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Abstract:  

Aggregated alpha-synuclein (a-synuclein) is the main component of Lewy bodies (LBs), 

Lewy neurites (LNs), and glial cytoplasmic inclusions (GCIs), which are pathological 

hallmarks of idiopathic Parkinson’s disease (IPD) and multiple system atrophy (MSA), 

respectively. Initiating factors that culminate in forming LBs/LNs/GCIs remain elusive. 

Several species of a-synuclein exist, including phosphorylated and nitrated forms. It is 

unclear which a-synuclein post-translational modifications (PTMs) appear within aggregates 

throughout disease pathology. Herein we aimed to establish the predominant a-synuclein 

PTMs in post-mortem IPD and MSA pathology using immunohistochemistry. We examined 

the patterns of three a-synuclein PTMs (pS87, pS129, nY39) simultaneously in pathology-

affected regions of 15 PD, 5 MSA, 6 neurologically normal controls. All antibodies 

recognized LBs, LNs, and GCIs, albeit to a variable extent. pS129 a-synuclein antibody was 

particularly immunopositive for LNs and synaptic dot-like structures followed by nY39 a-

synuclein antibody. GCIs, neuronal inclusions, and small threads were positive for nY39 a-

synuclein in MSA. Quantification of the LB scores revealed that pS129 a-synuclein was the 

dominant and earliest a-synuclein PTM followed by nY39 a-synuclein, while lower amounts 

of pSer87 a-synuclein appeared later in disease progression in PD. These results may have 

implications for novel biomarker and therapeutic developments. 
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1. Introduction:  

 

Parkinson’s disease (PD) is the second most prevalent chronic progressive 

neurodegenerative disorder, affecting more than 1% of population above 60 years of age [1]. 

Along with typical motor dysfunctions of bradykinesia, rigidity, and rest tremor, patients often 

manifest a range of non-motor symptoms from anosmia to rapid eye movement (REM) sleep 

disorder, constipation and depression [2, 3]. Whilst familial forms of the disease have been 

identified [4] with mutations in the alpha-synuclein (a-synuclein) gene found as the first 

causal link associating families with autosomal dominant PD, the majority (around 90%) of 

the cases remain of unknown origin. Although still not well understood, various genetic risk 

factors have also come to light in the last two decades through genetic and Genome-Wide 

Association Studies [5, 6] that may associate with idiopathic PD (IPD), including SNCA and 

LRRK2.  

 

Degeneration of the dopaminergic nigrostriatal system is a prominent pathological feature of 

PD, leading to impaired dopaminergic neurotransmission within the basal ganglia. The 

presence of aggregated a-synuclein within cytoplasmic Lewy bodies (LBs) and dystrophic 

Lewy neurites (LNs) are also common pathological features at post-mortem [7]. Braak et al. 

[8] have proposed a model wherein it is suggested that LB pathology in PD arises in the 

dorsal motor nucleus of the vagus or the anterior olfactory nucleus before affecting the nigra 

and the limbic regions, followed by spreading in higher cortical regions [8]. Increasing 

evidence suggests that this occurs via the putative prion-like spread of a-synuclein [9]. 

 

Multiple system atrophy (MSA) is a rare but rapidly progressing neurodegenerative disorder 

of uncertain etiology. Currently, there are no disease-modifying therapies available for MSA. 

It is clinically characterised by parkinsonism, cerebellar, and motor dysfunctions [10]. The 

neuropathological hallmark lesion of MSA features mainly in the oligodendroglia [glial 

cytoplasmic inclusions (GCIs)] and are immunoreactive for a-synuclein. Less frequently, 

cytoplasmic inclusions (NCIs) and neuronal nuclear inclusions (NNIs) are observed in some 

anatomical regions together with neuronal threads, which are all a-synuclein 

immunopositive. Although the brunt of the neuronal loss is observed in the striatonigral and 

olivopontocerebellar regions, the neurons of locus coeruleus and the dorsal vagal nuclei are 

also affected [10,11].  

 

Common post-translational modifications (PTMs) such as phosphorylation and nitration of 

proteins can occur in disease pathogenesis, and a-synuclein is known to undergo varied and 

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted January 12, 2022. ; https://doi.org/10.1101/2022.01.11.475823doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.11.475823


 4 

extensive PTMs [reviewed in 12,13]. These covalent PTMs may play a role in protein folding 

and intraneuronal aggregation and propagation through mechanisms that modify its 

conformational landscape, membrane association, degradation, and/or interactome [14]. The 

C-terminus of a-synuclein plays a critical role in regulating the interactions of a-synuclein 

with other proteins and ligands such as calcium, polyamines, dopamine, and metal ions [15]. 

Notably, the majority of disease-associated PTM sites in a-synuclein are located in the C-

terminus, implying that these modifications may be involved not only in the regulation of 

structure and physiological function of a-synuclein, but also its aggregation, pathology 

formation, and spreading.  

 

Previous studies have demonstrated that a-synuclein is constitutively phosphorylated at 

different residues [16] and that phosphorylation at Ser129 (pS129) residue is the dominant 

PTM of a-synuclein within LBs, LNs, and GCIs [17]. Furthermore, biochemical fractionation 

from post-mortem brains also reported that over 90% of the insoluble a-synuclein found in 

dementia with Lewy body (DLB) cases are phosphorylated at S129 compared to the 4% 

seen in healthy brains [17], thereby implicating phosphorylation at this residue as a potential 

key event in a-synuclein pathology formation, spreading or clearance. Additionally, both a-

synuclein within inclusions in glia and neurons of MSA brains [18] are immunoreactive to 

pS129 a-synuclein antibodies. Although phosphorylation at S129 is robustly associated with 

a-synuclein inclusion formation in several synucleinopathies, the mechanisms by which this 

or other PTMs influence a-synuclein aggregation and contribute to Lewy pathology formation 

and spreading in the brain remain unclear.  

 

In contrast to pS129 a-synuclein, pS87 a-synuclein ’s role in disease remains to be elucidated. 

This serine residue is found in a hydrophobic stretch of the protein's non-amyloid component 

(NAC) region, which may be essential for aggregation [19]. Additionally, the presence of a 

charged phosphate group can potentially impact the protein structure, its oligomerisation, and 

its function [19]. Furthermore, Paleologou et al 2010 [20] also reported higher expression of 

pS87 in Alzheimer’s disease (AD), MSA, and DLB, relative to healthy controls. Previously, one 

study proposed a neuroprotective role of this PTM [21]. Interestingly, phosphorylation of S87 

residue has been shown to exert strong aggregation inhibitory effects via increasing the 

conformational flexibility of a-synuclein and decreasing its affinity for lipid membranes and 

vesicles [20].   

 

Markers of oxidized proteins, lipids, and DNA are upregulated in dopaminergic (DA) neurons 

of PD patients [22], suggesting increased levels of oxidative stress. Substantia nigra DA 
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neurons are particularly susceptible to oxidative injury and appear to have a greater output of 

reactive oxygen species (ROS) [23]. Previously, Duda et al [24] demonstrated an abundance 

of nitrated forms of a-synuclein in LBs, LNs, and GCIs in human post-mortem brains. Further 

studies have indicated Y39, Y125, Y133, and Y136 to be the tyrosine nitration sites within a-

synuclein. nY39 a-synuclein is found to form morphologically distinct fibrils relative to WT a-

synuclein and show less affinity to negatively charged vesicles [25]. This is important, as the 

physiological function of a-synuclein is thought to arise through its interaction with lipid bilayers 

at the presynaptic terminal, to regulate synaptic vesicle docking and fusion [26]. Although WT 

a-synuclein aggregated faster than nY39 a-synuclein in-vitro, the latter was shown to form 

shorter and wider aggregates [25], pointing to a role of PTMs in regulating fibril strains and/or 

the formation of Lewy pathologies. The introduction of a negatively charged group at Y39 (i.e., 

phosphorylation or nitration) was previously shown to decrease the binding capacity of a 

nitrated a-synuclein mutant to negatively charged vesicles [25, 27]. For this study, our focus 

was nitration of Y39. 

 

Herein, we have investigated the differential distribution and abundance of some key post-

translational modifications of a-synuclein in IPD and MSA post-mortem brains. We aimed to 

correlate the appearance of PTMs with the development of the disease by assessing the a-

synuclein PTMs in brain regions that are affected at different stages of the disease. 

Specifically, we used immunohistochemistry to study the comparisons between pS87, 

pS129, and nY39 a-synuclein and unmodified a-synuclein [(a-synuclein (UN)] in IPD and 

MSA. The differential expressions of pS87, pS129, and nY39 a-synuclein have not 

previously been studied in tandem in human post-mortem brains of IPD and MSA. Moreover, 

pS87 a-synuclein and nY39 a-synuclein have been less extensively studied relative to 

pS129 a-synuclein.  We report that pS129 a-synuclein is a major modification in IPD and 

MSA, followed by nY39 a-synuclein, and finally the least numbers of LBs/GCIs positive for 

pS87 a-synuclein were noted in the two diseases. To our knowledge, this is the first report 

on the expression of nY39 a-synuclein using a novel antibody in human post-mortem IPD 

and MSA brains.  

 

2. Material and Methods: 

 

2.1 Source of Brain Tissue 

Human brain tissue was obtained from the Queen Square Brain Bank for Neurological 

Disorders archives, in which collection was done with ethical approval from the London 

Multicentre Research Ethics Committee UCL IoN HTA License #12198. Brain tissue from 15 
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IPD, 5 MSA, and 6 neurologically normal controls were examined. Limited patient 

demographic data are presented in Table 1. 

 

2.2. Immunohistochemistry 

Paraffin embedded sections of 8µm thickness were cut from different brain regions using a 

microtome. Sections were de-waxed in xylene followed by treatment with 0.3% H2O2 in 100% 

methanol for 10 minutes to block endogenous peroxidase reactions. Sections were pre-

treated with 98% formic acid at room temperature for 10 minutes, followed by pressure 

cooking in Citrate Buffer (pH:7.0) for 10 minutes. Following a series of washes using 1 x TBS 

Tween-20 buffer, sections were blocked with 10% Dried Skimmed Milk Powder (Marvel) in 1 

x TBS Tween 20 for 30 minutes. 4 different a-synuclein [a-synuclein UN (C-terminal); 

phosphorylated a-synuclein Ser87 (pS87), phosphorylated a-synuclein Ser129 (pS129), and 

nitrated a-synuclein Tyrosine 39 (nY39)] primary antibodies were used at 1:500 dilution for 

the incubation times between (1hr to overnight) and is detailed in Table 2. After a series of 

thorough washes with 1 x TBS Tween-20, the slides were probed with biotinylated 

secondary antibody for 30 minutes at room temperature before being treated with Avidin-

Biotin-Complex for another 30 minutes at room temperature. After this, the slides were 

treated with hydrogen peroxide (0.03%), activated 3’3’-Diaminobenzidine, and 

counterstained by Meyer’s haematoxylin dye. Subsequently, the slides were dehydrated in 

graded ethanol concentrations (70-100%), cleared in xylene before permanent mounting in 

DPX (BDH), and coverslips for microscopy. The pS87 staining was performed using the 

automated stainer (Menarini) protocol.  

 

2.3 Immunohistochemistry analysis and pathology grading in PD and MSA 

Immunohistochemistry was performed on various anatomical regions of PD and MSA brains. 

Specifically, for PD, we examined the medulla and pons (early affected regions), the 

substantia nigra and cingulate cortex (regions affected mid-way during pathology spread), 

frontal, parietal, and temporal cortices (late affected regions), and for MSA, the medulla, 

pons, substantia nigra, and the cerebellum were assessed for pathology. These were then 

analysed using a light microscope at a low power-field (x20). To keep the observations 

uniform and standardized, the neuroanatomical region of interest (ROI) for each region was 

demarked on the slides, which were kept uniform throughout the whole analysis process. 

The criteria for LB and LN pathology of Lewy Body pathology based on McKeith Criteria 

(Adapted from McKeith et al., 2005 [28]) observed in a low power field (x20) versus the 

corresponding grade and severity of pathology is summarised in Tables 3. Also, we have 
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analysed the different types of MSA pathology, i.e., GCIs, NCIs, threads were noted in the 

different neuroanatomical regions with the PTM a-synuclein antibodies.  

 

2.4 Statistical analysis methods and representation of data 

Statistical analyses on differences in outcome measures were undertaken using a non-

parametric Kruskal-Wallis ANOVA test with Dunn’s multiple comparisons as a post-hoc to 

compare the differences between a-synuclein PTMs (versus controls) for 

immunohistochemical studies. A Chi-Square test of independence was also used for 

immunohistochemistry data to check the relative pathology frequencies in different PD 

groups (and controls) using our LB-Pathology grading protocol as detailed in Table 3. Mean 

± SEM was noted as a measure of dispersion, and a p-value of <0.05 was considered 

statistically significant. 

 

3. Results 

3.1 a-synuclein pathology in PD 

We sought to characterize the staining patterns of our PTM antibodies (pS87, pS129, nY39 

relative to unmodified (UN) a-synuclein in human PD, MSA and neurologically healthy control 

brains. The epitope of a-synuclein (UN) antibody was specific for the C-terminal according to 

the information on the company website (refer to Table2). We observed positive 

immunoreactivity with all the a-synuclein antibodies examined in all IPD and MSA cases. We 

did not observe any immunoreactivity with a-synuclein (UN) or the three PTM a-synuclein 

antibodies examined here in neurologically normal control brain tissue (Fig S1). Also, there 

was no appreciable staining when the primary antibodies were omitted from representative 

sections (Fig S2).  

 

3.2 Unmodified a-synuclein (UN) 

The a-synuclein (UN) antibody detected both LBs and LNs as pathological aggregates in all 

the PD cases (Fig 1 and 2). In PD brains, a-synuclein (UN) expression was observed in small 

dot-like structures within neuronal perikarya, which could represent synaptic a-synuclein. 

Neocortical-diffuse PD cases showed most a-synuclein (UN) pathology when normalized to 

the neurologically healthy control group. Brainstem-predominant PD patients showed the least 

a-synuclein (UN) expression in all regions. However, “fine Lewy neurites” (FLNs) were more 

predominant in the brainstem-predominant PD cases with a-synuclein (UN) antibody (Table 

4). Both FLN and “thick Lewy neurites” (TLNs) were seen dominantly in nigra and cingulate 

regions of the limbic and neocortical PD cases with the a-synuclein (UN) antibody.  
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It is important to note that the unmodified a-synuclein (UN) antibody (epitope described as 

aa100 to C-terminal; Table 2) we used in our study is reported to highlight the unmodified 

versions of a-synuclein. The premise of our study was to compare the abundance and 

localization of post-translationally modified a-synuclein relative to the unmodified versions in 

post-mortem tissue. However, we cannot rule out whether this antibody detected C-terminal 

truncated species, which are known to exist in human post-mortem disease pathology. Thus, 

we have used a-synuclein (UN) antibody as a control to compare the modified a-synuclein 

antibody versions to. This was apparent from the fact that our a-synuclein (UN) antibody did 

not detect all of the LBs or LNs, but indeed detected dot-like structures in the neuropil, which 

we defined as synaptic, physiological a-synuclein. 

 

3.3. pS87 a-synuclein 

We demonstrate the fewest number of aggregates with pS87 a-synuclein antibody in all 

regions studied examined. The pS87 a-synuclein mainly recognized LB inclusions over LNs. 

Overall, we observed less dense staining with paler inclusions with pS87 a-synuclein antibody 

(Fig 1). We observed fewer amounts of pSer8 a-synuclein FLNs and TLNs in all of the IPD 

cases examined (Table 4). 

 

3.4 pS129 a-synuclein 

The pS129 a-synuclein antibody showed immunoreactivity in the early affected regions in PD 

cases, including many LBs and pale body-like inclusions (Fig 1 and 2). We observed dot-like 

structures prominently in the midbrain with the pS129 a-synuclein antibody. The nigra showed 

the highest pS129 a-synuclein pathology compared to other regions regardless of the disease 

severity (Fig 1). Moreover, this antibody recognized subcortical fibres and axons in IPD cases  

and also in neurological-control cases which most likely reflects non-specific neurofilament 

staining. Most pS129 a-synuclein pathology was observed in the nigra of the brainstem-

predominant IPD group, thereby reinforcing the notion that this modification is an early event 

in IPD pathogenesis. The pS129 a-synuclein antibody also recognized both FLNs and TLNs, 

specifically in the early and mid-way affected regions (Table 4). 

 

3.5 nY39 a-synuclein 

This novel antibody recognized both classic nigral and cortical LBs in the subcortical and 

cortical regions, respectively (Fig1, 2). We observed diffuse synaptic nY39 a-synuclein 

immunoreactivity in the grey matter of all PD cases. High staining of FLNs and TLNs were 

noted for brainstem, limbic and neocortical cases in the pons, medulla, substantia nigra and 
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cingulate regions (Table 4). Fewer neuritic staining pattern was observed in cortical regions 

(frontal, parietal and occipital regions) with nY39 a-synuclein compared to subcortical regions. 

It is noteworthy that this antibody preferentially marked FLNs in the early affected and mid-

way affected regions (Table 4).  

 

3.6 Differential co-occurrence of the a-synuclein PTMs in Lewy pathologies 

3.6.1 LBs 

Cumulative LB scores are shown for early, mid-way and late affected anatomical brain regions 

in Figure 2. The differences between a-synuclein PTMs were tested using the Kruskal-Wallis 

test with multiple-comparisons. The LB grading scheme used for the purpose of this study is 

summarized in Table 3. 

 

Our data suggest differential distribution of a-synuclein PTMs in LBs of early, mid-way, and 

late-affected PD regions. In the early-affected regions, pS129 a-synuclein was significantly 

higher in LBs, followed closely by nY39 a-synuclein compared to those with pS87 a-synuclein 

and a-synuclein (UN). Based on the immunoreactivity of the pS129 and nY39 a-synuclein  

antibodies, the most pathologically affected regions were the pons and medulla, with fewer 

LBs detected in the cortical regions examined in this study, namely, frontal, temporal and 

parietal cortices (Fig 2). In the brainstem, i.e., “early-affected region”, pS129 a-synuclein was 

the most abundant a-synuclein species (Fig 2A, p<0.01). We noted significant elevation of a-

synuclein (UN) immunoreactivity over pS87 a-synuclein in the pons and medulla. The pS87 

a-synuclein immunoreactivity was significantly lower than the other two a-synuclein PTMs in 

midway-affected regions (Figure 2B). In midway-affected PD regions, Grade 4 pathology with 

pS129 a-synuclein was relatively less in comparison to early affected regions (Fig 2A, B). We 

also demonstrate that pS129 a-synuclein significantly dominated over a-synuclein (UN) in 

early, mid-way and late-affected regions (Figure 2A, B, and C, respectively). The overall LB 

frequency observed in early affected regions varied between severe and very severe 

categories. Our data indicate that early affected PD regions are heavily affected by 

phosphorylated and nitrated forms of a-synuclein examined here. The amount of PTM positive 

inclusions diminished as the disease progressed from early to late stages.   

3.6.2 LNs:  

The semiquantitative scores of FLNs and TLNs are presented in Table 4. The LNs were 

categorized as FLNs and TLNs. High numbers of LNs were immunopositive for pS129 and 

nY39 a-synuclein antibodies. These appeared in higher numbers in early and mid-way 

affected regions. In comparison, pS87 detected the least number of LNs, and where it was 
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present, these were noted predominantly in FLNs. The medulla, nigra, and cingulate gyrus 

demonstrated the most frequent LNs compared to other regions examined. The a-synuclein 

(UN) antibody detected lower numbers of both FLNs and TLNs compared to pSer129 and 

nY39 a-synuclein antibodies which might be due the antibody (epitope; discussed earlier in 

section2.2 and Table 2) not recognizing all of the a-synuclein species in post-mortem tissue. 

The peak levels of nY39 a-synuclein pathology were observed in the early affected regions, 

especially in the neocortical and diffuse-limbic PD cases. We also noted overall that the 

predominant a-synuclein PTM in the FLNs was nY39. However, it is noteworthy that pS129 

a-synuclein detected more TLNs compared to nY39 a-synuclein, especially in the mid-way 

affected regions of the brainstem and limbic PD. Moreover, pS129 and nY39 a-synuclein were 

equally distributed among the FLNs in midway affected regions (Table 4).  

 

3.7 a-synuclein pathology in MSA 

GCIs were the dominant pathogenic structures observed in all MSA cases/regions examined 

(Fig 3). Neuronal inclusions were also seen in all the MSA cases, prominently in the pons. 

NCIs were differentiated from glial inclusions as they appear larger with ovoid shape. NNIs 

appeared as a floating network of filaments in the nucleoplasm (Fig 3).  

The staining patterns observed in MSA cases were akin to those observed in PD in the context 

of the different antibodies we have used. For instance, pS87 a-synuclein antibody 

demonstrated the palest-appearing aggregates in the cerebellum (Figure 3B). pS87 a-

synuclein was dominantly observed in GCIs in both pons and cerebellum, accompanied by 

some threads in some of the cases. In MSA, neuronal inclusions were very rarely detected 

with this antibody, implying that this modification may not play a role early on in disease [22].  

Likewise, pS129 a-synuclein staining was denser, wherein this antibody preferentially 

recognized both neuronal and glial inclusions, as well as threads in the cerebellum and pons 

(Figure 3B, 3G). Alongside, we observed more thread-like structures and some neuronal 

inclusions with nY39 a-synuclein antibody in the pons (Figure 3H), compared to the 

cerebellum where the dominant aggregates were GCIs (Figure 3D). In particular, a higher 

density of pathology was demonstrated in the medulla and pontine regions in the MSA cases, 

mainly in GCIs with a-synuclein (UN) and pS129 a-synuclein antibodies. Lower numbers of 

GCIs were immunopositive for nY39 a-synuclein in the all the regions examined compared to 

a-synuclein (UN) and pS129 a-synuclein. The pS129 a-synuclein antibody demonstrated 

fewer thread-like structures in MSA cases. The staining with pS129 a-synuclein was profound, 

and subcortical axonal fibers were recognized in the same manner as in IPD cases.  

4.  Discussion 
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PD and MSA demonstrate abundant aggregated deposition of the presynaptic protein a-

synuclein in neurons and glial cells. The nature of the biological triggers that initiate a-

synuclein aggregation has been a matter of intense research over the past 20 years. 

Numerous a-synuclein post-translational modifications have been identified to date, 

including phosphorylation, nitration, ubiquitination, acetylation, sumoylation and specific 

truncations [29], and some of these are key markers of disease pathogenesis. With the aim 

of establishing an in-depth disease-, region- and cell type-specific distribution of a-synuclein 

PTMs, it is important to examine these in parallel within a subset of disease cases. 

Therefore, in the current study, our aim was to determine the presence and relative 

abundance of three different a-synuclein PTMs in IPD and MSA pathology and investigate 

how they associate to the region and cell-type specificity at different stages of disease. For 

IPD, we demonstrate that the PTMs of a-synuclein display variable abundance at different 

anatomical sites within LBs and LNs, thereby implying different roles which interplay at 

different time points during pathogenesis. For MSA, we demonstrate the presence of all 

three PTMs (pS87, pS129, nY39) of a-synuclein examined here dominantly in GCIs but they 

also localized to NCIs and NNIs, suggesting that the modifications are part of disease 

pathology (summarised in Table 5).  

 

LBs are thought to be the basis of neurotoxicity and cell death. Nonetheless, there are 

opposing views in the field. The dystrophic neuronal processes, or LNs appear earlier during 

the pathogenesis timeline, as a-synuclein aggregates in the axons [30]. Aggregated LNs are 

believed to compromise neuronal function through disrupting axonal transport (reviewed in 

Perlson et al.,2010 [ 31]). It is likely that the perikaryal LBs form in an attempt to “sweep up” 

the surrounding LNs into a single inclusion as a counteractive mechanism, such that 

synaptic function can be restored. However, if this assumption is true, the point at which LBs 

become pathogenic, and the mechanisms underlying this process remain elusive. Curiously, 

we saw neither dot-like synaptic a-synuclein, nor many neurites positive for pS87 a-

synuclein. In contrast, pS129 a-synuclein and nY39 a-synuclein appear to be the dominant 

PTMs in both LNs and LBs, and are also present in dot-like structures in the neuropil. It is 

likely that a-synuclein aggregates that form LNs already have these PTMs, which later 

amass into LBs.  

 

In LBs, a high percentage (~90%) of a-synuclein is phosphorylated at S129 [17, 32] although 

whether this happens before LB formation remains a matter of debate. Recently, using a 

variety of sophisticated electron microscopy techniques and cryoEM it was demonstrated 

that LBs are not only composed non-fibrillar a-synuclein but they are also enriched with 
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lipids and membranous components and organelles such as mitochondria and vesicles [33]. 

Subsequently in an in vitro based study, Mahul-Mellier et al [34] demonstrated that LB 

formation is a result of a complex interplay of a-synuclein fibrillisation, post-translational 

modifications together with its interactions with membranous organelles like the mitochondria 

and the vesicular components of the autophagosome and endolysosomes. Specifically, this 

study recognised pS129 a-synuclein as an early PTM that could also regulate other a-

synuclein PTMs such as ubiquination and C-terminal truncation. Our data suggest that 

pSer129 is a dominant PTM observed in IPD and this may favour LB development.  

 

In a previous study using the same antibody we used, Paleologou et al showed that 

pSer87a-synuclein levels are increased in synucleinopathies [20].  In our study we show that 

pS87 immunoreactivity was present in a proportion of both cortical and nigral LBs. pS87 a-

synuclein was also seen in a small number of LNs in some early affected regions and sparse 

TLNs. This is suggestive that phosphorylaton at S87 occurs later than pS129 which is 

concordant with previous studies demonstrating that phosphorylation at S87 significantly 

inhibits the aggregation of monomeric a-synulcein [20].  

 

Nitration is an interesting PTM, as it has a direct relationship with oxidative stress and injury. 

The presence of nitro-tyrosine has been demonstrated in the vicinity of oxidative injury in LB-

bearing neurons [35]. Indeed, it was suggested that nitration may in fact be the initiating 

event in aggregate formation in LBs [36]. Peroxynitrite, both an oxidating and nitrating agent, 

appears to target a-synuclein, wherein nitrated a-synuclein was shown to accelerate 

fibrillation process [37]. We have shown that nY39 a-synuclein positivity in LBs were higher 

in early and mid-way affected regions with the peak being observed in pontine and medullary 

LBs. Lower numbers of cortical LBs were immunopositive for nY39 a-synuclein. This may 

suggest that nY39 is an early event or nitration of a-synuclein affects subcortical neurons 

more specifically. With regards to its presence in LNs, nY39 predominantly immunolabelled 

FLNS over TLNS, again implying that nY39 a-synuclein arises early on in IPD pathogenesis.  

 

Alpha-synuclein positive cytoplasmic inclusions or GCIs are specific pathological hallmarks 

of MSA. The source of a-synuclein in oligodendrocytes remain enigmatic, although some 

studies have suggested neuronal a-synuclein internalisation through endocytosis, enhanced 

expression and decreased degradation of oligodendroglial a-synuclein as plausible theories 

[reviewed in 38]. We demonstrate that unmodified a-synuclein, pS87, pS129 and nY39 a-

synuclein were all present in GCIs albeit to a variable extent. Additionally, all three a-

synuclein modifications examined here were also associated with NCIs and NNIs suggesting 
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that all three a-synuclein PTMs are integrated unevenly in their formation although when and 

why they appear in these inclusions in MSA pathology is a matter of debate [11, 18].   

 

Our results validated that pS129 a-synuclein represents the most NCI and NNI pathology 

frequency compared to other PTMs, suggesting that this PTM occurs early in MSA 

pathogenesis. The pS87 a-synuclein antibody demonstrated the palest-appearing MSA 

aggregates compared to the rest of the antibodies. Moreover, pS87 modification was 

dominantly observed in glial inclusions, accompanied by some threads in some of the cases. 

Few NNIs were detected with pS87, implying that it does not represent an early-type PTM. 

Likewise, pS129 a-synuclein staining was more intense and detected in neuronal as well as 

glial inclusions and threads.  Nevertheless, the dominant inclusions associated with this PTM 

were the GCIs, which were unambiguously present in the cerebellar white matter, pontine 

base and medulla but to a lesser extent in the nigral regions. The most frequent threads 

were observed with nY39 a-synuclein, mainly in the pons. GCIs were sparsely detected with 

nY39 a-synuclein compared to pS129 a-synuclein, suggesting that this modification could 

occur later in disease pathogenesis in MSA, most likely due to higher levels of oxidative 

stress. In comparison to nY39 a-synuclein, pS129 a-synuclein demonstrated fewer thread-

like structures in MSA cases. This antibody also demonstrated some synaptic a-synuclein 

staining, which implies that pS129 is a modification that occurs dominantly in pathological 

scenarios and may also be upregulated in synapses in MSA consistent with the literature 

[39].  

 

5. Conclusion  

We conclude that various post-translationally modified forms of a-synuclein exist in PD and 

MSA-related inclusions. In both diseases, pS129 a-synuclein and nY39 a-synuclein were 

present in pathological aggregates, mainly presenting in early-type inclusions. pS129 a-

synuclein appears to be the dominant and earliest a-synuclein PTM, while pS87 a-synuclein 

appears later in disease progression in IPD. Similarly, pS129 a-synuclein is the dominant 

PTM in MSA. We also demonstrate for the first time the presence of nY39 a-synuclein in IPD 

and MSA pathological inclusions. This current study extends the array of a-synuclein PTMs 

in the context of disease pathologies in IPD and MSA. We acknowledge that the study is 

limited by the use of small number of cases however, it forms a platform for a deeper 

understanding of a-synuclein modifications and its pathological relevance in two key a-

synucleinopathies; IPD and MSA. Clearly, larger case-cohort studies are warranted including 

validation and quantification using other techniques such as specific ELISAs. A recent study 

has elegantly demonstrated diversity of a-synuclein C-terminal truncations in discriminating 

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted January 12, 2022. ; https://doi.org/10.1101/2022.01.11.475823doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.11.475823


 14 

different synucleinopathies [40]. By continuing to interrogate human post-mortem tissue 

pathology using novel a-synuclein antibodies, our understanding of disease pathogenesis 

will increase profoundly and may also pose as a basis of both biomarker (prognostic and 

diagnostic) and therapeutic discoveries.  
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Table and Figure Legends:  

 

Table1: Selected demographics of cases used. 

 

Table 2: List of antibodies used in the study. 

 

Table 3: Lewy Body grading applied in the study.  

 

Table 4: Semiquantitative assessment of Lewy neurites in IPD cases.   

 

Table 5: Summary of pathological aggregates stained with the various a-synuclein 

antibodies.  

 

Fig 1: Illustration of immunostaining for different a-synuclein antibodies in IPD cases. A-L 

depicts regions from a brain-stem predominant PD case; A,E,I illustrates immunostaining 

with a-synuclein(UN) showing LBs (black arrows) and LNs (green dashed arrows) in 

medulla, nigra but not in cingulate cortex. Very few LBs or LNs were positive for pSer87a-

synuclein, as shown in B,F,J. Positive immunostaining of LBs and LNs in medulla and s 

nigra but not in cingulate observed with pSer129 a-synuclein antibody. Some non-specific 

staining of white matter tracts were observed (K); Immunopositivity in LBs and LNs seen for 

nY39 a-synuclein antibody in the medulla (D) and nigra (H and Hh) and some LNs (L and Ll) 

in the cingulate cortex. M-X depicts regions from a neocortical PD case where higher 
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numbers of LBs and LNs were immunopositive with all 4 antibodies. Scale Bar: 20µm in all 

except in J where it is 10µm. Scale bar in insets Hh, Ll, and Tt is 8µm.  

 

Fig2: Histogram of cumulative LB scores of different a-synuclein antibodies seen in pons 

and medulla A); substantia nigra and cingulate cortex (CTX) B) and frontal, parietal and 

temporal cortex C). Statistical analysis was performed using non-parametric Kruskal-Wallis 

test with Dunn’s multiple comparison corrections. ***,**,* denotes p<0.001, p<0.01, p< 0.05 

respectively.  

 

Fig 3: Illustration of immunostaining for different a-synuclein antibodies in cerebellum and 

pontine base of MSA cases. Immunostaining with a-synuclein unmodified antibody depicting 

numerous GCIs in the cerebellar white matter in A); and neuronal nuclear inclusion and 

Neuronal cytoplasmic inclusion (black arrow) in E); Few GCI’s positively stained for Ser87P 

a-synuclein in CBM  B) and extracellular staining in pontine base F); Pser129 a-synuclein 

marks several GCIs in Cerebellum C) and  NCIs (black arrow) and fine neurites in pontine 

base G); nY39 a-synuclein labels fewer GCIs in cerebellum D) and NCI’s (black arrow) and 

thick (green dashed arrows) and thin neurites in H). Scale bars denote 20µm in A, C, D; 

10µm in B; 8µm in E, G; 5µm in F and H.  

 

Fig S1: Representative immunohistochemistry illustrations of neurologically normal control 

cases showing no abnormal a-synuclein deposits when treated with various a-synuclein 

antibodies. Scale bar 50µm in all.  
 

Fig S2:  Immunohistochemistry of brain sections from IPD cases showing no appreciable 

staining within PD nigra (A) or frontal cortex (B) when primary antibodies were omitted but 

treated with anti-rabbit and anti-mouse secondaries respectively. Scale bar 60µm in A, 15µm 

in B. 
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Table 1: Selected demographics of the cases used.  
 

Case (Patient 
(P)/control(C) 

 
Gender (M/F) 

 
Age at death (years) 

 
Post-mortem delay  

(hrs:min) 

 
Diagnosis 

P 
P 
P 
P 
P 
P 
P 
P 
P 
P 
P 
P 
P 
P 
P 
P 
P 
P 
P 
P 
C 
C 
C 
C 
C 
C 

F 
M 
F 
M 
M 
M 
F 
M 
M 
F 
M 
M 
M 
F 
F 
F 
M 
F 
F 
M 
M 
F 
M 
M 
F 
M 

83 
81 
83 
74 
75 
84 
80 
78 
93 
72 
72 
81 
81 
76 
76 
80 
50 
65 
60 
69 
76 
84 
80 
83 
91 
76 

19:00 
51:00 
99:00 
19.05 
29:31 
75:05 
39:10 
54:55 
82:20 
79:40 

100:20 
33:25 
73:15 
87:05 
76:15 
23:20 
6:15 

10.25 
9:30 

43:15 
76:00 
84:00 
80:00 
83:15 
91:00 
76:00 

IPD BStem 
IPD BStem 
IPD BStem 
IPD BStem 
IPD BStem 
IPD Limbic 
IPD Limbic 
IPD Limbic  
IPD Limbic 
IPD Limbic 

IPD Neocortical 
IPD Neocortical 
IPD Neocortical  
IPD Neocortical 
IPD Neocortical  

MSA 
MSA 
MSA 
MSA 
MSA 

Control 
Control 
Control 
Control 
Control 
Control 
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Antibodies  Source /Cat no or clone Host and Clonality Antibody dilution used incubation time 

     
anti-alpha-synuclein (epitope: aa100 to C-
terminal) 

Abcam /ab15530 Rabbit Polyclonal 1 in 500 o/n at 4C 

anti-alpha-synuclein (phosphorylated S87) Hilal Lashuel/Lash-pS87 Rabbit polyclonal  1 in 500 1 hr at RT 
anti-alpha-synuclein (phosphorylated S129) Biolegend / P-syn-81A Mouse monoclonal 1 in 500 1hr at RT  
anti-alpha-synuclein (nitrated Y39) Hilal Lashuel/Lash-EGT-nY39 Rabbit Polyclonal 1 in 500 o/n at 4C 

 
 
Table 2: List of antibodies used in the study 
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     Table 3. Lewy Body grading used in the study  
 

Number of Lewy 
bodies in X20 field  

Corresponding grade of 
pathology 

0 
1 

2-5 
6-9 
>10 

None 
Grade 1 (Mild) 

Grade 2 (Moderate) 
Grade 3 (Severe) 

Grade 4 (Very severe)  
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Table 4: Semiquantitative assessment of Lewy neurites in IPD cases.  Key to scores: - = none; +=mild; ++= moderate; +++= severe.  

 
 

Regions/cases 

 
a-synuclein (UN) 

 
pS87 a-synuclein 

 
pS129 a-synuclein 

 
nY39 a-synuclein 

FLN TLN FLN TLN FLN TLN FLN TLN 

Early affected 
regions 

(medulla, 
pons) 

Brain-stem + to +++ - to ++ - to + - + to+++ ++ to+++ - to+++ -to++ 

Limbic - - - to + - + to +++ - to +++ + to+++ -to+++ 

Neocortical -to+ - - to + ++  in one 
case 

+ to+++ - to+++ + to+++ -t0+++ 

Mid-way 
affected 
regions 

(s. nigra, 
cingulate) 

Brain-stem - to + - - - - to+++ - to+++ - to+++ -to+ 

Limbic -to +++ -to+++ - - - to+++ - to+++ + to+++ -to++ 

Neocortical -to+++ -to+++ - to +++ - - to+++ - to++ + to +++ -to++ 

Late affected 
regions 
(frontal, 

parietal and 
temporal 
cortices) 

Brain stem  - - ++ in two 
cases 

- - - - - 

Limbic -to+ - - + in one 
case 

-to+ - -to + -to + 

Neocortical -to+ -to +++ - - -to++ -to+ -to +++ -to+ 
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