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Abstract 

Motivation 

T follicular regulatory (Tfr) cells are a specialized cell subset that controls humoral 

immunity.  Despite a number of individual transcriptomic studies on these cells, core 

functional pathways have been difficult to uncover due to the substantial transcriptional 

overlap of these cells with other effector cell types, as well as transcriptional changes 

occurring due to disease settings.  Developing a core transcriptional module for Tfr cells 

that integrates multiple cell type comparisons as well as diverse disease settings will 

allow a more accurate prediction of functional pathways. Researchers studying allergic 

reactions, immune responses to vaccines, autoimmunity and cancer could use this gene 

set to better understand the roles of Tfr cells in controlling disease progression. 

Additional cell types beyond Tfr cells that have similar features of transcriptomic 

complexity within diverse disease settings may also be studied using similar approaches.  

High-throughput sequencing technologies allow the generation of large datasets that 

require specific tools to best interpret the data. The development of a core transcriptional 

module for Tfr cells will allow investigators to determine if Tfr cells may have functional 

roles within their biological systems with little knowledge of Tfr biology.  With this 
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work, we have addressed the need of core gene modules to define specific subsets of 

immune cells. 

Results 

We introduce an integrated “core Tfr cell gene module” that can be incorporated into 

GSEA analysis using various input sizes. The integrated core Tfr gene module was built 

using transcriptomic studies in Tfr cells from several different tissues, disease settings, 

and cell type comparisons. Random forest was used to integrate the transcriptomic studies 

to generate the core gene module.  A GSEA gene set was formulated from the integrated 

core Tfr gene module for incorporation into end-user friendly GSEA. The gene sets are 

presented along with random genes taken from the GTEX data set and are presented as 

GMT files. The user can upload the gene set to the GSEA website or any gene set tool 

which takes GMT files. We also present the full results of the model including p-values 

calculated by random forest. This allows the user to choose a p-value cutoff that is most 

appropriate for the experimental setting.  

Availability 

The core Tfr gene sets are freely available at: https://github.com/alosdiallo/TFR_Model. 

We have also included all of the code and data used in developing these gene sets. The 

code and results are released under an MIT license.  

Supplementary information 

Supplementary data are available at Bioinformatics online. 
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Main Text 

 

Introduction 

 

Applications of machine learning in immunology and medicine have increased in 

the past decade(Heng and Painter, 2008) (Eraslan, et al., 2019). These advances have 

been driven in part by the availability of sizable genomic datasets such as The Genotype-

Tissue Expression (GTEX), The Cancer Genome Atlas (TCGA) and Immunological 

Genome Project (IMMGEN) (Consortium, 2013; Heng and Painter, 2008; McLendon, et 

al., 2008). The ability to integrate large omix datasets into the training data for machine 

learning models has also become more prevalent in immunology with the application of 

tools such as ImmuneML, and CIBERSORT (Newman, et al., 2019; Pavlović, et al., 

2021). With these tools and genome wide datasets, researchers have been able to publish 

custom gene sets for use in gene set enrichment analysis to allow other researchers to 

leverage this knowledge for their own experiments (Segal, et al., 2004; Subramanian, et 

al., 2005). Currently, most gene sets and gene modules derived to identify cell types and 

their functional pathways rely on a single cell type comparison from only one anatomical 

location and disease state.  In this work, we elucidate a core gene module for a specific 

cell type derived from a wide variety of transcriptomics datasets.  We chose the Follicular 

Regulatory T (Tfr) cell as the subject because of its transcriptional complexity, overlap 

with related effector cells, presence in multiple tissues, and novel functional roles.  This 

core gene module will serve as a tool for further exploring functional pathways in Tfr 

cells in immune responses, a cell type that has been associated with controlling disease 

progression in a number of immunological settings such as vaccination, allergic airway 
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disease, autoimmunity and cancer (Clement, et al., 2019; Eschweiler, et al., 2021; Fu, et 

al., 2018). 

The immune system presents a complex organization, spread throughout the 

organism, and largely relies on cell-cell communication to achieve protection from 

infection, to function in tumor suppression, and to maintain a balanced interaction with 

the microbiota. Antigen recognition is a key feature of the immune system, based on the 

interaction between B and T cells, which express antigen-specific receptors called BCR 

and TCR, respectively. The interaction between B and T cells leads to phenotypic 

changes that correlate with their function. These cells’ activation state, differentiation, 

and effector function rely on their gene expression changes. Furthermore, factors 

including genetic factors, drugs and ageing can alter gene expression profiles. These gene 

expression changes can be assessed by high-throughput sequencing analyses. 

Immune responses are finely controlled by the regulatory components of the 

immune system, such as regulatory T cells (Tregs). They are characterized by the 

expression of the transcription factor, Foxp3 and can suppress effector T cells through 

surface molecules and cytokine secretion (Sakaguchi, et al., 2008). T follicular regulatory 

cells (Tfr) are a transcriptionally and functionally distinct subset of Treg cell. Tfr cells 

gain access to the B cell follicle within lymphoid organs where they modulate B cell 

responses and the germinal center reaction (Chung, et al., 2011; Linterman, et al., 2011; 

Sage and Sharpe, 2020; Wollenberg, et al., 2011). Germinal centers are microanatomical 

structures where B cells undergo somatic hypermutation and BCR affinity maturation 

through multiple rounds of interactions with T follicular helper cells (Tfh) (Berek, et al., 

1991; Han, et al., 1995; Jacob, et al., 1991; Jacobson, et al., 1974). Tfh cells derive from a 

pool of mature naïve T cells (conventional T cells) that become activated when their 
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antigen-specific receptor recognizes its antigen along with other stimulatory signals. Tfr 

cells regulate the germinal center response, enabling the generation of high affinity 

antibodies while preventing the generation of autoreactive antibodies that could be 

pathogenic (Clement, et al., 2019; Fu, et al., 2018; Gonzalez-Figueroa, et al., 2021; Lu, et 

al., 2021; Wu, et al., 2016).  Although Tfr cells have been implicated in controlling 

disease progression in a number of settings, the transcriptional machinery controlling Tfr 

function remains elusive.  This paucity of information is due to the transcriptional 

complexity of Tfr cells.  Tfr cells have a transcriptional program that is a combination of 

Tfh and Treg cell which is remarkable since neither of these two subsets have the full 

functionality of Tfr cells (Hou, et al., 2019). Moreover, since Tfr cells can be found in 

multiple tissues and during multiple disease states, gene expression may be due to the 

environment and not functionality.  Uncovering a core gene module for Tfr cells that is 

not dependent on tissue localization or disease setting will allow researchers to narrow 

focus onto functional pathways that may serve as targets for therapeutics.   

Being able to uncover networks of gene expression for individual types of 

immune cells can help give researchers tools needed to better understand these cells’ 

phenotype and function. Work from consortiums as well as individual labs has 

contributed greatly to this goal (Wilk, et al., 2020) (Heng and Painter, 2008). There is 

also ongoing work to develop an immune cell atlas that may provide a more global view 

of the immune system. Over the past decade, the development of more sophisticated tools 

to aid immunologists coupled with decreased sequencing costs have allowed researchers 

to more effectively develop strategies to examine various cell types in different contexts, 

such as lymphoid tissues and the tumor microenvironment (Maslova, et al., 2020; 

Pavlović, et al., 2021). In addition, the use of statistical models in molecular biology can 
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also often provide insight that is difficult or costly to obtain through in vitro experiments 

(Eraslan, et al., 2019).  However, in order to uncover cell type function in large datasets, 

core modules for cell types need to be generated that are not sensitive to the unique 

settings of the dataset.  To address all of these issues, we developed a core Tfr cell gene 

module that has been generated using machine learning methods and multiple omics 

datasets that integrate function, tissue location and disease setting. This core Tfr gene 

module is designed to be easily used for pathway analysis in the GSEA tool, but can also 

be used with other gene set enrichment tools such as Panther, and Enrichr (Mootha, et al., 

2003) (Subramanian, et al., 2005) (Chen, et al., 2013) (Thomas, et al., 2003).  This 

approach will help the field understand Tfr biology in more detail. In addition, we posit 

this approach as a key method for generating core transcriptional programs for other cell 

types that have unique functions but may have complex transcriptional machinery.  

 

 

Materials and Methods 

 

There are 77 different polyA-targetted RNA-seq samples taken from mice for this 

analysis, including Tfh, Tfr, Treg and T conventional cells (naïve T cells) from lymph 

nodes, spleen, and blood (Figure S1).  These samples were chosen because they were 

derived using the same bulk RNAseq library prep pipeline and incorporate effector cells 

(Tfh, Treg, etc.) with partial overlapping transcriptional signatures as Tfr cells, include 

multiple tissues and disease states, as well as in vitro studies.  The RNA sequencing data 

in these studies were processed using Qiagen CLC Genomics Workbench version 8 

(Qiagen, 2019). Reads were normalized using total exon reads per million (Qiagen, 

2019).  All of the work on the development of the models and statistics were performed 

using the R programming language (Team, 2014). Model tuning was done using a 
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training/test set approach with the datasets comprising of bootstrap samples. A 

training/test gene set was generated from the RNA sequencing data in order to train the 

statistical models. This data subset is comprised of roughly 2,000 genes based on the 

following criteria, for Tfr genes: genes had to be expressed two-fold more in Tfr than in 

TREG for each of the cell types, and genes known to be involved in Tfr biology, for the 

Non Tfr genes: genes with no expression, genes with two-fold difference in TREG vs 

TFR for the different cell types, and genes expression below 20% in Tfr cells. We also 

included genes that have been experimentally validated as having roles in Tfr cells and 

therefore can serve as a quality control (QC) of the project, for example: CXCR5, ICOS, 

PD-1, CCR7, Sell, and the recently described Nrn1 (Chung, et al., 2011; Gonzalez-

Figueroa, et al., 2021; Linterman, et al., 2011; Wollenberg, et al., 2011). In addition, we 

assessed correlation between genes from the two classes to determine whether the 

statistical models would likely model noise as opposed to a core Tfr transcriptional 

module (Figure S2). Next, we wanted to understand whether the two classes were highly 

correlated, as well as how correlated the genes within the classes were.  To accomplish 

this, we performed a Pearson correlation on the training and test data, results of which 

can be seen in Figure S3.  

 

In order to determine which statistical method would best model the core Tfr gene 

module we generated 200 bootstrap samples and gauged based on metrics from the 

ROCR package (Sing, et al., 2005). For a given bootstrap sample, the data was divided 

into a training and test set with a 70:30 split, respectively, using the sample function. 

Each sample was randomly generated, which allows for the training and test data to be 

independent of one another. Each individual training and test sample was then fed into 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 1, 2021. ; https://doi.org/10.1101/2021.11.29.470410doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.29.470410
http://creativecommons.org/licenses/by/4.0/


9 

 

random forest (RF), linear discriminant analysis (LDA), naïve bayes (NB), K nearest 

neighbors (KNN), Support Vector Machine (SVM), and logistic regression (LR) (Wiener, 

2002) (Jerome H. Friedman, 2010) (David Meyer, 2021) (Venables, et al., 2002). This 

was carried out to test a range of statistical models to approach the problem using several 

different strategies. We looked at several different approaches to be able to cover a wide 

range of methods, including Bayesian, algorithmic, and clustering based approaches to 

determine which strategy would be most effective at classifying our samples. Results 

were compared using error rate, accuracy, specificity, and sensitivity, all of which were 

calculated in the ROCR package (refer to Supplementary methods) (Sing, et al., 2005). 

Once all of the different statistical models were tested, RF was chosen as the model for 

further analysis based on superior results during performance tests (Figure 1).  

Once we determined that random forest should be used based on the performance 

metrics from figure 1, we then assessed if the model was prone to bias that could skew 

the results. To do this, we examined the effects of different variables in the training 

versus test set (Figure S4). In this analysis, three different datasets were fed to random 

forest. First, the training and test sets contained the same column information (variables) 

with only the genes being randomly selected (Figure S4).  Second, the columns used were 

randomly selected for the training set and test set with the columns used for the selection 

of each being independent from one another (Figure S4). We then examined the effects of 

changing the class designation of genes in the training and test sets (Figure S5).  In this 

case, genes were randomly assigned to one of the two classes and fed into the random 

forest model.  This was compared with a dataset where the class designations were not 

altered (Figure S5).    
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In order to optimize RF, we assessed different model parameters. The parameter 

mtry in the random forest model were tuned using the tuneRF function, which outputs  

the proportion of variables used when building trees in RF, and ntreeTry which indicates 

the number of trees to generate (Wiener, 2002). This was tested on 300 trees (300 was 

chosen because the parameters are stabilized at this number). In other words, the 

parameter mtry remained constant when the number of trees exceeded 300 trees. While 

using tuneRF, values from 1 to 36 were chosen for the parameter of mtry, as values above 

36 did not yield an increase in performance. An mtry value of 18 was chosen in order to 

obtain the lowest training error, with the lowest model complexity. The final random 

forest model was then run against the whole dataset to generate the core Tfr gene module. 

All of the plots in this analysis are created using these functions: ggplot, corplot, 

partialPlot, tuneRF (Wickham, 2016) (Wiener, 2002) (Revelle, 2021). 
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Figure 1: Performance Metrics for each of the Statistical Models used 

 

Boxplots depicting performance metrics on accuracy, error, sensitivity, and specificity 

were calculated for KNN, LDA, LR, NB, RF, and SVM. Each boxplot represents 100 

bootstrap samples.   
 

The top 2,000 ranking genes in the core Tfr gene module produced by RF were 

made into a custom gene set to be used in common bioinformatics pipelines (See top 

2000 gene set in Supplementary data). These gene lists are stored as rows of 200 genes in 

a single “.gmt” file for use with the Broad Institute’s GSEA tool (Reich, et al., 2006). 
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These can be used in other bioinformatics tools which use a “.gmt” file as input. We also 

included 2,000 random genes used as a null gene set model, this was used as a negative 

control to assess scores of random genes. For this, this we picked the random (using the 

sample function in R) genes from the GTEX dataset that comprise 20 individual gene sets 

(Consortium, 2013).  GTEX was chosen as the source for the NULL model gene sets for 

3 reasons. First, the GTEX analysis was conducted using healthy tissue (non-tumor). 

Second, the data came from many individual patients which allows for great variability in 

samples (1,000 individuals). Finally, the GTEX data is made up of samples from 54 

different tissue types (Consortium, 2013). This strategy ensures the NULL model is not 

heavily impacted by Tfr gene expression, as many tissues will likely not contain large 

populations of immune cells. Using the GSEA tool, the custom gene sets (for GSEA) 

were then run against the subsets of the original RNASeq data to determine the 

enrichment for Tfr gene expression. We compared samples from Tfr, vs Treg cells as 

well as Tfr vs Tcon, and Tfr vs Tfh cell samples from each of the different tissues. The 

final QC analysis performed using the GTEX data was to use the genes from the training 

and test set, but with data from the different GTEX tissues (Figure S6). The data was 

randomly sampled (Figure S6).  This was to determine if RF would model noise as well 

as it could model the normal training and test data (Figure S6).  

All of the RNA sequencing data, along with the custom gene sets are stored on 

github, in addition, the code used in this project is also stored on github at 

https://github.com/alosdiallo/TFR_Model.  
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Results 

 

The results of comparing the training and test errors for the bootstrap samples 

shown in the boxplots of each of the models shows that random forest had the lowest 

median error, whereas naïve bayes had the highest error (see Figure 1 and Table 1), 

according to all 4-performance metrics: accuracy, error rate, sensitivity, and specificity 

(See Supplemental text for math). Table 1 shows that random forest had the lowest error 

rate, highest accuracy, highest sensitivity, and second highest specificity. The second-best 

performing method was LR followed by KNN, LDA, SVM, and finally NB (see Figure 1, 

and Table 1).  Figure 1 shows the results of all 200 bootstrap samples. This was broken 

up into 2 separate batches, where 100 bootstrap samples were built and tested for each 

batch (Figure 1). LDA had the largest distribution in error for the 200 samples, with RF 

having the tightest spread, which points to RF being the most reproducible of the methods 

tested (Figure 1). Based on these results, we further focused on random forest as a 

strategy since it had the lowest error rate and highest accuracy which more appropriately 

fit within the goals of the project. 

Table 1: Performance of Statistical Models 

 

Method Accuracy Error Rate Sensitivity Specificity 

Logistic 

regression (LR) 0.98156231 0.01831329 0.97874395 0.9863281 

Random forest 

(RF) 0.99034749 0.01074219 0.9979188 0.9838188 

Naïve Bayes 

(NB) 0.5135401 0.48703125 0.94472021 0.090625 

Linear 

discriminant 

analysis (LDA) 0.838853 0.1640048 0.7617178 0.9168317 

K Nearest 

Neighbors 

(KNN) 0.9141252 0.08427  0.8655876  0.9635762  

Support Vector 

Machine (SVM) 0.5104334 0.4895666 0.003267974 1 
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Median Performance metrics: accuracy, error, sensitivity and specificity for the different 

statistical models. The models used for this analysis are LR, RF, NB, LDA, and KNN. 

Figure 2: Model Selection and Importance  

  

  

A: Results of the model selection by random forest based on the two classes, Tfr 

and the null model. B: Variable importance from applying random forest to the test set.  

 

After running the model against the full dataset, roughly 5,000 genes were 

predicted by the model to be associated with the core Tfr gene module (Figure 2A). The 

top 2,000 genes were chosen to be used in the gene module based on their p-value (0.77 

for Tfr).  A p-value of 0.77 was chosen because it provided a good balance between a 

conservative model while also including a large sample of genes. We have included the 

full list (of 5,000 genes) along with their p-values to allow users to alter the cutoff should 

they choose to be more or less conservative. Examining the variable importance plot, we 

can see that Lymph node Tfr (LNTfr) samples (see Figure 2B) have the largest effect on 

the model performance followed by the lymph node Treg samples (see Figure 2B). 

Lymph node was followed by spleen, then blood in terms of importance as predicted by 

the model (Figure 2B). Overall, the goal was to be able to integrate diverse 
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transcriptomics datasets to be able to predict functional pathways which can represent a 

proxy for Tfr expression, but we therefore also have a model for functional pathways that 

exclude Tfr expression. Samples with Tfr cells had the highest association with the Tfr 

model whereas Treg samples were most highly associated with not being affiliated with 

Tfr gene expression (Figure 2B). This confirms the ability of the model to predict 

differences, since Tfr cells derive from natural Tregs but are phenotypically and 

functionally distinct (Sage and Sharpe, 2020). Additionally, we compared genes of 

known association with specific T cell phenotypes which were predicted to be related to 

Tfr gene expression by the model, such as Cxcr5, Icos and Pdcd1. (Figure 3A).  The 

results show that the most relevant genes for the Tfr model include a selection of genes 

that are known to be characteristic of this T cell subset, and when the expression of such 

genes is compared to Treg and Tfh cell samples, Tfr samples cluster together as opposed 

to Treg and Tfh samples (Figure 3A). This was the case for lymph node, spleen, and 

blood samples (Figure 3A). These results serve to further validate the model.  

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 1, 2021. ; https://doi.org/10.1101/2021.11.29.470410doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.29.470410
http://creativecommons.org/licenses/by/4.0/


16 

 

Figure 3: Model results 

 

A: Heatmap showing genes with known phenotypes that were selected by the model as 

being TFR related. B: GSEA results for the custom gene set and the random gene sets run 

against the TFR and TREG datasets.  

 

Corroborating the previous result, we observed that the core Tfr gene module 

when applied to Tfr and Treg samples from lymph nodes, spleen and blood were able to 

enrich using gene set enrichment analysis (GSEA) for Tfr cells in the Tfr samples as 

compared to Treg samples. On the contrary, random gene sets generated from the GTEX 

database applied to Tfr and Treg samples from lymph nodes, spleen and blood showed no 

particular enrichment or favorability toward either cell type (see Figure 3B). This is 

significant as it supports our hypothesis that the predicted gene list is involved in Tfr gene 

expression. These results are observed in the lymph node, spleen and blood samples 

(Figure 3B). Blood, in this case shows the least enrichment of the three tissue types. This 

is aligned with our expectations since Tfr cells in the blood present distinct functionality 
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and memory-like features that are not shared with Tfr cells in lymphoid organs (Sage, et 

al., 2014) (Figure 3B).  

 

Discussion and Conclusion 

 

A main goal of this work is to provide a gene module that could be used by 

immunologists to better identify Tfr cells in big datasets and to provide a tool to 

understand the role of Tfr cells in their experiments. The other goal is to develop a 

procedure that can be implemented in order to characterize other immune cells. Similar 

work has been done for PD-1 expression (Diallo, 2021). We were able to identify roughly 

2,000 genes which were found to contribute to the Tfr gene expression profile and show 

how statistical models like random forest can be used in modeling immune cells (Figure 

2A). Within the top 2,000 genes, we were able to identify several previously described 

genes that are specifically related to Tfr function, such as Cxcr5, Icos and Pdcd1 as well 

as the recently described Nrn1 (Figure 3A). The results of running random forest against 

the bootstrap samples showed very consistent results (Figure 1). This likely means that 

random forest could work well for different immune cell types. Using tools and larger 

databases such as IMMGEN and ImmuneML, it should be possible to build up a database 

for modeling more cell types (Heng and Painter, 2008; Pavlović, et al., 2021).   

In terms of the other models that were tested, KNN shows potential, but likely 

researchers would have to experiment with different distance measures. This has been 

shown to work well in other instances (McDermott, et al., 2020; Parry, et al., 2010). The 

results found with random forest were consistent with what we previously found for Tfr 

cell gene expression when compared with Tfh and Treg cells (Hou, et al., 2019). This is 

particularly relevant since Tfr cells share features with both Tfh and Treg cells and were 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 1, 2021. ; https://doi.org/10.1101/2021.11.29.470410doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.29.470410
http://creativecommons.org/licenses/by/4.0/


18 

 

still properly separated from these T cell types. For instance, in figure 2B, the lymph 

node Tfr and lymph node Treg samples played the largest role in characterizing the 

model, which is in agreement with the biology of these cell types. Secondary lymphoid 

organs, such as lymph nodes, are an important site of activity of these T cells subsets 

where their effector and suppressive functions fully develop. Looking at the variable 

importance plot for RF, Tfr cells were the most important for the Tfr model and Treg 

samples were the most important for the null model. This is what we expected to find, as 

we have previously observed that the transcriptome of Tfr cells are more distant from 

Treg cells than from Tfh cells (Hou, et al., 2019). The heatmap in figure 3A also shows 

good cluster separation between the different cell types for the models associated with Tfr 

cell gene expression. In all the analyses performed with the Tfr model, it is possible to 

observe the distinction between Tfh, Treg and Tfr cells which is very important due to the 

sharing of some features of Tfr cells with Treg and Tfh cells that could represent 

confusion factors in gene expression analyses. Finally, we also noticed that when testing 

the gene set against Tfr and Treg samples, enrichment was heavily skewed towards Tfr 

cell gene expression. This was in stark contrast to the results seen using the GTEX 

sample data. We would expect this if our gene set was able to positively characterize Tfr 

cell gene expression in part because it differs so much from the negative control. 

Therefore, these results confirm the ability of the model to identify Tfr gene expression 

which does not happen when applied to random gene sets. 

Tfr cells have been shown to play important roles in modulating germinal center 

reactions, controlling antibody responses to vaccination and allergic immune responses 

(Clement, et al., 2019; Fu, et al., 2018; Gonzalez-Figueroa, et al., 2021; Lu, et al., 2021; 

Wu, et al., 2016). Moreover, in aged mice, increased frequency of Tfr cells contributes to 
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impaired antibody response after immunization (Sage, et al., 2015). These cells have also 

been recently implicated in impaired antitumor immunotherapy (Eschweiler, et al., 2021). 

In humans, altered Tfr cell frequency in peripheral blood has been associated with more 

severe COVID-19 disease, as well as with autoimmune diseases, such as lupus (Gong, et 

al., 2020; Xu, et al., 2017). Additionally, increased frequencies of Tfr cells have been 

found in tumor-draining lymph nodes and peripheral blood from patients with different 

types of cancer (reviewed in (Huang, et al., 2020). Tfr cells have also been implicated in 

the persistence of HIV in vivo (Miller, et al., 2017). Therefore, a better understanding of 

Tfr cell biology and the immunoregulation promoted by these cells is of interest and may 

have implications in many clinical settings. 

The use of computationally derived gene sets can allow for the ability to leverage 

much of the genomic data that exists in the public domain. In the future, it should be 

possible to leverage other types of genomic data such as single cell, or HiC experimental 

data to further enhance the usefulness of such machine learning models. We also provide 

a framework for carrying out this sort of work for other cell types using bulk RNA 

Sequencing data. Other tools such as language models may also help play a role in more 

accurately modeling biology. In summary, we have presented a Tfr gene expression gene 

list that the authors hope will help further research by providing new insights into how 

Tfr cells could impact their work.  

 

Data availability 

Data is available from the senior author upon reasonable request.   
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