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Abstract   

Macroscopic functional connectomic analyses have identified sets of densely connected regions 
in the human brain, known as connectome hubs, which play a vital role in understanding network 
communication, cognitive processing, and brain disorders. However, anatomical locations of 
functional connectome hubs are largely inconsistent and less reproducible among extant reports, 
partly due to inadequate sample size and differences in image processing and network analysis. 
Moreover, the genetic signatures underlying the robust connectome hubs remain unknown. Here, 
we conduct the first worldwide voxelwise meta-connectomic analysis by pooling resting-state 
functional MRI data of 5,212 healthy young adults across 61 independent international cohorts 
with harmonized image processing and network analysis protocols. We identify highly consistent 
and reproducible functional connectome hubs that are spatially distributed in multiple 
heteromodal and unimodal regions, with the most robust findings mainly located in lateral 
parietal regions. These connectome hubs show unique, heterogeneous connectivity profiles and 
are critical for both intra- and inter-network communications. Using transcriptome data from the 
Allen Human Brain Atlas and BrainSpan Atlas as well as machine learning, we demonstrate that 
these robust hubs are significantly associated with a transcriptomic pattern dominated by genes 
involved in the neuropeptide signaling pathway, neurodevelopmental processes, and cellular 
metabolic processes. This pattern represents microstructural and metabolic substrates underlying 
the development and functioning of brain hubs. Together, these results highlight robustness of 
macroscopic connectome hubs of the human brain and their potential cellular and molecular 
underpinnings and have implications for understanding how brain hubs support the connectome 
organization in health and disease.    
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Introduction 

Functional connectome mapping studies have identified sets of densely connected regions in 
large-scale human brain networks, which are known as hubs (1). Connectome hubs play a crucial 
role in global brain communication (1, 2) and support a broad range of cognitive processing, 
such as working memory (3, 4), semantic processing (5), choice reaction (6), and focused 
attention (7). Growing evidence suggests that these highly-connected brain hubs are 
preferentially targeted by many neuropsychiatric disorders (8-12), which provides critical clues 
for understanding the biological mechanisms of disorders and establishing biomarkers for 
disease diagnosis (13-15) and treatment evaluation (16, 17) (reviewed in (18-20)). 
Despite such importance in global brain communication, cognitive processing, and brain 
disorders, there is considerable inconsistency in anatomical locations of functional connectome 
hubs among existing studies. For example, components of the default-mode network (DMN) 
have been frequently reported as connectome hubs, yet the spatial pattern is highly variable 
across studies. In particular, several studies have shown highly connected hubs in the lateral 
parietal regions of the DMN (8, 11, 21, 22), whereas others have reported midline structures of 
the DMN (23-26). Several works have identified primary sensorimotor and visual regions as 
connectome hubs (22-27), yet others did not replicate these findings (8, 11). Subcortical regions, 
such as the thalamus and amygdala, have also been inconsistently reported as hubs (11, 21, 24, 
26) and non-hubs (8, 22, 23, 27). Sources of inconsistency in prior reports can be attributed to an 
inadequate sample size and differences in imaging scanner, imaging protocol, data 
preprocessing, and network analysis. Thus, the consistency and reproducibility of functional 
connectome hubs has been difficult to establish to date. Here, we aimed to establish a 
harmonized meta-analytic model to identify robust functional connectome hubs in healthy young 
adults by combining multiple cohorts with standardized protocols for data quality assurance, 
image processing, and network analyses.  
Once the robust connectome hubs are identified, we will further examine their associations with 
gene expression profiles. It has been well demonstrated that the functional connectome 
architecture of the human brain is inheritable, such as intranetwork (28, 29) and internetwork 
(30) connections and regional cost-efficiency balance (31). In addition, the brain’s functional 
connectomes can be regulated by genotypic variation both during rest (32-36) and in cognitive 
tasks (34, 37, 38), especially involving the DMN (32-34, 36, 38) and frontoparietal network 
(FPN) (35, 38). Moreover, transcriptome-connectome association investigations have provided 
evidence for spatial correspondence between transcriptomic profiles and functional connectome 
architectures (39-44), such as a strong nexus between the transcription of genes involved in 
potassium ion channel activity and the dynamic brain connectivity pattern (44). Thus, we 
reasoned that the robust network hubs of the macroscopic functional connectome could be 
associated with microscopic genetic signatures. Elucidating these genetic signatures will benefit 
our understanding of how functional connectome hubs emerge in development, function in 
complex cognition, and are involved in disease. 
To address these issues, we conducted the first worldwide voxelwise meta-connectomic analysis 
by pooling resting-state functional MRI (rsfMRI) data of 5,212 young adults across 61 
independent international cohorts with harmonized data preprocessing and connectome analysis 
protocols. We identified highly consistent and reproducible hubs in multiple brain networks, 
including the DMN, FPN, dorsal/ventral attention network (DAN/VAN), somatomotor network 
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(SMN), and visual network (VIS), with the most robust findings mainly located in several lateral 
parietal regions. These connectome hubs show unique, heterogeneous connectivity profiles and 
are critical for both intra- and inter-network communications. Using transcriptome data from the 
Allen Human Brain Atlas (AHBA) (45) and BrainSpan Atlas (46) as well as machine learning, 
we demonstrated that these robust connectome hubs were significantly associated with a 
transcriptomic pattern dominated by genes involved in the neuropeptide signaling pathway, key 
neurodevelopmental processes, and cellular metabolic processes.  
 

Results 

We collected a large-sample rsfMRI dataset (N = 6,830) from public data sharing platforms, 
which consists of 61 independent international cohorts from Asia, Europe, North America, and 
Australia. After stringent quality controls, data from 5,212 healthy young adults (ages 18-36, 
2,377 males) were included in our final analysis. Fig.1 illustrates the sample size and age ranges 
of each cohort. Details on participant inclusion criteria and quality control are provided in the SI 
Appendix, Section 1.1-1.2. 

Highly Consistent Connectome Hubs Using a Harmonized Meta-Analysis Model. Prior to 
the meta-analysis, we harmonized the image preprocessing and connectome construction and 
analysis across cohorts. Specifically, all rsfMRI data from each cohort were first preprocessed 
routinely with a standardized, uniform pipeline (SI Appendix, Section 1.2). Then, for each 
individual, we constructed a high-resolution functional connectome matrix by computing the 
Pearson’s correlation coefficient between preprocessed rsfMRI time series of all pairs of gray 
matter voxels (N = 47,619). Negative functional connections were excluded from our analysis 
due to neurobiologically ambiguous interpretations (47). To further reduce signal noise and 
simultaneously avoid potential sharing signals between nearby voxels, both weak connections 
(Pearson’s r < 0.1) and connections terminating within 20 mm were set to zero (48). Then, the 
functional connectivity strength (FCS) of each voxel was computed as the sum of the connection 
weight between the given voxel and all the other voxels. This resultant FCS map was further 
normalized with respect to its mean and standard deviation across voxels (8). For each cohort, 
we performed a general linear model on these normalized FCS maps to reduce age and gender 
effects (SI Appendix, Section 1.3). As a result, we obtained a mean FCS map and a variance FCS 
map for each cohort that were used for subsequent meta-analyses. 
To identify the most consistent connectome hubs, we conducted a voxelwise random-effects 
meta-analysis on the mean and variance FCS maps of 61 independent cohorts (SI Appendix, 
Section 1.4). Such an analysis addressed the across-cohort heterogeneity of functional 
connectomes, resulting in a robust FCS pattern and its corresponding variance (standard error, 
SE) map (Figure 2A). Furthermore, we computed voxelwise Z value by dividing the FCS map by 
its variance map. To determine the significance levels of these observed Z values, a 
nonparametric permutation test (49) with 10,000 iterations was performed. We identified 
connectome hub voxels (15,461 voxels, 32.5%) in which Z values were significantly (p < 0.001, 
cluster size > 200 mm3) higher than the global mean (i.e., zero). Finally, we estimated voxelwise 
effect sizes using Cohen’s d metric, which was computed by dividing the Z value map by the 
square root of the cohort number. According to a cortical and subcortical parcellation provided 
by (50, 51), these identified hub voxels were distributed in multiple brain networks, including the 
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DMN (27.5%), DAN (16.5%), FPN (15.9%), VAN (15.6%), SMN (14.4%), and VIS (9.9%) 
(Figure 2B, right). Using a local maxima localization procedure, we further identified 35 robust 
connectome hub regions across 61 cohorts (Figure 2B, left),  with the most consistent findings 
mainly located in several lateral parietal regions, including the bilateral ventral postcentral gyrus, 
supramarginal gyrus, and angular gyrus. Table 1 illustrates the anatomical locations of these 
hubs and the MNI coordinates of their peak voxels. 

Highly Reproducible Connectome Hubs Using Leave-One-Cohort-Out Validation Analysis 
and Conjunction Analysis. Despite the consistency of connectome hubs identified here, the 
random-effects meta-analysis revealed high heterogeneity of FCS across cohorts (Figure 2C, 
left). The cumulative distribution function plot shows more than 95% voxels with I2 

(heterogeneity score) exceeding 50% (Figure 2C, right), indicating high heterogeneity across 
cohorts in almost all brain areas. To determine whether the connectome hubs identified here are 
dominated by certain cohorts or are reproduced across-subject/cohort, we performed a leave-one-
cohort-out validation analysis and an across-subject/cohort conjunction analysis. (i) Leave-one-
cohort-out validation analysis. We repeated the above meta-analytic hub identification procedure 
after leaving one cohort out at a time. Comparing the identified hubs using all cohorts (Figure 
2B) with those after leaving one cohort out obtained extremely high Dice’s coefficients 
(mean±sd: 0.990±0.006; range: 0.966-0.997). For hub peaks, leaving one cohort out resulted in 
very few displacements (mostly fewer than 6 mm, Figure 2D). Thus, functional connectome hubs 
identified using the 61 cohorts were not dominated by specific cohorts. (ii) Across-subject/cohort 
conjunction analysis. We defined the top N (N = 15,461, which is the voxel number of hubs 
identified in Figure 2B) voxels with the highest FCS values of a subject or a cohort as functional 
hubs for that subject or that cohort. Then, for each voxel, we assessed hub occurrence probability 
(HOP) values across subjects and  cohorts. The identified hubs using all cohorts were highly 
overlapped with the the top N voxels with the highest HOP values both across all subjects and 
across all cohorts, indicated by high Dice’s coefficient (Dice=0.867, Figure 2E, left; Dice=0.924, 
Figure 2E, right). When the connectome hubs from all cohorts were compared with the top N 
voxels with the highest HOP values across randomly selected subjects or across randomly 
selected cohorts, the Dice’s coefficient approached 99% of its maximum value after exceeding 
510 subjects (Figure 2F, left) and 35 cohorts (Figure 2F, right), respectively. Validation analysis 
demonstrated that the above results did not depend on analysis parameters, such as the 
connection threshold (Figure S1 and S2). Together, these results suggests that rsfMRI data of 
5,212 subjects from 61 cohorts are sufficient to map highly consistent and reproducible 
functional connectome hubs in the resting human brain.  

Heterogeneous Connectivity Profiles of Connectome Hubs and Their Distinctive Roles in 
Bridging Brain Networks. Next, we further examined whether these robust brain hubs 
identified here (Figure 2B and Table 1) have distinctive connectivity profiles that represent their 
unique roles in brain network communication. To gain detailed and robust functional 
connectivity profiles of each hub region, we conducted a seed-to-whole-brain connectivity meta-
analysis, in a harmonized protocol again (SI Appendix, Section 1.5). For each of the 35 hub 
regions, we obtained an estimated Cohen’s d effect size map that characterizes the robust whole-
brain functional connectivity patterns relevant to the seed region across 61 independent cohorts 
(Figure 3A). We then divided the connectivity map of each hub into eight brain networks 
according to a cortical and subcortical parcellation provided by (50, 51) and represented the 
functional connectivity profile of this hub as the voxel percentage of each of the eight networks 
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connected with it to address the effect of network size. As a result, we obtained an 8×35 
percentage matrix, with each column representing the robust connectivity profile of a hub.  
Hierarchical clustering analysis on the percentage matrix clearly divided the 35 hub regions into 
three clusters (Figure 3B). Cluster I consists of 21 hubs that are primarily connected with 
extensive areas in the DAN, VAN, FPN, and SMN (orange color, Figure 3B). Cluster II consists 
of four hubs that are densely connected with VIS (green color, Figure 3B). Cluster III consists of 
10 hubs that have robust connections with the DMN and LIMB (blue color, Figure 3B). Of 
particular interest is that within Cluster III, a left posterior middle frontal hub called ventral area 
8A (8Av) shows a distinctive connectivity profile in contrast to that in other nine hubs, 
manifested as having no functional connections with the hippocampal-entorhinal complex but 
having robust functional connections with bilateral lateral frontal FPN regions (Figure 3A). 
These results imply that the left 8Av hub is a key connector between the DMN and FPN, which 
can be supported by the recent finding of a control-default connector located in the posterior 
middle frontal gyrus in (52).  
Thus, whereas all hubs possess dense intranetwork functional connections, most also retain 
significant internetwork connections to bridge large-scale brain networks, which preserves 
efficient communication across the whole brain network feasible. More details can be found in 
the SI Appendix, Section 2.1 and Figures S3 to S5. 

Transcriptomic Signatures Associated with Functional Connectome Hubs. Considering the 
significant heritability of human brain functional connectivity (28-38) and substantial evidence 
supporting genetic factors involved in both the synchronous activity (39, 40) and the spatial 
organization (41-44) of the human brain network, we reasoned that significant genetic signatures 
are associated with the robust functional connectome hubs identified here.  

Distinguishing connectome hubs using machine learning approachs. To address this issue, we 
used a machine learning approach to examine whether connectome hubs can be distinguished 
from non-hubs based on their transcriptomic profiles (Figure 4A). We extracted 10,027 genes’ 
preprocessed transcriptomic data (53) from AHBA (45) for 1,158 left cortical samples, including 
382 hub samples and 776 non-hub samples (Table S3). A supervised machine learning classifier 
based on XGBoost (54) was trained with 300 randomly selected hub samples and 300 randomly 
selected non-hub samples to distinguish hub samples from non-hub samples using the 10,027 
genes’ transcriptomic features and was tested with the remaining 82 hub samples and 476 non-
hub samples. Before training the classifier, we determined the optimal training iterations through 
a cross-validation procedure. We repeated the randomly selecting training samples, cross-
validation, classifier training and testing procedures 1,000 times to assess the stable sensitivity, 
specificity, and accuracy rate.  
The XGBoost classifier performed better than chance in all 1,000 repetitions, and achieved an 
overall accuracy rate of 65.3% (Figure 4B). In cross-validation, hub samples and non-hub 
samples were classified correctly with a sensitivity of 71.1% and specificity of 63.4%, 
respectively. The testing procedure yielded a comparable sensitivity of 69.7% and specificity of 
62.0%. As expected, brain samples with greater absolute Cohen’s d values possessed a higher 
rate to be correctly classified (ps < 0.0001, 10,000 permutation tests, Figure 4C). After training 
the classifier, each gene’s contribution to the optimal prediction model was determined. We 
noted that some key genes contributed two or three orders of magnitude more than other genes 
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(Figure 4D, Table S8). Importantly, the contribution of the top 300 most contributed key genes 
was consistent between the first 500 repetitions and the second 500 repetitions (Pearson’s r = 
0.958, p < 10-6, Figure 4E), which demonstrated high reproducibility. 
To exclude the XGBoost model’s potential bias relating to the most contributed key genes, we 
reproduced the classification results above using another machine learning modal based on 
support vector machine (SVM) (55, 56) with all 382 hub samples and only 382 non-hub samples 
with the lowest rate to be correctly classified by the XGBoost classifier. As illustrated in Figure 
4F, we first trained an SVM classifier through a cross-validation procedure using the 
transcriptomic features of the 150 key genes with the greatest contribution to the XGBoost 
classifier. Because no data were available to determine how many key genes were sufficient to 
train an SVM classifier, we determined the count arbitrarily, and examined it later. Then, we 
trained an SVM classifier using 150 randomly selected genes and repeated the randomly 
selecting 150 genes and classifier training procedures 1,000 times. If the most contributed key 
genes are independent of the XGBoost model, the SVM classifier using the 150 key genes with 
the greatest contribution to the XGBoost classifier will not only perform better than those using 
150 randomly selected genes but will also achieve a comparable or higher accuracy rate than the 
XGBoost classifier. Indeed, the SVM classifier using the 150 key genes with the greatest 
contribution to the XGBoost classifier achieved a reasonable accuracy rate of 67.8% (Figure 
4G). Cross-validation yielded a sensitivity of 64.1% and specificity of 71.5%. In contrast, all 
SVM classifiers using 150 randomly selected genes performed significantly worse than that 
using the 150 key genes (ps < 0.001, Figure 4G). We also examined the count of key genes from 
100 to 300 and observed the SVM classifier achieving the peak accuracy rate with approximately 
the top 150 key genes (Figure 4H). Examining the count of key genes using all 382 hub samples 
and only 382 non-hub samples with the highest rate to be correctly classified by the XGBoost 
classifier yielded similar results and achieved a higher accuracy rate of 91.8% (Figure 4I). Thus, 
these robust functional connectome hubs were significantly associated with a transcriptomic 
pattern dominated by approximately 150 key genes. 
Gene ontology enrichment analysis. Gene Ontology (GO) enrichment analysis using GOrilla 
(http://cbl-gorilla.cs.technion.ac.il/, (57)) demonstrated that these 150 key genes were mostly 
enriched in the neuropeptide signaling pathway (fold enrichment (FE) = 8.9, p = 1.2×10-5, Table 
S9). GO enrichment analysis using the 10,027 genes’ contribution to the XGBoost classifier also 
confirmed the mostly significant enrichment for the neuropeptide signaling pathway (FE = 5.7, p 
= 0.3×10-7, Table S10). The contribution of these 10,027 genes was also significantly associated 
with developmental process (FE = 1.2), cellular developmental process (FE = 1.3), cell 
differentiation (FE = 1.4), and neuron projection arborization (FE = 13.7) (ps < 0.0006, Table 
S10). Moreover, the HSPB8 (heat shock protein family B (Small) member 8) gene, whose 
transcription is significantly associated with dendritogenesis and myelination (58), emerged as 
one of the top 150 key genes. These results suggest that functional connectome hubs may 
experience distinctive neurodevelopmental processes in contrast to non-hubs. To gain more 
details, we further examined regional transcriptomic differences between hub and non-hub 
regions for genes previously implicated in key neurodevelopmental processes (58) (Table S5). 
Permutation tests revealed hub regions with significantly higher transcription levels for genes 
associated with dendrite (p = 0.0045) and synapse (p = 0.0030) development than non-hub 
regions (Figure 5A).  In addition, hub regions had significantly lower transcription levels for 
genes associated with axon development (p = 0.0318), myelination (p = 0.0386), and neuron 
migration (p = 0.0132) but not for neuron differentiation (p = 0.4155) (Figure 5A). 
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These above transcriptomic results were derived from AHBA, a cross-sectional healthy adult 
transcriptomic dataset. To obtain temporal details, we inspected regional transcriptomic 
trajectory differences in these key neurodevelopmental processes using BrainSpan Atlas (46). 
We observed pronounced diverging transcriptomic trajectories between hub and non-hub regions 
for genes associated with neuron migration, dendrite, synapse, axon development, and 
myelination but not for neuron differentiation (Figure 5B). For neuron migration, the 
transcription level in hub regions is higher than that in non-hub regions since the mid-fetal period 
and until after birth. For dendrite and synapse development, transcriptomic trajectories of hub 
regions diverge from those of non-hubs since early childhood and until the end of the dataset at 
40 years, during which hub regions have higher transcription levels for most periods. Diverging 
emerges earlier for axon development and myelination since the late fetal period and diminishes 
at the end of adolescence. Conversely, higher transcription levels are nearly always observed in 
non-hub regions. These results are in agreement with the observation of primary somatosensory, 
auditory, and visual (V1/V2) cortices with lower synapse density but higher myelination than the 
prefrontal area in (59, 60). These microscale divergences of key neurodevelopmental processes 
may result in distinctive macroscale connectivity patterns in hub regions in contrast to non-hubs. 
Indeed, using a fiber length profiling dataset provided by (61), we observed more fibers with 
length exceeding 40 mm in hub regions than in non-hubs, indicating hub regions possessing 
more short, medium, and long fibers, whereas non-hub regions possessed more very short (< 40 
mm) fibers (Figure 5C).  
To exclude the GO tool’s potential bias relating to enrichment analysis results, we repeated the 
GO enrichment analysis of the top 150 key genes using DAVID (https://david.ncifcrf.gov/, (62, 
63)). In addition to the most significant GO term of the neuropeptide signaling pathway (FE = 
8.7, p < 0.0006), 34 key genes also showed significant enrichment for positive regulation of 
cellular metabolic process (FE = 1.4, p = 0.031) (Table S11). Disease association analysis 
demonstrated that metabolic disease was associated with the most key genes (60 genes, FE = 1.2, 
p = 0.094) (Table S12). Based on these two results, it is rational to speculate that functional 
connectome hubs possess distinctive metabolic patterns in contrast to non-hubs. To confirm this 
hypothesis, we further examined regional differences in main metabolic pathways in the human 
brain: oxidative phosphorylation and aerobic glycolysis (64). Oxidative phosphorylation and 
aerobic glycolysis were imaged with positron emission tomography and were estimated by the 
cerebral metabolic rate for oxygen (CMRO2) and the glycolytic index, respectively (65). We 
found hub regions with significantly higher levels of both CMRO2 (p = 0.0038) and glycolytic 
index (p = 0.0004) than non-hub regions (10,000 permutation tests, Figure 5D). We also 
inspected transcriptomic trajectories of genes associated with aerobic glycolysis in the human 
brain (66). Consistent with the positron emission tomography results, aerobic glycolysis 
associated genes showed higher transcription levels in hub regions than in non-hub regions since 
the late fetal period (Figure 5E). Adult transcriptomic data from AHBA also confirmed this 
significant difference (p < 0.0001, 10,000 permutation tests, data not shown). Of note, 
considering apparent transcriptomic differences compared to the neocortex (58), we excluded the 
striatum, mediodorsal nucleus of the thalamus, and cerebellar cortex in the transcriptomic 
trajectory analysis but not the amygdala and hippocampus, whose transcriptomic trajectories are 
more similar to those of the neocortex than to those of other subcortical structures (58, 67). We 
also conducted transcriptomic trajectory analysis using only neocortical regions and observed 
almost unchanged results (Figure S6). 
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Taken together, the robust functional connectome hubs identified here are significantly 
associated with a transcriptomic pattern dominated by genes involved in neuropeptide signaling 
pathway, key neurodevelopmental processes, and cellular metabolic processes. 
 

Discussion 

Using a harmonized meta-connectomic analysis of 5,212 young adults across 61 independent 
cohorts, we identified highly consistent and reproducible functional connectome hubs in multiple 
brain networks, with the most robust findings mainly located in several lateral parietal regions. 
We found that these hubs show unique, heterogeneous connectivity profiles and are critical for 
both intra- and inter-network communications. Using transcriptome data from the AHBA and 
BrainSpan Atlas as well as machine learning, we demonstrated distinctive spatiotemporal 
transcriptomic signatures underlying functional connectome hubs. These results markedly further 
our understanding of the robustness of macroscopic connectome hubs of the human brain and 
their potential cellular and molecular underpinnings. 

Challenges for Identifying Highly Consistent and Reproducible Functional Connectome 
Hubs. Extant reports have shown largely inconsistent and less reproducible hub localizations (8, 
11, 21-27), which may arise from high heterogeneity in the included subjects, data acquisition, 
and analysis methods across studies. To diminish these potential confounding factors, we 
employed stringent participant inclusion criteria that included only healthy young adults aged 18 
to 36 years in the final analysis, and adopted harmonized data preprocessing and connectome 
analysis protocols across cohorts. Nevertheless, random-effects meta-analysis revealed high 
heterogeneity among cohorts in almost all brain areas. For more than 95% gray matter voxels, 
the variation of FCS across subjects was dominated by heterogeneity among cohorts, rather than 
by sampling errors. Combined with previous findings of apparent site-related variation of 
functional connectivity throughout the brain (68), we speculate that high heterogeneity among 
cohorts caused by imaging scanners and/or imaging protocols is an important cause for 
inconsistent and less reprodubile hub localizations among prior studies. Thus, combining data 
from multiple cohorts and adopting a hamonized random-effects meta-analysis model were both 
indispensable in the present study. 
High heterogeneity among cohorts raised the concern of whether the hubs identified here were 
dominated by certain cohorts. We examined it by repeating the functional connectome hub 
identification procedure after leaving one cohort out at a time, and demonstrated that the hubs 
identified using the 61 cohorts were not dominated by any cohort. This may benefit from our 
rational statistical model and sufficient datasets. We adopted a harmonized random-effects meta-
analysis model to handle both intracohort variation (i.e., sampling errors) and intercohort 
heterogeneity (69). Our results showed that the spatial distribution of functional connectome 
hubs was relatively stable when using more than 510 subjects and 35 cohorts, demonstrating that 
5,212 subjects from 61 cohorts were adequate to minimize both sampling errors and 
heterogeneity among cohorts. It also provided guidelines for mapping robust functional 
connectivity of the human brain across populations in future studies. Considering that there were 
only dozens of subjects in most prior studies (8, 11, 21-23, 25, 27), we speculate that low 
statistical power attributed to inadequate subjects is another cause for prior inconsistent and less 
reproducible hub localizations (70). It is worthy to note that the robust functional connectome 
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hubs identified with harmonized image processing and network analysis were highly 
reproducible both across subjects and across cohorts. This suggests that methodological variation 
or defects may also cause controversial hub reports in specific regions. 
Together, the inconsistency and less reproduciblity of hub localizations reported previously may 
be mainly due to high heterogeneity among cohorts in the included subjects, data acquisition, and 
analysis methods and low statistical power attributed to inadequate subjects. These potential 
confounding factors were thoroughly addressed in the present study through stringent participant 
inclusion criteria, a rational harmonizied random-effects meta-analysis model, and the 
combination of adequate subjects from multiple cohorts. An extention of discussion can be found 
in the SI Appendix, Section 3.1 and Figures S7 to S9.   
The Highly Consistent and Reproducible Functional Connectome Hubs. Prior studies have 
reported functional connectome hubs throughout heteromodal, unimodal, primary, and 
subcortical regions, but the results are inconsisent and less reproducible across studies (8, 11, 21-
27). Here, we demonstrated highly consistent and reproducible functional connectome hubs 
mainly located in the DMN, DAN, VAN, FPN, SMN, and VIS. Using a local maxima 
localization procedure, we further identified 35 robust connectome hubs whose distinctive 
functional connectivity profiles clearly divided them into three clusters. These functional 
connectivity profiles provided intriguing clues about their distinctive roles in brain network 
communication. 
Twenty-one hubs (Cluster I) are robustly connected with extensive areas in the DAN, VAN, 
FPN, and SMN, indicting their favoring global integration of information processing among 
these networks. In fact, they are exactly core regions forming the DAN, VAN, FPN, and the 
sensorimotor pathway. Specifically, four laterial frontal hubs left 43, left FOP4, reght area 46, 
and right 6r, two ventral postcentral hubs right PF and left PFop, and two medial hubs left SCEF 
and left 5mv are canonical VAN regions reported in (50, 71), whereas four lateral parietal hubs 
left AIP, right 7PC, and bilateral PFt, two dorsal frontal hubs bilateral 6a, one ventral frontal hub 
right 6v, and one temporal hub FST are core DAN regions (71). These VAN/DAN hub regions’ 
differential responses to goal-directed and stimulus-driven attention tasks (72) also clearly 
manifested as nuanced functional connectivity profiles in the present study although with many 
overlapping regions. In addition, two lateral prefrontal hubs left p9-46v and right IFSa are core 
FPN regions that have been reported both in group-level seed-based (73) and in individual-level 
connectome-based (74) investigations. Moreover, hub regions involved in the sensorimotor 
pathway act as significant waystations for communication between the VIS and SMN, DAN, and 
VAN, such as the right VIP, right FST, left 7Am, and left FEF, which are robustly connected 
with the visual association cortex, such as MT+ complex and neighboring visual areas and 
peripheral visual areas. Information flow along the primary visual, visual association, and 
higher-level sensorimotor cortices is undertaken by the four occipital hubs (Cluster II) left 
VMV1, right V4, and bilateral V3A, which are all densely connected with the VIS and portion of 
the SMN regions. This aligns with the role of their homologous regions in the non-human 
primate cerebral cortex, which has been validated by seminal tract tracing work (75). 
The remaining 10 hubs (Cluster III) are all located in canonical DMN regions (76). Nine of them 
confine functional connectivity within the DMN and LIMB regions, whereas the left 8Av hub 
acts as a connector between the DMN and FPN that manifests as being robustly connected with 
both DMN regions and lateral prefrontal FPN regions. This can be supported by the recent 
finding of a control-default connector located in the posterior middle frontal gyrus in (52) and 
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may also be a case of the hypothesis of a parallel interdigitated subnetwork (77). These 
observations offer a significant complementary interpretation to the conventional assumption that 
the DMN is anticorrelated with other networks (76, 78). Additionally, considering that 
communication between the DMN and other networks is of significant relevance to 
neuropsychiatric disorders, such as major depressive disorder (79, 80), schizophrenia (80), and 
autism spectrum disorders (81), the left 8Av hub may be a promising target region for 
therapeutic interventions. 

Spatiotemporal Transcriptomic Signatures Underlie Functional Connectome Hubs. To our 
knowledge, this is the first study to demonstrate spatiotemporal transcriptomic signatures 
underlying functional connectome hubs in the human brain. Unsurprisingly, the robust brain 
hubs were significantly associated with a transcriptomic pattern dominated by genes with the 
highest enrichment for the neuropeptide signaling pathway. Because neuropeptides are a main 
type of synaptic transmitter that is widely distributed in the human central nervous system (82), 
the neuropeptide signaling pathway is indispensable for efficient synaptic signal transduction 
that sustains dense and flexible functional connections in hub regions. In addition, 34 and 60 out 
of the 150 key genes were involved in the positive regulation of cellular metabolic process and 
metabolic disease, respectively, which suggests that hub regions may possess distinctive 
metabolic patterns in contrast to non-hubs. This is possible and reasonable because massive 
synaptic activities in hub regions demand high material and metabolic costs, which is in 
accordance with our observation of higher oxidative phosphorylation and aerobic glycolysis 
levels in hub regions. This is also comparable with a prior finding of higher cerebral blood flow 
in hub regions (83). 
We found functional connectome hubs possessing a distinctive transcriptomic pattern of key 
neurodevelopmental processes in contrast to non-hubs. Compared with non-hub regions, 
functional connectome hubs have higher transcription levels of genes associated with dendrite 
and synapse development but lower levels of axon development and myelination during 
adulthood. These differences are also apparent during development, especially during childhood 
and adolescence. Our findings are compatible with previous observations of the prefrontal area 
having higher synapse density but lower myelination than primary somatosensory, auditory, and 
visual (V1/V2) cortices (59, 60). Importantly, differences observed in (59) are also more 
apparent during childhood and adolescence. Higher transcription levels for dendrite and synapse 
development in hub regions are necessary for the overproduction of synapses that will be 
selectively eliminated according to the demand of environment and gradually stabilized before 
full maturation (84), which is “the major mechanism for generating diversity of neuronal 
connections beyond their genetic determination” (84, 85). Lower transcription levels for axon 
development and myelination will prolong the myelination period in hub regions, which 
characterizes a delayed maturation phase (86). Marked delay of anatomical maturation in human 
prefrontal and lateral parietal cortices has been frequently observed both in human development 
(85, 87-89) and in primate evolution (86, 90), which provides more opportunities for social 
learning to establish diverse neuronal circuits that contribute to our complex (85) and species-
specific (86) cognitive capabilities. We also observed higher transcription levels for neuron 
migration in hub regions during most fetal periods and early infancy. This is in agreement with 
the report of extensive migration of young neurons persisting for several months after birth in the 
human frontal cortex (91). Meanwhile, the migration and final laminar positioning of postmitotic 
neurons are regulated by common transcription factors (92), which suggests that a higher 
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transcription level for neuron migration in hub regions may facilitate the construction of more 
intricate interlaminar connectivity. These microscale divergences of key neurodevelopmental 
processes may result in distinctive macroscale anatomical connectivity patterns in hub regions in 
contrast to non-hubs, because we observed more short, medium, and long fibers in hub regions 
than in non-hubs. Consequently, this distinctive transcriptomic pattern may underlie the 
development of intricate neuronal circuits in hub regions that provide anatomical substrates for 
our complex cognitive capabilities later in life. 
Human neurodevelopment is an intricate and protracted process, during which the transcriptome 
of the human brain requires precise spatiotemporal regulation (93). Thus, in addition to 
contributing to our complex cognitive capabilities, the distinctive transcriptomic pattern of 
neurodevelopment in hub regions may also enhance our susceptibility to neuropsychiatric 
disorders, which means small disturbance in the magnitude or the timing of this distinctive 
transcriptomic pattern may have long-term consequences on brain anatomical topography or 
functional activation. This is in line with our observation of psychiatric disorders being the most 
significant disease associated with the top 150 key genes (Table S12). These results imply that 
uncovering the intricate transcriptomic pattern, diverse neuronal circuits, anatomical topography, 
and functional activation of hub regions may provide crucial and promising routes for 
understanding the pathophysiological mechanisms underlying neurodevelopmental disorders, 
such as autism spectrum disorders (12, 81, 94, 95), attention deficit hyperactivity disorder (12), 
and schizophrenia (9, 80). 
Of note, we conducted a data-driven analysis using machine learning based on XGBoost and 
SVM that were implemented through non-linear mathematical operations rather than linear 
operations, such as linear correlation (39), linear regression (40), principal component analysis 
(41), or partial least squares (43, 44, 96). It has been argued that observations of transcriptomic-
neuroimaging association through linear regression have a false-positive rate as high as 60%, 
although with a stringent permutation test (97). Moreover, the results derived by principal 
component analysis and partial least squares may be largely shifted toward the first principal 
component axis of the dataset (98). These reports suggest that prior results of transcriptomic-
neuroimaging association using AHBA derived by linear mathematical operations may include 
highly reproducible false-positive observations that are independent of neuroimaging 
measurements, such as the association with genes enriched for ion channels (39-41, 44, 96) and 
mitochondria (43, 44, 99). By contrast, high reproducibility across different machine learning 
models and across different GO enrichment analysis tools and convergent results from the 
AHBA dataset, BrainSpan dataset, and multimodal neuroimaging data from other independent 
laboratories made it very unlikely that our findings were false-positive observations. 

Methodological Considerations. Some results of the present study should be interpreted 
cautiously because of methodological issues. First, we were unable to resolve whether functional 
connectome hubs in the superior temporal gyrus and rolandic operculum were derived by an 
artifact of unavoidable signal blurring due to fMRI preprocessing or close proximity, which 
should be verified in future studies using fMRI with higher spatial resolution and greater signal 
specificity. Second, these above robust connectome hubs were identified using preprocessed 
rsfMRI data with global signal regression. We also repeated identifying functional connectome 
hubs using preprocessed rsfMRI data without global signal regression and observed a shifted hub 
distribution, which, however, may be derived from physiological artifacts rather than by the 
brain’s intrinsic or ongoing neural activity (SI Appendix, Section 2.2 and Figure S10). Third, the 
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AHBA dataset only includes partial human genes, of which approximately half were excluded in 
data preprocessing (53), which may have induced incomplete observations in our data-driven 
analysis. Finally, our transcriptomic signature results addressed only the association between 
functional connectome hubs and transcriptomic patterns and did not explore causation between 
them. Exploring more detailed mechanisms underlying this correlation is attractive and may be 
practicable for non-human primate brains in future studies. 

 

Materials and Methods  

Materials and methods are summarized in SI Appendix, Section 1 and Tables S1 to S6. MRI 
datasets were collected from the International Neuroimaging Data-sharing Initiative, Brain 
Genomics Superstruct Project (100), Human Connectome Project, MPI-Leipzig Mind-Brain-
Body Project, and Age-ility Project. The AHBA and BrainSpan datasets were provided by the 
Allen Institute for Brain Science. Code and source data that support the findings of this study 
will soon be publicly available at https://github.com/xuzhilei. 
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Figure 1. Enhanced box plot of the age ranges of each cohort. M/F, males/femals. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 1, 2021. ; https://doi.org/10.1101/2021.11.29.470494doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.29.470494
http://creativecommons.org/licenses/by-nc-nd/4.0/


20 
 

 
Figure 2. Highly consistent functional connectome hubs. (A) Robust FCS pattern and its 
corresponding variance (standard error, SE) map estimated using a harmonized voxelwise 
random-effects meta-analysis across 61 cohorts. (B) Left: The most consistent functional 
connectome hubs (p < 0.001, 10,000 permutation tests, cluster size > 200 mm3); white spheres 
represent hub peaks. Right: Hub voxel distribution in eight large-scale brain networks; insets, the 
seven large-scale cortical networks provided by (50) were rendered on the left hemisphere. (C) 
Left: Heterogeneity measurement I2 that was estimated through the random-effects meta-analysis 
model. Right: Cumulative distribution function plot of I2. (D) Left: Heatmap of dispacement of 
the 35 hub peaks after leaving one cohort out. Right: Bar plot of the probability across the 35 hub 
peaks whose dispacement was less than 6 mm after leaving one cohort out. (E) Hub occurrence 
probability map across all subjects (left) and all cohorts (right). White lines delineate boundaries 
of the identified hubs in Figure 2B. (F) Dice’s coefficient of the identified hubs in Figure 2B 
compared with the top N (voxel number of the identified hubs in Figure 2B) voxels with the 
highest hub occurrence probability values across randomly selected subjects (left) and randomly 
selected cohorts (right). Blue shading represents the standard deviation across 2,000 random 
selectings.   
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Figure 3. Connectivity profiles of connectome hubs. (A) Functional connectivity profiles of 
the 35 hubs. White spheres represent hub seeds. Blue lines delineate boundaries of the seven 
cortical networks shown in Figure 2B right. (B) Top: Dendrogram derived by hierarchical 
clustering of the connectivity profile matrix. Middle: The connectivity profile matrix, where each 
item represents the percentage of one brain network connected with one hub. Bottom: Thirty-five 
hubs were rendered using different colors according to the hierarchical clustering solution.  
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Figure 4. Transcriptomic data distinguish functional connectome hubs from non-hubs. (A) 
Schematic diagram of using the XGBoost model to classify brain samples as a hub or non-hub. 
(B) Accuracy rate of the XGBoost classifier. The horizontal gray dashed line represents the 
chance level accuracy rate (50%). The horizontal green dashed line represents the avarage 
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accuracy rate of the XGBoost classifier across 1,000 repetitions. (C) The rate to be correctly 
classified versus absolute Cohen’s d value across 1,158 brain samples. (D) Density plot of 
10,027 genes’ logarithmic average contribution across 1,000 repetitions to the XGBoost 
classifier. Genes with the greatest contribution were considered key genes. (E) Regression plot of 
the logarithmic average contribution of the top 300 key genes across the first 500 repetitions 
versus that across the second 500 repetitions. Each dot represents one gene. (F) Schematic 
diagram of using the SVM model to classify brain samples as a hub or non-hub. (G) Accuracy 
rate of the SVM classifier. (H and I) Accuracy rate of the SVM classifier versus the count of key 
genes used to distinguish 382 hub samples from 382 non-hub samples with the lowest rate (H) or 
highest rate (I) to be correctly classified by the XGBoost classifier. Each dot represents one SVM 
sclassifier. Black curves were estimated by locally weighted regression. Gray bars in (B), (C), 
and (G) indicate 95% confidence intervals. Statistical significance in C and G (**p<0.001; 
***p<0.0001) was calculated by permutation test, with the spatial autocorrelations being 
corrected using a generative model (101). 
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Figure 5. Spatiotemporal transcriptomic signatures of functional connectome hubs. (A) 
Regional transcriptomic differences between hub and non-hub samples for genes associated with 
key neurodevelopmental processes. We used the first principal component of each gene set’s 
transcription level to plot and perform the statistical analysis. NeuDif: neuron differentiation; 
NeuMig: neuron migration; DenDev: dendrite development; SynDev: synapse development; 
AxoDev: axon development; Mye: myelination. (B) Transcriptomic trajectories of genes 
associated with key neurodevelopmental processes in hub regions (solid line) and non-hub 
regions (dashed line). (C) Fiber number difference between hub regions and non-hub regions 
across different fiber lengths. The null distribution was constructed by 10,000 permutation tests 
with the spatial autocorrelations being corrected using a generative model (101). (D) Top left: 
Oxidative phosphorylation levels across Brodmann areas were measured by CMRO2. Bottom 
left: Bar plot of CMRO2 in hub regions and non-hub regions. Top right: Aerobic glycolysis (AG) 
levels across Brodmann areas were measured by GI. Bottom right: Bar plot of GI in hub regions 
and non-hub regions. White lines delineate boundaries of the identified hubs in Figure 2B. Data 
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from the 82 Brodmann areas and seven subcortical regions were included in the alalysis. White 
lines delineate boundaries of the identified hubs in Figure 2B. Brodmann areas with more than 
50% vertex or subcortical structures with more than 50% voxels identified as hubs were regarded 
as hub regions. (E) Transcriptomic trajectories of genes associated with AG in hub regions (red 
line) and in non-hub regions (blue line). Transcriptomic trajectories in (B) and (E) were plotted 
using locally weighted regression by smoothing the first principal component of each gene set’s 
transcription level against log2[postconception days]. For illustration purposes, we normalized 
the transcription level for each gene set across all brain samples to range from 0 to 1. Gray bars 
in (A) and (D) indicate 95% confidence intervals across brain samples. Statistical significance in 
(A) and (D) (*p<0.05; **p<0.005; ***p<0.0005; N.S.p>0.05) was calculated by permutation test 
with the spatial autocorrelations being corrected using a generative model (101). a.u., arbitrary 
unit; w, postconception week; y, postnatal year.   
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Table 1. Highly consistent functional connectome hubs. 

No. Hub Location 
MNI coordinates 

Cohen’s d  FCS SE x y z 
1 Right PFt PFt (superoanterior BA 40) 60 -21 45 6.267 1.072 0.022 
2 Left PFt PFt (superoanterior BA 40) -60 -24 36 6.151 0.949 0.020 
3 Right PF PF (posterior BA 40) 60 -27 24 5.785 1.239 0.027 
4 Left SCEF Supplementary and cingulate eye field  0 0 51 5.635 1.000 0.023 
5 Left PGi PGi (inferior BA 39) -51 -66 30 5.168 1.075 0.027 
6 Left PFop PF opercular (inferoanterior BA 40) -63 -27 18 5.160 1.095 0.027 
7 Left 43 Area 43 -57 3 3 4.927 1.114 0.029 
8 Right 6r Rostral area 6  57 6 0 4.916 1.184 0.031 
9 Right PGi PGi (inferior BA 39) 54 -60 30 4.739 1.007 0.027 
10 Right 8BL Area 8B lateral  21 36 51 4.655 0.713 0.020 
11 Right 7PC Area 7PC 36 -45 54 4.414 0.712 0.021 
12 Left 9p Area 9 posterior  -15 45 45 4.199 0.639 0.019 
13 Right 6v Ventral area 6  54 9 33 4.037 0.766 0.024 
14 Left 8Av Ventral area 8A -39 18 48 3.990 0.561 0.018 
15 Left AIP Anterior intra-parietal area -33 -45 45 3.474 0.567 0.021 
16 Right FST Fundus of the superior temporal area  54 -60 0 3.156 0.729 0.030 
17 Right 9m Area 9 middle  3 54 24 3.128 0.609 0.025 
18 Left 31pv Area 31p ventral  -3 -51 33 3.049 0.784 0.033 
19 Right VIP Ventral intra-parietal complex  18 -63 57 2.984 0.572 0.025 
20 Right 6a Area 6 anterior  33 3 63 2.975 0.454 0.020 
21 Left FOP4 Frontal opercular area 4  -33 21 6 2.858 0.828 0.037 
22 Right 5mv Area 5m ventral  12 -30 45 2.822 0.701 0.032 
23 Right 46 Area 46 36 42 30 2.779 0.656 0.030 
24 Left 10v Area 10v  0 57 -9 2.769 0.731 0.034 
25 Left p9-46v Area posterior 9-46v  -42 36 27 2.591 0.561 0.028 
26 Left V3A Area V3A  -15 -90 33 2.575 0.684 0.034 
27 Left TE1a Area TE1 anterior  -63 -15 -15 2.527 0.595 0.030 
28 Right TE1a Area TE1 anterior  60 -9 -21 2.494 0.580 0.030 
29 Right IFSa Anterior inferior frontal suleus  48 39 12 2.468 0.480 0.025 
30 Left 7Am Medial area 7A  -12 -60 60 2.461 0.475 0.025 
31 Right V3A Area V3A  18 -87 36 2.442 0.645 0.034 
32 Right V4 Fourth visual area  24 -63 -9 2.339 0.446 0.024 
33 Left 6a Area 6 anterior  -24 3 63 2.317 0.331 0.018 
34 Left VMV1 Ventromedial visual area 1  -18 -60 -6 1.937 0.397 0.026 
35 Left FEF Frontal eye fields  -45 -9 57 1.412 0.640 0.058 

Note: Hub name and location description were based on (102, 103). BA: Brodmann area.  
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