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Abstract 2 

During learning of novel motor sequences, practice leads to the consolidation of 3 

hierarchical structures, namely motor chunks, facilitating the accurate execution of 4 

sequences at increasing speeds. Recent studies show that such hierarchical structures 5 

are largely represented upstream of the primary motor cortex in the motor network, 6 

suggesting their function to be more related to the encoding, storage, and retrieval of 7 

sequences rather than their sole execution. We isolated different components of motor 8 

skill acquisition related to the consolidation of spatiotemporal features and followed 9 

their evolution over training. We found that optimal motor skill acquisition relies on the 10 

storage of the spatial features of the sequence in memory, followed by the optimization 11 

of its execution and increased execution speeds (i.e., a shift in the speed-accuracy 12 

trade-off) early in training, supporting the model proposed by Hikosaka in 1999. 13 

Contrasting the dynamics of these components during ageing, we identified less-than-14 

optimal mechanisms in older adults explaining the observed differences in 15 

performance. We applied noninvasive brain stimulation in an attempt to support the 16 

aging brain to compensate for these deficits. The present study found that anodal direct 17 

current stimulation applied over the motor cortex restored the mechanisms involved in 18 

the consolidation of spatial features, without directly affecting the speed of execution 19 

of the sequence. This led older adults to sharply improve their accuracy, resulting in 20 

an earlier yet gradual emergence of motor chunks. The results suggest the early 21 

storage of the sequence in memory, largely independent of motor practice, is crucial 22 

for an optimal motor acquisition and retrieval of this motor behavior. Nevertheless, the 23 

consolidation of optimal temporal patterns, detected as motor chunks at a behavioral 24 

level, is not a direct consequence of storing the sequence elements, but rather of motor 25 

practice.   26 
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Introduction 27 

Completing daily life activities often requires the sequential execution of actions in a 28 

specific order. A large amount of research has focused on how humans acquire 29 

sequential motor skills using well established experimental paradigms alongside 30 

different imaging techniques to study the processes that lead to skill improvement 1. 31 

One of these paradigms, known as the sequential finger-tapping task 2,3, has been 32 

used in past years due to its similarity to certain activities requiring higher dexterous 33 

skill, such as piano playing or typing on a computer. Performance improvement of a 34 

sequence-tapping task is characterized by a shift in the speed-accuracy tradeoff, in 35 

which the speed of execution of the motor sequence increases without sacrificing the 36 

accuracy 4. The execution of sequential elements at increasing speeds leads to the 37 

spontaneous emergence of execution patterns 5,6, namely motor chunks 7, which 38 

reduce mental load 8 and facilitate a further increase in speed without sacrificing 39 

accuracy 9.   40 

Recent discussions about this type of motor task are concerned with its validity for 41 

probing changes in motor ability 10. Motor chunks seem to be crucial for the 42 

optimization of such a task. In spite of the ongoing debate on the role of the primary 43 

motor cortex (M1) in motor skill acquisition 11,12, recent studies have not found a 44 

representation of such structures in the primary motor cortex 13,14, so it would appear 45 

the task is probing mainly the cognitive aspects of motor learning, specifically the 46 

efficient retrieval of the sequence elements from memory (for a detailed discussion, 47 

please see 15). Nevertheless, most studies looking at the consolidation of motor 48 

chunks have been done in healthy young adults, a population in which the involved 49 

mechanisms, such as the encoding, storage and the successful retrieval of sequence 50 

elements may be acting too quickly to be captured by the applied methods.  51 
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Black-box testing (https://en.wikipedia.org/wiki/Black-box_testing), a common 52 

software testing technique, examines the functionality of an application by comparing 53 

the expected functionality of the system (i.e., requirement) and its actual 54 

performance. This approach can be applied to biological systems as well. For 55 

example, Shadmehr and Krakauer 16 compared computational models describing 56 

motor control to specific populations of patients with lesions in the central nervous 57 

system, mapping different model parameters to lesioned brain areas and attributing 58 

distinct roles to them (e.g., state estimation, optimization, etc.). Similarly, 59 

understanding the mechanisms involved in motor sequence learning may be better 60 

achieved through the juxtaposition of individuals constituting the requirement (e.g., 61 

young adults, depicting optimal performance) and individuals in which the involved 62 

mechanisms may no longer function optimally (e.g., older adults). 63 

Previous research shows neurophysiological, structural and functional changes 64 

occurring in the aging brain that lead to a decline in cognitive 17 and motor functions 65 

18–22; for review, please refer to 23,24. As such, motor skill acquisition is typically 66 

diminished in older adults 3,25,26. However, the application of anodal transcranial 67 

direct current stimulation (atDCS) to the motor cortex seems to enhance the motor 68 

skill acquisition 3,27. Even though the mechanisms of action of atDCS in individuals 69 

are complex and not yet entirely understood, its application can be used as an 70 

additional probe in the “black-box testing” of motor skill acquisition.  71 

We designed a study intended to identify (a) the main factors leading to differences in 72 

motor skill acquisition with aging, and (b) the effect of applying noninvasive brain 73 

stimulation during motor training. Comparing different components of motor skill 74 

acquisition in young and older adults, constituting the extremes of performance in this 75 

study, we found that the improvement of the sequence-tapping task is maximized by 76 
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the early consolidation of the spatial properties of the sequence in memory (i.e., 77 

sequence order), leading to a reduced error of execution, and by the optimization of 78 

its temporal features (i.e., chunking). We found the consolidation of spatiotemporal 79 

features to occur early in training in young adults, suggesting the emergence of 80 

motor chunks to be a direct consequence of committing the sequence elements to 81 

memory. This process, seemingly less efficient in older adults, could be partially 82 

restored using atDCS by enabling the early consolidation of spatial features, allowing 83 

them to prioritize the increase of their speed of execution, ultimately leading to an 84 

earlier consolidation of motor chunks. This separate consolidation of spatial and 85 

temporal features seen in older adults suggests that the emergence of temporal 86 

patterns, commonly identified as motor chunks at a behavioral level, stem from the 87 

optimization of the execution of the motor sequence resulting from practice, which 88 

can occur only after the sequence order has been stored in memory. 89 

 90 

Results 91 

Age-related behavioral differences in the execution and practice of a sequence-92 

tapping task. We studied differences in motor performance related to healthy aging 93 

using a well-established sequence-tapping task 2,3, and followed their evolution 94 

during training. We recruited a cohort of 52 healthy adults belonging to three age 95 

groups: young (18-30 y/o; n = 22, 13 female; age𝜇𝜇 = 24.7 y/o), middle-aged (50-65 96 

y/o; n = 15, 9 female; age𝜇𝜇 = 57.4 y/o), and older (>65 y/o; n = 15, 8 female; age𝜇𝜇 = 97 

74.1 y/o). Each participant trained for twenty minutes each day on five consecutive 98 

days. The training consisted of six 90-second training blocks interspaced by 90-99 

second blocks of rest. The participants had to replicate a nine-digit sequence 100 

displayed on a screen, as quickly and as accurately as possible, using their left 101 
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(nondominant) hand. We inserted a seventh block with a different sequence (i.e., 102 

“catch” block) halfway through training to evaluate the difference between the pure 103 

motor execution of a random sequence and that of the trained sequence. The 104 

participants returned on day 10 and day 60, from the beginning of training, to 105 

evaluate the long-term retention of the learned sequence. 106 

Figure 1a shows the main results of this experiment. We found no transfer of learning 107 

from the training sequence to the catch blocks, so we removed these blocks for the 108 

subsequent analyses (please refer to Supplementary Materials to find the scores 109 

including the catch blocks). We scored participants by considering the number of 110 

correct sequences produced in each block, weighted by the ratio of correct to 111 

absolute number of sequences (i.e., percent correct). To capture individual 112 

improvement on the training sequence, we corrected individual scores by subtracting 113 

the score in the first block from the scores in the following blocks as a normalization 114 

procedure (please refer to Supplementary Materials for more information on the 115 

choice for scoring, as well as to find the uncentered scores of all groups). 116 
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Figure 1. Motor skill acquisition in Experiment 1. a) Scores generated during Experiment 1, in which participants trained on 118 

the motor sequence with no stimulation. Scores are averaged per age group, and the error bars correspond to the standard 119 

error of the mean. The blocks of “catch trials” with a different sequence (one block every training day) are not presented. b) 120 

Percentage of total learning over the entire training week represented by different aspects of learning (i.e., fast-online learning 121 

during D1, online learning during D2-5, and offline learning between training days). The outer ring captures the proportion of 122 

total learning by these three aspects, while the inner rings present their time course during the week (anticlockwise): 1st inner 123 

circle is the online performance gain during D1, 2nd inner circle is the offline performance gain between D1 and D2, 3rd inner 124 

circle is the online gain during D2, etc. Orange and green represent improvements, while black and gray represent worsening 125 

of performance. Please note that young adults show offline improvement between days, while middle-aged and older adults 126 

not only lack such improvement but also worsen overnight. c) Speed and accuracy, normalized to the values in the first block 127 

of training, reflect relative changes with respect to initial levels. All groups show consistent increases in speed with similar 128 

dynamics; relative differences in magnitude between age groups show young adults being fastest and older adults slowest. 129 

Please note the different accuracy dynamics when comparing young adults, who sharply improve accuracy on the first day, to 130 

older adults, who gradually improve accuracy during the entire training week. Of particular import is the fact of all age groups 131 

displaying consistently increasing speeds, without ever dropping in accuracy, constituting a shift in the speed-accuracy 132 

tradeoff. The shading represents the 95% confidence interval for the logarithmic curve fitting (this type of curve is for display 133 

purposes only and not included in the LME analysis). 134 
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We used a linear mixed-effects (LME, please refer to Methods for details) model to 135 

quantify differences between groups. Scores on the fifth day (i.e., total learning, 136 

relative to the first block of training) were significantly higher in the young adults than 137 

in the middle-aged (T[55] = 10.78, d = 2.61, p < 0.0001) and older (T[55] = 17.08, d = 138 

4.14, p < 0.0001) adults, with the middle-aged group scoring significantly higher than 139 

the older group (T[55] = 6.3, d = 1.52, p = 0.01). At the follow-up testing days (i.e., day 140 

10 and day 60), the relative differences between the age groups persisted. 141 

Performance in all groups continued to increase significantly by the tenth day (T[414] = 142 

1.39, d = 0.31, p = 0.01), but dropped back to the level of day five on day 60. 143 

The performance of individuals executing explicit motor sequence learning tasks has 144 

been characterized by nonlinear improvement dynamics, showing sharp 145 

improvements occurring during the first training day and modest improvements in 146 

subsequent days 28. Therefore, we compared the rate of improvement (i.e., slopes) 147 

between age groups on each training day. We found a marked difference on the first 148 

day, where the slope for the young group was significantly steeper than the slope for 149 

the middle-aged (T[245] = 0.88, d = 0.99, p = 0.008) and older (T[245] = 1.59, d = 1.8, p 150 

< 0.0001) groups. In young individuals, this slope was significantly steeper than that 151 

on the second day (T[245] = 1.72, d = 1.94, p < 0.0001). Differences between slopes in 152 

middle-aged and older groups on the first day and differences among all groups from 153 

the second day onward were not significant. This suggested that the dynamics of the 154 

learning process, especially on the first day, are one of the main factors leading to 155 

the differences observed by the end of training. 156 

We also tested overnight consolidation (i.e., offline learning), which is known to be 157 

diminished in aging populations 29,30 due to different sleep patterns, such as lower 158 
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quality or fragmented sleep 31. We found offline learning to be significantly higher in 159 

the young adults than in the middle-aged (T[196] = 2.53, d = 0.55, p = 0.002) and older 160 

(T[196] = 2.63, d = 0.57, p = 0.001) adults, with no differences found between the 161 

middle-aged and older groups (T[196] = 0.1, d = 0.02, p = 0.99). 162 

Figure 1b shows the proportion of total learning represented by fast online learning 163 

during the first day, slower online learning during the subsequent days, and offline 164 

learning between training days. Of note was the lack of offline learning in the middle-165 

aged and older adults, which was replaced by offline forgetting. Previous research 166 

has shown learning consolidation after sleep for finger-tapping tasks 2,32, an effect 167 

apparent here in young participants. The extent of this consolidation might depend on 168 

different sleep-related factors 33. In older adults, previous research has shown 169 

impaired consolidation of motor learning 29,30, potentially related to reduced sleep 170 

spindle oscillations and an associated decrease in activity in the corticostriatal 171 

network 34. Diminished sleep quality in older adults, derived from changes in the 172 

circadian rhythm and fragmented sleep 31, could also contribute to the lack of offline 173 

gains. 174 

Age-dependent differences in speed and accuracy. As motor skill acquisition 175 

refers to the practice-related increase in speed and accuracy in the execution of a 176 

motor task 35, these parameters could explain differences in the slope on the first 177 

day. Speed in the young adults was significantly higher than that in the middle-aged 178 

(T[49] = 7.4, d = 2.64, p = 0.0002) and older (T[49] = 12.33, d = 4.40, p < 0.0001) 179 

adults, and speed in the middle-aged adults was higher than that in the older adults 180 

(T[49] = 4.93, d = 1.76, p = 0.02). Accuracy on the first day was not significantly 181 

different between age groups, but the young group was significantly more accurate 182 
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than the older group on day two (T[76] = 0.07, d = 0.82, p = 0.01) and day three (T[76] 183 

= 0.07, d = 0.81, p = 0.01). 184 

We normalized the speed and accuracy in each group to study the dynamics of these 185 

two parameters. Figure 1c shows the changes in both speed and accuracy relative to 186 

the first block of training for all three groups (please refer to Supplementary Materials 187 

for more details on the calculation of speed and accuracy). Speed consistently 188 

increased across training in all age groups, albeit to different extents (Figure 1c, 189 

dashed lines). Accuracy in the young and older adults followed different dynamics; 190 

starting from similar levels of accuracy on the first day, the young participants sharply 191 

increased their accuracy in the early stages of training and reached a plateau, 192 

whereas the older group gradually reached its maximum accuracy over the course of 193 

the training week (Figure 1c, solid lines). In other words, young adults improved their 194 

execution following a pattern reminiscent of the model presented by Hikosaka and 195 

colleagues 36, in which the spatial coordinates of the task (i.e., the accurate mapping 196 

of numbers to fingers stored in memory) are optimized before the motor coordinates 197 

(i.e., rapid execution of motion). In contrast, older adults seem to develop both 198 

coordinates in parallel, gradually increasing both speed and accuracy. 199 

Motor chunks and age-related differences. Motor chunking is a well-established 200 

model of how individuals approach sequential tasks 6. In the hierarchical model of 201 

sequencing, long sequences are segmented into shorter chunks 37, which consist of 202 

groups of individual movements prepared and buffered for their rapid successive 203 

execution, to balance execution efficiency and computational complexity 38. We 204 

extracted chunking patterns from every participant by applying a cluster-based 205 

algorithm (please refer to Methods for details) that characterized their strategies for 206 
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each day with a binary, nine-digit sequence. Figure 2 depicts a radial visualization of 207 

the patterns extracted for each participant on day one. 208 

Figure 2. Radial visualization of chunking patterns generated during the first day of training by participants in the first 210 

experiment that involved motor training without stimulation. Gray dots on the perimeter of the circle (S1, S2, …, S9) 211 

correspond to each bin of the chunking pattern extracted from each participant. Each value of the chunking patterns acts as 212 

a “rope” pulling on the data points. For example, a chunking strategy grouping almost exclusively the last three elements of 213 

the sequence (labeled [0, 0, 0, 0, 0, 0, 0, 1, 1]) would cause bits S8 and S9 to pull on the data point, resulting in the blue dot 214 

situated between S8 and S9 on the plot. 215 

The young and older adults clustered more densely in specific regions, whereas 216 

middle-aged adults were distributed between the other two. To quantify the 217 

differences in chunking strategies between age groups, we fitted a support vector 218 

classifier (SVC) to patterns generated by young and older adults on the first day 219 

(please refer to Methods for more details), as they represented the extremes in 220 

speed and general performance. After fine-tuning the classifier, we extracted the 221 

distance of each nine-dimensional data point characterizing the chunking patterns to 222 
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the decision boundary separating the “young” and “old” classes; we hereafter refer to 223 

this parameter as the “chunking distance”. Figure 3a shows the extracted chunking 224 

distances for the first and last days of training, as well as for day 60 post-training (i.e., 225 

the last follow-up session). On the first day, patterns from most young and older 226 

participants were correctly classified as such, confirming the presence of the clusters 227 

we detected by visual inspection in Figure 2. Regarding the middle-aged adults, most 228 

seemed to generate patterns that were more similar to those of the young adults on 229 

the first day, with some exceptions. 230 

 231 

Figure 3. Evolution of chunking patterns during motor skill acquisition in Experiment 1. a) Chunking distance for patterns 233 

generated on the first and last days of training, as well as on the last follow-up session (i.e., day 60), for each group in 234 

Experiment 1. b) Average chunking distance for each group on each day, with its corresponding standard error. The red dashed 235 

line in both panels indicates the boundary between the two classes that characterizes the chunking strategies of the young 236 

and older participants during the first training day, with any distance larger than zero being labeled “old” and any distance 237 

smaller than zero labeled “young”. 238 
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We used the same model to separate chunking patterns for the remaining days, 239 

which consisted of data points previously unseen by the classifier. Figure 3a shows 240 

that most middle-aged and older adults generated chunking patterns similar to those 241 

of the young adults by the end of training, with young adults not significantly 242 

changing their strategies. This is consistent with reports from the literature showing 243 

“young-like” chunking in older adults after more prolonged training 39. Figure 3b 244 

shows that this process was more gradual in older adults, which was consistent with 245 

the gradual increases in accuracy shown in Figure 1c. 246 

Motor training in combination with atDCS in an aging population. We conducted 247 

a separate experiment (Experiment 2) following the same design as in Experiment 1, 248 

with the addition of atDCS applied over the motor cortex contralateral to the training 249 

hand during motor skill acquisition to enhance performance of the task. We recruited 250 

a new cohort of 61 healthy adults belonging to the same age groups: young (18-30 251 

y/o; n = 19, 15 female; age𝜇𝜇 = 24.4), middle-aged (50-65 y/o; n = 19, 11 female; age𝜇𝜇 252 

= 58), and older (>65 y/o; n = 23, 13 female; age𝜇𝜇 = 71.2) groups. We randomly 253 

assigned participants in each age group to receive either real (i.e., verum; young = 254 

10, middle-aged = 9, older = 14) or placebo stimulation (young = 9, middle-aged = 255 

10, older = 9). The participants trained for the same amount of time as the 256 

unstimulated cohort (i.e., 20 min/day for five days) and returned twice to test the 257 

long-term effects of learning and stimulation. We placed the anode electrode over the 258 

right motor cortex (M1), centered over the representation of the first dorsal 259 

interosseous (FDI) muscle of the left hand on the motor cortex, identified using 260 

single-pulse TMS. 261 
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Figure 4a shows the main results of this experiment. We tested the placebo groups in 262 

the same way as we did the unstimulated cohort in the first experiment and found 263 

similar relative differences between age groups. All statistical tests for both 264 

experiments are detailed in the Supplementary Materials. The first row of Figure 4b 265 

shows the same lack of offline learning in middle-aged and older participants that 266 

was replaced by offline worsening, as seen in Experiment 1 (Figure 1b). 267 

After verifying the findings from the first cohort, we tested the effects of verum and 268 

placebo stimulation in each separate age group. Total learning was not significantly 269 

different in the young (T[20] = 2.68, d = 0.53, p = 0.37) or middle-aged (T[20] = 1.58, d 270 

= 0.44, p = 0.44) groups. In the older group, however, we found higher total learning 271 

in the verum group (T[24] = 4.56, d = 1.53, p = 0.01) with respect to placebo. In the 272 

follow-up sessions, we found no significant differences in scores between the verum 273 

and placebo stimulation in young and middle-aged participants. Performance on day 274 

60 did not change in the young group with respect to day 5, but dropped significantly 275 

in the middle-aged (T[150] = 2.41, d = 0.61, p = 0.003) and older groups (T[150] = 1.4, d 276 

= 0.43, p = 0.02). However, the older group undergoing verum stimulation continued 277 

to score significantly higher than the group undergoing placebo stimulation (T[21] = 278 

4.92, d = 1.49, p = 0.02). After reconsolidation on day 60 (i.e., after the first block), 279 

scores were not significantly different from scores on day 5, providing no evidence for 280 

skill loss, but a maintenance of the acquired skill even two months after training. 281 

We did not find a significant effect of stimulation in either online or offline learning 282 

when testing all training days. When testing fast online learning as a separate 283 

component of learning 28, we identified a steeper improvement rate in the older group 284 

receiving verum stimulation relative to placebo (T[21] = 3.5, d = 1.15, p = 0.01). We 285 
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illustrate this difference (and lack thereof in the other groups) in the second row of 286 

Figure 4b, showing the proportion of the different components of learning to total 287 

learning in the verum group (outer rings). These proportions were similar to those in 288 

the placebo group for both young and middle-aged adults. In the older group, the 289 

proportion of fast online learning to total learning was much larger than that in the 290 

placebo group. 291 

Figure 4c shows the dynamics of speed and accuracy in the second experiment. 292 

There were no significant differences in speed between the verum and placebo 293 

groups in any of the three age groups. In terms of accuracy, the young group 294 

receiving verum stimulation was significantly less accurate than the placebo group by 295 

the end of training (T[23] = 0.07, d = 0.97, p = 0.04). The middle-aged group receiving 296 

verum stimulation was significantly less accurate than the placebo group on the first 297 

(T[21] = 0.14, d = 1.67, p = 0.002) and second (T[21] = 0.1, d = 1.21, p = 0.02) days. In 298 

the older group, the verum group was consistently and significantly more accurate 299 

than the placebo group on all days, except the third (please refer to Supplementary 300 

Materials to find the results of the comparisons), even though we did not find a 301 

significant difference in accuracy on the first block (F[1] = 0.38, p = 0.84). As in the 302 

first experiment, the older group receiving placebo stimulation reached its maximum 303 

accuracy gradually over the course of the week. In contrast, the older group receiving 304 

verum stimulation displayed a sharp increase on the first day and quickly reached its 305 

plateau, with dynamics reminiscent of those observed in the young group in the first 306 

experiment (please see Figure 1c, solid lines). In summary, verum atDCS led older 307 

participants to score higher by the end of training. Yet, it appears not to have had any 308 

effect on the speed of execution of the task; our results suggest that verum atDCS 309 
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led older adults to improve their accuracy quickly on the first day, much like young 310 

adults did in the first experiment. 311 

Figure 4. Motor skill acquisition in Experiment 2. a) Average scores generated during Experiment 2, consisting of motor 313 

training with stimulation, with the error bars depicting the standard error of the mean. The data are grouped by age group 314 

and stimulation type (i.e., verum (V) or placebo (P)). b) Percentage of total learning over the entire training week represented 315 

by fast online learning (D1), online learning during D2-5, and offline learning between training days. Each outer ring captures 316 

the proportion of total learning by these three aspects, while the inner rings present their time course during the week 317 

(anticlockwise): 1st inner circle is the online performance gain during D1, 2nd inner circle is the offline performance gain 318 

between D1 and D2, 3rd inner circle is the online gain during D2, etc. Orange and green represent improvements, while black 319 

and gray represent worsening of performance. Please note the large difference in regard to the proportion of total learning 320 
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explained by fast online learning between the verum and placebo groups in older participants. c) Speed and accuracy 321 

normalized to the first block of training, grouped by age group and stimulation type (i.e., verum (V) or placebo (P)). Please 322 

note that while most groups show similar dynamics to those seen in the respective age-matched groups from the first 323 

experiment, the older group receiving verum stimulation shows dynamics more similar to those seen in young adults. As in the 324 

first experiment, the accuracy was maintained even at increasing speeds, although young adults receiving verum stimulation 325 

significantly dropped in accuracy on the last training day. The shading represents the 95% confidence interval for the 326 

logarithmic curve fitting (the type of curve is for display purposes only and not included in the LME analysis. 327 

Chunking and stimulation. In the first part of the analysis, we proposed that 328 

differences in accuracy could derive, at least in part, from differences in the 329 

consolidation and deployment of motor chunks during training between age groups. 330 

We applied the same classifier trained with data from the unstimulated cohort to the 331 

chunking patterns extracted from participants receiving verum and placebo 332 

stimulation (data were not seen before by the SVC). Figure 5a shows that on the first 333 

day of training, the model classified most young participants correctly, while it 334 

classified most middle-aged participants as young; this matched the results obtained 335 

from the unstimulated cohort. The model also correctly classified older participants 336 

receiving placebo stimulation. In contrast, the model classified almost half of the 337 

older participants receiving verum stimulation as young. By the end of training, most 338 

participants executed chunking patterns more similar to those of the young, matching 339 

our previous findings. Figure 5b shows the gradual evolution of chunking patterns in 340 

all groups, with young adults executing patterns in a consistent manner. Middle-aged 341 

adults start with patterns more similar to those of young adults, which become even 342 

more similar over the course of the training week. Older adults drift from “old-like” 343 

patterns to “young-like” patterns, as seen in the first experiment, with this transition 344 

occurring sooner in the verum group. 345 
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Figure 5. Evolution of chunking patterns during motor skill acquisition in Experiment 2. a) Chunking distance for patterns 347 

generated on the first and last days of training, as well as on the last follow-up session (i.e., day 60), for each group receiving 348 

either verum (V) or placebo (P) stimulation. As described in Figure 3, the red dashed line indicates the boundary between the 349 

old (distance > 0) and young (distance < 0) classes. Please note that all groups present a similar set of distances as in the first 350 

experiment (Figure 3a), with the exception of the older group receiving verum stimulation, in which half of the participants 351 

generated chunking patterns similar to those seen in young adults on the first day of training. b) Average chunking distance 352 

for each group on each day, with its corresponding standard error. Please note the earlier appearance of "young-like" chunking 353 

patterns in the older group receiving verum stimulation compared to the placebo group. 354 

To test whether these differences in chunking translate into different performances in 355 

the task for the older group, we identified the participants in the verum group 356 

classified as young on the first day and plotted their scores separately from the other 357 

participants in their group, as well as the speed and the accuracy. Figure 6a shows 358 

the scores of all older participants, with “young-like” participants in the verum group 359 

scoring significantly higher than those in the “old-like” participants in the verum group 360 

(T[27] = 9.36, d = 3.27, p < 0.0001). Older adults generating young-like patterns on the 361 
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first day of training were significantly faster on the first training block (T[12] = 4.25, d = 362 

1.41, p = 0.02), and overall on the first training day (although this difference was only 363 

a trend, (T[12] = 2.77, d = 1.71, p = 0.07)), compared to their peers under the verum 364 

condition, but not chunking like young on the first day of training. From the second 365 

day onwards, young-like older adults were consistently and significantly faster than 366 

their peers. The rate of improvement in speed (i.e., the slope) was significantly 367 

steeper in older adults generating young-like chunking patterns on the first day 368 

compared to those who did not (T[80] = 0.54, d = 0.29, p = 0.005). As for the accuracy, 369 

even after the sub-division based on generated chunking patterns, all older adults 370 

receiving verum stimulation improved theirs sharply on the first training day, while 371 

older adults receiving placebo stimulation did so gradually over training. Older adults 372 

not chunking like young on the first training day (both in the verum and the placebo 373 

groups) required more extensive practice to generate young-like chunking patterns, 374 

an achievement they reached at different time points of training depending on their 375 

speed (please refer to Figure 6c and Figure 6d), supporting the notion of “a tendency 376 

to chunk facilitating rapid execution, and the need for rapid execution inducing 377 

chunking” 40. 378 
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Figure 6. Primary outcome of Experiment 2 for the older groups only, with the group undergoing verum stimulation 380 

stratified based on the chunking patterns generated on the first training day. a) Older participants in the verum (V) group 381 

generating “young-like” patterns on the first day show an enhanced performance compared to those generating “old-like” 382 

patterns in the verum group and those in the placebo (P) group. The error bars depict the standard error for scores averaged 383 

over each training block. Please note the steep increase in the older group who are chunking like the young group, that is, the 384 

increase in performance is reminiscent of the increase seen in participants in the young group. b) Older adults in the (P) and 385 

(V) groups (for the latter, regardless of whether they generated young-like chunking patterns on the first day or not) started 386 

training from comparable levels of accuracy. While the (P) group improved their accuracy gradually over the course of training, 387 

young-like and old-like members of the (V) group improved their accuracy sharply on the first training session, at a rate 388 

comparable to that seen in young adults of the first experiment. c) Older adults in the (V) group generating young-like chunking 389 

patterns on the first day were initially faster than their peers, and increased their speed at a steeper rate. d) This graph depicts 390 

the amount of practice, calculated as sum of total sequences generated, up until each individual generated young-like 391 

chunking patterns, and on which day they did so. Young-like older adults in the verum group required fewer practice than their 392 

peers, most of which required similar amounts of practice (~140 sequences) to generate young-like patters. Please note that, 393 

when considered alongside the speed of each group (i.e., Figure 6c), this suggests that at lower speeds (i.e., those seen in the 394 

old-like verum and placebo groups), the required amount of practice is higher than it is at higher speeds. 395 

Chunking, stimulation, and neurophysiology. We used established TMS protocols 396 

to measure intracortical inhibition in all participants in the second experiment. We 397 
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applied a well-established double pulse TMS paradigm (i.e., short-interval 398 

intracortical inhibition, SICI) 21,41,42 before and after the first training session to 399 

quantify interneuronal GABAergic inhibition within M1, which is directly involved in 400 

the learning and execution of the motor sequence. We applied the SICI paradigm 401 

while participants were at rest. Within the placebo groups, we found no significant 402 

differences in inhibition before or after the first training session or after the whole 403 

training week. Similarly, we did not find significant differences between verum and 404 

placebo in any of the age groups, thus confirming previous reports that SICI does not 405 

significantly change when atDCS is applied together with motor training 43.  406 

407 
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Discussion 408 

Here, we studied age-related differences in the acquisition of a sequence-tapping 409 

task and applied atDCS concomitant to motor training seeking to enhance 410 

performance. We isolated different components of motor skill acquisition intrinsic to 411 

this task, and followed their evolution throughout and up to 2 months after training. 412 

Applying a black-box testing approach, we contrasted the dynamics of motor skill 413 

acquisition seen in young adults, assumed to be able to acquire the task optimally, to 414 

those seen in older adults, depicting a generally lower performance on this task. Our 415 

results suggest that mastering this motor task relies on the early internalization of the 416 

motor sequence, followed by the practice-dependent optimization of its execution, 417 

observed as motor chunks at a behavioral level.  418 

 419 

The results of the first experiment show that general performance of the sequence-420 

tapping task decreases with age, with score differences between age groups coming 421 

mostly from the improvement dynamics present in the first training day. Our results 422 

show that speed decreases with age, with relative differences between age groups 423 

as expected from natural muscular deterioration 44 and atrophy in cortical regions and 424 

the corpus callosum 19 that occur during healthy aging. Accuracy, on the other hand, 425 

was initially comparable among the three groups, but improved sharply and reached 426 

a plateau on the first training day in young adults, while older adults improved theirs 427 

gradually over the course of training. These results suggest that young adults 428 

improve their performance of this task first by minimizing the error of execution and 429 

focusing on improving speed thereafter, a behavior reminiscent of the model 430 

proposed by Hikosaka and colleagues 36. 431 

 432 
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Instructing individuals to generate sequential movements in quick succession results 433 

in the spontaneous appearance of temporal patterns known as motor chunks 6,7. Our 434 

analyses on the chunking patterns produced by all participants showed that older 435 

adults did not generate chunking patterns as young adults did on the first training 436 

day, but did so after more extensive practice. Previous research on motor chunking 437 

assumes chunks emerge from the repeated sequential execution of single 438 

commands in close temporal proximity 9. In our first experiment, young adults were 439 

faster, so one could deduce that this higher speed allowed for more intensive 440 

practice on the first day of training and that this led them to generate chunking 441 

patterns sooner.  442 

 443 

The second experiment revealed a significant effect of atDCS only in older adults, 444 

with those under the verum condition scoring significantly higher than their peers in 445 

the control group. The same analysis performed on the data from the first experiment 446 

revealed that older adults receiving verum atDCS during training reduced their error 447 

sharply on the first training day, much like young adults of the first experiment did. 448 

Additionally, they generated chunking patterns similar to those seen in young adults 449 

at earlier stages of training, with many of them doing so on the first training day. At a 450 

first glance, these results would suggest not all older adults responded to atDCS to 451 

the same extent. However, the speed and the accuracy of older adults under the 452 

verum condition, grouped according to whether they generated young-like chunking 453 

patterns or not on the first day of training, suggest that atDCS acted on all older 454 

adults by facilitating the encoding and the storage of the sequence in memory, 455 

leading to a sharp improvement in accuracy on the first training session. On the other 456 

hand, older adults with young-like chunking patterns were faster initially, which 457 
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alongside an optimized accuracy achieved on the first training day, resulted in an 458 

earlier consolidation of motor chunks. 459 

 460 

Therefore, older adults under the verum condition improved their performance 461 

following a similar pattern as the one seen in young adults, optimizing the error first 462 

and improving the execution thereafter, albeit at different rates depending on their 463 

speed of execution. As previously mentioned, speeding up leads to chunk formation, 464 

and chunk formation allows further increases in speed, which is supported by faster, 465 

young-like older adults chunking earlier and increasing their speed more steeply.  466 

 467 

Motor and cognitive components of the sequence-tapping task 468 

Recent work has suggested that motor chunks are not represented within M1, but 469 

rather form in premotor cortical and striatal centers 45, with patterns represented in 470 

the parietal cortex, as well as in dorsal and ventral premotor cortices 13. Subsequent 471 

chunk selection occurs in the striatum 45 and bilateral putamen 46, as well as dorsal 472 

premotor and supplementary motor areas 47,48, with chunk execution eventually 473 

occurring in M1 14. Krakauer and colleagues 15 suggest that the lack of representation 474 

of motor chunks within M1 indicates these structures are not selectively motor, but 475 

rather cognitive elements independent of motor execution, whose function is limited 476 

to storing the order of the sequential elements for their efficient retrieval. If this were 477 

the case, it would suffice to memorize the sequence for such patterns to emerge and, 478 

in the case of the present study, to optimize its execution and minimize the error. In 479 

the real world, this would translate to a pianist being able to master a musical piece 480 

simply by studying the score, which appears not to be the case 49.  481 

 482 
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Our method captured behavioral differences in speed, accuracy, and generated 483 

chunking patterns. Considering speed increases consistently in all groups without 484 

accuracy ever decreasing, the observed improvement results from a shift in the 485 

speed-accuracy trade-off 4,50. The increase in accuracy likely reflects the storage of 486 

the sequence elements in memory, resulting from the transition from a state of high 487 

uncertainty (i.e., ignorance of the sequence) to a state of low uncertainty (i.e., 488 

knowing the sequence). This information constitutes the spatial feature set, specific 489 

to the trained sequence 48, and likely enables an increase in speed (without 490 

sacrificing the accuracy) by boosting motivation and confidence in the execution itself 491 

51. This process would indeed be independent of motor practice, and would capture 492 

the cognitive dimension of this task.  493 

 494 

The chunking patterns, as detected by our method, reflect a different set of features. 495 

As the present method uses the inter-key intervals to identify the chunks, it portrays 496 

the rhythm of execution, which constitutes the temporal feature set. Specific temporal 497 

patterns can be encouraged externally (for an example, refer to this experimental 498 

paradigm 52), much as the partition determines the tempo in music playing. Taught 499 

patterns can be suboptimal, requiring the execution of relatively difficult transitions in 500 

close temporal proximity, but in the absence of external temporal cues, easier 501 

transitions are normally grouped together 53. These patterns are optimized with 502 

practice, and their structure is constrained by a balance between computational cost 503 

and motor efficiency 38. 504 

 505 

Kornysheva and Diedrichsen 52 found neural activity encoding spatial and temporal 506 

features independently represented in lateral and bilateral medial premotor cortices. 507 
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These findings suggest the emergence of motor chunks, as those captured by our 508 

method, result from the storage of both spatial and temporal features in higher brain 509 

areas, upstream from M1 in the motor network, a mechanism that appears to be 510 

diminished in older adults. Our results suggest that the most effective way to improve 511 

performance in this task is to first store the spatial components (i.e., sequence order), 512 

followed by the storage and iterative optimization of the temporal features (i.e., 513 

chunking patterns). This order may be specific to the present task, in the sense that 514 

no external temporal cues were provided; indeed, it may be that when both the 515 

sequence order and the temporal patterns are explicitly available, both may be 516 

consolidated in parallel. 517 

 518 

Black-box testing 519 

There is an ongoing discussion on whether motor chunks are purely cognitive 520 

elements 15. In the presently discussed analysis, we consider young adults to be 521 

capable of acquiring motor skills optimally (within the constraints inherent to the 522 

human neuromotor system). As such, we consider them to embody the requirement 523 

of the system for the acquisition of our sequence-tapping task. In young adults, the 524 

accuracy reaches a plateau in the early stages of training, indicating the sequence 525 

has been stored in memory. Chunking patterns, on the other hand, also emerge on 526 

the first training day and remain relatively unchanged for the rest of training. This 527 

early optimization of both the accuracy and the chunking patterns could be 528 

interpreted as chunking patterns being a direct consequence of storing the sequence 529 

in memory. However, the process we observe in older adults suggests otherwise. In 530 

older adults, the mechanism for storing the sequence in memory appears to be 531 

diminished, as their accuracy increases gradually over the course of the training 532 
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week. Nevertheless, atDCS seems to restore this mechanism early in training, similar 533 

to reactivating a dormant ability of the brain, leading to the early consolidation of 534 

spatial features and resulting in an optimized accuracy on the first training session, 535 

as seen in young adults. Chunking patterns appeared at different stages of training, 536 

which seems to depend on the amount of practice and, indirectly, on the speed of 537 

execution. Figure 6a shows faster older adults chunking sooner, which would support 538 

the notion of increased amounts of practice early in training leading to an earlier 539 

consolidation of chunks. This is not supported by the other older adults, as most of 540 

them need similar amounts of practice to generate young-like chunking patterns, 541 

regardless of differences in speed; please note that patterns emerging later in 542 

training, but requiring similar amounts of practice imply a slower execution. It appears 543 

that relatively high speeds (e.g., like those seen in young and middle-aged adults) 544 

place a prime on the optimal execution of the sequence, resulting in an accelerated 545 

formation of chunking patterns, while executing the sequence at lower speeds (e.g., 546 

old-like older adults under verum and all older adults under the placebo) leads to a 547 

slower consolidation of chunks, requiring more extensive practice.  548 

 549 

These results support the notion of a critically-important cognitive component intrinsic 550 

to sequence-tapping tasks 15. However, the structure of the patterns detected as 551 

motor chunks at a behavioral level is determined by the ease of the mechanical 552 

transition between key presses 53, and is optimized with practice (a process occurring 553 

more gradually in slower older adults). This might explain why pianists need 554 

extensive practice to perfect a musical piece, long after memorizing it. 555 

 556 

The effect of atDCS on the storage of spatial coordinates 557 
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Our results suggest atDCS facilitates the consolidation of motor chunks in older 558 

adults when the anode is placed over the contralateral hand-knob representation at 559 

M1 (though it is of note that the spatial resolution of the stimulation is limited) by 560 

facilitating the storage of the sequence order in memory. Given the non-focality 561 

attributed to this technique 54, we cannot discard the possibility of physiologically 562 

relevant stimulation of other brain areas, like the premotor cortex, as spatial and 563 

temporal components of the sequence are encoded unilaterally and bilaterally, 564 

respectively, in these regions 52. Therefore, the anode could be inducing LTP-like 565 

plasticity 55 in intracortical interneurons 56 of the M1 contralateral to the trained hand, 566 

but also the ventral and dorsal premotor areas (i.e., PMv and PMd), facilitating the 567 

storage of the spatial coordinates in these regions.  568 

 569 

In search for likely causes behind the selective effect of atDCS, seemingly exclusive 570 

to older adults, we quantified intracortical (GABAergic) inhibition within M1, since 571 

previous studies have shown that less efficient SICI was associated with lower 572 

dexterity in executing rapidly alternating two-finger tapping 20,21. Nevertheless, we did 573 

not find significant differences between verum and placebo in any of the age groups, 574 

confirming previous reports that SICI does not significantly change when atDCS is 575 

applied together with motor training 43. This further supports the view that the effect of 576 

atDCS in older adults at a behavioral level does not directly act on the execution of 577 

the sequence itself, but likely on higher brain areas, upstream of the motor network. 578 

 579 

If we conceive the process of chunk formation as the transition from high-uncertainty 580 

to lower-uncertainty in the execution of a motor sequence, we can consider each 581 

source of information to contribute to this change of state. In a recent study, Cross 582 
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and colleagues found evidence for the primary motor cortex being a hub where both 583 

somatosensory and visual feedback converge 57. This information is likely integrated 584 

in higher brain areas, such as premotor 58 and parietal cortices 16, an essential 585 

process to decrease the error in the execution of our task. Sensorimotor integration 586 

decreases with age 59, so atDCS could be compensating this process in older adults. 587 

 588 

Implications for using atDCS in motor sequence learning 589 

During the first day of training, young adults optimize their accuracy and focus on 590 

improving speed thereafter, experiencing a shift in the speed-accuracy tradeoff early 591 

in training. The consolidation of spatial coordinates allows the rapid optimization of 592 

temporal features, resulting in an early consolidation of chunking patterns. The fact 593 

that these patterns do not change much during the subsequent four days of training 594 

indicates that they reached an optimized strategy. As such, these strategies would 595 

constitute a ceiling on dexterous skill for this task. Our results suggest that atDCS 596 

influences accuracy, but not speed, as we did not find significant differences in speed 597 

related to stimulation in any age group. Nevertheless, it appears that only imbalanced 598 

neural systems that are less than optimal can benefit from stimulation. Neural 599 

responsiveness decreases with healthy aging, which is why enhanced plasticity 600 

induced by atDCS 60 likely benefits older adults 3. Greeley and colleagues 61 reported 601 

improved motor chunk formation related to atDCS applied to M1 in young adults. 602 

Unfortunately, we cannot compare our results to theirs, as the metric they use is the 603 

number of chunks, which does not provide much information on how the sequences 604 

are segmented. Further, they consider fewer chunks to reflect greater improvement, 605 

which is based on the notion of an eventual full concatenation of chunks, which likely 606 
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is not attained due to the related computational costs 38. On the other hand, they did 607 

not find differences in speed nor accuracy, which matches our own findings.  608 

 609 

Limitations 610 

atDCS applied to enhance motor performance has low focality 54, which limits the 611 

interpretation of how exactly stimulation restores motor and cognitive functions in 612 

older adults in regard to which brain areas of the motor network are mainly involved. 613 

Additionally, the fact that the electrophysiological evaluation (i.e., TMS) could not be 614 

achieved in all subjects limits the null-finding of SICI in relation to learning and atDCS 615 

in this study. In regard to the statistical analysis, we understand there are certain 616 

implications to centering the data, but as we use these comparisons just to lay down 617 

the grounds for the discussion on the actual analysis on the mechanisms behind 618 

apparent differences in motor skill acquisition, we consider the correction and 619 

corresponding statistical tests are justified. 620 

 621 

Conclusions 622 

Sequence learning is essential and ever present in the execution of many activities of 623 

daily life. The black-box approach, contrasting different components of skill 624 

acquisition between young and older adults, whose ability to acquire new skills is 625 

present but diminished, has revealed that mastering motor sequence tasks depends 626 

on the early storage of the sequence elements in memory (i.e., consolidation of 627 

spatial components), leading to the practice-dependent emergence of temporal 628 

patterns (i.e., motor chunks). Non-invasive brain stimulation, as applied here, might 629 

support and accelerate this process in systems not working at the optimal level, such 630 

in healthy older adults. 631 

632 
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Methods 633 

Participants. A total of 113 subjects volunteered to participate in our study, 634 

categorized as young (18-30 y/o; n = 41, 27 female; age𝜇𝜇 = 24.5 y/o), middle-aged 635 

(50-65 y/o; n = 34, 20 female; age𝜇𝜇 = 57.7 y/o), and older (>65 y/o; n = 38, 21 636 

female; age𝜇𝜇 = 72.3 y/o) healthy participants. All participants were right handed as 637 

determined by the Edinburgh Handedness Inventory 62. The participants reported not 638 

having a previous history of serious medical conditions (General Health 639 

Questionnaire, GHQ) or contraindications for tDCS and TMS (questionnaire based 640 

on safety recommendations for these techniques 63). We performed a neurological 641 

examination on all participants over the age of 50 to ensure that participants were 642 

healthy and performed the Mini-Mental State Exam (MMSE, 64) to ensure that all 643 

participants scored at least 26 out of 30 points. The participants gave their informed 644 

consent under protocol guidelines approved by the cantonal ethics committee Vaud, 645 

Switzerland (project No. 2017-00301) and the ethics committee Hamburg, Germany 646 

(PV 3770) according to the Declaration of Helsinki. 647 

Motor task. We used a well-established finger-tapping task 2,3 that required the 648 

participants to replicate a nine-digit numerical sequence displayed on a screen as 649 

quickly and as accurately as possible, using a four-button box with buttons labeled 650 

from “2” to “5” (“2” for the index finger, “5” for the pinky finger). A white dot on the 651 

screen, displayed beneath the numbers, indicated the button to be pressed next. The 652 

dot would move to the next digit as soon as a key was pressed, regardless of 653 

whether or not it was pressed correctly. Before starting the first training session, we 654 

asked all participants to perform a 90-second familiarization block to use as a 655 

reference for general initial skill level (please refer to Supplementary Materials for 656 
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details on how we used this sequence). Training started immediately after this block. 657 

The participants trained their left hand for 20 min each day for five consecutive days. 658 

Each day of training consisted of seven 90-second blocks interspaced by 90-second 659 

rest periods. Six of the blocks from each day contained the same sequence (i.e., 660 

training sequence). The seventh block consisted of a “catch” block presented halfway 661 

through training on each day and contained a sequence different from the training 662 

sequence. Each day of training had a catch block with a different sequence. We used 663 

the catch blocks to test whether the observed improvements were specific to the 664 

training sequence or generalizable to any sequence. We presented the catch blocks 665 

at different stages of the training session on each day, alternating between the third, 666 

fourth and fifth blocks to avoid interfering with overnight consolidation of learning and 667 

anticipation of its appearance 2. The participants returned for follow-up sessions on 668 

the 10th and 60th days after the beginning of training, during which they executed 669 

three blocks of the training sequence; we used these visits to test for long-term 670 

retention related to the intervention. We did not provide any form of feedback on the 671 

participants’ performance at any time. 672 

Electrophysiological exploration of changes within M1. We used TMS to identify 673 

the representation of the FDI muscle of the left hand and quantified the interneuronal 674 

GABAA receptor-mediated inhibitory networks within the right M1. TMS was delivered 675 

with a 70-mm figure-of-eight coil linked to a Magstim BiStim2/Magstim Bistim 676 

machine (Magstim Ltd., Whitland, UK), and we recorded electromyography (EMG) 677 

signals from the FDI muscle. We first empirically identified the cortical target as the 678 

spot on the scalp eliciting the largest motor evoked potential (MEP) under EMG 679 

control in the left FDI. Then, we identified the resting motor threshold (RMT) as the 680 

minimum single pulse intensity to evoke 50-µV MEPs 50% of the time and the single 681 
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pulse intensity to evoke 1-mV MEPs (test intensity). The SICI was quantified with a 682 

well-established paired-pulse paradigm using a conditioning pulse delivered at 80% 683 

RMT intensity followed 3 ms later by a test pulse delivered at the test intensity 684 

21,41,42,65–67. We assessed the RMT, 1-mV test intensity, and SICI before and after the 685 

first training session, after the 5th day of training, and on the 60th day after long-term 686 

retention testing. 687 

Electrical stimulation of M1 during training. When applying atDCS, the anode was 688 

placed over the FDI hotspot, and the cathode was placed over the left supraorbital 689 

area 3 using squared electrodes (25 cm2), covered in sponges soaked in saline 690 

solution (0.9% NaCl), connected to a neuroConn DC-STIMULATOR (Germany 691 

recordings) or a DC-STIMULATOR PLUS (Switzerland recordings) (neuroConn 692 

GmbH, Ilmenau, Germany). Stimulation was applied in a double-blind, placebo-693 

controlled, parallel design, with all experimenters involved in the acquisition and/or 694 

the analyses of results blinded until the end of the acquisition. The verum stimulation 695 

consisted of 20 min of stimulation with 1 mA direct current (ramp-up/down times of 8 696 

seconds). The placebo stimulation consisted of 40 seconds of stimulation delivered 697 

at the beginning of training (with 8-s ramp-up and 5-s ramp-down times, as defined 698 

by neuroConn) to emulate the prickling sensation on the scalp often reported in the 699 

use of this technique during current intensity variation 68. 700 

Experimental protocol (Figure 7). The participants in both Experiment 1 and 701 

Experiment 2 came for seven visits. The participants in Experiment 1 started with 702 

motor training, while the participants in Experiment 2 started the first day with a set of 703 

electrophysiological investigations: identification and neuro-navigated registration of 704 

the FDI hotspot coordinates, identification of the RMT and 1-mV intensity, and a 705 
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battery of 24 single and 24 double TMS pulses. After these measurements, the 706 

participants executed the motor training described above with concomitant atDCS for 707 

20 min. We repeated the session of electrophysiological investigations after the first 708 

and fifth training sessions and the 60th day control session. For each of these 709 

investigations, we adjusted the intensity of the test TMS pulse to maintain a 1-mV 710 

amplitude of the single-pulse MEP. 711 

Figure 7. Experimental protocol. a) Experiment 1 tested the behavioral outcome of five days of training in three groups: young, 713 

middle-aged, and older healthy adults. b) Experiment 2 tested the behavioral and electrophysiological outcomes of five days 714 

of training with atDCS delivered to the motor cortex in six different groups: young, middle-aged, and older healthy adults 715 

receiving either verum or placebo stimulation in a double-blind parallel design. c) The motor training consisted of pressing, as 716 

quickly and accurately as possible, four buttons corresponding to the non-opposable fingers of the left hand (5 = pinky finger) 717 

according to an explicit sequence displayed on a computer screen. 718 

 719 

Chunking strategy extraction. We extracted a single chunking pattern to 720 

characterize the execution of the training sequence for each day of every 721 

participant’s training. To this end, we applied the clustering approach proposed by 722 

Song and Cohen 69 and labeled successive interkey intervals (IKIs) of every 723 

sequence as either “fast” (i.e., “1”) or “slow” (i.e., “0”) considering adjacent keys with 724 

intervals labeled “fast” to belong to the same chunk. Please refer to the 725 
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Supplementary Materials for a detailed exposition of our arguments in favor of using 726 

this approach. Each sequence had nine IKIs, with the first reflecting the interval 727 

between the last key press of the previous sequence and the first key press of the 728 

current sequence. After removing incorrect sequences from each block, we 729 

normalized the IKIs in each sequence to the total duration of the sequence (i.e., 730 

divided each IKI by its sequence duration) to account for the gradual increase in 731 

speed during training. After normalization, we applied the K-means clustering 732 

algorithm (Sklearn, https://scikit-learn.org/) to sequences of each block, enforcing the 733 

notion of two clusters being present (i.e., “fast” and “slow”) by labeling the IKIs in 734 

each sequence based on their proximity to them. The outcome of this step was a 735 

chunking pattern for each individual sequence. To determine a single pattern 736 

describing strategies for each day, we defined a series of possible criteria: 737 

1. Maximum allocation: This criterion looks at the most frequently repeated 738 

chunk sizes generated by a participant and excludes patterns with chunk sizes 739 

different from these. It also assumes that participants will allocate all 740 

keystrokes to at least one of the chunks. These two constraints result in the 741 

choice of one dominant pattern for each day. 742 

2. Reclustering: This criterion sums all chunking patterns for each day and 743 

reclusters them using K-means clustering, outputting a single pattern for the 744 

entire day. 745 

3. Reclustering top: Similar to the previously mentioned clustering approach, with 746 

the difference that it reclusters only a percentage of the most frequently 747 

repeated patterns. In this case, we fixed this percentage to 15%. 748 
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4. “More-often-than-not”: This criterion uses all chunking patterns generated on a 749 

day and generates a new sequence containing “1”s for each IKI labeled “1” in 750 

more than 50% of the sequences of that day and zeros otherwise. 751 

5. Highest frequency: This criterion takes the most frequently repeated pattern 752 

on each day. 753 

For some participants, the pattern found to characterize their execution for a given 754 

day varied depending on the criterion used. For this reason, we used all five criteria 755 

and generated a single chunking pattern by performing a majority vote on the five 756 

patterns. In other words, we obtained five chunking patterns for every participant on 757 

each day. Then, we performed a majority vote for each bit (i.e., each IKI label) of the 758 

five chunking patterns and obtained a single pattern characterizing chunking on that 759 

day. Please refer to the Supplementary Materials for more information on this 760 

process. 761 

Chunking pattern classifier. We fitted a support vector classifier (Sklearn, 762 

https://scikit-learn.org/) to chunking patterns generated on the first day by young and 763 

older participants of the first experiment (i.e., training without stimulation). We used 764 

80% of these chunking patterns as the training set and the remaining 20% as the test 765 

set. We did not keep any of these data as the validation set, as we intended to use 766 

the patterns generated by young and older adults receiving placebo stimulation in 767 

Experiment 2 (i.e., training with stimulation) as the validation set. To fine-tune the 768 

model, we performed a grid search cross-validation on different parameters, namely, 769 

the regularization parameter (C) and the model kernel, and chose the model yielding 770 

the highest F-scores in both cross-validation and testing. We repeated this process 771 

ten times, varying the samples used as training and testing datasets. After this step, 772 
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we obtained ten models with parameters optimized to the training set used each 773 

time. Among these ten models, we chose the one with the highest F-scores, with the 774 

optimal parameters being C = 0.1 and a linear kernel, for which the training F-score 775 

was 0.88 and the test score was 1. We chose this model as the final model and used 776 

it to classify chunking patterns generated on the second day onwards in the first 777 

experiment and all days in the second experiment. As previously mentioned, we 778 

validated this model with the chunking patterns generated by the young and the older 779 

groups receiving placebo in Experiment 2, with a classification accuracy of 88.88% 780 

(i.e., F-score of 0.8888). 781 

We used the decision boundary from the final model, separating the “young” and 782 

“old” classes, to quantify the resemblance of chunking patterns from every individual 783 

to each class. Specifically, we obtained the distance from each nine-dimensional 784 

data point (corresponding to nine IKIs) to the nine-dimensional hyperplane separating 785 

both classes and used this amount to assess changes in chunking strategy during 786 

training. 787 

Statistical analysis. We performed all statistical analyses in R 70. We used the lme4 788 

package from Bates and colleagues 71 to fit LME models to our data, and we used 789 

the emmeans toolbox 72 for post hoc testing. For the effect sizes, we used the 790 

calculation implemented in emmeans, which looks at pairwise differences and divides 791 

them by the standard deviation, and used confidence intervals to account for 792 

uncertainty in estimated effects and estimated standard deviation. We fitted all 793 

models using restricted maximum likelihood (REML). We tested the significance of 794 

fixed effects by means of ANOVA Type III on the model using Satterthwaite's 795 

method, and obtained p-values using the lmerTest package 73. We performed post 796 
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hoc tests on significant fixed effects and corrected for multiple comparisons using 797 

Tukey’s HSD method 74. We ran two-tailed post hoc tests on the estimated marginal 798 

means (i.e., least-squares means) from our fitted models, with degrees of freedom 799 

estimated using the Kenward-Roger method 75. The present manuscript discusses, 800 

with a few exceptions, significant results only (with a cutoff for statistical significance 801 

of p < 0.05). Please refer to the Supplementary Materials for the results for all 802 

statistical tests applied to the data from both experiments. 803 

 804 
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