1 Reemployment of Kupffer's vesicle cells into axial and paraxial mesoderm

2 via transdifferentiation

4 Takafumi Ikeda ${ }^{1}$, Kiichi Inamori ${ }^{1}$, Toru Kawanishi ${ }^{1}$, Hiroyuki Takeda ${ }^{1 *}$

Abstract (150-250 words)

Kupffer's vesicle (KV) in the teleost embryo is a fluid-filled vesicle surrounded by a layer of epithelial cells with rotating primary cilia. KV transiently acts as the left-right organizer but degenerates after the establishment of left-right asymmetric gene expression. Previous labelling experiments indicated that descendants of KV-epithelial cells are incorporated into mesodermal tissues after KV collapses (KV-collapse) in zebrafish embryos. However, the overall picture of their differentiation potency had been unclear due to the lack of suitable genetic tools and molecular analyses. In the present study, we established a novel zebrafish transgenic line with a promoter of charon, in which all KV-epithelial cells and their descendants are specifically labelled until the larval stage. We found that KV-epithelial cells underwent epithelialmesenchymal transition upon KV-collapse and infiltrate into adjacent mesodermal progenitors, the presomitic mesoderm and chordoneural hinge. Once incorporated, the descendants of KV-epithelial cells expressed distinct mesodermal differentiation markers and contributed to the mature populations such as the axial muscles and notochordal sheath through normal developmental process. These results indicate that fully differentiated KV-epithelial cells possess unique plasticity in that they are reemployed into mesodermal lineages through transdifferentiation after they complete

34 Keywords (4-6 words)

35 charon, zebrafish, Kupffer's vesicle, transdifferentiation

Introduction

Kupffer's vesicle (KV) is a teleost-specific organ, which is transiently formed on the ventral side of the embryonic tailbud (Brummett and Dumont, 1978; Kupffer, 1868). KV consists of a fluid-filled lumen and its surrounding epithelial cells (hereafter referred to as KV-epithelial cells), and functions as the left-right organizer (LRO), playing a crucial role in left-right axis formation in the embryo (Essner et al., 2005). In the zebrafish, KV-epithelial cells are derived from a special group of cells called dorsal forerunner cells (DFCs; Melby et al., 1996; Oteíza et al., 2008). DFCs originally bear endodermal character as they express endoderm-specific genes, sox32 and sox17 (Alexander et al., 1999; Kikuchi et al., 2001; Warga and Kane, 2018). During epiboly stages, DFCs are transformed into KV-epithelial cells through mesenchymal-epithelial transition (Amack et al., 2007; Matsui et al., 2015; Oteíza et al., 2008; Zhang et al., 2016). At early somite stages, each KV-epithelial cell protrudes a primary cilium on the apical side, which rotates and generates the leftward fluid flow in the KV lumen (Essner et al., 2005). Sensed by primary cilia themselves, the leftward flow induces left-right asymmetric gene expression in and around KV, leading to left-sided expression of nodal in the lateral plate mesoderm (LPM; Essner et al., 2005). Judged by their morphological characteristics and specialized function, KV-epithelial cells are considered as fully
differentiated and functional cells.

In the light of the fate plasticity in matured cells, we were interested in the fate of KV-epithelial cells after they complete their mission in left-right patterning. Indeed, KV collapses and disappears soon after the establishment of the asymmetric gene expression in the LPM (hereafter referred to as KV-collapse), but previous lineagetracing studies of DFCs demonstrated that upon KV-collapse, descendants of DFCs are incorporated into mesodermal tissues such as notochord, somites and tail mesenchyme (Cooper and D'Amico, 1996; Melby et al., 1996). However, detailed tracking and molecular characterization of those incorporated cells have not been performed so far, and thus we do not know yet whether ciliated KV-epithelial cells actually possess fate plasticity to transdifferentiate into functional mesodermal cells.

Recently, several transgenic zebrafish lines that express fluorescent proteins in DFCs and KV were generated for easier and more reliable tracing of DFC- and KVderived cells. Among them, sox17 lines have been frequently used because sox17 promoter uniformly labels both DFCs and KV-epithelial cells from epiboly to somitogenesis stages (Compagnon et al., 2014; Mizoguchi et al., 2008; Oteíza et al., 2008; Sakaguchi et al., 2006). Furthermore, a recent work using sox17:GFP-CAAX line reported the epithelial-to-mesenchymal transition (EMT) of KV-epithelial cells during

KV-collapse (Amack, 2021), but their fate after EMT has not been directly tracked yet. For specific fate tracking of KV-epithelial cells, the sox17 lines are not necessarily suitable, because endodermal cells as well as DFCs are broadly labelled (Mizoguchi et al., 2008). Other transgenic lines marking KV-epithelial cells (summarized in Table 1) have a similar limitation (Caron et al., 2012; Chen et al., 2012; Du and Dienhart, 2001; Molina et al., 2007). Thus, for precise tracing, another transgenic line was required in which mature KV-epithelial cells are specifically and uniformly labelled.

Here, we established novel transgenic lines, in which entire KV-epithelial cells are specifically labelled, using the promoter of charon. charon encodes a secreted Nodal antagonist belonging to the DAN family (Hashimoto et al., 2004). Its expression starts shortly after the differentiation of KV-epithelial cells from DFCs, and is highly specific to KV-epithelial cells both in zebrafish and medaka (Hashimoto et al., 2004; Hojo et al., 2007). The expression of charon is initially symmetric, but gradually becomes rightsided under the control of the leftward flow in KV (Hojo et al., 2007; Lopes et al., 2010). The essential role of charon in the left-right pattering is conserved among vertebrates as charon-knockout mice and zebrafish both exhibit randomized left-right axis (Marques et al., 2004; Montague et al., 2018).

Using these charon lines, we first confirmed that after KV-collapse, KV-derived

Promoter	Expression area at epiboly and somite stage	Timing	Length	Literature
crestin	Dorsal enveloping layer and KV	From DFCs ($\sim 50 \%$ epiboly)	1 kb	Chen et al., 2012
foxj1	Pronephric duct, floor plate and KV	From DFCs (~95\% epiboly)	0.6 kb	Caron et al., 2012
dusp6	Mid-hindbrain boundary, Rhombomere 4and KV	From DFCs (bud stage)	10 kb	Molina et al., 2007
sox17	Endoderm and KV	From DFCs (~80\% epiboly)	5.0 kb	Sakaguchi et al., 2006; Oteíza et al., 2008
twhh	Notochord and KV	From 12 hpf	5.2 kb	Du \& Dienhart, 2001
charon	KV	From ~ 6 somite stage	5.0 kb	Gourronc et al., 2007; the present study

cells (KVDCs) differentiate into mesodermal but not into ectodermal or endodermal tissues. Detailed timelapse imaging and gene-expression analyses further revealed that KVDCs undergo EMT and infiltrate into two types of undifferentiated mesoderm, which are the presomitic mesoderm and the chordoneural hinge. Importantly, they expressed differentiation markers similar to their surrounding mesodermal cells at later stages. These findings demonstrate that KV-epithelial cells possess high plasticity after completing their initial role in KV , and that they transdifferentiate into mesodermal lineages during normal development.

Table 1: Transgenic lines in zebrafish for the visualization of DFCs and KV-epithelial cells

Results
 Establishment of charon:EGFP to specifically label KV-epithelial cells

To establish transgenic lines in which KV-epithelial cells are specifically labelled, we cloned the 5 -kb upstream sequence of zebrafish charon (Fig.1a, Supplementary Fig.1). A previous transient promoter assay demonstrated that the upstream sequence of zebrafish charon drives the reporter expression around KV (Gourronc et al., 2007), but any stable transgenic line using the charon promoter has yet to be established. After confirming the previous report by the Tol2-mediated EGFP reporter assay (Supplementary Fig.3a), we established three stable transgenic lines in which either EGFP, Lck-mGreenLantern (mGL) or H2B-mEosEM (a nuclear-localizing form of a photoconvertible fluorescent protein mEosEM; Fu et al., 2020) expression is driven by the charon 5 -kb promoter (Fig.1b, Supplementary Fig.4a). In all the lines established, reporter gene expression was specifically detected in KV-epithelial cells (Fig.1c-e, Supplementary Fig.4b, c). In charon:EGFP embryos, EGFP fluorescence started to be detected from around the 6 -somite stage (ss) just like endogenous charon (Hashimoto et al., 2004), and became stronger as KV grows in size. DAB (3,3'-Diaminobenzidine, tetrahydrochloride) immunohistochemistry against EGFP showed that at 6 ss and 12 ss, EGFP expression is strictly limited to the entire KV-epithelial cells with no ectopic
expression in adjacent mesoderm (Fig.1d-f). Fluorescence in situ hybridization with immunofluorescence (FISH-IF; He et al., 2020) of charon in charon:EGFP embryos further showed that charon expression mostly overlaps with that of EGFP at 12 ss (Fig.1g). However, unlike endogenous charon, EGFP expression did not exhibited leftright bias (Fig.1d-f). This can be explained by the fact that 3 ' untranslated sequence of dand5 (a mouse ortholog of charon) is responsible for its right-sided expression (Minegishi et al., 2021; Nakamura et al., 2012). Untranslated sequences of zebrafish charon, which are not included in the plasmid construct of this study, could have a similar function to that of mouse dand5.

Furthermore, we found that the activity of upstream sequences of charon in KVepithelial cells is conserved among teleosts. A transgenic medaka (Olyzias latipes), which was established with the upstream sequence of medaka charon (Supplementary Fig.2), exhibited EGFP-reporter expression in KV-epithelial cells from 4 ss with faint ectopic expression in the notochord (Supplementary Fig.5c). Overall, these results show that charon transgenic lines are best suitable for the study of development and function of KV-epithelial cells.

KVDCs differentiate into mesodermal lineages

KV is a transient organ and starts to degenerate at mid-somite stages (14-16 ss) when asymmetric nodal expression is established in the LPM (Cooper and D'Amico, 1996; Long, 2003; Supplementary Fig.8). However, we observed that EGFP-expressing cells in charon:EGFP embryos survived after KV-collapse and even persisted in hatched larvae (Supplementary Fig.3). Hereafter we refer to the EGFP-positive cells in charon:EGFP after KV-collapse as "KV-epithelium-derived cells (KVDCs)" to distinguish them from KV-epithelial cells. To track KVDCs after KV-collapse, we histologically analyzed embryos at the mid-somite stage (22 ss) and larvae at 3 days post fertilization (dpf) using DAB immunohistochemistry and confocal microscopy. In 22-ss embryos whose KVs have already diminished, most KVDCs were clustered around the collapsed lumen, but some of them were found in the adjacent notochord and presomitic mesoderm (PSM; Fig.2a, b). In 3-dpf hatched larvae, KVDCs were broadly distributed in the region posterior to the cloaca where no endodermal tissue exists (Fig.2c). KVDCs were detected in mesodermal tissues including both segmented and unsegmented posterior-most somites (Moriyama et al., 2012; Fig.2c, e1, e2), notochord cells near the posterior end and the notochordal sheath in the more anterior side (Fig.2d, e3), and fin mesenchymal cells with radial filopodia especially in the caudal fin fold
(Fig.2c, d and e4). We counted the number of KVDCs in each tissues using charon:H2B-mEosEM 3-dpf larvae and found that they were most abundant in the unsegmented posterior-most somites (56 ± 11 cells/embryo; Fig.2f). In contrast, no KVDCs were observed in the ectoderm (Fig.2d, e).

To further support the above findings, we directly examined the migration of

KVDCs into these mesodermal tissues by a photoconversion-based method (Shimada et al., 2013). We photoconverted H2B-mEosEM transiently expressed in KV-epithelial cells of β actin:memCherry embryos, whose cell membrane is labelled with mCherry (Xiong et al., 2014). After photoconversion at around 13 ss, labelled KV-epithelial cells were tracked at an interval of 1 hour during segmentation periods ($\mathrm{n}=4$ embryos, Fig.2g). At 14 ss (0 hour after photobleaching), photoconverted H2B-mEosEM was only detected in KV-epithelial cells, confirming the specificity of photoconverted labelling (Fig.2h). The labelled KVDCs tended to stay together until 19 ss (4 hours after photobleaching), and then gradually migrated from KV into the PSM and notochord (Fig.2h, arrowheads in the 28 -ss panel). When the same embryos were further observed at 2 dpf, the labelled KVDCs were broadly distributed in segmented somites, unsegmented posterior-most somites, and the notochord (Fig.2h, arrowheads in the 2dpf panel). We obtained a similar result using another transgenic line, foxjla:KikGR, in
which photoconvertible protein KikGR (Tsutsui et al., 2005) is expressed in KVepithelial cells as well as in the floor plate (Caron et al., 2012; Supplementary Fig.7a). Taken together, the results demonstrated that KVDCs migrate and contribute to the axial and paraxial mesoderm.

Loss of the LRO and epithelial character in KVDCs

We next examined the molecular characteristics of KVDCs after KV-collapse. We first examined whether any KVDCs are eliminated by apoptosis during and after KVcollapse. Immunostaining of cleaved caspase-3, an executioner of apoptotic process (Elmore, 2007), revealed that apoptosis was induced in KVDCs after KV-collapse, but that the number of apoptotic KVDCs was limited (Fig.3a, b). We then asked how survived KVDCs lost morphological and molecular characteristics of the LRO components by examining charon (LRO marker) and soxl7 (DFCs marker) expression and the protein distribution of ZO-1 (epithelial marker) and acetylated α-tubulin (primary cilia marker) in KVDCs (Alexander and Stainier, 1999; Essner et al., 2005; Hashimoto et al., 2004; Oteíza et al., 2008). FISH-IF showed that the expression of charon was diminished at 20 ss and 26 ss compared to at 12 ss, and charon-negative KVDCs were frequently detected (Fig.3c). Moreover, we did not detect sox17
expression in KV-epithelial cells or KVDCS at all stages examined (Supplementary Fig.6), which is consistent with the previous report (Alexander and Stainier, 1999).

ZO-1 was accumulated on the surface of the KV lumen at 6 ss, confirming the epithelial character of EGFP-positive cells in charon:EGFP (Fig.3d; Oteíza et al., 2008). At 18 ss, shortly after KV-collapse, migrating KVDCs no longer expressed ZO-1, although residual ZO-1 expression was detected in a cluster of KVDCs located on the ventral side of the CNH . At 26 ss, a substantial number of KVDCs moved to the posterior edge of the chordoneural hinge (CNH), a group of progenitors which are located at the posterior end of the notochord and thought to give rise to the notochord, floor plate and hypochord (Agathon et al., 2003; Row et al., 2015). Furthermore, primary cilia of KVDCs were largely diminished after KV-collapse, particularly in migrating ones (Fig.3e). Taken together, the results suggest that KV-epithelial cells gradually lose their LRO and epithelial character, and acquire mesodermal fates through mid-to late somite stages.

KVDCs undergo EMT at the onset of migration

We examined detailed cellular behavior of KVDCs at the onset of migration using a double transgenic line, charon:EGFP;ßactin:memCherry. KV initially protruded into
the yolk, then incorporated into the tailbud at around 10 ss, and finally collapsed (Supplementary Figure 8). At around 14 ss, KV-epithelial cells detached from the underlying yolk syncytial layer (YSL) (Fig.4, Supplementary Video 1). Interestingly, a ring-like structure labelled by strong mCherry signals appeared in the YSL just beneath KV (Fig. 4, magenta arrowheads). This YSL ring shrank when KV was detached from the YSL as if it pushes KV out into the tailbud and breaks the connection between KV and the YSL. Once KV was detached from the YSL, its lumen started to shrink (Fig. 4, the 01:20 panel). At the same time, KV-epithelial cells started to disperse and migrate, extending filopodia-like structures (Fig. 4, insets in the 02:40 panel, Supplementary Video 2). This observation, together with the loss of ZO-1 expression (Fig.3d), suggests that KV-epithelial cells undergo epithelial-mesenchymal transition during KV-collapse.

Differentiation of KVDCs into the PSM and somite derivatives

We next examined the developmental capacity of KVDCs which migrate into somites using lineage-specific differentiation markers. At 12 ss when KV is still present, KV epithelial cells were ventrally attached to the PSM as well as notochord (Fig.5a). A panPSM marker msgnl (Joseph and Cassetta, 1999; Yoo et al., 2003; Yoon et al., 2000) was strongly expressed in the PSM but not in KV-epithelial cells at 12 ss (Fig.5a),
confirming their distinct lineages. After KV-collapse, KVDCs were found in the PSM (Fig.5b1) and later in the anterior segmented somites as well, where msgnl expression is no longer detected (Fig.5b2). These results suggest that KVDCs are incorporated into the PSM after KV-collapse and are intermingled with surrounding PSM cells.

The zebrafish somite consists of three populations with distinct fates, the myotome, dermomyotome, and sclerotome (Stickney et al., 2000). The myotome is further divided into the two subpopulations, slow muscle in the dorsal (outer), and fast muscle in the ventral (deeper) regions. KVDCs were found to be distributed in all these populations at later stages (Fig.5). At 3 dpf , KVDCs which are located near the surface and in the deep layer of the myotome expressed slow and fast muscle markers, respectively, as detected by F59 and F310 antibodies (Fig.5c, d). These muscle cells persisted at least until 5 dpf (data not shown), suggesting that they differentiated into functional muscles. Fast muscles are known to be derived from adaxial cells which are large, cuboidal in shape, located adjacent to the notochord and express myoD (Devoto et al., 1996). During slow muscle development, adaxial cells radially migrate from their original position toward the superficial layer of the myotome and differentiate into slow muscles there (Barresi et al., 2001; Cortés et al., 2003). At late somite stage (26 ss), we identified adaxial cell-like KVDCs, judged by their shape and location, and found that
they indeed expressed myoD (Fig.5h). This observation suggests that KVDCs follow the normal developmental process to differentiate into slow muscles.

KVDCs were also found in the dermomyotome layer (the outer-most surface of the somite) and in the sclerotome region (the ventro-medial region near the notochord and neural tube), where they expressed the dermomyotome marker, Pax3/7 (Hammond et al., 2007) and sclerotome marker, $n k x 3.1$ (Ma et al., 2018), respectively (Fig.5e, i). We also examined the positional relationship between ventral KVDCs and posterior blood vessels, because the ventral sclerotome is known to differentiate into mural cells, which surround blood vessels (Stratman et al., 2017). For this, we used double transgenic fish of charon:EGFP and drl:mCherry, whose LPM derivates are specifically labelled with mCherry (Mosimann et al., 2015; Prummel et al., 2019). We found that phalloidin-negative KVDCs were attached to the posterior-most part of the caudal vein (Fig.5f, g), supporting the idea that KVDCs acquire the differentiation potency of the sclerotome. Importantly, KVDCs did not overlap with mCherry-expressing LPMderivatives, indicating that they do not contribute to the LPM lineage (Fig.5f, g).

Differentiation of KVDCs into the notochord and tail mesenchyme

We further examined the differentiation process of KVDCs in the notochord and tail
mesenchyme. At 12 ss, KV-epithelial cells were ventrally attached to the no tail (ntl, the young notochord marker)-positive notochord (Schulte-Merker et al., 1994; Fig.6a). At 20 ss, some KVDCs were found in the posterior end of $n t l$-expressing area, i.e., the CNH (Fig.6b). These KVDCs were also positive for ntl, indicating that they had acquired the axial mesodermal fate. Some KVDCs further developed into ntl-negative mature notochord cells at 26 ss (Fig.6b), and later into the surrounding sheath cells (Fig.2d). These results show that KVDCs which infiltrate into the CNH possess the full capacity of notochord differentiation.

The migration of KVDCs into the axial mesoderm seemed to take place exclusively in the CNH. The developing and mature notochord is surrounded by the basement membrane formed by deposition of extracellular matrix (ECM) such as Laminin and Fibronectin (Scott and Stemple, 2004). However, accumulation of these two major ECM components was reduced around the CNH as indicated by immunostaining (Fig.6d, e), which may facilitate cell mingling and infiltration of KVDCs into the CNH.

Lastly, we tracked the fate of the posterior-most KVDCs cluster which stays around the CNH until the end of the segmentation period (Fig.3d). We found that these KVDCs are distinguished from CNH cells, because they did not express the CNH
markers, noto and (Dheen et al., 1999; Fig.6c). Using charon:H2B-mEosEM, we examined the fate of these KVDCs by photoconverting H2B-mEosEM-expressing cells located posterior to the CNH at around 28 ss and chased the labelled cells in 2 dpf larvae. The result demonstrated that they preferentially differentiated into fin mesenchymal cells in the caudal fin fold rather than into the CNH or notochord cells (n $=3$ embryos, Fig.6f). These results imply that these KVDCs occupy a posterior-most part of the paraxial (but not the axial) mesoderm and directly differentiate into caudal fin mesenchyme.

Discussion

During differentiation, the potency of cells becomes restricted as they are specified into certain lineages. In some contexts, however, differentiated cells can be converted to other cell types; a phenomenon called adult cell plasticity (Merrell and Stanger, 2016). Such plasticity is often observed in the regeneration process, but it is still a matter of debate whether it takes place commonly during normal development of animals (Merrell and Stanger, 2016). The present study demonstrated that derivatives of KVepithelial cells (KVDCs) join mesodermal progenitors after KV-collapse and differentiate into mature cell types according to their location. Such "reemployment" of KV-epithelial cells is a rare example of cell plasticity of fully differentiated cells during normal development in vertebrates, which is achieved through transdifferentiation (Fig.7).

KVDCs are a multipotent mesodermal cell population in the tailbud

Our results revealed that KVDCs in the zebrafish tailbud possess unique differentiation potency. The zebrafish tailbud contains three undifferentiated cell populations, the PSM, CNH, and neuromesodermal progenitors (NMPs; Beck, 2015; Sambasivan and Steventon, 2021). KVDCs occupy a part of the PSM and CNH, and differentiate into the paraxial and axial mesoderm. In contrast, KVDCs never contribute to NMPs as they do
not give rise to the neural tube (Henrique et al., 2015). Importantly, KVDCs are unique among these progenitors in the tailbud in that they are the descendants of functional epithelial cells with primary cilia, which exerted a crucial role in left-right patterning.

The contribution of the LRO cells to the mesodermal tissues could be a common feature among vertebrates, although the origin and structures of the LRO are diverse (Blum et al., 2014). The gastrocoel roof plate in amphibians and node in mammals, which function as the LRO in these species (Blum et al., 2014), are suggested to differentiate into the notochord and somites, and into the posterior notochord, respectively (Brennan et al., 2002; Shook et al., 2004). Thus, it is likely that the vertebrate LRO cells generally behave as mesodermal cells at later stages, although DFCs in the zebrafish are transiently endodermal at the beginning of their emergence (Alexander and Stainier, 1999).

Transdifferentiation of KVDCs

Transdifferentiation of mature cells is generally achieved through dedifferentiation into a potent state followed by redifferentiation into a new lineage (Jopling et al., 2011). The development of KVDCs appears to go through this process: KVDCs redifferentiate into somite-derivatives and notochord after being integrated into their progenitors. We observed that KV-epithelial cells undergo EMT during KV-collapse. EMT frequently
occurs in association with dedifferentiation as seen in cancer metastasis and neural crest delamination (Yang and Weinberg, 2008). Indeed, EMT in KV is accompanied by the loss of differentiated epithelial characters such as primary cilia and tight junctions, which lead to KV-collapse and cell migration. Factors triggering this EMT are yet to be determined, although potent signalling ligands, Wnt, BMP and FGF are produced in the nearby PSM (Hubaud and Pourquié, 2014; Row and Kimelman, 2009). Furthermore, we described the shrinkage of the YSL underlying KV in the present study (Fig.4c). This shrinkage might generate mechanical force which triggers EMT in cooperation with those signalling ligands (Gjorevski et al., 2012).

In general, mature epithelial cells maintain their fate and integrity by cell-cell junctions and attachment to the basement membrane (Yang et al., 2020). Then, why can KV-epithelial cells undergo transdifferentiation and what makes them so unique? Despite the presence of evident apico-basal polarity and cell-cell junctions, KV epithelium seems to lack the basement membrane, as revealed by our immunostaining and a previous report on the atypical localization of Laminin $\beta 1$ a to their apical side (Hochgreb-Hägele et al., 2013). Thus, KV-epithelial cells may not be of typical epithelium in character, which could reflect their transient function. Lack of the basement membrane would allow KV-epithelial cells to dedifferentiate and migrate
without a need of ECM remodelling.

Some vertebrate tissues consist of cells derived from different lineages. The prominent examples are the zebrafish pituitary and mammalian vascular endothelium, where undifferentiated cells from different origins converge at the transcription level once they are intermingled (Fabian et al., 2020; Plein et al., 2018). We confirmed here that KVDCs, whose origin is distinct from the authentic mesoderm, differentiate into the notochord and somite-derivatives in the caudal region. KVDCs are thus a good model for the study of such lineage convergence during normal development. Single-cell multiomics using charon transgenic lines will provide insights into the mechanism of how and to what extent cells from different lineages converge together to form a functionally integrated tissue.

Figure legends

Figure 1. Establishment of charon:EGFP for the specific labeling of KV-epithelial cells
a, Location of the $5-\mathrm{kb}$ charon promoter in the zebrafish genome. charon resides on chromosome 1 , and the $5-\mathrm{kb}$ charon promoter spans from the direct upstream position of its start codon.
b, Construction of charon:EGFP transgene flanked by Tol2 excision sites.
c, Lateral view of the EGFP fluorescence in a charon:EGFP embryo at 9 somite stage (ss). Fluorescence image was merged with the DIC (differential interference contrast) image. KV, Kupffer’s vesicle.
d, Dorsal view of a charon:Lck-mGL embryo at 9 ss injected with H2B-mCherry mRNA. Black arrowhead indicates the level of the sagittal optical section on the right side.
e, Dorsal view of a DAB-stained charon:EGFP embryo at 12 ss.
f, Cross section of the tailbud of a DAB-stained charon:EGFP embryo at 12 ss. Nuclei were counterstained with hematoxylin. Dorsal side to the top.
g, FISH-IF of charon in a charon:EGFP embryo at 12 ss. Magenta signal is for FISH of charon mRNA whereas green is for immunostaining of EGFP proteins. Lateral view of
the tailbud region is shown. White box indicates the enlarged area. Dorsal to the bottom, posterior to the left. Scale bars, $200 \mu \mathrm{~m}(\mathrm{c}, \mathrm{e}), 100 \mu \mathrm{~m}(\mathrm{f})$ and $50 \mu \mathrm{~m}(\mathrm{~d}, \mathrm{~h})$.

Figure 2. Histology of KVDCs

a, Lateral view of a DAB-stained charon:EGFP embryo at 22 ss. White arrowheads indicate KVDCs which have started to migrate.
b, Cross section of the tailbud of a DAB-stained charon:EGFP embryo at 22 ss. Nuclei were counterstained with hematoxylin. Dorsal side to the top. PSM, presomitic mesoderm. nc, notochord.
c, Lateral view of a charon:EGFP embryo at 22 ss counterstained with phalloidin and DAPI. Dorsal to the top. Green arrowheads indicate EGFP-positive cells in the CNH (chordoneural hinge).
d, Cross sections of a DAB-stained charon:EGFP larva at 3 dpf . Nuclei were counterstained with hematoxylin. Dorsal side to the top. Asterisk indicates a melanocyte.
dmu, dorsal muscle. fm, fin mesenchyme. nc, notochord. ncs, notochordal sheath. nt, neural tube. vmc, ventral muscle.
e, Lateral view of the caudal region of a charon:EGFP embryo at 3 dpf counterstained with phalloidin. White boxes indicate areas magnified in the panels 1-4. White dashed
line indicates the edge of the fin fold. Panel 1, EGFP-positive muscles in segmented somites. Panel 2, EGFP-positive muscles in non-segmented somites. Panel 3, EGFPpositive notochord cells. Panel 4, EGFP-positive fin mesenchymal cells in the caudal fin fold. Scale bars, $200 \mu \mathrm{~m}$ (a, e), $100 \mu \mathrm{~m}$ (b, d), $50 \mu \mathrm{~m}$ (c).
f, Number of H2B-mEosEM-positive KVDCs in charon:H2B-mEosEM in four populations shown in (e). Horizontal bars, mean. Vertical bars, standard deviation. $\mathrm{N}=$ 20 larvae.
g, Scheme for the labelling of KV-epithelial cells by photoconversion. H2B-mEosEM is expressed in KV-epithelial cells in Bactin:memCherry embryos by injection of charon:H2B-mEosEM plasmid. H2B-mEosEM was photoconverted at around 13 ss using a confocal microscopy and time-lapse images were taken every 1 hour.
h, Time-lapse images of a Bactin:memCherry embryo injected with charon:H2BmEosEM. Images taken every 2 hours after photoconversion and from 2 dpf treated larvae are shown. Arrowheads indicate the migrated KVDCs labelled with photoconverted H2B-mEosEM.

Figure 3. Loss of the LRO character in KVDCs
a, Immunostaining of cleaved caspase-3 in charon:EGFP embryos at 12,20 and 26 ss.

Top, the signal of cleaved caspase-3. Bottom, merged view with EGFP and DAPI signal. Magenta arrowheads indicate KVDCs which is positive for cleaved caspase-3.
b, Quantification of cleaved caspase-3-positive KVDCs. Horizontal bars, mean. Vertical bars, standard deviation. p-values from two-tailed Welch's t-test are shown. $\mathrm{N}=9(12$ ss), 11 (20 ss), and 10 (26 ss) embryos.
c, FISH-IF of charon in charon:EGFP at 20 and 26 ss. Magenta, signal of FISH for charon mRNA. Green, signal of immunostaining for EGFP. Lateral view of the tailbud region is shown. Dorsal to the top.
d, Immunostaining of ZO-1 in charon:EGFP. KV is shown for 6 ss whereas the tail region is shown for 18 and 26 ss. Magenta and white arrowheads indicate KVDCs with and without ZO-1 expression, respectively. nc, notochord. CNH, chordoneural hinge. e, Immunostaining of acetylated α-tubulin in charon:EGFP. Magenta and white arrowheads indicate KVDCs with and without acetylated α-tubulin signal, respectively. Scale bars, $50 \mu \mathrm{~m}$ (a, c, d, e).

Figure 4. KVDCs migrate to mesodermal tissues through EMT

Time-lapse images of a charon:EGFP;ßactin:memCherry embryo taken every 20 minutes for 3 hours from 13 ss. Magenta arrowheads indicate the shrinkage of the YSL
underlying KV. White boxes in the panel 02:40 indicate inset areas. Green arrowhead in the inset indicates a filopodium-like structure formed in KVDCs. Scale bars, $50 \mu \mathrm{~m}$.

Figure 5. Differentiation of KVDCs into somite derivatives
a, FISH-IF of msgnl in a charon:EGFP embryo at 12 ss. Left, dorsal view. Top, an optical section at the level of the dashed line in the panel below. Right, a more dorsal stack than the left one. PSM, presomitic mesoderm.
b, FISH-IF of msgnl in charon:EGFP embryos at 20 ss and 26 ss. Left, dorsal view. Anterior to the top. Right, optical sections at the level of the dashed lines in the left panels. White arrowheads indicate KVDCs in the PSM (20 ss and 26 ss) and in the segmented somites (26 ss).
\mathbf{c}, \mathbf{d}, Vibratome cross sections of charon:EGFP 3 dpf larvae immunostained with F59 (c) and F310 (d) antibodies to show the distribution of slow and fast muscles, respectively. Counterstaining was performed with DAPI. White arrowheads indicate EGFP-positive slow and fast muscle cells. Dorsal to the top. nt, neural tube. nc, notochord.
e, Immunostaining of dermomyotomes by anti-Pax3/7 antibody in a charon:EGFP 2 dpf larva. Lateral view and optical sections at the level of dashed lines are shown. White
arrowheads indicate EGFP-positive dermomyotomes.
f, Lateral view of a charon:EGFP;drl:mCherry 3 dpf larva. White arrowheads indicate EGFP-positive sclerotomal cells surrounding mCherry-positive cells derived from the LPM. nc, notochord. LPM, lateral plate mesoderm.
g, Left, cross section of a charon:EGFP;drl:mCherry 3 dpf larva immunostained with anti-EGFP and anti-mCherry antibodies. Counterstaining was performed with phalloidin and DAPI. Right, a magnified view of the white rectangular area in the left panel. White arrowheads indicate KVDCs surrounding mCherry-positive LPM derivatives.
h, i, FISH-IF of myodl in a charon:EGFP embryo at $26 \mathrm{ss}(\mathrm{h})$ and $n k x 3.1$ in a 24 hpf (hours post fertilization) embryo (i). Left panel, lateral view. Anterior to the left, dorsal to the top. Right panel, optical sections at the level of the dashed lines in the left panels. White arrowheads indicate KVDCs which differentiated in myodl-positive adaxial cells (h) and $n k x 3.1$-positive sclerotomes (i). Scale bars, $50 \mu \mathrm{~m}$ (a-i).

Figure 6. Differentiation of KVDCs into the notochord
a, FISH-IF of ntl in a charon:EGFP embryo at 12 ss. Top, dorsal view. Anterior to the top. Bottom, an optical section at the level of the dashed line in the upper panel. nc, notochord.
b, FISH-IF of $n t l$ in charon:EGFP embryos at 20 ss and 26 ss. Dorsal views. Anterior to the left. White arrowheads, KVDCs in the CNH (20 ss) and in the notochord (26 ss). CNH, chordoneural hinge.
\mathbf{c}, \mathbf{d}, Immunostaining of Laminin (c) and Fibronectin (d) in charon:EGFP embryos at 12 ss and 20 ss. For 12 ss, dorsal views of KV are shown. Anterior to the top. For 20ss, lateral views of the tailbud are shown. Dorsal to the top. Anterior to the right.
e, FISH-IF of noto (flh) in a charon:EGFP embryo at 26 ss. Lateral view. Dorsal to the top. Anterior to the left.
f, Lineage tracing of the KVDCs cluster at the posterior tip of the CNH. H2B-mEosEM was expressed in KVDCs by charon:mEosEM plasmid injection into ßactin:memCherry embryos. Photoconversion was performed in 28 ss and the labelled KVDCs were chased at 2 dpf. White arrowheads indicate the labelled KVDCs which differentiated into fin mesenchymal cells in the caudal fin fold. Scale bars, $50 \mu \mathrm{~m}$ (a-f).

Figure 7. An overview of KVDCs differentiation

Schematic diagram depicting the process of the transdifferentiation-mediated reemployment of KV-epithelial cells. After KV-collapse, KV-epithelial cells dedifferentiate and undergo EMT. Mesenchymalized KVDCs infiltrate into mesodermal
progenitors, the PSM and CNH , and acquire new fates according to their new locations.

Note that they do not directly migrate to the segmented somites or the mature notochord.

Supplementary Figure 1. Sequence of the zebrafish 5 -kb charon promoter

Nucleotide sequence of the $5-\mathrm{kb}$ charon promoter in the zebrafish.

Supplementary Figure 2. Sequence of the medaka 5-kb charon promoter

Nucleotide sequence of the $5-\mathrm{kb}$ charon promoter in medaka. Red, partial coding sequences of charon gene.
Supplementary Figure 3. Fluorescence stereomicroscope images of
charon:EGFP
a, Lateral view of a charon:EGFP embryo at 6 ss.
b, Ventral view of a charon:EGFP embryo at 20 ss .
c, Lateral view of a charon:EGFP larva at 2 dpf. Scale bars, $200 \mu \mathrm{~m}$ (a-c).

Supplementary Figure 4. Fluorescence of charon:Lck-mGreenLantern
a, The construction of charon:Lck-mGreenLantern transgene.
b, \mathbf{c}, Lateral view of a charon:Lck-mGreenLantern embryo at 8 ss (b) and 22 ss (c). KV, Kupffer's vesicle. Scale bars, $200 \mu \mathrm{~m}$.

Supplementary Figure 5. Medaka charon promoter is active in medaka KVepithelial cells
\mathbf{a}, Location of the charon $5-\mathrm{kb}$ promoter in the medaka genome. charon resides on chromosome 1, and the charon $5-\mathrm{kb}$ promoter spans from the direct upstream position of its start codon.
b, Construction of Ol_charon:EGFP transgene flanked by I-SceI recognition sites.
c, Expression of EGFP in Ol_charon:EGFP embryos. Lateral views on the top row, dorsal views on the bottom row. White dot lines indicate embryonic bodies. Red circle indicates the position of KV. Scale bars, $500 \mu \mathrm{~m}$.

Supplementary Figure 6. FISH-IF of sox17 in charon:EGFP embryos

FISH-IF of soxl7 in charon:EGFP embryos at 6 ss, 12 ss, 20 ss and 26 ss. Lateral views of tailbud regions are shown. Scale bars, $50 \mu \mathrm{~m}$.

Supplementary Figure 7. foxj1a:KikGR supports KV-epithelial cell migration

a, Scheme for the photoconversion labelling of KV-epithelial cells in foxjla:KikGR.

KikGR in KV-epithelial cells was selectively photoconverted at around 13 ss and time-
lapse images were taken every 1 hour.
b, Time-lapse images of a photoconverted foxjla:KikGR embryo. Single stacks from images taken every 2 hours after photoconversion are shown. When photoconverted at around 13 ss, labelled KVDCs migrated into the PSM and the notochord by 28 ss (6 hours after photoconversion). Scale bars, $50 \mu \mathrm{~m}$.

Supplementary Figure 8. Time-lapse imaging of the incorporation of KV into the tailbud

Time-lapse imaging of the KV development in a TL2E embryo. Arrowheads indicate the position of KV. Staring from 4 ss , images are taken every 15 minutes for 10 hours. Scale bars, $50 \mu \mathrm{~m}$.

Supplementary Video 1. Time-lapse imaging of KV-collapse

A video showing the process of KV-collapse in a charon:EGFP; Bactin:memCherry embryo. Time-lapse images were taken every 5 minutes for 3 hours from 13 ss. Note
that a ring-like structure is formed beneath KV during KV-collapse. Scale bar, $50 \mu \mathrm{~m}$.

Supplementary Video 2. Formation of filopodia-like structures in KVDCs

Green channel is extracted from Supplementary Video 1 to show the formation of filopodia-like structure in KVDCs. Scale bar, $50 \mu \mathrm{~m}$.

Author Contributions

Conceptualization, T.I., K.I., and H.T.; Methodology, T.I., K.I., and T.K.; Investigation,
T.I., K.I., and T.K.; Resources, T.I., K.I., and T.K.; Writing - Original Draft, T.I.; Writing

- Review \& Editing, T.I., T.K., and H.T.; Supervision, H.T.; Funding Acquisition, T.I., K.I., T.K. and H.T..

Acknowledgement

We thank S. Megason for Bactin:memCherry strain; C. Mosimann for drl:mCherry strain and drl:EGFP (pCM298) plasmid; N. H. Patel for Pax3/7 antibody (DP312); A. Shimada for technical support and discussion; Y. Yamagishi, S. Tayama, I. Fukuda, M. Funato and M. Sakamoto for fish husbandry. This work was supported by Grant-in-Aid for Japan Society for the Promotion of Science (JSPS) Fellows under Grant Numbers 18 J 21960 (T.I.) and 15J08599 (K.I.), JSPS KAKENHI under Grant Numbers JP19K23741 and JP21K15101 (T.K.) and Japan Agency for Medical Research and Development (AMED) under Grant Number JP21gm1110007 (H.T.).

563 Competing interests

565 Materials \& Correspondence

Material and Methods

Zebrafish strain and manipulation of embryos

The RW (RIKEN WT) and TL2E (Tüpfel long fin 2E) strains were used as the wildtype zebrafish strains. Adult fish and embryos were maintained under standard conditions. Fertilized embryos were incubated at $23-28^{\circ} \mathrm{C}$ in $1 / 3 \times$ Ringer's solution ($38.7 \mathrm{mM} \mathrm{NaCl}, 0.97 \mathrm{mM} \mathrm{KCl}, 1.67 \mathrm{mM}$ HEPES, $1.80 \mathrm{mM} \mathrm{CaCl}_{2}$) to obtain the stage of interest. For imaging hatched larvae, 0.003% N-phenylthiourea (PTU) was added to $1 / 3 \times$ Ringer's solution during somitogenesis to prevent pigmentation. Staging of embryos is based on Kimmel et al. (1995). All experimental procedures and animal care were carried out according to the animal ethics committee of the University of Tokyo (Approval No. 20-2).

Plasmid construction

The sequences of charon and foxjla promoters (5 kb and 5.2 kb , respectively) were amplified from the genomic DNA of the RW strain and were cloned into pCR Blunt IITOPO vector (Invitrogen). pDestTol2pA2-charon:EGFP (charon:EGFP for short) was constructed by replacing the $d r l$ promoter in pDestTol2pA2-drl:EGFP (Mosimann et al., 2015) with the cloned charon promoter. Medaka charon promoter was cloned from
genomic DNA of medaka d-rR strain and was inserted into pBlueScript II SK(+)-EGFP carrying an I-SceI cassette to make pBSSK-I-SceI-Ol_charon:EGFP (Ol_charon:EGFP for short). pDestTol2pA2-charon:Lck-mGreenLantern was constructed as follows: the CDS of mGreenLantern (Campbell et al., 2020) whose codon usage is optimized for zebrafish was purchased from Integrated DNA Technologies (IDT), and was inserted into pCSf107mT vector (Mii et al., 2009) with an N-terminal membrane localization signal of mouse Lck (Chertkova et al., 2017) to make pCSf107-Lck-mGreenLantern. Then, the CDS of Lck-mGreenLantern was subcloned into pDestTol2pA2 vector carrying the charon promoter. pDestTol2pA2-charon:H2B-mEosEM was constructed as follows: the CDS of mEosEM was synthesized through mutagenesis of mEos4b (PaezSegala et al., 2015) as described (Fu et al., 2020), and was assembled together with the CDS of human Histone H2B type 1-J (H2BC11) into pCSf107mT to make pCSf107-H2B-mEosEM. Then, the CDS of H2B-mEosEM was subcloned into pDestTol2pA2 vector carrying the charon promoter. To construct template plasmids for the antisense probe synthesis, full-length coding sequences (CDSs) of zebrafish charon, sox17, msgn1, myodl, nkx3.1, ntl and noto cloned from 16 ss cDNA were inserted into pCSf107mT. These cloning and subcloning were performed using PrimeSTAR GXL polymerase, PrimeSTAR MAX polymerase, In-fusion HD kit and In-Fusion Snap Assembly kit
(TaKaRa). pRSETa_mEos4b was a gift from Loren Looger (Addgene plasmid \#51073; http://n2t.net/addgene:51073; RRID:Addgene_51073). Lck-mScarlet-I was a gift from Dorus Gadella (Addgene plasmid \#98821; http://n2t.net/addgene:98821; RRID:Addgene_98821). Digital plasmid maps are available upon request.

Transgenesis

Zebrafish transgenesis was based on the Tol2 transposase method (Kikuta and Kawakami, 2009). To obtain founders, Tol2 mRNA ($25 \mathrm{ng} / \mu \mathrm{L}$) and plasmids (12.5 $\mathrm{ng} / \mu \mathrm{L}$) were injected into one-cell stage embryos of the RW strain. Founders carrying transgenes were screened by crossing with the TL2E strain. For medaka transgenesis, the I-SceI method (Rembold et al., 2006) was used. Following digestion with I-SceI, Ol_charon:EGFP plasmid was injected into one-cell stage embryos of the d-rR wildtype strain. Founders were screened by crossing with the d-rR strain. Fluorescence image of transgenic embryos was captured by M165 FC fluorescence stereomicroscope and DFC7000T digital camera (Leica).

Time-lapse imaging and photoconversion

To perform time-lapse imaging, embryos were mounted laterally in the chamber of 1%
agarose in $1 / 3 \times$ Ringer's solution with their left side down. Embryos were imaged by LSM710 confocal microscopy (Carl Zeiss) from 13 ss for 3 hours or longer at an interval of 5 min . In cell-tracking experiments, the photoconversion of H2B-mEosEM was performed with a 405 nm diode laser at the power of 10%. After photoconversion, embryos were released in $1 / 3 x$ Ringer's solution with 0.003% PTU and were grown until they reach the stages of interest in a shaded chamber. The 3D rendering of timelapse images was performed with Imaris (version 8.1.2, Bitplane).

Histology and immunostaining

Embryos were fixed with 4% paraformaldehyde (PFA) in PBST at $4^{\circ} \mathrm{C}$ overnight or at room temperature for 2 hours, washed with PBST for three times and were stored at $4^{\circ} \mathrm{C}$ until use (except for Laminin and Fibronectin, see below). Fixed embryos were permeabilized with 1% Triton X-100 in PBS, blocked with 2% BSA in PBSDT (PBS/1\% DMSO/0.1\% Triton X-100) and were immunostained with following antibodies: mouse monoclonal anti-GFP (1/100, A-11120, Invitrogen), rabbit polyclonal anti-GFP (1/800, 632592, Clontech), anti-Myosin heavy chain (1/10, F59, deposited to the DSHB by Stockdale, F.E.), anti-Myosin light chain 1 slow and 3 fast (1/10, F310, deposited to the DSHB by Stockdale, F.E.), anti-Pax3/7 (1/500, DP312, by
courtesy of N. H. Patel), anti-DsRed (1/500, 632496, Clontech), anti-cleaved caspase-3 (1/500, 9661, Cell Signaling Technology), anti-phospho Histone H3 (1/500, 06-570, Merck), and anti-ZO-1 (1/50, 33-9100, Invitrogen). For immunostaining of Laminin and Fibronectin, embryos were fixed by $2 \% \mathrm{PFA}$ for 2 hours at $25^{\circ} \mathrm{C}$, then for overnight at $4^{\circ} \mathrm{C}$. After quenching PFA with 50 mM glycine in PBSTT (PBS/0.5\% Triton X100/0.5\% Tween 20) and subsequent washing, embryos were blocked with 5\% BSA in PBSTT, and were stained with anti-Laminin (1/100, L9393, Sigma-Aldrich) or antiFibronectin (1/100, F3648, Sigma-Aldrich). Secondary antibodies for immunofluorescence were anti-rabbit IgG labelled with Alexa Fluor 488, 555, or 568 (A11008, A21429 or A10042, Invitrogen) and anti-mouse IgG labelled with Alexa Fluor 488 or 568 (A11001 or A10037, Invitrogen). For counterstaining, Phalloidin (labelled with Rhodamine or Alexa Fluor 647) (R415 or A22287, Invitrogen) and DAPI (4',6-diamidino-2-phenylindole) were added to the secondary antibody solution. Stained embryos were mounted with 1% LMP agarose/PBS (16520-050, Invitrogen) in a glassbased dish (3911-035, Iwaki) and were imaged by LSM710 confocal microscopy (Carl Zeiss). $40 \times$ and $25 \times$ water-immersion objective lenses (LD C-Apochromat 40x/1.1 W Korr M27 and LD LCI Plan-Apochromat 25x/0.8 Imm Corr DIC M27, Carl Zeiss) and a $5 \times$ objective lens (EC Plan-Neofluar $5 x / 0.16$) were used. The contrast adjustment and
cropping of captured images were performed by Fiji (version 1.53c; Schindelin et al., 2012).

For immunostaining of cross sections in 3 dpf larvae of charon:EGFP, fixed specimens were embedded in 4% LMP agarose/PBS, and 100-200 $\mu \mathrm{m}$ sections were prepared using Vibratome 3000 Tissue Sectioning System. Free-floating sections were stained with appropriate antibodies and mounted with 50% Glycerol/PBS on a slide glass.

For DAB staining of EGFP-expressing cells, fixed charon:EGFP embryos were blocked with $0.3 \% \mathrm{H}_{2} \mathrm{O}_{2}$ for 30 min and with 2% BSA in PBST for 2 hours, stained with anti-GFP antibody (1/800, 632592, Clontech) and biotinylated anti-rabbit IgG (1/200, BA-1000, Vector Laboratories). VECTASTAIN® Elite® ABC Kit (Vector Laboratories) and DAB tablets (D5905, Sigma-Aldrich) were used for DAB chromogenic reaction. Stained embryos were embedded in Technovit 7100 resin (Kulzer Technique) and $5 \mu \mathrm{~m}$ sections were obtained using an RM2245 microtome (Leica). Sections were counterstained with Mayer's hematoxylin solution and images were captured by BX61 microscope (Olympus) and AxioCam MRc 5 camera (Carl Zeiss) using a $40 \times$ objective lens.

Fluorescence in situ hybridization and immunofluorescence (FISH-IF)
charon:EGFP embryos at stages of interest were processed according to He et al., (2020) with minor modifications. Briefly, fixed embryos were permeabilized with 1% Triton X-100 in PBS for 1 hour and were hybridized with DIG-labelled probes at $60^{\circ} \mathrm{C}$. Chromogenic reaction was performed with either TSA Plus Cyanine 3 Kit (Akoya Biosciences) for $n k x 3.1$ or ImmPACT Vector Red (Vector Laboratories) for the other genes. Afterward, embryos were subjected to immunostaining against EGFP using antiGFP antibody (1/500, A11122, Invitrogen).

References

Agathon, A., Thisse, C. and Thisse, B. (2003). The molecular nature of the zebrafish tail organizer. Nature 424, 448-452.

Alexander, J. and Stainier, D. Y. R. (1999). A molecular pathway leading to endoderm formation in zebrafish. Curr. Biol. 9, 1147-1157.

Alexander, J., Rothenberg, M., Henry, G. L. and Stainier, D. Y. R. (1999). casanova plays an early and essential role in endoderm formation in zebrafish. Dev. Biol.

215, 343-357.

Amack, J. D. (2021). Cellular dynamics of EMT: lessons from live in vivo imaging of embryonic development. Cell Commun. Signal. 19, 1-16.

Amack, J. D., Wang, X. and Yost, H. J. (2007). Two T-box genes play independent and cooperative roles to regulate morphogenesis of ciliated Kupffer's vesicle in zebrafish. Dev. Biol. 310, 196-210.

Barresi, M. J. F., D'Angelo, J. A., Hernández, L. P. and Devoto, S. H. (2001). Distinct mechanisms regulate slow-muscle development. Curr. Biol. 11, 14321438.

Beck, C. W. (2015). Development of the vertebrate tailbud. Wiley Interdiscip. Rev. Dev. Biol. 4, 33-44.

Blum, M., Feistel, K., Thumberger, T. and Schweickert, A. (2014). The evolution and conservation of left-right patterning mechanisms. Development 141, 16031613.

Brennan, J., Norris, D. P. and Robertson, E. J. (2002). Nodal activity in the node governs left-right asymmetry. Genes Dev. 16, 2339-2344.

Brummett, A. R. and Dumont, J. N. (1978). Kupffer's vesicle in Fundulus heteroclitus: A scanning and transmission electron microscope study. Tissue Cell 10, 11-22.

Campbell, B. C., Nabel, E. M., Murdock, M. H., Lao-Peregrin, C., Tsoulfas, P., Blackmore, M. G., Lee, F. S., Liston, C., Morishita, H. and Petsko, G. A. (2020). mGreenLantern: a bright monomeric fluorescent protein with rapid expression and cell filling properties for neuronal imaging. Proc. Natl. Acad. Sci. U. S. A. 117, 30710-30721.

Caron, A., Xu, X. and Lin, X. (2012). Wnt/ β-catenin signaling directly regulates Foxj1 expression and ciliogenesis in zebrafish Kupffer's vesicle. Development 139, 514524.

Chen, Y. Y., Harris, M. P., Levesque, M. P., Nüsslein-Volhard, C. and Sonawane,
M. (2012). Heterogeneity across the dorso-ventral axis in zebrafish EVL is
regulated by a novel module consisting of sox, snail1a and max genes. Mech. Dev.

129, 13-23.

Chertkova, A. O., Mastop, M., Postma, M., van Bommel, N., van der Niet, S., Batenburg, K. L., Joosen, L., Gadella, T. W. J., Okada, Y. and Goedhart, J.
(2017). Robust and Bright Genetically Encoded Fluorescent Markers for

Highlighting Structures and Compartments in Mammalian Cells. bioRxiv.

Compagnon, J., Barone, V., Rajshekar, S., Kottmeier, R., Pranjic-Ferscha, K.,

Behrndt, M. and Heisenberg, C. P. (2014). The notochord breaks bilateral
symmetry by controlling cell shapes in the zebrafish laterality organ. Dev. Cell 31,

774-783.

Cooper, M. S. and D'Amico, L. A. (1996). A cluster of noninvoluting endocytic cells
at the margin of the zebrafish blastoderm marks the site of embryonic shield
formation. Dev. Biol. 180, 184-198.

Cortés, F., Daggett, D., Bryson-Richardson, R. J., Neyt, C., Maule, J., Gautier, P.,

Hollway, G. E., Keenan, D. and Currie, P. D. (2003). Cadherin-mediated
differential cell adhesion controls slow muscle cell migration in the developing
zebrafish myotome. Dev. Cell 5, 865-876.

Devoto, S. H., Melançon, E., Eisen, J. S. and Westerfield, M. (1996). Identification
of separate slow and fast muscle precursor cells in vivo, prior to somite formation.

Development 122, 3371-3380.

Dheen, T., Sleptsova-Friedrich, I., Xu, Y., Clark, M., Lehrach, H., Gong, Z. and Korzh, V. (1999). Zebrafish tbx-c functions during formation of midline structures. Development 126, 2703-2713.

Du, S. J. and Dienhart, M. (2001). Zebrafish tiggy-winkle hedgehog promoter directs notochord and floor plate green fluorescence protein expression in transgenic zebrafish embryos. Dev. Dyn. 222, 655-666.

Elmore, S. (2007). Apoptosis: A Review of Programmed Cell Death. Toxicol. Pathol. 35, 495-516.

Essner, J. J., Amack, J. D., Nyholm, M. K., Harris, E. B. and Yost, H. J. (2005). Kupffer's vesicle is a ciliated organ of asymmetry in the zebrafish embryo that initiates left-right development of the brain, heart and gut. Development 132, 1247-1260.

Fabian, P., Tseng, K., Smeeton, J., Lancman, J. J., Dong, P. D. S., Cerny, R. and Crump, J. G. (2020). Lineage analysis reveals an endodermal contribution to the vertebrate pituitary. Science (80-.). 370, 463-467.

Fu, Z., Peng, D., Zhang, M., Xue, F., Zhang, R., He, W., Xu, T. and Xu, P. (2020).
mEosEM withstands osmium staining and Epon embedding for super-resolution CLEM. Nat. Methods 17, 55-58.

Gjorevski, N., Boghaert, E. and Nelson, C. M. (2012). Regulation of Epithelial-

Mesenchymal Transition by Transmission of Mechanical Stress through Epithelial

Tissues. Cancer Microenviron. 5, 29-38.

Gourronc, F., Ahmad, N., Nedza, N., Eggleston, T. and Rebagliati, M. (2007).

Nodal activity around Kupffer's vesicle depends on the T-box transcription factors notail and spadetail and on Notch signaling. Dev. Dyn. 236, 2131-2146.

Hammond, C. L., Hinits, Y., Osborn, D. P. S., Minchin, J. E. N., Tettamanti, G.
and Hughes, S. M. (2007). Signals and myogenic regulatory factors restrict pax3
and pax7 expression to dermomyotome-like tissue in zebrafish. Dev. Biol. 302,

504-521.

Hashimoto, H., Rebagliati, M., Ahmad, N., Muraoka, O., Kurokawa, T., Hibi, M.
and Suzuki, T. (2004). The Cerberus/Dan-family protein Charon is a negative regulator of Nodal signaling during left-right patterning in zebrafish. Development 131, 1741-1753.

He, J., Mo, D., Chen, J. and Luo, L. (2020). Combined whole-mount fluorescence in situ hybridization and antibody staining in zebrafish embryos and larvae. Nat.

Protoc. 15, 3361-3379.

Henrique, D., Abranches, E., Verrier, L. and Storey, K. G. (2015).

Neuromesodermal progenitors and the making of the spinal cord. Development 142,

2864-2875.

Hochgreb-Hägele, T., Yin, C., Koo, D. E. S., Bronner, M. E. and Stainier, D. Y. R.
(2013). Laminin $\beta 1$ a controls distinct steps during the establishment of digestive organ laterality. Development 140, 2734-2745.

Hojo, M., Takashima, S., Kobayashi, D., Sumeragi, A., Shimada, A., Tsukahara, T.,

Yokoi, H., Narita, T., Jindo, T., Kage, T., et al. (2007). Right-elevated
expression of charon is regulated by fluid flow in medaka Kupffer's vesicle. Dev.

Growth Differ. 49, 395-405.

Hubaud, A. and Pourquié, O. (2014). Signalling dynamics in vertebrate segmentation.

Nat. Rev. Mol. Cell Biol. 15, 709-721.

Jopling, C., Boue, S. and Belmonte, J. C. I. (2011). Dedifferentiation, transdifferentiation and reprogramming: three routes to regeneration. Nat. Rev. Mol.

Cell Biol. 12, 79-89.

Joseph, E. M. and Cassetta, L. A. (1999). Mespo: a novel basic helix-loop-helix gene expressed in the presomitic mesoderm and posterior tailbud of Xenopus embryos.

Mech. Dev. 82, 191-194.

Kikuchi, Y., Agathon, A., Alexander, J., Thisse, C., Waldron, S., Yelon, D., Thisse, B. and Stainier, D. Y. R. (2001). casanova encodes a novel Sox-related protein necessary and sufficient for early endoderm formation in zebrafish. Genes Dev. 15, 1493-1505.

Kikuta, H. and Kawakami, K. (2009). Transient and Stable Transgenesis Using Tol2 Transposon Vectors. In Zebrafish: Methods and Protocols (ed. Lieschke, G. J.), Oates, A. C.), and Kawakami, K.), pp. 69-84. Totowa, NJ: Humana Press.

Kimmel, C. B., Ballard, W. W., Kimmel, S. R., Ullmann, B. and Schilling, T. F. (1995). Stages of embryonic development of the zebrafish. Dev. Dyn. 203, 253310.

Kupffer, C. (1868). Beobachtungen fiber die Entwicklung. Anatomie 209-272.

Long, S., Ahmad, N. and Rebagliati, M. (2003). The zebrafish nodal-related gene southpaw is required for visceral and diencephalic left-right asymmetry.

Development 130, 2303-2316.

Lopes, S. S., Lourenço, R., Pacheco, L., Moreno, N., Kreiling, J. and Saúde, L. (2010). Notch signalling regulates left-right asymmetry through ciliary length control. Development 137, 3625-3632.

Ma, R. C., Jacobs, C. T., Sharma, P., Kocha, K. M. and Huang, P. (2018).

Stereotypic generation of axial tenocytes from bipartite sclerotome domains in zebrafish. PLoS Genet. 14, 1-29.

Marques, S., Borges, A. C., Silva, A. C., Freitas, S., Cordenonsi, M. and Belo, J. A. (2004). The activity of the Nodal antagonist Cerl-2 in the mouse node is required for correct L/R body axis. Genes Dev. 18, 2342-2347.

Matsui, T., Ishikawa, H. and Bessho, Y. (2015). Cell collectivity regulation within migrating cell cluster during Kupffer's vesicle formation in zebrafish. Front. Cell Dev. Biol. 3, 27.

Melby, A. E., Warga, R. M. and Kimmel, C. B. (1996). Specification of cell fates at the dorsal margin of the zebrafish gastrula. Development 122, 2225-2237.

Merrell, A. J. and Stanger, B. Z. (2016). Adult cell plasticity in vivo: Dedifferentiation and transdifferentiation are back in style. Nat. Rev. Mol. Cell Biol. 17, 413-425.

Minegishi, K., Rothé, B., Komatsu, K. R., Ono, H., Ikawa, Y., Nishimura, H., Katoh, T. A., Kajikawa, E., Sai, X., Miyashita, E., et al. (2021). Fluid flowinduced left-right asymmetric decay of Dand5 mRNA in the mouse embryo requires a Bicc1-Ccr4 RNA degradation complex. Nat. Commun. 12, 4071.

Mizoguchi, T., Verkade, H., Heath, J. K., Kuroiwa, A. and Kikuchi, Y. (2008). Sdf1/Cxcr4 signaling controls the dorsal migration of endodermal cells during zebrafish gastrulation. Development 135, 2521-2529.

Molina, G. A., Watkins, S. C. and Tsang, M. (2007). Generation of FGF reporter transgenic zebrafish and their utility in chemical screens. BMC Dev. Biol. 7, 1-14.

Montague, T. G., Gagnon, J. A. and Schier, A. F. (2018). Conserved regulation of Nodal-mediated left-right patterning in zebrafish and mouse. Development 145, dev171090.

Moriyama, Y., Kawanishi, T., Nakamura, R., Tsukahara, T., Sumiyama, K., Suster, M. L., Kawakami, K., Toyoda, A., Fujiyama, A., Yasuoka, Y., et al. (2012). The medaka zic $1 /$ zic 4 mutant provides molecular insights into teleost caudal fin evolution. Curr. Biol. 22, 601-607.

Mosimann, C., Panáková, D., Werdich, A. A., Musso, G., Burger, A., Lawson, K. L., Carr, L. A., Nevis, K. R., Sabeh, M. K., Zhou, Y., et al. (2015). Chamber identity programs drive early functional partitioning of the heart. Nat. Commun. 6, 8146.

Nakamura, T., Saito, D., Kawasumi, A., Shinohara, K., Asai, Y., Takaoka, K., Dong, F., Takamatsu, A., Belo, J. A., Mochizuki, A., et al. (2012). Fluid flow
and interlinked feedback loops establish left-right asymmetric decay of Cerl2 mRNA. Nat. Commun. 3, 1322.

Oteíza, P., Köppen, M., Concha, M. L. and Heisenberg, C. P. (2008). Origin and shaping of the laterality organ in zebrafish. Development 135, 2807-2813.

Paez-Segala, M. G., Sun, M. G., Shtengel, G., Viswanathan, S., Baird, M. A., Macklin, J. J., Patel, R., Allen, J. R., Howe, E. S., Piszczek, G., et al. (2015). Fixation-resistant photoactivatable fluorescent proteins for CLEM. Nat. Methods 12, 215-218.

Plein, A., Fantin, A., Denti, L., Pollard, J. W. and Ruhrberg, C. (2018). Erythromyeloid progenitors contribute endothelial cells to blood vessels. Nature 562, 223228.

Prummel, K. D., Hess, C., Nieuwenhuize, S., Parker, H. J., Rogers, K. W.,

Kozmikova, I., Racioppi, C., Brombacher, E. C., Czarkwiani, A., Knapp, D., et al. (2019). A conserved regulatory program initiates lateral plate mesoderm emergence across chordates. Nat. Commun. 10, 1-15.

Rembold, M., Lahiri, K., Foulkes, N. S. and Wittbrodt, J. (2006). Transgenesis in fish: Efficient selection of transgenic fish by co-injection with a fluorescent reporter construct. Nat. Protoc. 1, 1133-1139.

Row, R. H. and Kimelman, D. (2009). Bmp inhibition is necessary for post-
gastrulation patterning and morphogenesis of the zebrafish tailbud. Dev. Biol. 329, 55-63.

Row, R. H., Tsotras, S. R., Goto, H. and Martin, B. L. (2015). The zebrafish tailbud contains two independent populations of midline progenitor cells that maintain long-term germ layer plasticity and differentiate based on local signaling cues. Development 143, 244-254.

Sakaguchi, T., Kikuchi, Y., Kuroiwa, A., Takeda, H. and Stainier, D. Y. R. (2006).

The yolk syncytial layer regulates myocardial migration by influencing
extracellular matrix assembly in zebrafish. Development 133, 4063-4072.

Sambasivan, R. and Steventon, B. (2021). Neuromesodermal Progenitors: A Basis for Robust Axial Patterning in Development and Evolution. Front. Cell Dev. Biol. 8, $1-9$.

Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch,
T., Preibisch, S., Rueden, C., Saalfeld, S., Schmid, B., et al. (2012). Fiji: An
open-source platform for biological-image analysis. Nat. Methods 9, 676-682.

Schulte-Merker, S., van Eeden, F. J., Halpern, M. E., Kimmel, C. B. and Nusslein-

Volhard, C. (1994). no tail (ntl) is the zebrafish homologue of the mouse T
(Brachyury) gene. Development 120, 1009-1015.

Scott, A. and Stemple, D. L. (2004). Zebrafish Notochordal Basement Membrane:

Signaling and Structure. Curr. Top. Dev. Biol. 65, 229-253.

Shimada, A., Kawanishi, T., Kaneko, T., Yoshihara, H., Yano, T., Inohaya, K., Kinoshita, M., Kamei, Y., Tamura, K. and Takeda, H. (2013). Trunk exoskeleton in teleosts is mesodermal in origin. Nat. Commun. 4, 1638-1639.

Shook, D. R., Majer, C. and Keller, R. (2004). Pattern and morphogenesis of presumptive superficial mesoderm in two closely related species, Xenopus laevis and Xenopus tropicalis. Dev. Biol. 270, 163-185.

Stickney, H. L., Barresi, M. J. F. and Devoto, S. H. (2000). Somite development in Zebrafish. Dev. Dyn. 219, 287-303.

Stratman, A. N., Pezoa, S. A., Farrelly, O. M., Castranova, D., Dye, L. E., Butler,
M. G., Sidik, H., Talbot, W. S. and Weinstein, B. M. (2017). Mural-Endothelial cell-cell interactions stabilize the developing zebrafish dorsal aorta. Development

144, 115-127.

Tsutsui, H., Karasawa, S., Shimizu, H., Nukina, N. and Miyawaki, A. (2005). Semirational engineering of a coral fluorescent protein into an efficient highlighter.

EMBO Rep. 6, 233-238.

Warga, R. M. and Kane, D. A. (2018). Wilson cell origin for kupffer's vesicle in the zebrafish. Dev. Dyn. 247, 1057-1069.

Xiong, F., Ma, W., Hiscock, T. W., Mosaliganti, K. R., Tentner, A. R., Brakke, K. A., Rannou, N., Gelas, A., Souhait, L., Swinburne, I. A., et al. (2014). Interplay of cell shape and division orientation promotes robust morphogenesis of developing epithelia. Cell 159, 415-427.

Yang, J. and Weinberg, R. A. (2008). Epithelial-Mesenchymal Transition: At the Crossroads of Development and Tumor Metastasis. Dev. Cell 14, 818-829.

Yang, J., Antin, P., Berx, G., Blanpain, C., Brabletz, T., Bronner, M., Campbell, K., Cano, A., Casanova, J., Christofori, G., et al. (2020). Guidelines and definitions for research on epithelial-mesenchymal transition. Nat. Rev. Mol. Cell Biol. 21, 341-352.

Yoo, K. W., Kim, C. H., Park, H. C., Kim, S. H., Kim, H. S., Hong, S. K., Han, S., Rhee, M. and Huh, T. L. (2003). Characterization and expression of a presomitic mesoderm-specific mespo gene in zebrafish. Dev. Genes Evol. 213, 203-206.

Yoon, J. K., Moon, R. T. and Wold, B. (2000). The bHLH class protein pMesogeninl can specify paraxial mesoderm phenotypes. Dev. Biol. 222, 376-391.

Zhang, J., Jiang, Z., Liu, X. and Meng, A. (2016). Eph-ephrin signaling maintains the

919 boundary of dorsal forerunner cell cluster during morphogenesis of the zebrafish

920 embryonic left-right organizer. Development 143, 2603-2615.

Figure 1

author/funder, who has granted bioRxiv a license
available under aCC-BY 4.0 International license.

Figure 2

, wee 3

Figure 4

(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is m

Figure

author/funder, who has granted bioRxiv a license
available under aCC-BY 4.0 International license.

h
 charon:EGFP/myod1, lateral
cross

Figure 6

C. (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is m

1
AATTCTCGTAGTTCTCTTTTTGTGTTCTCTTGTAAGCACCATGAATTTTTCTCACCATATGTGTCCCTGAGCCACAAAACTATCTTAGGTTACATATTTG TAGGAAGAGCCAAAGATATATTTTGATTCAAAATGGCTGATTTTCATTTTATGGCAAAAACCATTAGAGTGTTAAGACATTTGATATACTGTAATTAGAC TATACAAAAACTTTAAAGATGTCTTAAGAATTGCTAGAATCGTACATTTCAGAAATATGTTTAAGTATGTTTTCACTGTTCTTGAGGCTCCAATAAATGA GACCAAAGTATTATAATAAAAATTCAACACCCTTCATATGTTTTAGACCATTTCAATGGACATCAGGGCAGACCAGTTGTACATCCCGAACAGTATAGCA ACATATAATACAAAACAAACATACATAATTGCTGGTATTGACCATATTCTAAAATGCGGAAGTGCGCCTGTTTTCGCGATTGTCTTAGAACTTCCGATTC AGTCGCCTTTGGGAGGAATGACTAGGAATAATAAACGGCAAAGAACGGTCAAACTACTTGCTCTACAAACAAATGTTTGCATTACTATACAGACCAAGTA GAATAATATAACAGGGAAATGTCAGTTTGCAACATCAAACAGCGAAACGAGCAGTTTTTAATGTCTAAAAATGAATGGAAGTGAATGAGACCGGAACTCT CGTGCCAAAAAGATTTAAATGGCTGCGCCCGCTCGTCTGCGAAGAATAAGGTGAATAATCTTGAAGTTTATTTTCAGAATCACAAACATTAACATCGTAA CATTTTTACTTTGATTTTGAGGTTTTTGTTGGTCTGGAGACCCAACTGCATGCTCAGACCTGCATGCTCGGACCAGCGTTTCCAGACCTATTGTTAGGGT TAGGCATGGGCCGGTGTTAGATTCTGATGGTATGATAACCTTGCTTGGATATAAATATCACGGTATCGCGGTATGGAGGTTACTGCTCTAATATATATAT ATATATTTAAATGTCTGGGTAAAAAACAAAACCTATTCCCCCTTTGCACACAATATATTTTAATTTGAGAAACACTTAAAATTTTCTGGAACAGTAAACA TGTCAGGCTAAATAATTCAATGAATTATTGACTTCTGCTGTCTTCATTAGTTTCAAAAGCACTGAATTAAAAAAAAATGTTTTTTACAAGTTTGGATATC TTTTCTGCTGGAGATACTGCTGTCCTAAAAAAAATGTAAATAAAAAAATCTTAGAAAAGGTATAGCAGAAAATGTTGACCGTTTTAAAACCTTGAGTTTT CTAAACCGCGGTATACCTTGAACTCCGTTATCGTCGCATGCCTAGTTAGGGTCATGTGTTTGATTTTGCTACTTGCTAGAAAGTCCTCGCTGCAAGTCTG TAATCACGATGATGTATTGACCAAGTCCAATACATAGTGGACATTGTACCACCCACTAAGGTAATGCTCATACTACTGTGATGGATTTAGGGTAGGGGGA GGTGTAGGCGATTGTCCATACGTAGTGCAGTGGTCTTCTCGTACAAACATGCTGGATTCACCTGATTTGTTGACAAATTGGTTGTGGATCCATTCCTTGG CAGTTCATCAGTCCTTCATGGGCCTTTCCCCTGGTGGTTGAGGACCACTGACGTAATGGACCTGGTCCAGTACATCACCAAGCTGCTGGCTGCAGTGAGG ACGGTCTCAAAAGTAAAAAAAAAAATCTCAGAAGTGCTGGTCTGCATGTGCAGTTGGGTCTCCGGGCCTGCAGGTTCATCTTTTAATCCCTCTTTTTTTT TTTTTTTTTACATAAAAATCTAAGAATTATTGGCAAACATGTCAATAAATCTGAATAAAACTTTGGAAATGTGGCTTATGTCTGTGCAGGCCCGGATTAA GAATTCAGAGGCCCCTGGGCACAATGTCTTGTAGGCCCCCTACCTGGTCGAACCCCTATTGTTAAATCAAAAAATAAGAACAACATTTTTAAAAATAGA GTTAATCTATAATGTATTGCCCACATTTTAAAAGTAAATGATATACAGTACATATATTTGTAGTCTAAAGAGATTTAACTAATTTTTAAAGCATTTAAAT CACACCTCATACTAATACAACGAGGGGAAATTAATGAATTTTAATATACGTGTTCAGGTTCACTGAAGCAGTACTAAAATTATTTAGGGGAATTTTTAAT ATATAACTTCTACACACTTATAATGCATATGATTTGGATATAACACCTCTCCAATCAAGTTCTATGAATCTGAGTCCTCCATAATACACACACTTATTAA TGATTCCTACTTGTTTGGAGATGAAGAGTAGGCAAAATCTGATATGTAGTGGGGGGAAGAAAAATTTGTTCATCAGACGGTGGATTCAAACCGGGTTCAT GATCGGGTCAAAACAAGTTGCCATGCGCTTTACGAGCTACACCACTCACGCTGCTGTTTGAAGCACTCGTTAGTTATGTTGTCTCTGTCAGTCAAACTGT TATAGGTGGAAATCACTAAATTGGCTTATTCCAACGAGGTGCGCTATTTGCGTTGAGCCTAAATAGACACTAAAAAATCTGCACTACCCCCCTCGCAGGG GCCCCATGTGTGCACAGGACCCTGGGCCTGTGCCCCTAATGCCCATGGGTTAATCCGGCCCTGCATCTGTGTCTGGAGTGAATTGATGCCATGCTGCTTT TCGATGTAGTGGATTTTTTTCAAATTTCAAAATCCTAAGCTTTACCTCTATTTGATTGGATGACAATTGTCCACTCTCATGGACTGCAGGCTTTAAATTA GATGAAATGCTCAGGAAACACAAAAACATGAACTGACTTGTGATGTCCTTTGTAATGAACACAGGCTCCATGGGGGCCAAAATATTGTCCTTACAACCCA TAAAACAATGAGAACCTTATTTATTCTGCTTTCAGATTATATGATCTCAATTTGAGAAACTTGACCATTTTGACCGGGTTTTGTGGTTCTGGCTCACATG TAGAATATCTTTGCCTGTAATAAATGGTAGAGTAGTTTTTTGTTGACCTTTTTGTTTGCCATTGGGGTGACTGCATTGTTTGTATTGTAGGCCAATGGCT CCACCTTGAGGCGTTTTTCAGTAACTGCAAAAAAGAGTAGGCAATGCCGTCCAAAATGAGTTCAAGGAAACTCGAGTGAGTATGAATGGTTAAAACTTA TCCAGAAATCCAAACGTGAATAAAAGAGCGCATTTATTTTTCTAGTTCCCAGAGGCCAATTTTGGATGTCAGCAGGCATCGCATGGACGAAGGTGCATGG CACAGTATGGTATGTGCACAGTGCCTGTCTGGTGTGCATGTGTGTAAAATCAGTACATTAGCAATATATATACTTATATATTTGTGTCATTCATAGATAA CAGCCTTCAAGCAGATGTCAGAGAATGAAGTGAGAGGATCCAGTCAGCCCCAGTCCTTCCTGGCTCAACAGAGACAGTCTGCTACACTCAGAAGGGTCCA AACTAATATAAAACGATGAATTTGCTCAAAATCTCGAGTCTGTACATAGCGCCTTGGTGAGACACGAGCTCCACCTGCTGGTTTCTGAATGTATTTGCAT GCACATATTAGTTTTATCCTGTAGTATTTTTATTAAAAGCCGTCGATGCAAAAATATTAGTTTATTTGGGTTTTGTGTTCTTTTATATACAGTTTTTGTG ATTAATTAAATTTTATTTATTGTATTTGTAATTAATTATTTGATTTATTAAATATAGCCTAAACAAAAACAAGACCTCGGGATCACTTGTTTACTCGTAT CTTCTTATTTTACATACCCCAAATTCAGTAAATGTGAGTAAATAAAACTGAGGTTTTGCCAAACACTATATATTGTTCTCTGGTATTATTTTCGGAACAA AATTCATTACATTTCAGTGTTCTGCAGACTCATATGTCATTATAGTTTAACTATTTTTGAAGTGCAAAATAAAATTACGCTTTTCATTTATTTTACTTAC AGAATGATCCCGGTAAAATGCTTTAAATGCATATTTACATAATACTTGGGTCTTTGCGTTTGTTGAATTATCTGTTATTATAAACGCGATCCTCTAATTT AGCTTAATCTTTTACATCTTTGTCGTTGCTCTTTATAAGTGAAATGAAAAGTCTCGTCACTTTGTTGCTCTTTGTTTGCTTGTTCCCTTGGGAAAGTGTT TTCCTGAAGGTCGTAAATATGATTCAGGCTTTTTGTCGTGAATAGTGTACCTGAAGTTAGGGAAAACTTCACACCTGAGCTCAACATCTGACTTCAGGTG AGAAAAGTCTTCAGTACCGTGAGAAAGACACCTTTGGGCAGCCATAAGTAGTGATTATTTTGTATAATCGTTTTCATGCTGAAATTAAGATCATTTTATC ACCTTATTATTAAGGTTATTGTTTATTGGATAAATAGTCTAATTCTTGTCTTGGTAATTGGAGCTATATGTGTTTTATTTTTTGAGAAATAAGGGGAAAT TGCTGAATAGAAATAATTCGTTTCTTGGTCATTCTAGCCTATAGGTGCTTTTTCTTGTGTAAATAAAAAATGCTATGTGCTACGATTAAAATGTAAGCTA CTGAAAGGGTACAAAAAAGGGTCTGGAATTGCTTTAAAATATTACGCTAAAATAAGGACAAAAACTCGTTCCCACGACATGGTTTAAAAAGAGATGAAAG GTGCACTTCTCACTGCCTCACGAAACCTCACCCGTCACTGACATCCATTATTGGCTCTTCCTGTGTCTTAACATGTTTCAAACAGCTATATTCACCCCAT AATAAAACAATGATGACCATGAAAGCACCTGTTGAGTATATAATGCTCAGCAATGTGTCCATGTCTATAACGACAGCAAGGTGACCGAACGAAACCTTGA ACCGCAAGATTTTTCAACAAATAATCGACTATATGTATTTTTAGAGAGAAATAAATTCCCTCTCTTTTTTTTTTTTGTAAAATTCTATAATTTAGCTAAA

C. (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is m Supplementary Figure $2^{\text {nainabe underacacc-ar } 4.0 \text {. memenaional ivense }}$

1
CAAACTACAATCGGCAGGCCAACAGCTCCCTTCTCCACCCCATTCCGAGGAATCCGCTTGTAAAACATAAATCCATGCACGTCTTTGTTTTCCTCGTCTG ACCAAGCATCTGGTTTAAAACTGCAGCTGGATAGCTCTAATATTACTCGCCATTTTTGTTGCATTTCCAGTGTTATCTTGGTGTTGTGAAGGGCTGTAAG CTAGTGGAAGAGAATGTAAGCAGAGAATGTAAACGGAGGAGAGATGGGAAATGAGTGCAGGCTTACTCAGTACCAACAGTCCCGCCCACAATTCAGAAGT GAATTTCCAAATGAACTACTGCTGCCCAGCAGAAACTATGTCCTAGATAATGACAGTATTTTTTTTTTTTTGGNNNNNNNNNTAAAAACAGAAGAACCA TAATAAAAAGACCTCTTCTCACAGTGAGAAGGCCCTGGTTGGGATAAAGGCTGGGATGTGCCTTTATGTGTAGAGTTTGCCTTTTCTCCCCATGCATGTG TGGGTTTTCCTACAGTCCAAAGACATGCTCCATAGATTAATGGGTGTCTCTAAATTACCCCCTAGTTTGCCCCTGAGTGAGTGTGTGGCCCTGCAACAGA CTGGAGACCTGTCAGGGTGTATTCCGCCTATGCCCAATAGTAGCTGGGTTGTCTCAGCAGCCCCATGCTCCCAGCAGGGATTCAGCGGGTTCTTAAGATG TGATCTTTCTTATTTTTTTCTATTTTGCAAAACTTCTGAGCATTTAATAAAATAAATGGAATACCTAAAATCTGTCAAAATCTGTCTAATCTGTCACTTT GCTGCTGTTTGGTTTTCATTATTAAGATCTCTTGTATATTACTTTATCTTTACATTTACTAAAAAATGTTTTTTTTTCTCGCTTTTTCATGTGCAAAATA CATTGAAAAACTGAGATGTTCTTGGCACCCAAATGTTCAGAAATAATTAAACACTAAATTTGGAATGCCAAGCGTTTGTGTTTTTACGTACATTTCTGTT AATTCAGGCTCTCCGTGCTCTCTCAGCTGGGATTGCTGCACATGTGGCAGCCAATTAGTGCAGTTAGTTCAGGTAATGAGGTTGGACCTGTGCACTAAAT ACTCTCAGTGGAAGTCAGCTGGATGCAAATGAACATGTACTTTTCGTCAGTACGGTCCTGCCATATGGTCTTAGTTCAAATTATGCCACACAAGGTTAAT TTGGTACACTTCATGTAACATTAGCCAGTTCTGACTATGCTGTGCAGTGAGGGTGTGGGGGTTATGTTAGAGAGCTGTCATTGCTATGCTGCCAGTATTT CATTGCTTGACTTGTTCCATCATCAACTGATAAGACTACATCTTATGGCTGTGATAAAACAGAGACTGCTCTGAATTAAAGCATGTGACTGACTTGACTT GTGTTTTCTCCAGTGAAGTCACGGTGTGCATCCATTTAGGTCACCGAAGGTCTGCCACTTTCATTATCATTCATTTTTCCAGAGCTGCATACCTTTGGAA AACATTTTTCTAAAGTGGTAGACGGAAAGTGATTTATTAATTCACTACGTGAAGATTTTATTATTCCAATGCCATAGCTTTAGGTGACACACACAGCTGC TTTTTGCTGGTCCTGCCAATGTCTATTGGTTACTTAGACAACCTAAAAAAATGAGTTCTCGTTTCCATAAATACTGCTCTCTTTTCCCTGTTTTGTGTTT TTGCTTTTGTGCAGGTGTTTTACATTCAAAGAAACTCTTCACTCTGTGACCAATGTCTAAAAACACCTCAATAATTGAATGATAAATGTATTCTTGTGTG TTTTTACTTGGGTTTCACTGTTTCTATTTCTCCACTATACACCTTTTTCTCCACAATGCTCTTTGACATATATACACAGCGGGGTTGTCTCTAAAAATA AAGTTGAAGTCATCTGTTAATAGTTCACCAGCTAGATAGCAAATCTTCCGTAGTGTGACGCAATTGCGTCATTTTATGACGTGGAAAAAATAATGCATTT CATTCAGCGTATATTTATGATCTTTTTACCTAGGAGAGTAGATTATAGTAAAAAAAAGGGACCCATAGGTTTGCTTTTAAATTCAAATTCGGCTTTATGT GTAGAGCACTTTTTCTACAGAACACCTCAAATTGAGTTACATAAATAAAATAATAATAATATTCTAAATAAAAGTGTTCATATTAAAGCCCCTGAACACA CATGTACATTGTCAAAAAAAAAATCCCAATAGTGCATAAAATCAAACTGCAACACGAGGAGATGTTCAAAAAAGTTACTTAAAAGCTAAGCAAATAAGA TGAGTTTTTCATTTTTTGGTTAAAAGGCCAAAAAATGGAGGCCCTGACCTCCTCAGGCAGGCCGTTCCACAGACGAGACCCACGGTGCTGGAATGAGGCC TCACCGTGGGTTTTTTGTTCTTGAAGACAAATCCTTCTGTTTTTGTTATGTTACTTTCCTAATGTTGGTTTTTCGTCTTTTTGCTTTTATTTTGTCCCTT TGTTTTCTAAACCACTTATATTAACCTTGTGTATGAATTGTGCAATAGAAAAATCTCTTGCCTGTGTCAATTTTCATTAAATCTGACATCACGGTTTCCC TAAAAATTCCACGTCAAGTGTTAGTTTCTTAACGACATAATTTGTTCTCGAGGGTCTCCAAGTAACCCATTTTATATTATAAAAAGAGTCACTGAAGCTG AAAGAAAAACAGAAAGGTCTCATGCTACTAAATGTCATTTTAACCCTGCCGGAAATACTAACACCACAAATGTAAACTTAAAGGATAATGCTCTAAAAAA ACCAGGTTGGCTTTCAGAACTTACTTTTTCATGTCAGGAATTGCAAACTTGTAAAATTTGTTTCACCATATTTGACATTTTACAAGGACAATAAAAGGCA CGAGGATAGCTGCATCCAGAAATTGTTTTCATGACGTTTACTGCTTGGAAAAAAATAGAAGCATTTTCTTGTTTCCACTTCCAAGTTCAAAGTCGAGGTT AGGAGCATGACTGGTGTTATTTTTATTTTATTTATTTTGATCTGATGTACTATTAAGTAAGTCGGGACTTCTTGATTGCATTATCAAAGTGACCTAAATC CAGTATAACCATTTCCTGTTCTTTAAAATGTTGCCAACATTTATGTTTTTAAAATTCTCAAAACAGTTAATAATTTAAGGGTTTCATTAGAAGATACACT TGTATAAAAAAAACACAAATACACCTAATTCTAAGAGTACATTTTTCTAATTGTAATCTCTAGAAAATTTCTGTTACTGATCAGTTTTTCTCATTTTAGA TATTTATTTGATGTAATTTCTACATGTCAGCTGGGCTGTTTAATAATAAGGTTATACAGAAAGCTCAACCAGTCTGTGTGATCTTAATAAATTAAATGAA ATAAAGAAATGAACGTGTGTATGACTATCACAATGTGTTAGTGTTCAATCGTTTGTAAAAAGTGCCCCCTTGTGGAGACAAAAAAGCCTTGCTTCCAGAG AAAAAGGGCTCTTCACATTAATAATCAATGCTTCATGTTGTTTAAGTGTGGGCTCAGTAGATTTACAGATTTTAAACAAATACAATTAATTTAAAATACT AAACAAATAAAAAAATGTAAAAAATTGTTTACAATTTTTTTTTAAGTAAAACTAACTCATTTACAGTTGTCTATGCATGAACTTTCATTAAGCTTTCATT TTTAAATCTGTGCTGCAAAAGAAATACAGTTCACTAAATAGATGTATCCACTAACAGCTCATAGTTGATGGTTTGCACACACACTTATATGGTAATTCCT ATTAAATGTAATTGAACTGTAACAATATTTGCATAATTCTGAGGCTTTTCTCCAAAATATTCACTTCACAATTTAAGATAAATTCTTGTTTTTTACCTCAA GTCAGCCTCAAGTCCCCCATTTTAATTTATAGTTTAACAGTTTAAAATCTAATTTTACATTTTTAATAAATGAAGTTTTAAATTTGACCATATCCAAGGG CTTTGACACATTAACATTGGCTGGTTTAAATAATGTTGTTTTCATGCTTTTCTTTGAAACAATCACCAAAAATATATCTTCAGTGAAAATAATTTTCCTC AGATTCAAGTAAATCTTGCATCTTTCTACAGCTAACTTTAACAAAGCAGTAAGTCTGGGAAACAGAGGAGTGTAAACAAGAAAAAAAAAAGTGCTTTGAA CACTTTTTGGGTTACACGAGAGTCAAACACTAGTCCCCTTGCAGCATTGTGAAGCCCGTGTGTGATCATGTCGCGGGTGATGGGGCACAGTGAAGTCTAA CGGCATGGTGGCCGGGACTTGGAAGCTGCTTGTGGGAATAAATGAACAGGACGCAGCTTGTTTACATAGGAAACATAAACTCATCATTGCTTTTACAATAA AAGGTAACAGGAACACCTGCCAACAGAGAAGCCCAGTTGATTCAACAGCAGGCTTCCTGGAATTGTTCTGAGGAACTCGGCTAACGTGAGGCTGCCAGGA GCTCTCAGTTTGTTTCTTCTGCTCTTTTAAACATGGCTTAAAAAAACTATTTATAGTAGCTGATCTGTATTAAAGAGGCAATTAACAGGAAAACACCAAT TTAACATGTGAAACGCTAAACCTCTGATGCTGAACTGCAGCAATTTCCTAATAATCTAAAGAAAAAAAACAGTTTAGTAAATTTCCTGAATTTGCCTTGT GGAAGTTTTAGAAACAAAGAAATTAGATTTACCTTTCAGGTATTTTTTTTACGACTGTGTTTACGACACTTACCTGAGACGCACTCTCATCCACAACCTA AACTTGTAAGTTTGGTGTCATGTCTGATCCGGTGTGGGAAATGTGACACCTTGTTTGCATTTAAACGCGGGTGAGAACTGACAGCTTGCGGCATAAAAAG GATGTCTCCGGGACAACGTCAAAGCACTGACAGCAAGGTTGCCGTTTGGAGCCTTGGACCACAACCAGCAGAAGAGTTTCAGGATTTCTCATTAGTTTCT GCATTATTTCTCATCAAAGAC
\qquad

a
charon:Lck-mGreenLantern

b
charon:mGreenLantern

 Supplementary Figure 5

a

b
OI_charon:EGFP

$$
\begin{aligned}
& 00000 \\
& 000000 \\
& 099999 \\
& 99999 \\
& 99999
\end{aligned}
$$

