM (Parekh and Putney, 2005; Prakriva and Lewis, 2015; Lewis, 2020). The interactions between STIM1 and Orai occur across a 54 narrow gap between the ER and PM, a membrane contact site (MCS), where STIM1 55 puncta trap Orai channels. While STIM1 and Orai are undoubtedly the core 56 components of SOCE, many additional proteins modulate their interactions (Rosado, 57

Jenner and Sage, 2000; Palty *et al.*, 2012; Deb, Pathak and Hasan, 2016; Srivats *et al.*, 2016) and other proteins contribute by regulating the assembly of MCS (Chang *et al.*, 2013; Giordano *et al.*, 2013; Kang *et al.*, 2019).

It is accepted that IP_3 -evoked Ca²⁺ release from the ER through IP_3Rs is the usual 61 62 means by which extracellular stimuli evoke SOCE. Here, the role of the IP₃R is widely assumed to be restricted to its ability to mediate Ca²⁺ release from the ER and thereby 63 activate STIM1. Evidence from *Drosophila*, where we suggested an additional role for 64 IP₃Rs in regulating SOCE (Agrawal et al., 2010; Chakraborty et al., 2016), motivated 65 the present study, wherein we examined the contribution of IP₃Rs to SOCE in 66 67 mammalian neurons. We show that in addition to their ability to activate STIM1 by evoking ER Ca²⁺ release, IP₃Rs also facilitate interactions between active STIM1 and 68 Orai1. This additional role for IP₃Rs, which is regulated by IP₃ but does not require a 69 functional pore, reveals an unexpected link between IP_3 , IP_3Rs and Ca^{2+} signaling that 70 is not mediated by IP₃-evoked Ca²⁺ release. We speculate that dual regulation of 71 SOCE by IP₃Rs may allow Ca²⁺ release evoked by IP₃ to be preferentially coupled to 72 73 SOCE.

74

75 **RESULTS**

76 Loss of IP₃R1 Attenuates SOCE in Human Neural Stem Cells and Neurons

We investigated the effects of IP_3Rs on SOCE by measuring $[Ca^{2+}]_c$ in human neural stem cells and neurons prepared from embryonic stem cells. Human neural progenitor cells (hNPCs) were derived from H9 embryonic stem cells using small molecules that mimic cues provided during human brain development (Gopurappilly *et al.*, 2018). We

81	confirmed that hNPCs express canonical markers of neural stem cells (Figure 1A)
82	and that IP ₃ R1 is the predominant IP ₃ R subtype (GEO accession no. GSE109111)
83	(Gopurappilly et al., 2018). An inducible lentiviral shRNA-miR construct targeting
84	IP_3R1 reduced IP_3R1 expression by 93 ± 0.4% relative to a non-silencing (NS)
85	construct (Figures 1B and 1C). Carbachol stimulates muscarinic acetylcholine
86	receptors, which are expressed at low levels in hNPCs (Gopurappilly et al., 2018). In
87	Ca^{2+} -free medium, carbachol evoked an increase in $[Ca^{2+}]_c$ in about 10% of hNPCs,
88	consistent with it stimulating Ca^{2+} release from the ER through IP ₃ Rs. Restoration of
89	extracellular Ca^{2+} then evoked an increase in $[Ca^{2+}]_c$ in all cells that responded to
90	carbachol. Both carbachol-evoked Ca ²⁺ release and SOCE were abolished in hNPCs
91	expressing IP ₃ R1-shRNA, confirming the effectiveness of the IP ₃ R1 knockdown
92	(Figures S1A-S1C).
92 93	(Figures S1A-S1C). Thapsigargin, a selective and irreversible inhibitor of the ER Ca ²⁺ pump
93	Thapsigargin, a selective and irreversible inhibitor of the ER Ca ²⁺ pump
93 94	Thapsigargin, a selective and irreversible inhibitor of the ER Ca ²⁺ pump (sarcoplasmic/endoplasmic reticulum Ca ²⁺ -ATPase, SERCA), was used to deplete the
93 94 95	Thapsigargin, a selective and irreversible inhibitor of the ER Ca^{2+} pump (sarcoplasmic/endoplasmic reticulum Ca^{2+} -ATPase, SERCA), was used to deplete the ER of Ca^{2+} and thereby activate SOCE (Figure 1D) (Parekh and Putney, 2005).
93 94 95 96	Thapsigargin, a selective and irreversible inhibitor of the ER Ca ²⁺ pump (sarcoplasmic/endoplasmic reticulum Ca ²⁺ -ATPase, SERCA), was used to deplete the ER of Ca ²⁺ and thereby activate SOCE (Figure 1D) (Parekh and Putney, 2005). Restoration of extracellular Ca ²⁺ to thapsigargin-treated hNPCs evoked a large
93 94 95 96 97	Thapsigargin, a selective and irreversible inhibitor of the ER Ca ²⁺ pump (sarcoplasmic/endoplasmic reticulum Ca ²⁺ -ATPase, SERCA), was used to deplete the ER of Ca ²⁺ and thereby activate SOCE (Figure 1D) (Parekh and Putney, 2005). Restoration of extracellular Ca ²⁺ to thapsigargin-treated hNPCs evoked a large increase in $[Ca^{2+}]_c$, reflecting the activity of SOCE (Figure 1D). The maximal
93 94 95 96 97 98	Thapsigargin, a selective and irreversible inhibitor of the ER Ca ²⁺ pump (sarcoplasmic/endoplasmic reticulum Ca ²⁺ -ATPase, SERCA), was used to deplete the ER of Ca ²⁺ and thereby activate SOCE (Figure 1D) (Parekh and Putney, 2005). Restoration of extracellular Ca ²⁺ to thapsigargin-treated hNPCs evoked a large increase in $[Ca^{2+}]_c$, reflecting the activity of SOCE (Figure 1D). The maximal amplitude and rate of SOCE were significantly reduced in cells lacking IP ₃ R1, but the
93 94 95 96 97 98 99	Thapsigargin, a selective and irreversible inhibitor of the ER Ca ²⁺ pump (sarcoplasmic/endoplasmic reticulum Ca ²⁺ -ATPase, SERCA), was used to deplete the ER of Ca ²⁺ and thereby activate SOCE (Figure 1D) (Parekh and Putney, 2005). Restoration of extracellular Ca ²⁺ to thapsigargin-treated hNPCs evoked a large increase in $[Ca^{2+}]_c$, reflecting the activity of SOCE (Figure 1D). The maximal amplitude and rate of SOCE were significantly reduced in cells lacking IP ₃ R1, but the resting $[Ca^{2+}]_c$ and thapsigargin-evoked Ca ²⁺ release were unaffected (Figures 1D-1F
93 94 95 96 97 98 99 100	Thapsigargin, a selective and irreversible inhibitor of the ER Ca ²⁺ pump (sarcoplasmic/endoplasmic reticulum Ca ²⁺ -ATPase, SERCA), was used to deplete the ER of Ca ²⁺ and thereby activate SOCE (Figure 1D) (Parekh and Putney, 2005). Restoration of extracellular Ca ²⁺ to thapsigargin-treated hNPCs evoked a large increase in $[Ca^{2+}]_c$, reflecting the activity of SOCE (Figure 1D). The maximal amplitude and rate of SOCE were significantly reduced in cells lacking IP ₃ R1, but the resting $[Ca^{2+}]_c$ and thapsigargin-evoked Ca ²⁺ release were unaffected (Figures 1D-1F and Figures S1D and S1E). STIM1 and Orai1 expression was also unaltered in

- 104 evoked SOCE in these differentiated neurons; and expression of IP₃R1-shRNA
- 105 significantly reduced the SOCE response without affecting depolarization-evoked Ca²⁺

signals (Figures 1H-1J and Figures S1H-S1L).

107

108 Loss of IP₃R1 Attenuates SOCE in Human Neuroblastoma Cells

IP₃Rs link physiological stimuli that evoke Ca²⁺ release from the ER to SOCE, but the 109 contribution of IP₃Rs is thought to be limited to their ability to deplete the ER of Ca^{2+} . 110 We have reported that in *Drosophila* neurons there is an additional requirement for 111 IP₃Rs independent of ER Ca²⁺ release (Venkiteswaran and Hasan, 2009; Agrawal *et* 112 al., 2010; Chakraborty et al., 2016). Our results with hNPCs and stem cell-derived 113 neurons suggest a similar requirement for IP₃Rs in regulating SOCE in mammalian 114 neurons. To explore the mechanisms underlying this additional role for IP₃Rs, we 115 116 turned to a more tractable cell line, SH-SY5Y cells. These cells are derived from a human neuroblastoma; they exhibit many neuronal characteristics (Agholme et al., 117 2010); they express M3 muscarinic acetylcholine receptors that evoke IP₃-mediated 118 Ca²⁺ release and SOCE (Grudt, Usowicz and Henderson, 1996); and they express 119 predominantly IP₃R1 (Wojcikiewicz, 1995; Tovey et al., 2001), with detectable IP₃R3, 120 but no IP₃R2 (Figure 2A). We used inducible expression of IP₃R1-shRNA to 121 122 significantly reduce IP₃R1 expression (by 74 \pm 1.2%), without affecting IP₃R3 (**Figures**) **2A and 2B**). As expected, carbachol-evoked Ca²⁺ signals in individual SH-SY5Y cells 123 were heterogenous and the carbachol-evoked Ca²⁺ release was significantly reduced 124 by knockdown of IP₃R1 (Figures 2C and 2D and Figures S2A and S2B). 125 Thapsigargin evoked SOCE in SH-SY5Y cells (Grudt, Usowicz and Henderson, 1996), 126

127	and it was significantly attenuated after knockdown of IP $_3$ R1 without affecting resting
128	$[Ca^{2+}]_c$, the Ca^{2+} release evoked by thapsigargin or expression of STIM1 and Orai1
129	(Figures 2E-2G and Figures S2C-S2E). We also used CRISPR/Cas9n to disrupt one
130	copy of the IP ₃ R1 gene in SH-SY5Y cells with an associated decrease in IP ₃ R1
131	expression and attenuation of carbachol-evoked Ca ²⁺ signals (Figures S2F-S2I). In
132	these cells, thapsigargin-evoked Ca ²⁺ release was minimally perturbed, but the
133	resulting SOCE was much reduced (Figures S2J and S2K). These observations,
134	which replicate those from hNPCs and neurons (Figure 1), vindicate our use of SH-
135	SY5Y cells to explore the mechanisms linking IP $_3$ Rs to SOCE in human neurons.
136	Expression of IP ₃ R1 or IP ₃ R3 in SH-SY5Y cells expressing IP ₃ R1-shRNA
137	restored both carbachol-evoked Ca ²⁺ release and thapsigargin-evoked SOCE without
138	affecting resting $[Ca^{2+}]_c$ or thapsigargin-evoked Ca^{2+} release (Figures 2H-2J and
139	Figures S3A-S3D). Over-expression of STIM1 in cells expressing NS-shRNA had no
140	effect on SOCE (Figures S3E and S3F), but it restored thapsigargin-evoked SOCE in
141	cells expressing IP ₃ R1-shRNA, without affecting resting $[Ca^{2+}]_c$ or thapsigargin-evoked
142	Ca^{2+} release (Figures 2K-2M). We conclude that IP ₃ Rs are required for optimal
143	SOCE, but they are not essential because additional STIM1 can replace the need for
144	IP ₃ Rs (Figure 3A).

It has been reported that SOCE is unaffected by loss of IP₃R in non-neuronal
cells (Ma *et al.*, 2001; Chakraborty *et al.*, 2016). Consistent with these observations,
the SOCE evoked in HEK 293T cells by stores emptied fully by treatment with
thapsigargin was unaffected by expression of IP₃R1 shRNA (Figures S4A-S4C) or by
knockout of all three IP₃R subtypes using CRISPR/cas9 (Figures S4D and S4E).

Neuronal and non-neuronal cells may, therefore, differ in the contribution of IP_3R to SOCE. We return to this point later.

152

153 Binding of IP₃ to IP₃R Without a Functional Pore Stimulates SOCE

 IP_3Rs are large tetrameric channels that open when they bind IP_3 and Ca^{2+} , but they 154 also associate with many other proteins (Prole and Taylor, 2019), and many IP₃Rs 155 within cells appear not to release Ca²⁺ (Thillaiappan *et al.*, 2019). A point mutation 156 (D2550A, IP₃R1^{D/A}) within the IP₃R1 pore prevents it from conducting Ca²⁺ (Dellis *et* 157 al., 2008). As expected, expression of $IP_3R1^{D/A}$ in cells lacking IP_3R1 failed to rescue 158 carbachol-evoked Ca²⁺ release, but it unexpectedly restored thapsigargin-evoked 159 SOCE (Figures 3B-3D and Figures S5A-S5E). We confirmed that rescue of 160 thapsigargin-evoked Ca²⁺ entry by this pore-dead IP₃R was mediated by a 161 conventional SOCE pathway by demonstrating that it was substantially attenuated by 162 siRNA-mediated knockdown of Orai1 (Figures 3C and 3D and Figures S5F-S5H). 163 Activation of IP₃Rs is initiated by IP₃ binding to the N-terminal IP₃-binding core of 164 each IP₃R subunit (Prole and Taylor, 2019). Mutation of two conserved phosphate-165 coordinating residues in the α-domain of the binding core (R568Q and K569Q of 166 IP₃R1. IP₃R1^{RQ/KQ}) almost abolishes IP₃ binding (Yoshikawa *et al.*, 1996; Iwai *et al.*, 167 2007), while mutation of a single residue (R568Q, IP_3R1^{RQ}) reduces the IP_3 affinity by 168 ~10-fold (Dellis et al., 2008). Expression of rat IP₃R1^{RQ/KQ} rescued neither carbachol-169 evoked Ca²⁺ release nor thapsigargin-evoked SOCE in cells lacking IP₃R1 (Figures 170 **3E and 3F** and **Figure S5C**). However, expression of IP₃R1^{RQ} substantially rescued 171 thapsigargin-evoked SOCE (Figures 3E and 3F and Figures S5I and S5J). 172

Expression of an N-terminal fragment of rat IP_3R (IP_3R1^{1-604}), to which IP_3 binds 173 174 normally (Iwai et al., 2007), failed to rescue thapsigargin-evoked SOCE (Figures S5K and S5L). These results establish that a functional IP₃-binding site within a full-length 175 IP₃R is required for IP₃Rs to facilitate thapsigargin-evoked SOCE. Hence in cells with 176 empty Ca²⁺ stores, IP₃ binding, but not pore-opening, is required for regulation of 177 SOCE by IP₃Rs. In cells stimulated only with thapsigargin and expressing IP₃Rs with 178 deficient IP₃ binding, basal levels of IP₃ are probably insufficient to meet this need. 179 We further examined the need for IP₃ by partially depleting the ER of Ca²⁺ using 180 181 cyclopiazonic acid (CPA), a reversible inhibitor of SERCA, to allow submaximal activation of SOCE (Figures S5M and S5N). Under these conditions, addition of 182 carbachol in Ca²⁺-free HBSS to cells expressing IP₃R1-shRNA caused a small 183 increase in $[Ca^{2+}]_c$ (**Figures 4A-4C**). In the same cells expressing IP₃R1^{DA}, the 184 carbachol-evoked Ca²⁺ release was indistinguishable from that observed in cells 185 without IP_3R^{DA} (Figures 4B and 4C), indicating that the small response was entirely 186 mediated by residual native IP₃R1 and/or IP₃R3. Hence, the experiment allows 187 carbachol to stimulate IP₃ production in cells expressing IP₃R1^{DA} without causing 188 additional Ca²⁺ release. The key result is that in cells expressing IP₃R1^{DA}, carbachol 189 substantially increased SOCE (Figures 4A-4C). We conclude that IP₃, through IP₃Rs, 190 191 regulates coupling of empty stores to SOCE. This is the first example of an IP₃R mediating a response to IP_3 that does not require the pore of the channel. 192 G-protein-coupled receptors are linked to IP₃ formation through the G-protein 193 Gq, which stimulates phospholipase C β (PLC β). We used YM-254890 to inhibit Gq 194

195	(Kostenis, Pfeil and Annala, 2020; Patt et al., 2021). As expected, addition of YM-
196	254890 to wild type (WT) or NS-shRNA transfected SH-SY5Y cells abolished the Ca^{2+}
197	signals evoked by carbachol, but it also reduced the maximal amplitude and rate of
198	thapsigargin-evoked SOCE (Figures 4D- 4E and Figure S5O). YM-254890 had no
199	effect on the residual thapsigarign-evoked SOCE in SH-SY5Y cells expressing IP $_3$ R1-
200	shRNA (Figure 4F and Figure S4O). The latter result is important because it
201	demonstrates that the inhibition of SOCE in cells with functional IP_3Rs is not an off-
202	target effect causing a direct inhibition of SOCE.
203	In HEK 293T cells, YM-254890 had no effect on thapsigargin-evoked SOCE, but
204	it did inhibit SOCE in HEK 293T cells lacking IP $_3$ R1 (Figures 4G-4I and Figures S6C-
205	S6E). These results suggest that in HEK 293T cells, which express all three IP_3R
206	subtypes (Mataragka & Taylor, 2018), neither loss of IP ₃ R1 nor inhibition of G α q is
207	sufficient on its own to inhibit thapsigargin-evoked SOCE, but when combined there is
208	a synergistic loss of SOCE.

209

210 **IP₃Rs Promote Interaction of STIM1 With Orai1 Within MCS**

Our evidence that IP₃Rs intercept coupling between empty stores and SOCE (**Figure 3A**) prompted us to investigate the coupling of STIM1 with Orai1 across the narrow junctions between ER and PM (Carrasco and Meyer, 2011). An *in situ* proximity ligation assay (PLA) is well suited to analyzing this interaction because it provides a signal when two immunolabelled proteins are within ~40 nm of each other (Derangère *et al.*, 2016), a distance comparable to the dimensions of the junctions wherein STIM1 and Orai1 interact (Poteser *et al.*, 2016). We confirmed the specificity of the PLA and

218	demonstrated that it reports increased association of STIM1 with Orai1 after treating
219	SH-SY5Y cells with thapsigargin (Figure 5A and Figures S7A-S7F). In cells
220	expressing IP $_3$ R1-shRNA, thapsigargin had no effect on the STIM1-Orai1 interaction
221	reported by PLA, but the interaction was rescued by expression of IP ₃ R1 or IP ₃ R1 ^{DA} .
222	There was no rescue with $IP_3R1^{RQ/KQ}$ (Figures 5B-5E). The results with PLA exactly
223	mirror those from functional analyses (Figures 1 and 2), suggesting that IP $_3$ binding to
224	IP ₃ R enhances SOCE by facilitating interaction of STIM1 with Orai1 (Figure 3A).
225	Extended synaptotagmins (E-Syts) are ER proteins that stabilize ER-PM
226	junctions including STIM1-Orai1 MCS (Maléth <i>et al.</i> , 2014; Kang <i>et al.</i> , 2019; Woo <i>et</i>
227	al., 2020). Over-expression of E-Syt1 in SH-SY5Y cells expressing IP ₃ R1-shRNA
228	rescued thapsigargin-evoked Ca^{2+} entry without affecting resting $[Ca^{2+}]_c$ or
229	thapsigargin-evoked Ca^{2+} release (Figures 6A-6C). The rescued Ca^{2+} entry is likely to
230	be mediated by conventional SOCE because it was substantially attenuated by
231	knockdown of STIM1 (Figures 6D-6F). Over-expression of E-Syt1 had no effect on
232	SOCE in cells with unperturbed IP $_3$ Rs (Figures 6G-6I). These results suggest that
233	attenuated SOCE after loss of IP ₃ Rs can be restored by exaggerating ER-PM MCS.
234	

235 **DISCUSSION**

After identification of STIM1 and Orai1 as core components of SOCE (Prakriya and
Lewis, 2015; Thillaiappan *et al.*, 2019), the sole role of IP₃Rs within the SOCE
pathway was assumed to be the release of ER Ca²⁺ that triggers STIM1 activation.
The assumption is consistent with evidence that thapsigargin-evoked SOCE can occur
in avian (Sugawara *et al.*, 1997; Ma *et al.*, 2002; Chakraborty *et al.*, 2016) and

241	mammalian cells without IP $_3$ Rs (Prakriya and Lewis, 2001). Although SOCE in
242	mammalian HEK 293T was unaffected by loss of IP $_3$ Rs in our study (Figure 4G and
243	4I), it was modestly reduced in other studies of mammalian cells (Bartok et al., 2019;
244	Yue et al., 2020). However, additional complexity is suggested by evidence that
245	SOCE may be reduced in cells without IP ₃ Rs (Chakraborty <i>et al.</i> , 2016; Bartok <i>et al.</i> ,
246	2019; Yue et al., 2020), by observations implicating phospholipase C in SOCE
247	regulation (Rosado, Jenner and Sage, 2000; Broad et al., 2001), by evidence that
248	SOCE responds differently to IP_3Rs activated by different synthetic ligands (Parekh,
249	Riley and Potter, 2002) and by some, albeit conflicting reports (Ahmad et al., 2022),
250	that IP ₃ Rs may interact with STIM and/or Orai (Woodard <i>et al.</i> , 2010; Santoso,
251	Cebotaru and Guggino, 2011; Béliveau, Lessard and Guillemette, 2014; Sampieri et
252	<i>al.</i> , 2018).
253	We identified two roles for IP_3Rs in controlling endogenous SOCE in human
253	We identified two roles for IP ₃ Rs in controlling endogenous SOCE in human
253 254	We identified two roles for IP_3Rs in controlling endogenous SOCE in human neurons. As widely reported, IP_3Rs activate STIM1 by releasing Ca^{2+} from the ER, but
253 254 255	We identified two roles for IP_3Rs in controlling endogenous SOCE in human neurons. As widely reported, IP_3Rs activate STIM1 by releasing Ca^{2+} from the ER, but they also, and independent of their ability to release Ca^{2+} , enhance interactions
253 254 255 256	We identified two roles for IP_3Rs in controlling endogenous SOCE in human neurons. As widely reported, IP_3Rs activate STIM1 by releasing Ca^{2+} from the ER, but they also, and independent of their ability to release Ca^{2+} , enhance interactions between active STIM1 and Orai1 (Figure 7). The second role for IP_3Rs can be
253 254 255 256 257	We identified two roles for IP_3Rs in controlling endogenous SOCE in human neurons. As widely reported, IP_3Rs activate STIM1 by releasing Ca^{2+} from the ER, but they also, and independent of their ability to release Ca^{2+} , enhance interactions between active STIM1 and Orai1 (Figure 7). The second role for IP_3Rs can be supplanted by over-expressing other components of the SOCE complex, notably
253 254 255 256 257 258	We identified two roles for IP ₃ Rs in controlling endogenous SOCE in human neurons. As widely reported, IP ₃ Rs activate STIM1 by releasing Ca ²⁺ from the ER, but they also, and independent of their ability to release Ca ²⁺ , enhance interactions between active STIM1 and Orai1 (Figure 7). The second role for IP ₃ Rs can be supplanted by over-expressing other components of the SOCE complex, notably STIM1 or ESyt1 (Figures 2K-2M and Figures 6A and 6B). It is intriguing that STIM1
253 254 255 256 257 258 259	We identified two roles for IP ₃ Rs in controlling endogenous SOCE in human neurons. As widely reported, IP ₃ Rs activate STIM1 by releasing Ca ²⁺ from the ER, but they also, and independent of their ability to release Ca ²⁺ , enhance interactions between active STIM1 and Orai1 (Figure 7). The second role for IP ₃ Rs can be supplanted by over-expressing other components of the SOCE complex, notably STIM1 or ESyt1 (Figures 2K-2M and Figures 6A and 6B). It is intriguing that STIM1 (Carrasco and Meyer, 2011; Lewis, 2020), ESyt1 (Giordano <i>et al.</i> , 2013) and perhaps
253 254 255 256 257 258 259 260	We identified two roles for IP ₃ Rs in controlling endogenous SOCE in human neurons. As widely reported, IP ₃ Rs activate STIM1 by releasing Ca ²⁺ from the ER, but they also, and independent of their ability to release Ca ²⁺ , enhance interactions between active STIM1 and Orai1 (Figure 7). The second role for IP ₃ Rs can be supplanted by over-expressing other components of the SOCE complex, notably STIM1 or ESyt1 (Figures 2K-2M and Figures 6A and 6B). It is intriguing that STIM1 (Carrasco and Meyer, 2011; Lewis, 2020), ESyt1 (Giordano <i>et al.</i> , 2013) and perhaps IP ₃ Rs (through the IP ₃ -binding core) interact with phosphatidylinositol 4,5-

between STIM1 and Orai1. The latter is likely to depend on the relative expression of 264 265 STIM1 and Orai1 (Woo et al., 2020), the STIM isoforms expressed, expression of proteins that stabilize STIM1-Orai1 interactions (Darbellay et al., 2011; Rana et al., 266 2015; Rosado et al., 2016; Knapp et al., 2020), and the size and number of the MCS 267 268 where STIM1 and Orai1 interact (Kang et al., 2019). The multifarious contributors to SOCE suggest that cells may differ in whether they express "spare capacity". In 269 neuronal cells, loss of IP_3 (**Figure 4D**) or of the dominant IP_3R isoform (IP_3R1 -shRNA; 270 **Figures 1 and 2**) is sufficient to unveil the contribution of IP_3R to SOCE, whereas 271 272 HEK 293Tcells require loss of both IP₃ and IP₃R1 to unveil the contribution (**Figures** 273 **4H and 4I**). The persistence of SOCE in cells devoid of IP₃Rs (Figures S4D and S4E) (Prakriya and Lewis, 2001; Ma et al., 2002) probably arises from adaptive changes 274 275 within the SOCE pathway. This does not detract from our conclusion that under physiological conditions, where receptors through IP₃ initiate SOCE, IP₃Rs actively 276 regulate SOCE. 277

The IP₃Rs that initiate Ca^{2+} signals reside in ER immediately beneath the PM and 278 279 alongside, but not within, the MCS where STIM1 accumulates after store depletion (Thillaiappan et al., 2017). In migrating cells too, IP₃Rs and STIM1 remain separated 280 as they redistribute to the leading edge (Okeke et al., 2016). Furthermore, there is 281 282 evidence that neither STIM1 nor STIM2 co-immmunoprecipitate with IP₃R1 (Ahmad et al., 2022). We suggest, and consistent with evidence that SOCE in cells without IP₃Rs 283 can be restored by over-expressing E-Syt1 (Figures 6A-6C), that IP₃Rs probably 284 facilitate SOCE by stabilizing the MCS wherein STIM1 and Orai1 interact, rather than 285 by directly regulating either protein. This proposal provides an analogy with similar 286

287	structural roles for IP ₃ Rs in maintaining MCS between ER and mitochondria (Bartok et
288	al., 2019) or lysosomes (Atakpa et al., 2018) (Figure 7). Since both contributions of
289	IP_3Rs to SOCE require IP_3 binding (Figures 3E and 3F), each is ultimately controlled
290	by receptors that stimulate IP_3 formation (Figures 4B and 4C). Convergent regulation
291	by IP_3Rs at two steps in the SOCE pathway may ensure that receptor-regulated PLC
292	activity provides the most effective stimulus for SOCE; more effective, for example,
293	than ryanodine receptors, which are also expressed in neurons. By opening IP_3Rs
294	parked alongside SOCE MCS (Thillaiappan <i>et al.</i> , 2017; Ahmad <i>et al.</i> , 2022), IP_3
295	selectively releases Ca ²⁺ from ER that is optimally placed to stimulate SOCE, and by
296	facilitating Orai1-STIM1 interactions IP_3 reinforces this local activation of SOCE
297	(Figure 7).
298	We conclude that IP ₃ -regulated IP ₃ Rs regulate SOCE by mediating Ca^{2+} release
299	from the ER, thereby activating STIM1 and/or STIM2 (Ahmad et al., 2022) and,
300	independent of their ability to release Ca^{2+} , IP ₃ Rs facilitate the interactions between
301	STIM and Orai that activate SOCE. Dual regulation of SOCE by IP_3 and IP_3Rs allows
302	robust control by cell-surface receptors and may reinforce local stimulation of Ca ²⁺
303	entry.
304	

305 ACKNOWLEDGEMENTS

This research was supported by grants to G.H. from the Dept. of Biotechnology, Govt. of India (BT/PR6371/COE/34/19/2013) and NCBS-TIFR core support, and to C.W.T. from the Wellcome Trust (101844) and Biotechnology and Biological Sciences Research Council (BB/T012986/1). P.C is supported by a DST-INSPIRE fellowship

310	(DST/INSPIRE Fellowship/2017/IF170360) and she received an Infosys-NCBS travel
311	award to visit C.W.T.'s lab at Cambridge. We are grateful to Renjitha Gopurappilly
312	(NCBS, TIFR) for the derivation of human neural precursor cells. We acknowledge
313	use of the Central Imaging and Flow Cytometry Facility (CIFF), Stem Cell Culture
314	Facility and Biosafety level-2 laboratory facility at NCBS, TIFR.
315	
316	AUTHOR CONTRIBUTIONS
317	P.C. and B.K.D performed the experiments and analysed the data. P.C., G.H. and
318	C.W.T. conceptualized the experiments and wrote the manuscript.
319	
320	DECLARATION OF INTERESTS
321	The authors declare no competing interests.
322	
323	REFERENCES
324	Agholme, L., Lindström, T., Kågedal, K., Marcusson, J. and Hallbeck, M. 2010. An in
325	vitro model for neuroscience: differentiation of SH-SY5Y cells into cells with
326	morphological and biochemical characteristics of mature neurons. J. Alzheimer's
327	<i>Dis.</i> 20:1069–1082.
328	Agrawal, N., Venkiteswaran, G., Sadaf, S., Padmanabhan, N., Banerjee, S. and
329	Hasan, G. 2010. Inositol 1, 4, 5-trisphosphate receptor and dSTIM function in
330	Drosophila insulin-producing neurons regulates systemic intracellular calcium
331	homeostasis and flight. J. Neurosci. 30:1301-1313.
332	Ahmad, M. et al. 2022. Functional communication between IP $_3R$ and STIM2 at

- 333 subthreshold stimuli is a critical checkpoint for initiation of SOCE. *Proc. Natl.*
- 334 Acad. Sci. 119: e2114928118.
- Atakpa, P., Thillaiappan, N.B., Mataragka, S., Prole, D.L. and Taylor, C.W. 2018. IP₃
- receptors preferentially associate with ER-lysosome contact sites and selectively
- deliver Ca^{2+} to lysosomes. *Cell Rep.* 25:3180-3193.
- Auyeung, V.C., Ulitsky, I., McGeary, S.E. and Bartel, D.P. 2013. Beyond secondary
- structure: primary-sequence determinants license pri-miRNA hairpins for
 processing. *Cell.* 152:844-858.
- Bartok, A., Weaver, D., Golenár, T., Nichtova, Z., Katona, M., Bánsághi, S., Alzayady,
- 342 K.J., Thomas, V.K., Ando, H., Mikoshiba, K. and Joseph, S.K. 2019. IP₃ receptor
- isoforms differently regulate ER-mitochondrial contacts and local calcium
 transfer. *Nat. Commun.* 10:1-14.
- Béliveau, É., Lessard, V. and Guillemette, G. 2014. STIM1 positively regulates the
- Ca²⁺ release activity of the inositol 1,4,5-trisphosphate receptor in bovine aortic endothelial cells. *PLoS One.* 9: e114718.
- Broad, L.M., Braun, F.J., Lievremont, J.P., Bird, G.S.J., Kurosaki, T. and Putney Jr,
- J.W. 2001. Role of the phospholipase C-inositol 1, 4, 5-trisphosphate pathway in
- 350 calcium release-activated calcium current and capacitative calcium entry. J. Biol.
- 351 *Chem.* 276:15945–15952.
- 352 Carrasco, S. and Meyer, T. 2011. STIM proteins and the endoplasmic reticulum-
- plasma membrane junctions. *Annu. Rev. Biochem.* 80:973–1000.
- Chakraborty, S., Deb, B.K., Chorna, T., Konieczny, V., Taylor, C.W. and Hasan, G.
- 2016. Mutant IP₃ receptors attenuate store-operated Ca^{2+} entry by destabilizing

- 356 STIM–Orai interactions in *Drosophila* neurons. *J. Cell Sci.* 129:3903–3910.
- Chang, C.L., Hsieh, T.S., Yang, T.T., Rothberg, K.G., Azizoglu, D.B., Volk, E., Liao,
- J.C. and Liou, J. 2013. Feedback regulation of receptor-induced Ca²⁺ signaling
- 359 mediated by E-Syt1 and Nir2 at endoplasmic reticulum-plasma membrane
- 360 junctions. *Cell Rep.* 5:813–825.
- 361 Darbellay, B., Arnaudeau, S., Bader, C.R., Konig, S. and Bernheim, L. 2011. STIM1L
- is a new actin-binding splice variant involved in fast repetitive Ca²⁺ release. *J. Cell Biol.* 194:335-346.
- 364 Deb, B. K., Pathak, T. and Hasan, G. 2016. Store-independent modulation of Ca²⁺
- entry through Orai by Septin 7. *Nat. Commun.* 7:1-15.
- 366 Dellis, O., Rossi, A.M., Dedos, S.G. and Taylor, C.W. 2008. Counting functional
- inositol 1, 4, 5-trisphosphate receptors into the plasma membrane. *J Biol. Chem.* 283:751-755.
- 369 Derangère, V., Bruchard, M., Végran, F. and Ghiringhelli, F. 2016. Proximity Ligation
- Assay (PLA) protocol using Duolink® for T cells. *Bio-protocol.* 6:e1811.
- Forostyak, O., Romanyuk, N., Verkhratsky, A., Sykova, E. and Dayanithi, G. 2013.
- Plasticity of calcium signaling cascades in human embryonic stem cell-derived
 neural precursors. *Stem Cells Dev.* 22:1506-1521.
- Foskett, J.K., White, C., Cheung, K.H. and Mak, D.O.D. 2007. Inositol trisphosphate
- receptor Ca^{2+} release channels. *Physiol. Rev.* 87:593–658.
- 376 Giordano, F., Saheki, Y., Idevall-Hagren, O., Colombo, S.F., Pirruccello, M., Milosevic,
- I., Gracheva, E.O., Bagriantsev, S.N., Borgese, N. and De Camilli, P. 2013. PI(4,
- 5) P_2 -dependent and Ca^{2+} -regulated ER-PM interactions mediated by the

extended synaptotagmins. *Cell*. 153:1494-1509.

- 380 Gopurappilly, R., Deb, B.K., Chakraborty, P. and Hasan, G. 2018. Stable STIM1
- 381 knockdown in self-renewing human neural precursors promotes premature

neural differentiation. *Front. Mol. Neurosci.* 11:178.

- 383 Gopurappilly, R., Deb, B.K., Chakraborty, P. and Hasan, G. 2019. Measurement of
- store-operated calcium entry in human neural cells: From precursors to

differentiated neurons. *Methods Mol. Biol.* 2029:257–271.

- 386 Grudt, T. J., Usowicz, M. M. and Henderson, G. 1996. Ca²⁺ entry following store
- depletion in SH-SY5Y neuroblastoma cells. *Mol. Brain Res.* 36:93–100.
- 388 Grynkiewicz, G., Poenie, M. and Tsien, R. Y. 1985. A new generation of Ca²⁺
- indicators with greatly improved fluorescence properties. *J. Biol. Chem.*260:3440–3450.
- Iwai, M., Michikawa, T., Bosanac, I., Ikura, M. and Mikoshiba, K. 2007. Molecular
- basis of the isoform-specific ligand-binding affinity of inositol 1, 4, 5-

trisphosphate receptors. *J. Biol. Chem.* 282:12755–12764.

- Kang, F., Zhou, M., Huang, X., Fan, J., Wei, L., Boulanger, J., Liu, Z., Salamero, J.,
- Liu, Y. and Chen, L. 2019. E-syt1 Re-arranges STIM1 clusters to stabilize ring-

shaped ER-PM contact sites and accelerate Ca^{2+} store replenishment. *Sci Rep.*

- **397 9:1-11**.
- Knapp, M.L., Förderer, K., Alansary, D., Jung, M., Schwarz, Y., Lis, A. and Niemeyer,
- B.A. 2020. Alternative splicing switches STIM1 targeting to specialized
- 400 membrane contact sites and modifies SOCE. *bioRxiv*. doi:
- 401 10.1101/2020.03.25.005199. (Preprint posted January 1, 2020).

402	Knott, S.R., Maceli, A.R., Erard, N., Chang, K., Marran, K., Zhou, X., Gordon, A., El
403	Demerdash, O., Wagenblast, E., Kim, S. and Fellmann, C. 2014. A
404	computational algorithm to predict shRNA potency. Mol. Cell. 56:796-807.
405	Lewis, R. S. 2020. Store-operated calcium channels: From function to structure and
406	back again. Cold Spring Harb. Perspect. Biol. 12: a035055.
407	Ma, H. T., Venkatachalam, K., Li, H. S., Montell, C., Kurosaki, T., Patterson, R. L., &
408	Gill, D. L. 2001. Assessment of the role of the inositol 1,4,5-trisphosphate
409	receptor in the activation of transient receptor potential channels and store-
410	operated Ca ²⁺ entry channels. <i>J Biol Chem</i> , 276: 18888–18896.
411	Ma, H. T., Venkatachalam, K., Parys, J. B., & Gill, D. L. 2002. Modification of store-
412	operated channel coupling and inositol trisphosphate receptor function by 2-
413	aminoethoxydiphenyl borate in DT40 lymphocytes. J Biol Chem, 277: 6915-
414	6922.
415	Maléth, J., Choi, S., Muallem, S. and Ahuja, M. 2014. Translocation between PI(4,
416	5)P ₂ -poor and PI(4, 5)P ₂ -rich microdomains during store depletion determines
417	STIM1 conformation and Orai1 gating. Nat Commun. 5:1–10.
418	Mataragka, S. and Taylor, C. W. 2018. All three IP ₃ receptor subtypes generate Ca^{2+}
419	puffs, the universal building blocks of IP ₃ -evoked Ca ²⁺ signals. <i>J Cell Sci.</i> 131:
420	jcs220848.
421	Miotke, L., Lau, B. T., Rumma, R. T., & Ji, H. P. 2014. High sensitivity detection and
422	quantitation of DNA copy number and single nucleotide variants with single color
423	droplet digital PCR. Anal. Chem., 86: 2618-2624.
424	Nunes-Hasler, P., Maschalidi, S., Lippens, C., Castelbou, C., Bouvet, S., Guido, D.,

			D	N I	N A		and Hugues.	0 0047	OTIMAA
425	Karmont I	F Raccov	Page	N	NIDrkidr	1)	2011 HURLIDE	S 2017	S I IMAT
423		1 Dassov	 i auc.	1		$\boldsymbol{\nu}$.	and nuques.	0.2017.	

- 426 promotes migration, phagosomal maturation and antigen cross-presentation in
- dendritic cells. *Nat Commun*. 8:1-15.
- 428 Okeke, E., Parker, T., Dingsdale, H., Concannon, M., Awais, M., Voronina, S., Molgó,
- J., Begg, M., Metcalf, D., Knight, A.E. and Sutton, R. 2016. Epithelial–
- 430 mesenchymal transition, IP₃ receptors and ER–PM junctions: Translocation of
- 431 Ca²⁺ signalling complexes and regulation of migration. *Biochem. J.* 473:757–767.
- 432 Palty, R., Raveh, A., Kaminsky, I., Meller, R. and Reuveny, E. 2012. SARAF
- inactivates the store operated calcium entry machinery to prevent excess
- 434 calcium refilling. *Cell*. 149:425-438.
- Parekh, A. B. and Putney, J. W. 2005. Store-operated calcium channels. *Physiol. Rev.*85:757–810.
- 437 Parekh, A. B., Riley, A. M. and Potter, B. V. L. 2002. Adenophostin A and ribophostin,
- but not inositol 1,4,5-trisphosphate or manno-adenophostin, activate the Ca²⁺
- 439 release-activated Ca^{2+} current, ICRAC, in weak intracellular Ca^{2+} buffer.
- 440 *Biochem. J.* 361:133–141.
- Patt, J., Alenfelder, J., Pfeil, E.M., Voss, J.H., Merten, N., Eryilmaz, F., Heycke, N.,

442 Rick, U., Inoue, A., Kehraus, S. and Deupi, X. 2021. An experimental strategy to

443 probe Gq contribution to signal transduction in living cells. J. Biol. Chem.

444 296:100472.

- 445 Poteser, M., Leitinger, G., Pritz, E., Platzer, D., Frischauf, I., Romanin, C. and
- 446 Groschner, K. 2016. Live-cell imaging of ER-PM contact architecture by a novel
- 447 TIRFM approach reveals extension of junctions in response to store-operated

- 448 Ca²⁺-entry. *Sci. Rep.* 6:1-13.
- Prakriya, M. and Lewis, R. S. 2001. Potentiation and inhibition of Ca²⁺ release-
- 450 activated Ca²⁺ channels by 2-aminoethyldiphenyl borate (2-APB) occurs
- 451 independently of IP_3 receptors. *J Physiol.* 536:3–19.
- 452 Prakriya, M. and Lewis, R. S. 2015. Store-operated calcium channels pharmacology.
- 453 *Physiol. Rev.* 307:1383–1436.
- 454 Prole, D. L. and Taylor, C. W. 2019. Structure and function of IP₃ receptors. *Cold* 455 *Spring Harb. Perspect. Biol.* 11: a035063.
- 456 Putney, J. W. 1986. A model for receptor-regulated calcium entry. Cell Calcium. 7:1–
- 457 12.
- 458 Ran, F. A., Hsu, P. D., Wright, J., Agarwala, V., Scott, D. A., & Zhang, F. 2013.
- Genome engineering using the CRISPR-Cas9 system. *Nat. Protoc.* 8: 22812308.
- 461 Rana, A., Yen, M., Sadaghiani, A.M., Malmersjö, S., Park, C.Y., Dolmetsch, R.E. and
- Lewis, R.S. 2015. Alternative splicing converts STIM2 from an activator to an
- inhibitor of store-operated calcium channels. *J Cell Biol.* 209: 653-670.
- Reinhardt, P., Glatza, M., Hemmer, K., Tsytsyura, Y., Thiel, C.S., Höing, S., Moritz, S.,
- Parga, J.A., Wagner, L., Bruder, J.M. and Wu, G. 2013. Derivation and
- 466 expansion using only small molecules of human neural progenitors for
- 467 neurodegenerative disease modeling. *PLoS One.* 8: e59252.
- 468 Rosado, J.A., Diez, R., Smani, T. and Jardín, I. 2016. STIM and Orai1 variants in
- store-operated calcium entry. *Front. Pharmacol.* 6:325.
- 470 Rosado, J. A., Jenner, S. and Sage, S. O. 2000. A role for the actin cytoskeleton in

471	the initiation and maintenance of store-mediated calcium entry in human
472	platelets. Evidence for conformational coupling. J Biol. Chem. 275: 7527–7533.
473	Saleem, H., Tovey, S.C., Rahman, T., Riley, A.M., Potter, B.V. and Taylor, C.W. 2013.
474	Stimulation of inositol 1, 4, 5-trisphosphate (IP_3) receptor subtypes by analogues
475	of IP ₃ . <i>PLoS One.</i> 8:e54877.
476	Sampieri, A., Santoyo, K., Asanov, A. and Vaca, L. 2018. Association of the IP_3R to
477	STIM1 provides a reduced intraluminal calcium microenvironment, resulting in
478	enhanced store-operated calcium entry. Sci Rep. 8:1–13.
479	Santoso, N. G., Cebotaru, L. and Guggino, W. B. 2011. Polycystin-1, 2, and STIM1
480	interact with IP ₃ R to modulate ER Ca ²⁺ release through the PI3K/Akt pathway.
481	Cell Physiol Biochem. 27:715–726.
482	Srivats, S., Balasuriya, D., Pasche, M., Vistal, G., Edwardson, J.M., Taylor, C.W. and
483	Murrell-Lagnado, R.D. 2016. Sigma-1 receptors inhibit store-operated Ca ²⁺ entry
484	by attenuating coupling of STIM1 to Orai1. J. Cell Biol. 213: 65–79.
485	Sugawara, H., Kurosaki, M., Takata, M. and Kurosaki, T. 1997. Genetic evidence for
486	involvement of type 1, type 2 and type 3 inositol 1, 4, 5-trisphosphate receptors
487	in signal transduction through the B-cell antigen receptor. EMBO J. 16:3078–
488	3088.
489	Thillaiappan, N.B., Chavda, A.P., Tovey, S.C., Prole, D.L. and Taylor, C.W. 2017.
490	Ca ²⁺ signals initiate at immobile IP ₃ receptors adjacent to ER-plasma membrane
491	junctions. <i>Nat. Commun.</i> 8:1-16.
492	Thillaiappan, N.B., Chakraborty, P., Hasan, G. and Taylor, C.W. 2019. IP_3 receptors
493	and Ca ²⁺ entry. <i>Biochim Biophys Acta Mol Cell Res</i> . 1866:1092–1100.

494	Tovey, S.C., De Smet, P., Lipp, P., Thomas, D., Young, K.W., Missiaen, L., De Smedt,
495	H., Parys, J.B., Berridge, M.J., Thuring, J. and Holmes, A. 2001. Calcium puffs
496	are generic $InsP_3$ -activated elementary calcium signals and are downregulated
497	by prolonged hormonal stimulation to inhibit cellular calcium responses. J. Cell
498	<i>Sci</i> . 114:3979-3989.
499	Venkiteswaran, G. and Hasan, G. 2009. Intracellular Ca ²⁺ signaling and store-
500	operated Ca ²⁺ entry are required in <i>Drosophila</i> neurons for flight. <i>Proc. Natl.</i>
501	Acad. Sci. U. S. A. 106:10326–10331.
502	Wojcikiewicz, R. J. H. 1995. Type I, II, and III inositol 1,4,5-trisphosphate receptors
503	are unequally susceptible to down-regulation and are expressed in markedly
504	different proportions in different cell types. J. Biol. Chem. 270:11678–11683.
505	Woo, J.S., Sun, Z., Srikanth, S. and Gwack, Y. 2020. The short isoform of extended
506	synaptotagmin-2 controls Ca ²⁺ dynamics in T cells via interaction with STIM1.
507	<i>Sci. Rep.</i> 10:1-13.
508	Woodard, G.E., López, J.J., Jardín, I., Salido, G.M. and Rosado, J.A. 2010. TRPC3
509	regulates agonist-stimulated Ca ²⁺ mobilization by mediating the interaction
510	between type I inositol 1, 4, 5-trisphosphate receptor, RACK1, and Orai1. J. Biol.
511	Chem. 285: 8045–8053.
512	Yoshikawa, F., Morita, M., Monkawa, T., Michikawa, T., Furuichi, T. and Mikoshiba, K.
513	1996. Mutational analysis of the ligand binding site of the inositol 1, 4, 5-
514	trisphosphate receptor. J. Biol. Chem. 271:18277-18284.
515	Yue, L., Wang, L., Du, Y., Zhang, W., Hamada, K., Matsumoto, Y., Jin, X., Zhou, Y.,
516	Mikoshiba, K., Gill, D.L. and Han, S. 2020. Type 3 inositol 1, 4, 5-trisphosphate

- 517 receptor is a crucial regulator of calcium dynamics mediated by endoplasmic
- reticulum in HEK cells. *Cells*. 9:275.

519 Figure 1. Loss of IP₃R1 Attenuates SOCE in Human Neural Stem Cells

- 520 (A) Confocal images of hNPCs (passage 6) stained for DAPI and neural stem cell
- 521 proteins: Pax6 and Ki67 (proliferation marker). Scale bars, 50 μm.
- 522 (B) WB for IP₃R1 of hNPCs expressing non-silencing (NS) or IP₃R1-shRNA.
- 523 (C) Summary results (mean ± s.d., n = 3) show IP₃R1 expression relative to actin. ***P*
- 524 < 0.01, Student's *t*-test with unequal variances.
- (D) Changes in $[Ca^{2+}]_c$ evoked by thapsigargin (Tg, 10 μ M) in Ca²⁺-free HBSS and
- then restoration of extracellular Ca^{2+} (2 mM) in hNPCs expressing NS or IP₃R1-
- 527 shRNA. Mean ± s.e.m. from 3 independent experiments, each with 4 replicates that
- together included 100-200 cells. Inset shows the target of Tg.
- 529 (E-G) Summary results (individual cells, median (bar), 25th and 75th percentiles (box)
- and mean (circle)) show Ca^{2+} signals evoked by Tg or Ca^{2+} restoration (E), rate of
- 531 Ca²⁺ entry (F) and resting $[Ca^{2+}]_c$ (G). ^{***} P < 0.001, Mann-Whitney U-test.
- (H) Changes in $[Ca^{2+}]_c$ evoked by Tg (10 μ M) in Ca²⁺-free HBSS and after restoring
- 533 extracellular Ca²⁺ (2 mM) in neurons (differentiated hNPCs) expressing NS or IP₃R1-
- shRNA. Mean ± s.e.m. from 3 experiments with 100-200 cells.
- (I,J) Summary results (presented as in E-G) show Ca²⁺ signals evoked by Tg or Ca²⁺
- restoration (I) and rate of Ca^{2+} entry (J). *** P < 0.001. Mann-Whitney U-test.
- 537 See also Figure S1.

539 Figure 2. Loss of IP₃R1 Attenuates SOCE in SH-SY5Y Cells

- 540 (A) WB for IP₃R1-3 of SH-SY5Y cells expressing non-silencing (NS) or IP₃R1-shRNA.
- (B) Summary results (mean \pm s.d., n = 4) show IP₃R expression relative to actin
- normalized to control NS cells. *P < 0.01, Student's *t*-test with unequal variances.
- 543 (C) Ca²⁺ signals evoked by carbachol (CCh, 3 μM) in SH-SY5Y cells expressing NS or
- IP_3R1 -shRNA. Mean \pm s.e.m. from 3 experiments with 100-200 cells.
- (D) Summary results show peak changes in $[Ca^{2+}]_c$ ($\Delta[Ca^{2+}]_c$) evoked by CCh. *** *P* <
- 546 0.001, Mann-Whitney U-test.
- (E) Ca^{2+} signals evoked by thapsigargin (Tg, 10 μ M) in Ca^{2+} -free HBSS and then after
- restoration of extracellular Ca²⁺ (2 mM) in cells expressing NS or IP₃R1-shRNA. Mean
- \pm s.e.m. from 3 experiments with 50-100 cells.
- (F, G) Summary results (individual cells, mean \pm s.e.m., n = 3, 50-100 cells) show
- peak changes in $[Ca^{2+}]_c$ evoked by Ca^{2+} restoration ($\Delta[Ca^{2+}]_c$) (F) and rate of Ca^{2+}
- 552 entry (G). $^{***}P < 0.001$, Mann-Whitney U-test.
- (H) Ca^{2+} signals evoked by Tg and then Ca^{2+} restoration in cells expressing NS-
- shRNA, or IP₃R1-shRNA alone or with IP₃R1 or IP₃R3. Traces show mean \pm s.e.m.
- 555 (100-220 cells from 3 experiments).
- 556 (I, J) Summary results (mean ± s.e.m, 100-220 cells from 3 experiments) show peak
- increases in $[Ca^{2+}]_c$ ($\Delta[Ca^{2+}]_c$) evoked by Ca^{2+} restoration (I) and rates of Ca^{2+} entry
- (J) evoked by restoring extracellular Ca²⁺.
- (K) Effects of thapsigargin (Tg, 10 μ M) in Ca²⁺-free HBSS and then after Ca²⁺
- restoration (2 mM) in cells expressing IP₃R1-shRNA alone or with IP₃R1 or mCh-
- 561 STIM1. Traces show mean ± s.e.m. (100-150 cells from 3 experiments).

- 562 (L, M) Summary results (mean \pm s.e.m.) show peak increase in $[Ca^{2+}]_c$ after Ca^{2+}
- restoration (Δ [Ca²⁺]_c) (L) and rate of Ca²⁺ entry (M). Different letters indicate significant
- ⁵⁶⁴ differences (panels I, J, L, M), *P* < 0.001, one-way ANOVA with pair-wise Tukey's test.
- 565 See also Figures S2-S4.

566

567

569 Figure 3. Regulation of SOCE by IP₃R Requires IP₃ Binding But Not a Functional

570 Pore in SH-SY5Y cells

- (A) SOCE is activated when loss of Ca^{2+} from the ER through IP₃Rs activates STIM1
- 572 (i). Our results suggest an additional role for IP_3Rs (ii).
- (B) SH-SY5Y cells expressing IP₃R1-shRNA alone or with IP₃R1 or IP₃R1^{DA} were
- stimulated with thapsigargin (Tg, 1 μ M) in Ca²⁺-free HBSS before restoring
- extracellular Ca²⁺ (2 mM). Traces show mean \pm s.e.m, for 100-150 cells from 3
- 576 experiments.
- 577 (C) Cells expressing IP₃R1-shRNA and IP₃R1^{DA} were treated with NS-siRNA or Orai1-
- siRNA before measuring Tg-evoked Ca^{2+} entry. Traces show mean \pm s.e.m. for 85-
- 579 100 cells from 3 experiments.
- (D) Summary results (mean \pm s.e.m.) show peak increases in $[Ca^{2+}]_c$ ($\Delta[Ca^{2+}]_c$)
- 581 evoked by Ca^{2+} restoration.
- (E) Tg-evoked Ca²⁺ entry in cells expressing IP_3R1 -shRNA with IP_3R1 , IP_3R1^{RQ} or
- 583 $IP_3R1^{RQ/KQ}$. Traces show mean \pm s.e.m, for 90-150 cells from 3 experiments.
- (F) Summary results (mean \pm s.e.m.) show peak increases in $[Ca^{2+}]_c$ ($\Delta[Ca^{2+}]_c$)
- evoked by Ca²⁺ restoration. Different letter codes (panels D, F) indicate significantly
- 586 different values, *P* < 0.001, one-way ANOVA and pair-wise Tukey's test.
- 587 See also Figure S5.

588

589 Figure 4. Receptor-Regulated IP₃ Production Stimulates SOCE in Cells With

590 Empty Ca²⁺ Stores and Expressing Pore-Dead IP₃R

- 591 (A, B) SH-SY5Y cells expressing IP_3R1 -shRNA alone (A) or with IP_3R1^{DA} (B) were
- treated with a low concentration of CPA (2 μ M) in Ca²⁺-free HBSS to partially deplete
- the ER of Ca^{2+} and sub-maximally activate SOCE (see **Figures S5M and S5N**).
- 594 Carbachol (CCh, 1 μ M) was then added to stimulate IP₃ formation through muscarinic
- receptors, and extracellular Ca^{2+} (2 mM) was then restored. Traces (mean \pm s.e.m of
- ⁵⁹⁶ 113-200 cells from 3 experiments) show responses with and without the CCh addition.
- (C) Summary results show the peak increases in $[Ca^{2+}]_c$ ($\Delta[Ca^{2+}]_c$) after addition of
- 598 CCh (CCh-induced Ca^{2+} release) and then after restoring extracellular Ca^{2+} (SOCE).
- 599 (D-F) SH-SY5Y cells wild type (WT) (D) and expressing NS-shRNA (E) or IP₃R1-
- shRNA (F) were treated with YM-254890 (YM, 1 μ M, 5 min) in Ca²⁺-free HBSS to
- inhibit G α q and then with thapsigargin (Tg, 1 μ M) before restoring extracellular Ca²⁺ (2
- mM). Traces show mean ± s.e.m of 80 -100 cells from 3 experiments. .
- (G-I) Similar analyses of HEK 293T cells. Summary results (mean ± s.e.m, 50-100
- cells from 3 experiments) are shown in (I).
- Different letter codes (panels C and I) indicate significantly different values within the
- store Ca²⁺ release or SOCE groups, P < 0.001, one-way ANOVA and pair-wise
- 607 Tukey's test.
- 608 See also Figure S6.
- 609
- 610
- 611

Figure 5. IP₃Rs Promote Interaction of STIM1 With Orai1

- (A-E) PLA analyses of interactions between STIM1 and Orai1 in SH-SY5Y cells
- expressing NS-shRNA (A) or IP₃R1-shRNA alone (B) or with IP₃R1 (C), IP₃R1^{DA} (D) or
- 615 IP₃R1^{RQ/KQ} (E). Confocal images are shown for control cells or after treatment with
- thapsigargin (Tg, 1 μ M) in Ca²⁺-free HBSS. PLA reaction product is red, and nuclei
- are stained with DAPI (blue). Scale bars, 5 µm. Summary results show the surface
- area of the PLA spots for 8-10 cells from 2 independent analyses. Individual values,
- median (bar) and 25th and 75th percentiles (box). ***P < 0.001, Student's *t*-test with
- 620 unequal variances.
- 621 See also Figure S7.
- 622

- Figure 6. Extended Synaptotagmins Rescue SOCE in Cells Lacking IP₃R1
- (A) SH-SY5Y cells expressing IP₃R1-shRNA alone or with E-Syt1 were stimulated with
- Tg (1 μ M) in Ca²⁺-free HBSS before restoring extracellular Ca²⁺ (2 mM). Traces show
- mean ± s.e.m, for 50-80 cells from 3 experiments.
- (B) Summary results show Δ [Ca²⁺]_c evoked by restoring Ca²⁺ (SOCE). Mean ± s.e.m,
- 629 $^{***}P < 0.001$, Mann-Whitney U- test.
- (C) Summary results (mean \pm s.e.m, n = 50-80 cells) show resting $[Ca^{2+}]_c$ (left) and
- the peak Ca²⁺ signals (Δ [Ca²⁺]_c) evoked by thapsigargin (Tg, 1 μ M) in Ca²⁺-free HBSS
- for SH-SY5Y cells expressing IP₃R1-shRNA alone or with human E-Syt1.
- (D) Cells over-expressing E-Syt1 and treated with IP₃R1-shRNA in combination with
- either NS or STIM1 siRNA were stimulated with Tg (1 μ M) in Ca²⁺-free HBSS before
- restoration of extracellular Ca²⁺ (2 mM). Mean \pm s.e.m. from 3 experiments with 30-50
- 636 cells.
- (E, F) Summary results (mean ± s.e.m, n = 30-50 cells) show SOCE evoked by Tg
- (E), resting $[Ca^{2+}]_c$ and the Tg-evoked Ca^{2+} release from intracellular stores (F). *** $P < Ca^{2+}$
- 639 0.001, one-way ANOVA with pair-wise Tukey's test.
- (G) Similar analyses of cells expressing NS shRNA alone or with human E-Syt1 and
- then treated with Tg (1 μ M) in Ca²⁺-free HBSS before restoring extracellular Ca²⁺ (2
- 642 mM). Mean \pm s.e.m. from 3 experiments with 75-110 cells.
- (H, I) Summary results (mean \pm s.e.m, n = 75-110) show resting [Ca²⁺]_c (H) and
- 644 Δ [Ca²⁺]_c evoked by Tg (store release) or Ca²⁺ restoration (SOCE) (I). No significant
- 645 difference, one-way ANOVA with pair-wise Tukey's test.
- 646

647 Figure 7. Dual Regulation of SOCE by IP₃Rs

648	(A) SOCE is activated when loss of Ca ²⁺ from the ER, usually mediated by opening of
649	IP_3Rs when they bind IP_3 , causes STIM to unfurl cytosolic domains (2). The exposed
650	cytosolic domains of STIM1 reach across a narrow gap between the ER and PM at a
651	MCS to interact with PIP_2 and Orai1 in the PM. Binding of STIM1 to Orai1 causes pore
652	opening, and SOCE then occurs through the open Orai1 channel. We show that IP_3Rs
653	when they bind IP $_3$ also facilitate interactions between Orai1 and STIM, perhaps by
654	stabilizing the MCS (1). Receptors that stimulate IP_3 formation thereby promote both
655	activation of STIM (by emptying Ca ²⁺ stores) and independently promote interaction of
656	active STIM1 with Orai1.
657	(B) Other mechanisms, including ryanodine receptors (RyR), can also release Ca ²⁺
658	from the ER. We suggest that convergent regulation of SOCE by IP_3R with bound IP_3
659	allows receptors that stimulate IP_3 formation to selectively control SOCE.

661 **STAR METHODS**

662

663 **RESOURCE AVAILABILITY**

- 664 Lead Contact
- All requests for resources and reagents should be directed to the lead contact, Dr.
- 666 Gaiti Hasan (<u>gaiti@ncbs.res.in</u>).
- 667

668 Materials Availability

669 Constructs and cell lines are available upon request. MTA required for cell lines.

670

671 Data and Code Availability

- This study did not generate any computer code. The data supporting the findings of
- this study are available within the manuscript. All other data supporting the findings of
- this study are available from the corresponding author on reasonable request.

675

676 **METHOD DETAILS**

- 677 Culture of Human Neural Precursor Cells
- Human neural precursor cells (hNPCs) were derived from a human embryonic stem
- cell (hESC) line, H9/WA09, using a protocol that inhibits dual SMAD signaling and
- stimulates Wnt signaling (Reinhardt *et al.*, 2013) as described previously
- (Gopurappilly *et al.*, 2018, 2019). hNPCs were grown as adherent dispersed cells on
- growth factor-reduced Matrigel (0.5%) in hNPC maintenance medium (NMM) at 37°C
- in humidified air with 5% CO₂. NMM comprised a 1:1 mixture of DMEM/F-12 and

684	Neurobasal medium, supplemented with GlutaMAX (0.5x), N2 supplement (1:200),
685	B27 without vitamin A (1:100), Antibiotic-Antimycotic, CHIR99021 (3 μ M),
686	purmorphamine (0.5 mM) and ascorbic acid (150 μ M). Doubling time was ~24 hr.
687	Cells were passaged every 4-5 days by treatment with StemPro accutase, stored in
688	liquid nitrogen, and thawed as required. Cells were confirmed to be mycoplasma-free
689	by monthly screening (MycoAlert). hNPCs between passages 16-19 were used.
690	All experiments performed with hESC lines were approved by the Institutional
691	Committee for Stem Cell Research, registered under the National Apex Committee for
692	Stem Cell Research and Therapy, Indian Council of Medical Research, Ministry of
693	Health, New Delhi.

694

695 Stable Knockdown of IP₃R1

696 An UltramiR lentiviral inducible shRNA-mir based on the shERWOOD algorithm (Auyeung et al., 2013; Knott et al., 2014) was used to inhibit IP₃R1 expression. The 697 all-in-one pZIP vector, which allows puromycin-selection and doxycycline-induced 698 699 expression of both shRNA-mir and Zs-Green for visualization, was from TransOMIC Technologies. Lentiviral pZIP transfer vectors encoding non-silencing shRNA (NS) or 700 IP₃R1-targeting shRNA were packaged as lentiviral particles using packaging (pCMV-701 702 dR8.2 dpvr) and envelope vectors (pCMV-VSV-G) by transfection of HEK 293T cells. Viral particles were collected and processed, and hNPCs (passage 9) or SH-SY5Y 703 cells were transduced (multiplicity of infection, MOI = 10) using Lipofectamine LTX 704 with PLUS reagent. Cells were maintained in media containing doxycycline (2 µg/ml) 705 to induce shRNA expression, and puromycin to select transduced cells (1 µg/ml for 706

707	hNPCs; 3 µg/ml for SH-SY5Y	/ and HEK 293T cells). Cells were passaged	4-5 times

- ⁷⁰⁸ after lentiviral transduction to select for stable expression of shRNAs.
- 709

710 Derivation of Neurons From hNPCs

711 Neurons were differentiated from hNPCs stably transduced with shRNA. hNPCs were

seeded at 50-60% confluence in NMM on coverslips coated with poly-D-lysine (0.2

mg/ml). After 1-2 days, the medium was replaced with neuronal differentiation

- medium, which comprised a 1:1 mixture of DMEM/F-12 with Neurobasal
- supplemented with B27 (1:100), N2 (1:200), GlutaMAX (0.5x) and Antibiotic-
- Antimycotic solution. Medium was replaced on alternate days. Neurons were used

717 after 15-20 days.

718

719 Culture and Transfection of SH-SY5Y Cells

SH-SY5Y cells were grown on culture dishes in DMEM/F-12 with 10% foetal bovine 720 serum at 37 °C in humidified air with 5% CO₂. Cells were passaged every 3-4 days 721 722 using TrypLE Express and confirmed to be free of mycoplasma. Cells expressing shRNA were transiently transfected using TransIT-LT1 transfection reagent in Opti-723 724 MEM. Plasmids (250 ng) and/or siRNA (200 ng) in transfection reagent (1 µg/2.5 µl) 725 were added to cells grown to 50% confluence on glass coverslips attached to an imaging dish. Cells were used after 48 hr. The siRNAs used (100 nM) were to human 726 Orai1 or non-silencing (NS), to human STIM1 or NS. The expression plasmids are 727 described in Key Resources. 728

729

730 CRISPR/Cas9n Editing of SH-SY5Y Cells

731	To allow CRISPR/Cas9n-mediated disruption of IP $_3R$ expression, we used a
732	published method to clone gRNAs into the backbone vector (pX459) (Ran et al.,
733	2013). Forward and reverse gRNA oligonucleotides (100 μM) were annealed and
734	ligated using T4 DNA ligase by incubation (10 μ l, 37°C, 30 min) before slow cooling to
735	20°C. Plasmids encoding Cas9n were digested with BbsI-HF (37°C, 12 hr), gel-
736	purified (NucleoSpin Gel and PCR Clean-up kit) and the purified fragment was stored
737	at -20°C. A mixture (final volume 20 μI) of gRNA duplex (1 $\mu I,$ 0.5 μM), digested pX459
738	vector (30 ng), 10× T4 DNA ligase buffer (2 $\mu l)$ and T4 DNA ligase (1 $\mu l)$ was
739	incubated (20°C, 1 hr). After transformation of DH5- α competent <i>E. coli</i> with the
740	ligation mixture, plasmids encoding Cas9n and the sgRNAs were extracted, and the
741	coding sequences were confirmed (Ran <i>et al.</i> , 2013). The plasmid (2 μ g) was then
742	transfected into SH-SY5Y cells (50-60% confluent) in a 6-well plate using TransIT LT-
743	1 reagent. After 48 hr, puromycin (2.5 μ g/ml, 72 hr) was added to kill non-transfected
744	cells. Colonies were then propagated and screened for the Ca ²⁺ signals evoked by
745	carbachol and for the presence of the IP_3R gene by genomic DNA PCR and droplet
746	digital PCR using primers close to the region targeted by the gRNAs (as described in
747	Miotke <i>et al.</i> , 2014). Three independently derived lines, each with one residual IP ₃ R1
748	gene, were used for analyses of Ca ²⁺ signaling (see Figure S2I). For one of the cell
749	lines (IKO 2), disruption of one copy of the IP $_3$ R1 gene was confirmed by genomic
750	PCR, droplet digital PCR and Western blotting (Figures S2F and S2G).
751	

751

752

753 Ca²⁺ Imaging

Methods for single-cell Ca²⁺ imaging were described previously (Gopurappilly *et al.*, 754 2019). Briefly, cells grown as a monolayer (~70% confluence) on homemade 755 coverslip-bottomed dishes were washed and loaded with Fura 2 by incubation with 756 757 Fura 2 AM (4 µM, 45 min, 37°C), washed and imaged at room temperature in HEPESbuffered saline solution (HBSS). HBSS comprised: 20 mM HEPES, 137 mM NaCl, 5 758 mM KCl, 2 mM MgCl₂, 2 mM CaCl₂, 10 mM glucose, pH 7.3. CaCl₂ was omitted from 759 Ca²⁺-free HBSS. Treatments with carbamoylcholine chloride (Carbachol, CCh), 760 761 thapsigargin (Tg), cyclopiazonic acid (CPA), YM-254890 or high-K⁺ HBSS (HBSS 762 supplemented with 75 mM KCl) are described in legends. Responses were recorded at 2-s intervals using an Olympus IX81-ZDC2 Focus 763 Drift-Compensating Inverted Microscope with 60x oil immersion objective (numerical 764 765 aperture, NA = 1.35) with excitation at 340 nm and 380 nm. Emitted light (505 nm) was collected with an Andor iXON 897E EMCCD camera and AndoriQ 2.4.2 imaging 766 software. Maximal (R_{max}) and minimal (R_{min}) fluorescence ratios were determined by 767 addition of ionomycin (10 µM) in HBSS containing 10 mM CaCl₂ or by addition of 768 Ca²⁺-free HBSS containing BAPTA (10 mM) and Triton X100 (0.1%). Background-769 corrected fluorescence recorded from regions of interest (ROI) drawn to include an 770 771 entire cell was used to determine mean fluorescence ratios ($R = F_{340}/F_{380}$) (ImageJ), and calibrated to $[Ca^{2+}]_c$ from (Grynkiewicz, Poenie and Tsien, 1985): 772

773
$$[Ca^{2+}]_{c} = K_{D} \cdot \frac{F_{380}^{\min}}{F_{380}^{\max}} \cdot \frac{(R - R_{\min})}{(R_{\max} - R)}$$

where, K_D = 225 nM (Forostyak *et al.*, 2013).

775

776 Western Blots

Proteins were isolated in RIPA buffer with protease inhibitor cocktail or, for WB of 777 Orai1, in medium containing 150 mM NaCl, 50 mM Tris, 1% Triton-X-100, 0.1% SDS 778 779 and protease inhibitor cocktail. After 30 min on ice with intermittent shaking, samples 780 were collected by centrifugation (11,000 $\times q$, 20 min) and their protein content was 781 determined (BCA protein assay kit). Proteins (~30 µg/lane) were separated on 8% 782 SDS-PAGE gels for IP₃R or 10% SDS-PAGE gels for STIM1 and Orai1, and 783 transferred to a Protran 0.45-µm nitrocellulose membrane using a TransBlot semi-dry 784 transfer system. Membranes were blocked by incubation (1 hr, 20°C) in TBST containing skimmed milk or BSA (5%). TBST (Tris-buffered saline with Tween) 785 comprised: 137 mM NaCl, 20 mM Tris, 0.1% Tween-20, pH 7.5. Membranes were 786 incubated with primary antibody in TBST (16 hr, 4°C), washed with TBST (3 ×10 min), 787 and incubated (1 hr, 20°C) in TBST containing HRP-conjugated secondary antibody. 788 After 3 washes, HRP was detected using ECL Western blotting substrate and 789 790 quantified using ImageQuant LAS 4000 and Image J. The primary antibodies used and their dilutions are listed in Key Resources. 791

792

793 Immunocytochemistry

After appropriate treatments, cells on a coverslip-bottomed plate were washed twice with cold PBS, fixed in PBS with paraformaldehyde (4%, 20°C, 20 min), washed (3 × 5 min) with PBS containing Triton-X100 (0.1%, PBST) and blocked by incubation (1 hr, 20°C) in PBST containing goat serum (5%). After incubation with primary antibody in

798	PBST (16 hr, 4° C) and washing with PBST (3 × 5 min), cells were incubated (1 hr,
799	20°C) with secondary antibody in PBST containing goat serum, washed (3 \times 5 min),
800	stained with DAPI (1 $\mu\text{g/mI}$ in PBS, 10 min, 20°C) and washed (5 min, PBST). Cells
801	were then covered with glycerol (60% v/v) and imaged using an Olympus FV300 $$
802	confocal laser scanning microscope with $20 \times \text{ or } 60 \times \text{ oil-immersion objectives}$.
803	Fluorescence was analyzed using ImageJ. The primary antibodies used and their
804	dilutions are provided in Key Resources.
805	

806 **Proximity Ligation Assay**

The Duolink *In Situ* Red Starter Mouse/Rabbit kit was used according to the

808 manufacturer's protocol with primary antibodies to Orai1 (mouse 1:500) and STIM1

(rabbit 1:1000). Cells (~30% confluent) were treated with thapsigargin (1 μ M, 5 min) in

⁸¹⁰ Ca²⁺-free HBSS before fixation, permeabilization, and incubation with primary

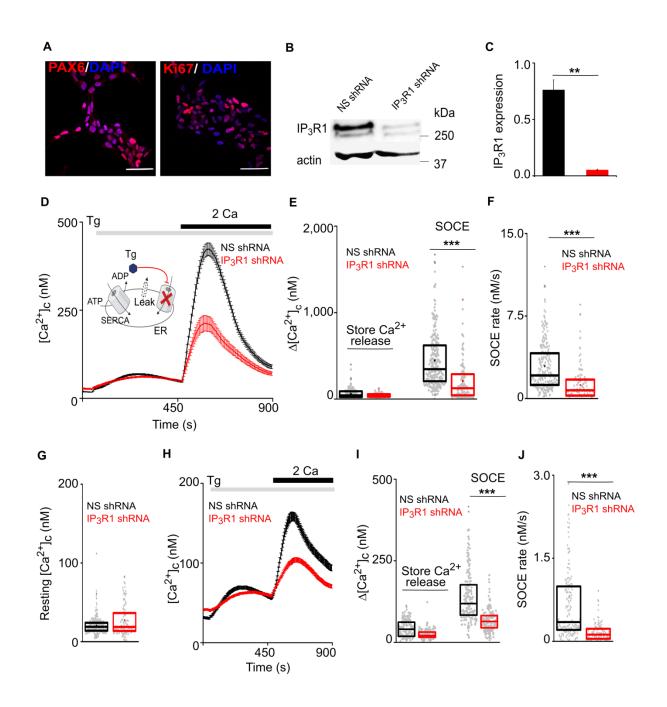
antibodies (16 hr, 4°C) and the PLA reactants. Red fluorescent PLA signals were

imaged using an Olympus FV300 confocal laser scanning microscope, with excitation

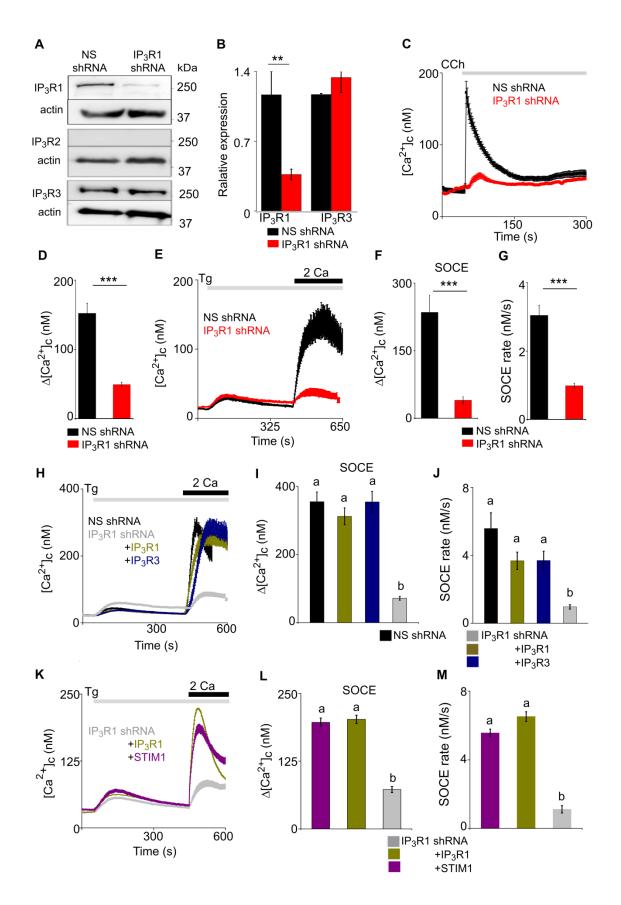
at 561 nm, and a 60× oil-immersion objective. Quantitative analysis of the intensity

and surface area of PLA spots used the "Analyze particle" plugin of Fiji. Results are

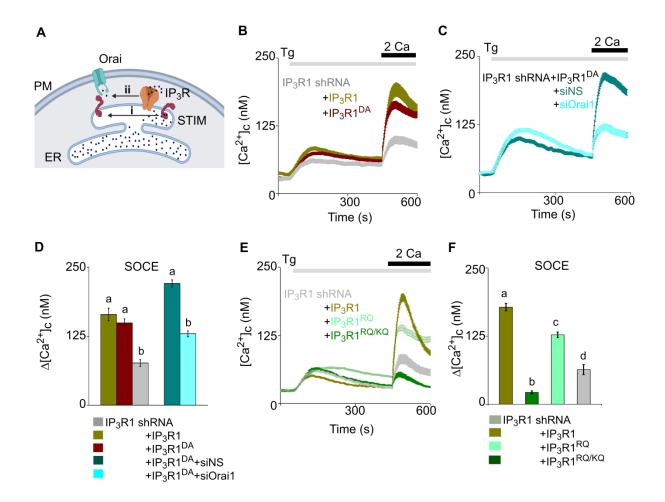
shown for 8-10 cells from two biological replicates of each genotype.

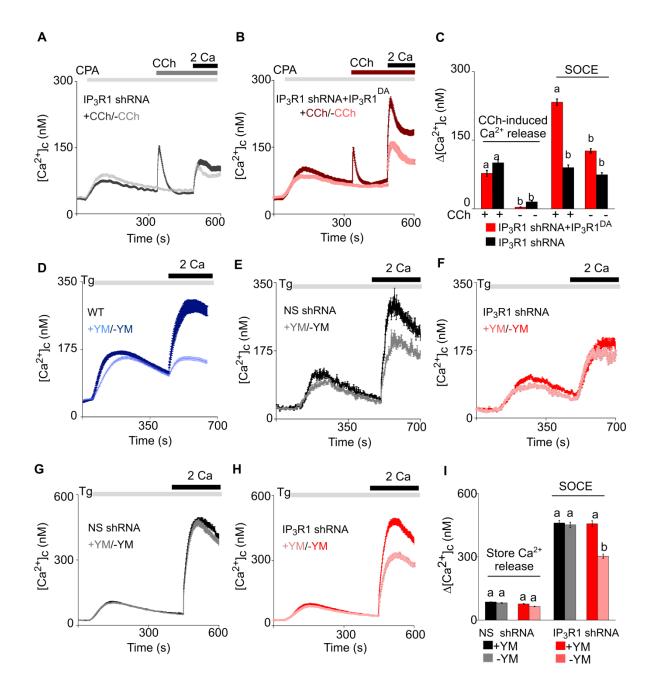

816

817 Statistical Analyses


All experiments were performed without blinding or prior power analyses. Independent biological replicates are reported as the number of experiments (n), with the number of cells contributing to each experiment indicated in legends. The limited availability of

821	materials for PLA restricted the number of independent replicates (n) to 2 (each with
822	8-10 cells). Most plots show means \pm s.e.m. (or s.d.). Box plots show 25 th and 75 th
823	percentiles, median and mean (see legends). Where parametric analyses were
824	justified by a Normality test, we used Student's <i>t</i> -test with unequal variances for 2-way
825	comparisons and ANOVA followed by pair-wise Tukey's test for multiple comparisons.
826	Non-parametric analyses used the Mann-Whitney U-test. Statistical significance is
827	shown by $^{***}P < 0.001$, $^{**}P < 0.01$, $^{*}P < 0.05$, or by letter codes wherein different letters
828	indicate significantly different values ($P < 0.001$, details in legends). All analyses used
829	Origin 8.5 software.
830	
831	
832	
833	
834	
835	
836	
837	
838	
839	
840	
841	
842	
843	




Figure 3. Regulation of SOCE by IP₃R Requires IP₃ Binding But Not a Functional Pore

in SH-SY5Y cells

Figure 4. Receptor-Regulated IP₃ Production Stimulates SOCE in Cells with

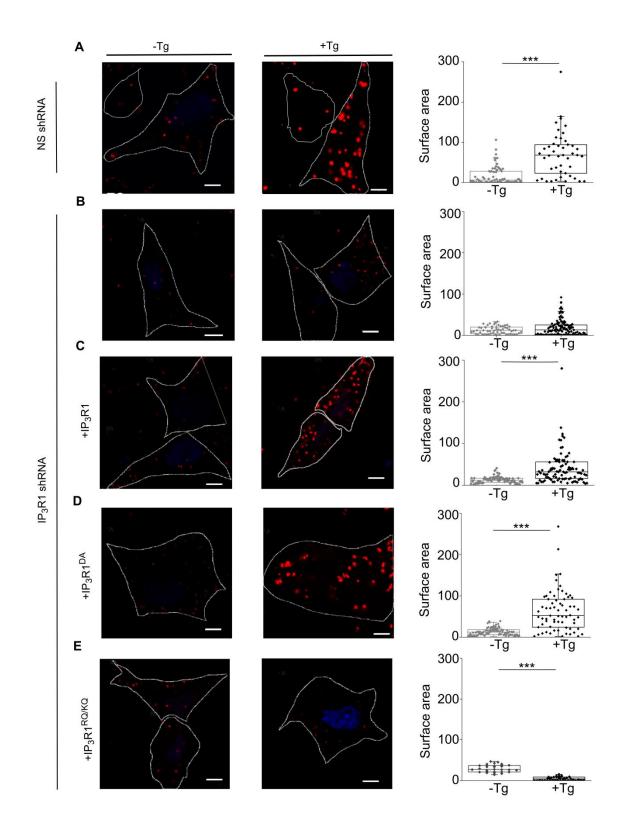
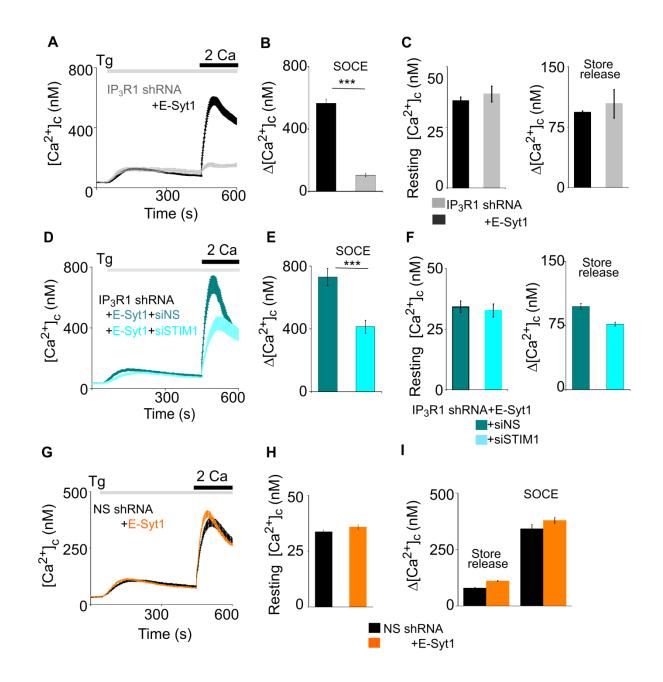
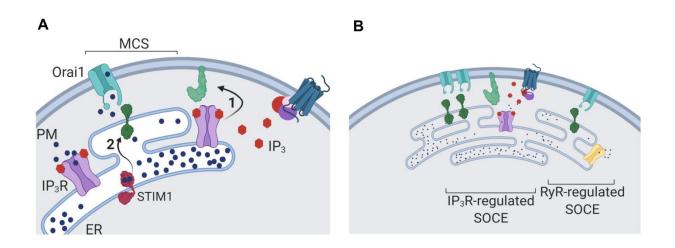




Figure 5. IP₃Rs Promote Interaction of STIM1 With Orai1

Figure 6. Extended Synaptotagmins Rescue SOCE in Cells Lacking IP₃R1

Figure 7. Dual Regulation of SOCE by IP₃Rs

