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24 

Highlights  25 

� Sleep deprivation (SD) impaired recognition memory in mice. 26 

� SD increased PDE4B, amyloid-beta (Aβ), and reduced cAMP, pCREB, BDNF, and 27 

synaptic proteins (Synapsin I, SAP 97, PSD 95) expression. 28 

� Treatment with Roflumilast improved memory and decreased Aβ pathology in sleep-29 

deprived mice.  30 

� Increased in cAMP level correlates with improved expression of synaptic proteins and 31 

memory 32 

  33 
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Abstract 34 

Sleep deprivation interferes with long-term memory and cognitive functions by over-35 

activation of phosphodiesterase (PDE) enzymes. PDE4 is a non-redundant regulator of the 36 

cyclic nucleotides (cAMP), is densely expressed in the hippocampus, and is involved in 37 

learning and memory processes. In the present study, we investigated the effects of 38 

Roflumilast (ROF), a PDE4 inhibitor, on sleep deprivation induced cognitive dysfunction in a 39 

mouse model. Memory assessment was performed using a novel object recognition task and 40 

the cAMP level was estimated by ELISA. The alterations in the expressions of PDE4B, 41 

amyloid beta, CREB, BDNF, and synaptic proteins (Synapsin I, SAP 97, PSD 95) were 42 

assessed to gain insights on the possible mechanisms of action of ROF using the western blot 43 

technique. Results show that ROF reverse SD induced cognitive decline in mice. ROF down-44 

regulated PDE4B and amyloid beta expressions. Additionally, ROF improved cAMP levels 45 

and the expressions of synapsin I, SAP 97, and PSD 95 in the hippocampal region of SD 46 

mice. Taken together, these results suggest that ROF can suppress the deleterious effects of 47 

SD-induced cognitive dysfunction via PDE4-mediated cAMP/CREB/BDNF cascade. 48 

Keywords: Sleep deprivation, PDE4, Roflumilast, Memory, cAMP, Synaptic proteins 49 
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Introduction 54 

Sleep plays a regulatory role in maintaining cellular and metabolic homeostasis. Increasing 55 

evidence have shown that sleep disturbances affect higher brain functions such as learning 56 

and memory, and is also linked to various neurological disorders (1–3). Sleep deprivation 57 

(SD) is considered as a public health epidemic and impose a negative impact on social, and 58 

economic wellbeing (4,5). Accumulating evidence suggest that SD reduces neurogenesis and 59 

transcription factors (CREB, BDNF) expression which are crucial regulators for learning and 60 

memory and induce hippocampal atrophy (6–8). Functional magnetic resonance imaging 61 

(fMRI) and behavioral studies from 150 picture slides showed that one-night sleep 62 

deprivation substantially compromises hippocampal function in humans in turn affects 63 

memory (9). Evidence also suggests that sleep disturbance predisposes brain accumulation of 64 

amyloid-β (Aβ) (10–12). Positron emission tomography (PET) in humans confirmed that SD 65 

and sleep fragmentation are associated with increased deposition of Aβ in the brain (13,14).  66 

A mechanistic research report indicates that SD promotes synthesis (15) and impairs the 67 

clearance of Aβ protein (15). Intriguingly, the relationship between sleep disturbance and Aβ 68 

is bidirectional because increased Aβ deposition the other way was also shown to impair slow 69 

wave sleep (16). Furthermore, Aβ reduces the protein expression of Synapsin I, PSD-95, and 70 

SAP-102, which indicates that it eliminates synapses and causes loss of neuronal network 71 

(17–19). This synapto-toxic effect of Aβ are linked to the reduced expression of NMDA 72 

receptors and decreased cAMP content (20,21). The increased accumulation of Aβ and 73 

reduced levels of cAMP impairs the release of transcription factors that regulate brain 74 

development and synaptic plasticity (22,23).  75 

Phosphodiesterases (PDE) are a diverse family of enzymes/proteins that play a role in cell 76 

functioning by regulating intracellular signaling (24). An increased expression of PDE4 77 

enzymes hydrolyse cAMP into inactive forms which have been consistently observed in 78 

brains of Alzheimer's disease (AD) (25), and subjects with cognitive impairment  (26) and 79 

also in the hippocampal region of sleep-deprived mice (27). Inhibition of PDE4 improved 80 

learning and memory in a mouse model of AD via increasing hippocampal cAMP levels 81 

(25,28). Furthermore, inhibition of PDE4 has also restored the deficits in synaptic proteins 82 

such as synaptophysin, PSD 95  (29,30). 83 

Many reports suggest that PDE4 is a viable target in neurological disorders drug discovery 84 

(31). PDE4 inhibition was shown to reverse the cognitive decline induced by muscarinic 85 

receptor antagonist (32) and also by modulating NMDA receptors mediated transduction 86 

mechanisms in rat models. Albeit, the NMDA does not affect PDE4 expression directly, but 87 
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the balance between PDE4 and NMDA mediated adenylyl cyclase plays a pivotal role in the 88 

memory process (33). ROF, a cAMP-specific PDE4 inhibitor, is approved by USFDA for use 89 

in chronic obstructive pulmonary disease (COPD) (34). ROF promotes hippocampal neuron 90 

viability (35) and improve memory in rodents and monkeys at non-emetic doses (36). In a 91 

clinical study, it is observed that acute administration of ROF improves learning and memory 92 

in healthy individuals (37). These data open the question that whether PDE4 inhibition has 93 

any role on the levels of Aβ and associated synaptic dysfunction, particularly in sleep-94 

deprived conditions. 95 

Long-term SD could produce AD-like pathological state, wherein increased neuronal 96 

accumulations of Aβ, decreased cAMP and synaptic proteins expressions are well 97 

established. On the other hand, a fully blown AD imposes various therapeutic challenges. 98 

This spurt interest to investigate whether PDE4 expression has any correlation with Aβ, 99 

CREB, BDNF expression in SD brains, and also to study the effect PDE4 inhibition, using 100 

ROF, on cognitive function in sleep-deprived mice.  101 

 102 

Materials and Methods 103 

Animals. 104 

Male C57BL/6J mice (25-30 g) were obtained from Adita Biosys Private Limited, Tumakuru, 105 

Karnataka, and housed in Central Animal Facility, JSS Academy of Higher Education & 106 

Research, Mysuru, Karnataka. Animals were housed in groups (5 animals/cage) in 107 

polypropylene cages under an ambient temperature of 19-26°C and 40-65% relative humidity, 108 

with a 12-h light/dark artificial light cycle. Animals were provided with standard rodent feed 109 

and purified water ad libitum. Animals were acclimatized for 7 days to the laboratory 110 

conditions prior to initiation of the experiments. Animal experiments were performed in full 111 

compliance with the guidelines of “Guide for the Care and Use of Laboratory Animals” 112 

(Institute of Laboratory Animal Resources, National Academic Press 1996; NIH publication 113 

number nos. 85–23, revised 1996). Institutional Animal Ethics Committee (IAEC), Central 114 

Animal Facility, JSS AHER, Mysuru, India approved the study 115 

(JSSAHER/CPT/IAEC/014/2020). 116 

 117 

Reagents and antibodies 118 

Roflumilast, Cresyl violet and Congo red stains were purchased from Sigma Aldrich (India). 119 

cAMP ELISA kit was purchased from Cayman (Ann Arbor, MI, USA). Anti-PSD95 (sc-120 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted November 28, 2021. ; https://doi.org/10.1101/2021.11.28.470251doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.28.470251


5 

 

32290), Anti-SAP97 (sc-9961), Anti-Synapsin-I (sc-376623), Anti-BDNF (sc-65514), Anti-121 

CREB (sc-377154), Anti β-Amyloid (sc-28365) were procured from Santa Cruz 122 

Biotechnology, CA, USA. Anti-PDE4B (NB100-2562) was purchased from Novus 123 

Biologicals, United States. All other reagents and chemicals were analytical grade. 124 

 125 

Roflumilast treatment 126 

Roflumilast (ROF L: 1 mg/kg and ROF H: 3 mg/kg) freshly prepared in 0.5% CMC was 127 

given intraperitoneally once a day for three days. The dosages of Roflumilast were selected 128 

based on our earlier reports (38). 129 

 130 

Sleep deprivation method 131 

A modified multiple platform method was used for the induction of sleep deprivation (39). 132 

Mice were placed in cages (41 cm x 34 cm x 16.5 cm), containing platforms (3 cm in 133 

diameter) surrounded by water up to 1 cm beneath the surface. Mice were allowed to freely 134 

move inside the cage and jump from one platform to the other but were not in a position to lie 135 

down. This method is reported to primarily eliminate REM sleep (40). Non sleep deprived 136 

(NSD) animals were kept in their cages in the same room. During sleep deprivation, mice had 137 

access to food and water. Water in the cages was changed twice a day. Animals were sleep-138 

deprived for 72 hours. The flow of the experiment is provided in figure 1. 139 

 140 

Experimental groups 141 

Animals were randomized based on the bodyweight into 4 groups, i.e. – Non-sleep-deprived 142 

(NSD) + Vehicle (Cage control and CMC treated); SD + Vehicle (CMC treated); SD + ROF 143 

L (1 mg/kg b.wt); SD + ROF (3 mg/kg b.wt.). Each group contained 10 animals.  144 

 145 

Novel object recognition test 146 

Novel object recognition task was performed to access the recognition memory as described 147 

previously (41). Mice were habituated to explore the empty apparatus for 10 min (2nd day of 148 

treatment). During the acquisition trial (T1), two similar objects were placed inside the 149 

apparatus and the mouse was allowed to explore the objects for 3 min. After the acquisition 150 

trial, the mouse was transferred to its home cage. Discrimination trial (T2) was done twenty-151 

four hours later (4th day). Two different objects, a familiar object, and a novel object were 152 

placed in the exploration area. The time spent by the animal exploring the two objects during 153 
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T2 was recorded and the discrimination index (DI) was calculated, as per the following 154 

formula. DI=RI/ (Time spent in exploring novel object + Time spent in exploring familiar 155 

object). Recognition Index = Time spent in exploring novel object-Time spent in exploring 156 

the familiar objects. This test was repeated for all the animals in all the cages one at a time. 157 

All behavioral assessments were done between 10 am to 3pm.  158 

 159 

Measurement of cAMP content 160 

Hippocampal tissues for each of the animal groups were individually homogenized in 500 µL 161 

of 0.1M Hydrochloric acid to purify tissue samples from PDE enzymes. Homogenates were 162 

centrifuged for 10 min at 1500× g at 4°C, and the supernatants were stored at 4°C. cAMP 163 

levels were determined by cAMP enzyme immunoassay kit following the manufacturer's 164 

instructions (Cayman Chemical Co., Ann Arbor, MI, USA) 165 

 166 

Western blot 167 

Following all the behavioral assessments, the animals were euthanized to collect the brain 168 

and stored at -80oC. Hippocampal regions were isolated, and homogenates were prepared 169 

with radioimmunoprecipitation assay buffer (RIPA) buffer (50 mM Tris, pH 7.4, 150 mM 170 

NaCl, 1% NP-40, 5 mM EDTA, 0.5% sodium deoxycholate, 0.1% SDS, 50 nM sodium 171 

fluoride, 1 mM sodium vanadate) containing a cocktail of protease inhibitor (Sigma Aldrich, 172 

MO, USA). Total protein concentrations of the samples were determined by the Pierce™ 173 

bicinchoninic acid (BCA) protein assay (Thermofisher scientific), homogenate samples were 174 

aliquoted and stored at -80oC until further use. Sample proteins (20 μg) were separated by 175 

using 10% bis-tris -SDS-PAGE (electrophoresis). Resolved proteins in the gels were 176 

transferred onto polyvinylidene difluoride (PVDF) membranes (Biorad) and electroblotted. 177 

Membranes were blocked overnight with 5% non-fat skimmed milk in Tris-Buffered Saline 178 

and Tween 20 (TBST) at 4oC. This was followed by a 4-hour incubation with the primary 179 

antibodies (PDE4B (1:1000), CREB (1:1000), BDNF (1:1000), β-Amyloid (1:1000), PSD-95 180 

(1:1000), Synapsin-I (1:1000), SAP 97 (1:1000) at room temperature. The membranes were 181 

rinsed with TBST (3 washings for 10 minutes each), followed by incubation with the 182 

secondary antibodies (HRP conjugated anti-mouse or anti-rabbit IgG) for 1h at room 183 

temperature and washed with TBST (3 washings for 10 minutes each). Bands were detected 184 

using SuperSignal West Pico PLUS Chemiluminescent Substrate (Thermo Scientific). 185 

Densitometric measurement of bands was done using ImageJ (NIH software). For Western 186 

blot analysis, the signal intensity (integrated density value, IDV) of PDE4B, BDNF, β-187 
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Amyloid, PSD-95, Synapsin-I and SAP 97was normalized against the IDV of internal control 188 

β-actin, while pCREB was normalized with total CREB and histogram was plotted. 189 

 190 

Histopathology 191 

Whole brain was stored in buffered 10% formalin for 48h. Coronal sections (3-5 µm) of the 192 

hippocampus region were cut using a microtome. The hippocampal region of the brain was 193 

used for histopathological analysis Sections were mounted on a slide, washed, and 194 

dehydrated with 95% ethanol.  195 

 196 

Nissl staining 197 

Coronal sections (3-5 µm) of the hippocampus region were washed with xylene flowed by 198 

five times washing with water for 5 mins each. The samples were stained with 0.2% cresyl 199 

violet dye for 30 mins. The prepared slides were examined under the microscope by a 200 

pathologist for histopathological analyses.  201 

 202 

Congo red staining 203 

Congo red staining was done to detect amyloid plaques in mice hippocampus. Coronal 204 

sections (3-5 µm) of the hippocampus region were stained with 1 % Congo Red stain for 30 205 

mins. Amyloid plaques were observed under a microscope.  206 

 207 

Statistical analysis 208 

Data are presented as mean ±SEM. The difference between time spent exploring the novel 209 

object versus familiar object during the discrimination trial was calculated for each group and 210 

the level of significance was analyzed using a two-sided student's t-test. For other parameters, 211 

group means differences were analyzed using a one-way ANOVA test followed by Tukey’s 212 

multiple comparison test as post hoc. Pearson’s correlation analysis was performed using 213 

SYSTAT 11 (SPSS Inc, Chicago, IL). Graphs were plotted using GraphPad Prism version 214 

7.04 with p < 0.05 considered significant. 215 

 216 

RESULTS 217 

PDE4B expression is up-regulated in SD mice brains and ROF down-regulated PDE4B  218 

PDE4B is an important PDE expressed in the hippocampal region. Changes in the PDE4B 219 

expression have been associated with cognitive functions (42). We assessed the impact of 220 

sleep deprivation on PDE4B expression in mice. 72h continuous SD induced a significant (p 221 
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< 0.05) increase in PDE4B expression when compared with the NSD group. We determined 222 

whether ROF administration reduces the SD induced PDE4B expression. Daily dose of ROF 223 

down-regulated PDE4B expression when compared with vehicle-treated SD group. A 224 

significant (p < 0.01) decrease in PDE4B expression was found at a dose of 3 mg/kg of ROF. 225 

Correlation analysis revealed that PDE4B possesses a strong positive correlation with β-226 

amyloid (r = 0.8167) (Fig 2A). 227 

 228 

Sleep deprivation increased β-amyloid deposition in mice brains and roflumilast down-229 

regulated its expression  230 

Neuronal damage is the outcome of excessive deposition of β-amyloid in brain (43).  231 

Impaired sleep has been associated with AD as sleep plays a role in clearing the metabolic 232 

waste from the brain (11). We performed Western blotting to study the impact of sleep 233 

deprivation on β-amyloid expression in mice hippocampal region. 72 h of SD significantly 234 

(p< 0.01) increased β-amyloid expression in vehicle-treated mice when compared to the non-235 

sleep deprived mice. Inhibition of PDE4B by ROF significantly (p< 0.01) reduced the 236 

expression of β-amyloid in mice when compared with the SD control group. Correlation 237 

analysis revealed that β-amyloid possesses a strong negative correlation with Synapsin (r = -238 

0.9733 [p < <0.0001]), SAP 97 (r = -0.5594 [p < <0.0045]) and PSD 95 (r = -0.4979[p < 239 

<0.0133]) in sleep-deprived mice. This data indicates that the PDE4B enzyme has a potential 240 

role on β-amyloid expression in the SD state (Fig 2B).  241 

An increase in β-amyloid deposition was further confirmed by Congo red staining in the 242 

hippocampal region of SD mice. We found that vehicle-treated SD mice showed multifocal 243 

and moderate increased deposition of amyloid at CA1 and DG region of the hippocampus 244 

compared with vehicle-treated NSD group (Fig.3). As shown in Fig. 3 ROF L treated SD 245 

mice showed mild deposition of amyloid at hippocampus CA1 and DG regions. 246 

 247 

Roflumilast improves hippocampal cAMP levels in sleep-deprived mice 248 

cAMP mediates fundamental brain functions relevant to learning and memory. Decline of 249 

cAMP levels in hippocampus impairs the memory consolidation (42). To determine the 250 

impact of sleep deprivation on cAMP levels in the hippocampus region of mice. We 251 

performed an ELISA assay and found that SD significantly (p < 0.01) reduced cAMP levels 252 

in vehicle-treated mice when compared with vehicle-treated NSD group. Administration of 253 

ROF in sleep-deprived mice showed a significant (p < 0.001) increase in the levels of cAMP 254 
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when compared with vehicle-treated SD group. This indicates that ROF administration 255 

rescues sleep deprivation induced decrease in cAMP levels in mice. Correlation analysis 256 

revealed a strong negative correlation with β-amyloid (r = -0.8162) and a strong positive 257 

correlation with CREB (r = 0.927) and BDNF (r = 0.886) respectively (Fig. 4).  258 

 259 

Roflumilast improved CREB and BDNF expression in the hippocampus of SD mice 260 

Subsequently, we assessed the impact of sleep deprivation on the hippocampal expression of 261 

transcription factors CREB and BDNF. We found that 72-hour sleep deprivation produced a 262 

significant (p < 0.01) decrease in hippocampal pCREB expression as compared to the NSD 263 

control group. Administration of ROF restored the levels of pCREB when compared with the 264 

SD control group. A significant (p < 0.001) increase in pCREB was observed when compared 265 

with vehicle-treated SD mice (Fig. 5A). CREB influences the expression of BDNF which is 266 

essential in memory consolidation and synaptic function (6), we performed western blot 267 

analysis to detect BDNF expression in the hippocampus region of mice. As shown in Fig. 5B, 268 

SD significantly (p < 0.001) decreased the expression of BDNF when compared with NSD 269 

mice. ROF administration in sleep-deprived mice significantly (p< 0.001) increased BDNF 270 

expression when compared to vehicle-treated SD mice. These data suggest that ROF 271 

administration improves the expression of transcription factors in SD mice, which might be 272 

due to the decreased Aβ toxicity.  273 

 274 

Roflumilast up-regulates the expression of synaptic associated proteins in sleep-275 

deprived mice 276 

Next, we investigated whether improvement in neurotrophic factor expression influences 277 

synaptic proteins expression in hippocampus region of SD mice. Synapsin I expression 278 

decreased significantly (p< 0.01) following SD when compared with the NSD control group. 279 

ROF administration significantly (p< 0.01) up-regulated the expression of Synapsin I when 280 

compared with vehicle-treated SD mice (Fig 6). SAP 97 regulates synaptic plasticity by 281 

controlling the distribution of glutamate receptors (44). We found a significant decrease in 282 

the expression of SAP-97 in SD mice when compared with NSD mice. ROF treatment 283 

showed a significant increase in the expression of SAP-97 when compared with vehicle-284 

treated SD mice (Fig 6). 285 

Next, we investigated the impact of sleep deprivation on the expression of post-synaptic 286 

protein PSD95, we found that 72 h of sleep deprivation caused a significant (p< 0.01) 287 
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decrease in the expression of PSD 95 when compared with NSD mice. Administration of 288 

ROF significantly up-regulated (p< 0.01) the expression of PSD95 in SD mice when 289 

compared with vehicle SD mice (Fig 6). These results imply PDE4 inhibition may improve 290 

synaptic functions, which might be due to its restoration of neurotrophic factors, at least 291 

partly, in SD mice  292 

 293 

Roflumilast restores sleep-deprived induced cognitive dysfunction in mice 294 

Recognition memory was assessed by a novel object recognition test. Sleep-deprived mice 295 

did not show a significant difference in the time spent between familiar and novel objects 296 

when compared with NSD mice. SD mice administered with ROF showed significantly 297 

(1mg/kg; p < 0.05, 3mg/kg; p < 0.01) increased time spent in novel object than the familiar 298 

object. (Fig. 7a). SD significantly (p < 0.01) decreased the discrimination index in mice, 299 

whereas ROF significantly (1mg/kg; p < 0.05, 3mg/kg; p < 0.01) increased the discrimination 300 

index in SD mice (Fig. 7b).  These results indicate that ROF can restore recognition memory 301 

in SD mice. 302 

 303 

Roflumilast prevented the morphological changes of hippocampal neurons in sleep-304 

deprived mice 305 

SD induced multifocal moderate neuronal degeneration in the CA1 and dentate gyrus regions 306 

of the hippocampus. As shown in fig.6, neurons in CA1 and DG regions in vehicle-treated 307 

SD mice showed a decrease in purple Nissl granules and pyknotic nucleus in the perikarya 308 

when compared with NSD mice. ROF treated mice showed reduced morphological changes 309 

and had regularly shaped cell bodies in CA1 and DG regions when compared with SD mice 310 

(Fig 8). 311 

 312 

Discussion  313 

The present study demonstrates the molecular pathogenetic mechanism behind SD-induced 314 

cognitive dysfunctions and the protective effects of PDE4 inhibition using Roflumilast. Our 315 

findings reveal that alleviation of Aβ pathology, cAMP signaling, and synaptic proteins 316 

expression by Roflumilast via PDE4 inhibition as a crucial mechanism in cognitive 317 

restoration in SD mice.  318 

SD aggravates Aβ plaque levels in AD transgenic mouse models (45). A recent study has 319 

shown that chronic sleep restriction (3 h per day, 5 days per week, for 4 weeks) increases the 320 
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accumulation of hippocampal Aβ in mice, which was corroborated to cognitive decline (46). 321 

Aβ deposition in cortical and hippocampal regions initiates inflammatory responses, synaptic 322 

dysfunctions (47) and neuronal apoptosis (48). Aβ also compromises the cAMP-response 323 

element-binding protein signaling in neurons suggesting that multiple factors contribute to 324 

neuronal damage in SD (49).  325 

On the other hand, increased expression of PDE4 is reported to associate with Aβ plaque 326 

pathology and memory loss (50). Studies using PDE4 knockout mice showed an improved 327 

memory and reduced neuroinflammation and β-amyloidosis (51–53). In the present study, we 328 

found that 72 h SD increased the protein expression and deposition of Aβ in hippocampal 329 

neurons mice. Earlier, in vivo studies and clinical trials have shown that alleviating cAMP 330 

signaling through PDE4 inhibition improved cognitive functions (54,55) and by reducing the 331 

Aβ expression in mice (56). The present study reports an increased PDE4 and Aβ expression 332 

in SD mice brains with a significant decrease in cAMP levels. Treatment with ROF reversed 333 

the changes including Aβ pathology that indicates that PDE4 improves cognition in SD mice 334 

probably via alleviating Aβ synthesis or clearance.  335 

Synapse dysfunction is an early consequence of Aβ deposition (57). PSD-95 is an essential 336 

regulator of synaptic strength and plasticity. SAP-97 facilitates synaptic plasticity, synaptic 337 

vesicles biogenesis, and neurotransmitters release (58). Synapsin I involves in the modulation 338 

of neurotransmitters release and its down-regulation is shown to impair neurogenesis and 339 

synaptic plasticity (59,60). SD causes synaptic damage in the hippocampus by reducing the 340 

expression of presynaptic and postsynaptic proteins (61–63). Alterations in PSD95 and SAP-341 

97 levels adversely affect synaptic connectivity and neural regeneration (64). Recently, we 342 

have shown that ROF improves synaptic proteins expression in human neurons exposed to 343 

quinolinic acid-induced neurotoxicity (29). The present study shows that SD down-regulated 344 

synaptic proteins (SAP-97, Synapsin-I, and PSD-95) in the hippocampal region of mice. 345 

Nevertheless, administration of ROF increased SAP-97, Synapsin-I, and PSD-95 expression, 346 

which indicates that PDE4 enzymes play a role in synaptic proteins expression.  347 

Cyclic nucleotides play a vital role in memory consolidation (65).  Inhibition of cAMP 348 

signaling in the hippocampal region is reported to impair consolidation of long-term memory 349 

in mice (66). SD reduces the phosphorylation of CREB in the hippocampus and affects the 350 

protein expression of neurotrophic factor BDNF (6). Particularly, long-term memory is 351 

critically dependent on CREB mediated expression of neurotrophic factors such as BDNF 352 

(61). In the present study, ROF administration restores the cAMP/CREB/BDNF signaling 353 
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cascade in SD mice. These results are in agreement with earlier studies that report that 354 

inhibition of PDE4 improves memory consolidation in rodent models via 355 

cAMP/CREB/BDNF cascade, which reveals that PDE4 is connected with this signaling 356 

cascade (32,67).  357 

Histopathology examination using Congo red staining showed higher deposition of Aβ 358 

aggregates in CA1 and DG region of the hippocampal region in SD mice. Further Cresyl 359 

violet staining showed cell death in the hippocampus region of SD mice indicating apoptosis. 360 

Recent studies have shown that SD increases cytokine production, microglial activation and 361 

initiates neuronal apoptosis, causing lesions in the hippocampus of mice (68,69). Interestingly 362 

PDE4 expression is regulated by inflammation and microglial reactivity (70). Transient 363 

increase in cAMP stimulates cAMP signal transduction inhibiting inflammatory mediators 364 

and early apoptotic factors (71). Nissl staining showed that ROF administration prevented 365 

neuronal damage in SD mice. Earlier studies have reported that inhibition of PDE4 reduces 366 

the levels of pro-inflammatory and early apoptosis factors (72).  367 

 368 

Conclusion 369 

From the current investigation we provided molecular, behavioral and histopathological 370 

evidence that Roflumilast rescues SD induced cognitive dysfunction in mice. Roflumilast 371 

administration improves recognition memory via PDE4 inhibition mediated 372 

cAMP/CREB/BDNF signaling and downregulation of Aβ pathology in SD mice. 373 

Additionally, further studies to understand the effect of Roflumilast on NMDA activity and 374 

autophagy in chronic sleep restriction are still being investigated. 375 
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