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Summary 

Mutations in MeCP2 result in a crippling neurological disease, but we lack a lucid picture of 

MeCP2s molecular role. Focusing on individual transcriptomic studies yields inconsistent differentially 

expressed genes. We have aggregated and homogeneously processed modern public MeCP2 

transcriptome data, which we present in a web portal. With this big data, we discovered a commonly 

perturbed core set of genes that transcends the limitations of any individual study. We then found 

distinct consistently up and downregulated subsets within these genes. We observe enrichment for this 

mouse core in other species MeCP2 models and see overlap between this core and ASD models. Analysis 

of signal to noise finds that many studies lack enough biological replicates. By integrating and examining 

transcriptomic data at scale, we have generated a valuable resource and insight on MeCP2 function.  
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Introduction 

Big data integration and analyses can uncover valuable patterns and insights otherwise missed 

in individual studies (Costa, 2014), but curating, processing, and analyzing the vast amount of data 
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involved is challenging. This is especially true in the biomedical sciences, where the data is highly 

variable and complex. Researchers can aggregate publicly available processed results, but doing so will 

inevitably yield inconsistencies between data sets that can be misleading. However, handling a 

meaningful quantity of raw data requires extensive time, experience, and computational resources 

unavailable to most researchers.  

Databases with abundant biological data do exist, particularly those compiling gene expression 

profiles. However, these databases either fail to focus on transcriptome perturbation (GTEx) (Lonsdale 

et al., 2013) or they require significant time and energy to extract and format data specific to a 

particular disease (ARCHS4) (Lachmann et al., 2013). Similarly, many databases focus on specific model 

organisms and allow filtering by disease, such as Flybase (Drysdale et al., 2005) and the Rat Genome 

Database (Smith et al., 2020), but they fail to offer substantial disease-focused analysis. While there are 

some molecular-focused databases for well-studied diseases such as cancer (TCGA) (Tomczak et al., 

2015), cBio Portal (Cerami et al., 2012) and Alzheimer’s disease (AMP-AD) (Hodes and Buckholtz, 2016), 

there are no analogous databases for less common diseases. The massive success of TCGA, in particular, 

makes the utility of more disease databases clear. 

One such overlooked disease is Rett syndrome (RTT), a severe neurodevelopmental disorder in 

girls caused by mutations in the X-linked gene for methyl-CpG binding protein 2 (MECP2). Development 

proceeds normally until 6-18 months, at which point it stalls and then regresses (Amir et al., 1999). 

Symptoms and progression can vary substantially between individuals, and despite recent advances, we 

still do not completely understand MeCP2’s molecular role. MECP2 duplication syndrome (MDS) is an 

overexpression in the same gene, and patients have substantial overlap in phenotype with RTT 

(Sandeweiss, Brandt and Zoghbi, 2020).  

There are numerous mouse models for both diseases, and public data is available for a variety of 

tissues, ages, and characteristics. This pool of sequencing data will only grow with time, yet currently 

there is no centralized resource for it. Existing MeCP2-related disease databases are either primarily 

patient registries (Rett Database Network) (Sampieri et al., 2007) or they focus on mutation information 

like IRSA North American Database (Percy et al., 2007) and RettBASE (Krishnaraj, Ho, and Christodoulou, 

2017). No current database curates MeCP2 expression data in the focused manner that would be most 

useful to researchers.  

To fill this need, we have created MECP2pedia, a database for molecular MeCP2. MECP2pedia is 

a uniformly processed and expansive collection of MeCP2 transcriptomic data, with readily accessible 

processed data (expression, quality information, genomic tracks, and differential expression) that 

researchers can compare across any set of studies or data characteristics. The data is primarily from 

mice, comprising 20 studies’ worth of transcriptomic data. Processing took roughly 2,340 compute hours. 

The MECP2pedia portal is an efficient and intuitive way for researchers and clinicians to understand and 

investigate the universal role of MeCP2 function, which we hope will help guide and inform future work 

in the field.  

Results 

Comprehensive resource of MeCP2 transcriptomes 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted November 27, 2021. ; https://doi.org/10.1101/2021.11.27.470197doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.27.470197


 

 

 

 

                The MECP2pedia portal can be accessed at http://www.mecp2pedia.org/. To generate this 

resource, we queried the National Center for Biotechnology Information (NCBI) Gene Expression 

Omnibus (GEO) (Edgar, Domrachev, and Lash, 2002) on August 7, 2019, for “MeCP2” and then filtered 

the results for “expression profiling by high throughput sequencing.”  This search resulted in a 

preliminary list of 47 GEO entries. We filtered this list for entries dated 2015 or later, and then further 

filtered for entries with at least two RNA-Seq wild-type samples and a treatment labeled either 

“knockout”, “Rett”, “point mutation”, “transgenic”, “overexpression”, or “MeCP2 duplication.” We 

retained 26 GEO entries, which we downloaded and processed with a uniform, streamlined Python 

pipeline (Figure 1A). In total, our processing yielded 534 Sequence Read Archive (SRA) files, 729 FASTQ 

files, and 481 BAM (alignment) files. The total disk space used for processing was about 6 TB. The 

number of mouse samples per study is detailed in SuppFigure 1. For each of the processed samples, we 

generated raw read quality, alignment quality, and track information. For each study, we collected meta 

information and data characteristics (Figure 1B), and then we aggregated all samples with matching 

characteristics into “contrasts” for differential gene analysis. Studies typically contained one to two 

contrasts, with the exception of four studies that respectively contained 3, 4, 6, and 10 contrasts (bar 

width in Figure 1B). The 26 GEO entries provided a total of 55 contrasts, with 43 from mouse studies, 

seven from humans, and five from other species. A list of mouse contrasts and their metadata is 

provided in TableS1. 

Portal users can quickly and easily compare across studies the expression of specific genes of 

interest. Queries can be carried out individually or as a multi-gene search. Bar and scatter plots are 

available for each gene to show significance and fold change, and these results can be filtered across the 

uniformly annotated data characteristics. TPM (Transcripts Per Kilobase Million) is shown to allow the 

comparison of expression between contrasts (StatQuest, 2015). Users can browse genome tracks by 

individual study, and studies can be compared to one another. Metadata for each contrast, raw read 

quality, and alignment quality are all available for each study.  A “significant genes” tab allows users to 

filter genes using an FDR (false discovery rate) and log2 fold change thresholds for each contrast, and 

this information is also downloadable. 

MeCP2 transcriptomics in mice reveals a common core of misregulated genes 

Our collected data is noteworthy for its comprehensiveness and heterogeneity (SuppFigure 2A). 

Tissue, mutation, and cell fraction are all highly variable across the breadth of collected RNA-Seq, giving 

users the most complete picture possible of MeCP2’s transcriptomic role. To understand these changes 

per study, we examined fold change and FDR from the differential gene expression (DEG) analysis as 

shown in Figure 2A, the number of significantly upregulated and downregulated genes is generally 

similar across the 43 contrasts. This finding is consistent with MeCP2’s reported role in both gene 

activation and repression (Chahrour et al., 2008). Furthermore, changes in the majority of the 

dysregulated genes are less than two-fold. This magnitude of change is low when compared to other 

mouse disease models, which have substantial quantities of genes with changes greater than two-fold 

(Al-Ouran et al., 2007).  

In a traditional RNA-Seq study with one contrast (a comparison of the expression between two 

groups), a gene is considered a DEG based on FDR thresholding and/or fold change cutoffs. However, 

there are many contrasts in our data, and a truly biologically important DEG should be observed 

consistently in several contrasts. We examined the common FDR thresholds of 10% (0.1), 5% (0.05), and 
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1% (0.01), and due to MeCP2’s low magnitude of gene dysregulation, no fold change cutoff was used. 

We then examined number of contrast cutoffs of 1 (~2.5% of total contrasts), 4 (~10%), 12 (~30%), and 

20 (~50%). When examining the FDR thresholds for a specific contrast cutoff (Figure 2B, SuppFigure 2B, 

per row), DEGs did not differ much. However, when comparing different numbers of contrasts for a 

specific FDR threshold (Figure 2B, per column), we observed large differences in DEG numbers. 

Moreover, when a gene is a DEG in many contrasts, it is likely to be either consistently upregulated or 

consistently downregulated. This indicates that the number of contrast threshold is a critical filter in 

establishing a robust set of DEGs. Thus, going forward, we set a strict FDR of 1% and a number of 

contrasts cutoff (10%) for common core DEGs, resulting in 2,971 genes. Using average fold change, the 

common core DEGs were sorted into either core up (1,666) or core down (1,305) for further analysis. 

Mouse core DEG lists are in TableS2.   

We next investigated properties unique to the common core DEGs. First, we examined the 

annotations of these genes in relation to all the genes in the genome (Frankish et al., 2019) and to all 

expressed genes. We observed that the common core DEGs have a notably high proportion of protein-

coding genes. Specifically, while protein-coding genes constitute only 40.8% (21,922 out of 53,661) of all 

the genes, and 57.6% (18,748 out of 32,551) of the expressed genes, they spike to 94% (2,794 out of 

2,971) in the common core DEGs (Figure 2C). Next, due to MeCP2’s role in both chromatin structure 

(Gulmez Karaca, Brito, and Oliveira, 2019) and various epigenetic features (Picard and Fagiolini, 2019), 

we examined the common core DEGs for positional bias across the mouse genome. Within each 

chromosome, there are differences in positional distribution between the up and down core DEGs 

(Figure 2D, SuppFigure 2C). One striking example is on chromosome 8, where Circular Binary 

Segmentation (CBS) (Olshen et al., 2004) identified a stretch at the beginning of the chromosome 

(4,375,343 – 49,522,639) with many upregulated genes. 

To further examine MeCP2’s regulatory role on these common core DEGs in an unbiased 

manner, we carried out unsupervised Leiden clustering (Traag, Waltman, and van Eck, 2019). From the 

nine clusters obtained, the two largest clusters (clusters 0 and 1) consisted mainly of the consensus core 

up and core down genes, respectively (Figure 3A). The clear directional separation of these clusters 

validates our core DEG selection methodology.  Subsequent gene ontology (GO) analysis of these two 

clusters showed an enrichment in RNA Polymerase II (Pol2) and other transcription-related terms for the 

upregulated cluster (cluster 0) and an enrichment in neuronal and general nervous system-related terms 

for the downregulated cluster (cluster 1) (Figure 3B). Both up and downregulated clusters displayed 

significant enrichment for cell differentiation, signal transduction, and general developmental terms. 

Our computational approach therefore confirmed not only the roles of MeCP2 as both activator and 

repressor, but also established the core genes and functions involved.  

We further examined the common core DEGs’ expression changes using a heatmap with 

annotation of contrast with cell fraction (Figure 3C). The unsupervised clustering shown on the heatmap 

categorizes the contrasts into three groups: 1) a mixture of all three types of cell fractions, 2) mainly 

with nucleus, and 3) mainly with whole cell. The common core DEGs are concordantly changed in about 

half of the contrasts, which fall into the first group of mixed cell fractions. The two largest gene clusters 

identified from Leiden clustering are strongly up- and downregulated in this concordant set. Genes have 

lower expression changes in the second (nucleus) group. Notably, contrasts from the whole cell are 

categorized into two separate groups. The expression changes of common core DEGs are stronger and 

concordant in the first group, and then weaker but still concordantly changed in the 17 contrasts of the 
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third group. This is consistent with our findings in SuppFigure 3, in which we observed solid overlap 

between common core DEGs, and the common cores redefined separately by their sequenced cell 

fraction. Although the bulk of our data is comprised of whole cell, this picture of the transcriptome is not 

drastically different from MeCP2 dependent expression in the chromatin or the nucleus. 

 

Cross-species and cross-disease comparisons of MeCP2’s transcriptomic signature 

 As we seek to understand the broad and complex role of MeCP2, mouse data alone is 

insufficient. Accordingly, we uniformly processed three human data sets yielding seven contrasts. 

Human data yields fewer DEGs on average than mouse data, but the DEGs have similar ranges in fold 

change (Figure 4A) and a similar proportion of upregulation versus downregulation. The overlap 

between DEGs from these seven contrasts is low (SuppFigure 4A), suggesting limited homogeneity in the 

molecular signature of human MeCP2 dysregulation. This heterogeneity may reflect the fact that four 

(GSE51607_1-4) out of the seven contrasts are from iPSC cells, whereas the other three are from 

postmortem brain tissues. This separation is also seen in the heatmap of expression changes of human 

data on the mouse common core DEGs using unsupervised hierarchical clustering (Figure 4B). This 

heatmap shows limited qualitative correlation between the direction of human and mouse common 

core DEG dysregulation. 

We also found transcriptome data for rat (Rattus norvegicus), macaque (Macaca fascicularis), 

and zebrafish (Danio rerio) MeCP2 models, which we processed and compared to the mouse common 

core. We found two rat studies with one contrast each, one monkey study with two contrasts, and one 

zebrafish study with one contrast. This data yields more DEGs than the human data, with roughly even 

proportions of up and down gene dysregulation. After associating DEGs to mouse orthologs, we found 

some overlap between these cross-species models and the mouse common core, with more overlap 

seen between mouse and rat than with other species (SuppFigure 4B). Figure 4B qualitatively shows a 

correlation between the mouse core and the rat data as well as some of the monkey data. 

To provide a quantitative correlation between these data sets, we performed Gene Set 

Enrichment Analysis (GSEA). Pre-Ranked analysis was run with our up and down mouse cores as gene 

sets (Figure 4C). Ranked lists from the 12 non-mouse contrasts were checked for overrepresentation in 

both up and down cores. We expect contrasts to be positively enriched in the up core and negatively 

enriched in the down core. The rat model has the best enrichment concordance, with both contrasts 

enriched as expected. Overall, these contrasts were more significantly negatively enriched in the down 

core than significantly positively enriched in the up core. 

RTT and Autism Spectrum Disorder (ASD) share a range of similar symptoms, including loss of 

social, cognitive, and language skills. Altered MeCP2 expression is also commonly detected in autism 

brain samples (Costa, 2014). Therefore, we hypothesized that our MeCP2 common core would display 

significant overlap with perturbed genes of other established ASD models. To generate an autism 

common core for comparison to our MeCP2 common core, we explored the expression changes in eight 

ASD models selected from the Simons Foundation Autism Research Initiative (SFARI) (Siegel et al., 2015) 

(Figure 4D, TableS3). All experiments involving knockdown or modification of the SFARI mouse model 

genes were retrieved from the ARCHS4 database. Across the eight target model genes, we processed 

223 samples in 18 studies from 15 authors, from which we generated 28 contrasts. In our initial 
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attempts to generate an overall ASD core, we found that expression changes were not generally 

concordant across contrasts (SuppFigure 4C), which was expected as the contrasts contained a wide 

range of model genes and experimental procedures.   

We thus analyzed the contrasts individually and performed Fisher’s exact test to determine the 

significance of overlap between each contrast and the MeCP2 core. We observed significant overlap in 5 

contrasts (Figure 4E), representing 5 studies and 4 model genes (ADNP. ARID1B, CHD8, and SHANK3). 

We plot the fold change of MeCP2 core genes in these 5 contrasts (SuppFigure 4E). We focused further 

on three of these contrasts (2 CHD8 and 1 ADNP) with the largest DEG counts and most significant 

overlap and found that the significant overlap persisted even when considering only genes perturbed in 

the same direction in the contrast and the MeCP2 core (Figure 4F).    

We then carried out GO analysis on the significantly overlapping gene sets. GO analysis of genes 

upregulated in both the MeCP2 core and a CHD8 contrast reveals significant enrichment for Pol2 related 

terms, while downregulated genes enrich for nervous system development terms (SuppFigure 4D). This 

is consistent with our observations for up and down genes in the MeCP2 core. Even with the much 

smaller set of genes (~400 up and ~500 down in the overlap set compared to ~1600 up and ~1400 down 

in the MeCP2 core), we observe a similar gene ontology signal.  

 

 

Sample size has a major impact on DEG detection 

 

MeCP2 interacts with other genes in an expansive manner (Tillotson and Bird, 2019), which 

lends our transcriptome data a low signal-to-noise ratio (SNR). This contributes to the limited number of 

clear consensus expression targets, as well as the high degree of discordance in many individual data 

sets. To increase data detection sensitivity with low SNR, therefore, the number of samples plays an 

important role. Yet published MeCP2 studies often fail to meet to the conventional recommendation of 

at least six biological replicates (Schurch et al., 2016). To learn whether this problem limited the DEGs 

delineated from MeCP2 studies, we performed differential gene analysis on replicate down-sampled 

subsets of the data set with the highest number of replicates (GSE128178 Contrast 1). We found that 

the number of replicates has a negative correlation with the number of DEGs detected (Figure 5A). With 

no fold change cutoff, we could not saturate the number of detected DEGs with as many as ten 

replicates, which is far more sequencing than found in most published MeCP2 data sets. With a mild fold 

change cutoff (10% changed), the number of additionally detected DEGs in higher sample counts still did 

not appear close to saturation. Some saturation and flattening of the power curve began to occur with a 

20% fold change cutoff.  

To confirm our findings, we repeated the analysis using an RNA-Seq dataset in a psoriatic skin 

disease model (GSE63979) (Greenberg et al., 2020). We chose this dataset for its high sample size and to 

understand how different transcriptomic SNRs affect the optimal number of replicates. We found 

relatively similar patterns (Figure 5B), but a reduced DEG loss effect from fold change thresholding. This 

finding confirms that the impact of replicate number on detected DEG is not unique to MeCP2 or to 

disease models with low SNRs.  
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Trends are also verified across common FDR thresholds, and Rand index is computed between 

full and down sampled gene sets to understand how much the down sampled results differ from the full 

results (SuppFigure 5A-B). SuppFigure 5C shows the differences between SNR in MeCP2 and psoriatic 

skin disease. The low power in MeCP2 data also supports our choice to require our common core DEGs 

to appear in just 10% of the contrasts. 

To examine bias in and created by undetected DEGs in smaller n studies, we first found the 

supersets of genes comprising each DEG cutoff number. For each DEG, we then computed average 

absolute log2 fold change (across contrasts). The higher sample number (n) analyses detected DEGs at 

lower fold changes than analyses with lower sample numbers (Figure 5, last column), demonstrating 

that DEG sets from different sample sizes are affected differently by fold change cutoffs. A cutoff which 

removes many genes from a high sample size experiment may remove very few genes from a low 

sample size experiment. Moreover, the DEGs missed because they have too few biological replicates are 

those with subtle perturbation, which is especially problematic for disease models with a low SNR. 

Researchers should be aware of this phenomenon when choosing fold change cutoffs and evaluating 

results.  

 

Batch and technical variation must be overcome in order to integrate and understand data 

 

 Relevant non-biological factors, commonly called batch factors, are often present in a given 

researcher’s data. These batch factors could reflect the use of particular tissues, mouse litters, 

sequencing platforms, or other variables. Therefore, it is important to integrate and analyze 

transcriptomic data across years of work with dozens of meta-characteristics. We saw extreme batch 

effects on the raw count values for all samples included in MECP2pedia, in that the samples were 

initially segregated by study (Figure 6A). After batch correction and normalizing the raw counts, the 

segregation was reduced, but samples remained grouped by study. This finding indicates that batch 

correction and normalization failed to fully resolve this batch effect. When we examined all available 

meta-characteristics, we observed that the clustering weakly overlapped with the studies’ prominent 

meta-characteristics, such as cell fraction, tissue, and gender (SuppFigure 6A). As a basis for comparison, 

we performed the same analysis on a set of 316 samples from nine neurological degeneration studies 

analyzed in Wan et al. (2020). We observed a similar outcome: an extreme batch effect on raw data and 

an inability of batch effect correction and normalization algorithms to fully remove this batch effect 

(Figure 6A, SuppFigure 6B).  

To better understand the concordance between sexes in MeCP2 models, we compared their 

molecular signatures. RTT occurs almost exclusively in females, but most MeCP2 studies are carried out 

in male mice due to their relative ease of use and availability (Ribeiro and MacDonald, 2020). Hence, we 

had only one fair comparison between male and female models of similar age and tissue (Figure 6B). We 

found that the DEGs from the male mouse model had no overlap with the female model at one time 

point, and minimal overlap at a second time point. Furthermore, the direction of dysregulated genes did 

not show a concordant trend. More data is needed to understand these differences, but researchers 

should be mindful of sex in their experimental design, especially in RTT.  
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Discussion 

 With the low cost and high quality of modern sequencing, the scope of publicly available data is 

rapidly expanding. But to make the leap from big data to big insights, curation and automation are 

essential. In addition to gleaning insights from the portal’s data, researchers can compare their own 

novel data to this convenient aggregation of publicly available transcriptome profiles. We plan to add 

new data sets to the portal and also add a feature allowing users to upload their own processed data for 

comparison. 

 MeCP2 transcriptomics from published studies often seems contradictory, perhaps due to low 

SNR and disparities in experimental design. But by bringing a robust approach to the integration of big 

data, we uncovered a common core of MeCP2 DEGs with high concordance across studies, suggesting 

that MeCP2’s core function is universal across the examined breadth of tissues, cell fractions, mutations, 

and mouse strains. The positional bias in common core distribution demonstrates MeCP2’s importance 

to the epigenome, while unbiased clustering further underscores the concordance in core genes, 

providing insight into their regulatory relationship. When the clusters were enriched to GO terms 

associated with Pol2 activation and neuronal function, respectively, the two main clusters from the 

unsupervised clustering correspond to up and downregulated genes. Exploration of the smaller mixed 

clusters may similarly reveal insights into other proposed mechanisms of MeCP2 action (Lyst and Bird, 

2015) (Ip, Mellios, and Sur, 2018). 

Examination of diverse MeCP2 models provides quantitative comparisons of MeCP2’s 

dysregulatory molecular signature across species. Robust enrichment cross species in the 

downregulated DEGs supports the core we have derived, and this finding can be further explored in the 

context of our delineation on up versus down core genes. Comparison across disease models revealed 

links between MeCP2 disorders and common ASD models. Specifically, we observed highly significant 

concordant overlap between genes perturbed in the MeCP2 core and two ASD models: ADNP and CHD8. 

The RNA Pol2 function in the upregulated genes and neuronal development in the downregulated genes 

we observed in the MeCP2 core are also enriched genes common to MeCP2, ADNP, and CHD8 models. 

These overlaps could provide the basis for deeper exploration of the relationship between MeCP2 

disorders and other autistic spectrum disorders. 

  Since small sample size leads to low statistical power, the validity, specificity, and robustness of 

the DEGs delineated from a single study may be unreliable (Schurch et al., 2016). We validated this 

concern in our analysis of multiple data sets, and the problem is exacerbated when the SNR is low. 

Researchers who are interested in perturbations with a small effect should therefore aim to generate 

large data sets, with 10 or more samples per condition. If resources are limited, six samples per 

condition would be a good compromise. But most studies failed to meet even this lower threshold, 

which may explain the lack of consensus conclusions across independent studies and their failure to 

capture the complete picture of transcriptomic perturbation. 

Our expansive study sheds light on the high variability in transcriptomic profiles of a disease 

model across different tissues, ages, sexes, species, and other biological and technical artifacts. The 

specific experimental conditions of a single study therefore cannot capture the complete picture of 

transcriptomic changes. Individual researchers will always be limited in the data that they can personally 
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generate. Our big data integration platform solves this problem, making it invaluable for scientists 

studying complex diseases such as MeCP2. 
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STAR Methods: 

Data Collection 

To generate this resource, we queried NCBI GEO (https://www.ncbi.nlm.nih.gov/gds) on August 

7, 2019 for “MeCP2” and then filtered the results for "expression profiling by high throughput 

sequencing.”  This search resulted in a preliminary list of 47 GEO entries. We filtered this list for entries 

dated 2015 or later, and then further filtered for entries with at least two RNA-Seq wild-type samples 

each and a treatment labeled either “Knock out”, "Rett”, “Point Mutation”, “Transgenic”, 

“Overexpression”, or “MeCP2 Duplication.” We retained 26 GEO entries. Data sets with no associated 

publications were included. We subsequently added three more studies, GSE123941, GSE128178, and 

GSE123372, based on the scope and relevance of their data. All preprocessing was carried out with a 

uniform, streamlined Python pipeline. SRA files were downloaded with prefetch from SRAtoolkit.2.9.6-1-
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centos_linux64 (Sherry, 2012) and then converted to fastq with fasterq-dump version 2.3.5, using the --

split-files option. Fastq files were then checked for quality with FastQC version 0.11.7 (Andrews, 2010). 

Mouse Data Processing 

 Mouse samples were aligned to GENCODE GRCm38p6 primary assembly, version 18 

(https://www.gencodegenes.org/mouse/release_M18.html), with STAR version 2.6.0a (Dobin et al., 

2013) at default parameters. The assembly also contained an appended copy of human MeCP2 from 

hg38. BigWig files were generated with bamCoverage version 3.3.1 from deepTools (Ramírez et al., 

2016). We assessed alignment quality with RSeQC geneBody_coverage and read_distribution, both 

version 3.0.0. Overall quality per study was examine with MultiQC v1.7 (Ewels et al., 2016). DEG analysis 

was performed in R version 3.5.2 (Eggshell Igloo) with DESeq version 1.24.0, after loose expression 

filtering (per contrast, a gene must have a sum of 10 counts in at least half the samples).  

Data was not trimmed except for samples SRR3679844, SRR3679845, SRR3679848, SRR3679849, 

SRR3679852, and SRR3679853 from GSE83474, due to slight anomalies in their raw sequences. The trim 

was performed with Trimmomatic-0.36 (Bolger, Lohse, and Usadel, 2014) using the following 

parameters: PE ILLUMINACLIP:TruSeq3-PE.fa:2:30:10 HEADCROP:8 

Data Annotation 

We downloaded SRA run tables for each GEO entry. Data characteristics of interest were: 

genotype, organism, experiment, run, sample name, cellular fraction, strain, age, cell line, cell type, 

tissue, sex, mutation, and disease. Incomplete run tables were filled in from the contents of their 

publications, if available. After processing, we annotated samples for sequencing depth and contrasts 

for number of DEG at FDR < 0.01 with no fold change cutoff.  

Data Visualization 

Unless otherwise specified, plots were made in R with ggplot2 version 3.2.1 (Wickham, 2016). 

Data and Code Availability 

All datasets are available from GEO under their specified accession numbers. Processed mouse 

results are available through our portal, and other processed results are available as supplements.  

Portal Development 

Python pipeline analysis results and GEO sample information were parsed and saved using the 

MongoDB NoSQL database. The web server was written in JavaScript and serves an API that gives access 

to the data and the web portal application. Data visualization uses the D3.js library and IGV.js (Robinson 

et al., 2020) for genomics tracks. 

Core Gene Identification and Clustering 

First, fold changes with FDR > 0.01 were set to zero. Contrasts with all non-significant fold 

changes were removed. To generate our set of core genes, we kept only genes with non-zero fold 

change in four or more contrasts (10%). This resulted in a set of 2,971 genes for further analysis. For 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted November 27, 2021. ; https://doi.org/10.1101/2021.11.27.470197doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.27.470197


 

 

 

 

consistency in the analysis and the visualization of gene regulation direction, we inverted the direction 

of fold change for the four contrasts of the MDS model (GSE123372_3, GSE66870_2, GSE71235_1, 

GSE71235_2). 

We also identified alternative core genes based on contrast metadata characteristics. For each 

type of cell fraction (chromatin, nucleus, whole cell) and the cortex and forebrain tissue types, we 

performed the same core gene identification filtering as we did for the main core. We considered only 

the contrasts with the metadata feature of interest and kept only genes with significant and non-zero 

fold change in at least 10% of the contrasts. We have included an upset plot generated with the R 

package UpSetR (Conway, Lex, Gehlenborg, 2017) as SuppFigure 3.  

After identifying the set of core genes, we assigned unsupervised clusters using the Scanpy 

(Wolf, Angerer, and Theis, 2018) implementation of the Leiden algorithm with the parameters: number 

of neighbors=45 and resolution=0.5. Then, we generated UMAP coordinates with the parameters: 

number of neighbors=45, minimum distance=0.1, and spread=10. We then used UMAP’s Scanpy 

implementation to generate plots of the unsupervised clusters, as well as up and downregulation.  

Core Gene Characteristics and Location 

  We annotated mouse genes with GRCm38p6 primary, version 18 from GENCODE. Genes were 

sorted into eight super-categories to show broad function. Expressed genes (32,539) is a superset of the 

genes that pass the expression filter in any contrast.  

 Core genes were plotted by their TSS. Chromosome 8 was plotted with an equivalent number of 

randomly drawn non-core genes (150) to show the strength of its regional core up DEG enrichment. We 

validated this trend with the CBS algorithm, implemented with R Package PSCBS version 0.65.0. The core 

up, core down, and non-core genes were respectively assigned values of 6, 0, and 3 for segmentation 

detection and plotting.  

 

GO Analysis 

GO analysis was performed using the Python GOAtools package (Klopfenstein et al., 2018). We 

performed an enrichment analysis on each MeCP2 Leiden cluster, using all NCBI protein coding mouse 

genes as the background set. For each Leiden cluster, we retained the top 6 biological process GO terms 

by frequency. We used the same methodology to perform GO enrichment on overlapping MeCP2 and 

ASD core genes, also retaining the top 6 biological process GO terms by frequency. 

Human Data Processing and Comparative Analysis 

Human data was aligned to GRCh38p12 primary assembly, version 28 from GENCODE with STAR. 

BigWig generation, assembly quality metrics, and DEG analysis were performed identically on mouse 

data. Human genes were then queried for their orthology to mouse genes with DIOPT 8.0 (Hu et al., 

2011), using the “return only best match” option. Upset plots were made with function upset from 

Package UpSetR, version 1.4.0. Human and mouse metadata is available in TableS5. 
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Other Model Data Processing and Comparative Analysis 

Rat data was aligned to the Rnor_6.0 toplevel assembly and annotated with Rnor_6.0.99 from 

Ensembl (Yates et al., 2020). Zebrafish data was aligned to Danio_rerio.GRCz11 toplevel  assembly, and 

annotated with Danio_rerio.GRCz11.100 from Ensembl. The orthology tables for rat and zebrafish genes 

were retrieved from DIOPT as done for human data. Macaque data was aligned to 

Macaca_fascicularis_5.0 and annotated with Macaca_fascicularis_5.0.100 from Ensembl. Macaque gene 

orthology data was retrieved with the function getBM from R package biomaRt, version 2.38.0 (Durinck 

et al., 2009). The only data trimmed was GSE57974, using Trimmomatic-0.36 with the following 

parameters: LEADING:3 TRAILING:20 MINLEN:50. Genotype labels for GSE87855 were inferred based on 

MeCP2 level.  

Heatmaps are made with pheatmap version X (Kolde and Kolde, 2015) with log2 fold change no 

clustering on rows and clustering_distance_cols = "euclidean". For consistency in the analysis and the 

visualization of gene regulation direction, we inverted the direction of log2 fold change for the MDS 

contrast (GSE57974_1) 

GSEA 

GSEA (Subramanian et al., 2005) (Mootha, Lindgren, and Eriksson, 2003) version 4.1.0 Pre-

Ranked was run with default parameters besides set_max of 100,000 and set_min of 1. Ranking values 

were computed per gene as –log10(adjusted P value) * log2 fold change. For consistency in the analysis 

and the visualization of gene regulation direction, we inverted the direction of normalized enrichment 

score fold change for the MDS contrast (GSE57974_1). GSEA results are available as TableS6.  

 

ASD Model Comparison 

All experiments involving knockdown or modification of the SFARI mouse model genes were 

retrieved from the ARCHS4 database. There were 18 such studies, which we processed using DESeq2 to 

generate DEGs across 28 contrasts. We retained only DEGs with FDR <0.01. With the DEGs for each ASD 

contrast, we used the hypergeometric and Fisher’s exact tests to determine the significance of overlap 

with all the set of all MeCP2 core genes and also both up and downregulated subsets. Computed ASD 

contrast fold change is available as TableS4. 

We also used the previously described process to perform GO analysis on genes in the 

intersection of the ASD contrasts and MeCP2 cores.  

Down Sampling Analysis  

 MeCP2 data is from GSE128178. All 10 samples of wild-type and knockout whole cell data were 

randomly selected to create 100 random drawings at each different sample number. (For instance, 

sample 9 was one random sample removed from each genotype, and so on.) Once selected, samples 

were normalized with each other and analyzed with the same DEG methodology detailed above. The 

Rand index was then computed using the rand.index function in R (fossil, version 0.4.0) (Vavrek, 2011). 

Vectors indicating if each gene was a DEG for a particular run were compared to the vectors of DEGs for 

the complete contrast of 10 wild-type and 10 knockout samples, respectively. 
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Psoriatic skin data is from GSE63979 (SRP050971). This study contains the total RNA-Seq data of 

nine normal skin samples, nine lesional psoriatic samples, and 27 uninvolved psoriatic samples. In order 

to conduct the downsampling analysis between two groups with the same sample number, only normal 

skin samples and lesional psoriatic samples were chosen. For each phenotype, all nine samples were 

randomly selected to create 100 random drawings at each different sample number. (For instance, 

sample 8 was one random sample removed from each phenotype, and so on.) The DEG analysis and 

Rand index comparison on psoriatic skin data was the same used for MeCP2 data. 

 

Technical Variation / Batch Effect Analysis 

 All raw MeCP2 mouse expression value data was dimensionally reduced using UMAP version 

0.2.6.0 in R and plotted with color for contrast of origin. ComBat_seq from R package sva, version 3.36.0, 

was then run with contrast as batch to deconvolute the data. ComBat_seq-normalized data was then 

size factor-normalized with DESeq and plotted again. 

 To provide an alternate dataset to evaluate batch effect, we used a set of Alzheimer’s disease 

data stored on Synapse from Wan, et al. (2020). We retrieved raw count data and plotted the samples 

using UMAP. Count data was normalized with DESeq, and then we used the ComBat_seq function to 

attempt to control for batch effect.   

Sex Comparison 

Compared contrasts are GSE90736_1, GSE90736_2, and GSE66211_1. Genes are considered 

DEGs if they pass FDR < 0.01. Plot is made with R package VennDiagram version 1.6.20.  
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Figure Legends 

 

Figure 1: Overview of data and workflow 

A. Workflow for portal data and analysis. Processing is uniform and unbiased. Quality, track, 

and DEG analysis results are available in an intuitive and comparable manner through our 

portal.  

B. Sankey plot on major characteristics per contrast of the collected mouse data (date, cell 

fraction, strain, tissue, first author). Metadata was collected with sequence data and then 

standardized. 

 

Figure 2: Mouse transcriptome common core 

A. Distribution of log2 fold change across contrasts with significant (FDR < 0.01) DEGs. Dark blue 

and dark red respectively indicate genes that are core down and core up, and pale blue/pale 

red respectively indicate down and up DEG. Pie charts with the same annotation colors show 

what percentage of each contrast’s DEGs falls into each category. Stacked bar charts with the 

same annotation colors show each contrast’s DEG quantity.  

B. Histograms of significantly up and downregulated genes cut for different FDR thresholds and 

the number of total contrasts in which a DEG appears. Genes at the extreme ratios of 0 or 1 

percent upregulated are highly concordant across contrasts, whereas genes that fall into the 

middle are discordant. For consistency in this analysis, we inverted the direction of fold change 

for the four contrasts of the TG model.  

C. Genes as annotated by Gencode and condensed into eight broad categories. We consider 

53,661 genes from our annotation and find 32,539 that pass our expression filter in at least one 

contrast. The common core (FDR < 0.01 in at least four contrasts) is comprised of 2,971 genes.  

D. Exploration of genome location trends in the common core. All non DEG are plotted in the 

upper portion of the panel, and violin plots show areas of gene density. Chromosome 8 was 

selected for further examination in the lower half of the panel, with baseline genes in equal 

quantity to the core genes (150) also plotted. CBS method is used to identify trends in the 

up/down/baseline genes. The bands on middle dot plot show these CBS results, and the lower 

stack plot shows the density of up, down, and baseline genes on chromosome 8. 

 

Figure 3: Unsupervised clustering on core genes 

A. The left UMAP plot colors each gene by cluster, assigned through unsupervised Leiden 
clustering. The right UMAP plot displays the percentage of contrasts in which the gene was 
upregulated on a spectrum of red (upregulated in all contrasts) to blue (downregulated in all 
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contrasts). We can see that the green and orange clusters roughly encompass the up and 
downregulated genes. 

B. Results of GO analysis on Leiden clusters 0 and 1. The bar colors correspond to cluster. Bar 
length represents the proportion of genes enriched with the term in the cluster and the line 
plot represents the FDR of the enrichment.  

C.  Heatmap of contrasts (columns) by genes (rows). Contrasts are labelled based on the 
experiment's cell fraction, and genes are labelled based on their Leiden cluster. We can see the 
general downregulation in the orange cluster and the upregulation in the green cluster. We can 
also see from this figure that the other clusters are generally caused by extreme deviations in 
one or two studies. 

Figure 4: Mouse transcriptome translation to other models 

A. Distribution of log2 fold change across contrasts with significant (FDR < 0.01) DEGs. Blue and 

red respectively indicate down and up DEGs. Pie charts with the same annotation coloring show 

the percentage of each contrast’s DEGs in each category. Stacked bar charts with the same 

annotation color show each contrasts’ DEG quantity. Upper 7 contrasts are human data, lower 

5 are other species. 

B. Heatmaps plotted to compare direction of dysregulation to the consensus from mouse data. 

Genes examined are the mouse common core, and plots are annotated on mouse core down 

and mouse core up.  

C. Per contrast visualization of GSEA normalized enrichment score and FDR. Direction and color 

of line represents normalized enrichment score and point size represents -log10(FDR). 

Contrasts are grouped and shaded corresponding to their model of origin. MDS model is 

annotated with a small star.  

D. Sankey plot of ASD contrast metadata characteristics. From left to right: First Author, Tissue, 
Strain, Target Gene, Experimental Procedure. 

E. Fisher’s exact test results. Points sized by –log10(p-value), length determined by odds ratio, 

data colored by gene. Points are opaque and overlap to MeCP2 core is considered significant if 

the Fisher p-value is less than 0.05.  

F. Pie charts show the magnitude of overlap between selected ASD contrasts and the MeCP2 

common core. Down and up only show genes changed in the same direction in both sets. P-

values beneath each plot show the Fisher’s exact test significance of the overlap for each 

intersection, colored red if the p-value is less than 0.05.  

 

Figure 5: Downsampling analysis 

A-B. Large contrasts from MeCP2 and lesional psoriatic skin data was downsampled to smaller 

and more common experimental n and DEG analysis was run on these subsets. Box plot and 

jitter points are plotted for resultant DEG numbers under each condition. Cutoffs for MeCP2 are 
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sample numbers 9 through 3. Cutoffs for psoriatic data are sample numbers 8 through 3. Each 

cutoff number was repeated 100 times, with random samples discarded each time. Results are 

plotted at FDR < 0.01. MeCP2 data is fold change (FC) cutoff at any FC, FC > 10%, and FC > 20%. 

Psoriatic skin data is FC cutoff at any FC, FC > 10%, and FC > 200%. Curves indicate the percent 

of DEGs remaining at continuous |log2 fold change| cutoffs. Horizontal line indicates 50% of 

genes removed. 

Figure 6: Technical variation / batch effect analysis 

A. UMAP visualization of raw and corrected data from MeCP2 and AD. 

B. Comparison of cell type-matched (microglia), male-to-female contrasts by DEG overlap and 

direction of misregulation. DEG are FDR < 0.01 and any fold change. 

 

Supp Figure 1: Mouse sample number 

Bar plot of number of mouse samples by year and first author. 

 

Supp Figure 2: Expanded examination of common core characteristics 

A. Bar plots of number of DEGs from each contrast, colored and annotated by tissue, cell 
fraction, and model. No strong bias is observed for any of these characteristics by DEG number. 

B. Histograms of significantly up- and downregulated genes cut for different FDR thresholds and 
the number of total contrasts in which a DEG appears. Genes at the extreme ratios of 0 or 1 for 
percent upregulated are highly concordant across contrasts, whereas genes that fall into the 
middle are discordant. For consistency in this analysis, we inverted the direction of fold change 
for the four contrasts of TG model. 

C. Exploration of genome location trends in the common core. Box plot, violin plot, and jittered 

dots are plotted for genome coordinate of TSS for each core DEG. Chromosome 8 was selected 

for further analysis, with random baseline genes added for detection of robust trends. 

 

Supp Figure 3: Overlap between specific common core designations 

Upset plot to examine overlap between alternative core designations (chromatin, nucleus, 

whole cell, cortex-forebrain) and the common core. There is some overlap with all cores, 

demonstrating the absence of a strong bias in the types of data that contribute genes to the 

common core. 

Supp Figure 4: Mouse transcriptome translation to other models 

A. Upset plot to examine overlap between the DEG lists from human contrasts. 

B. Upset plot to examine overlap between the DEG lists from other species contrasts. 
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C. Heatmap of genes (rows) by contrasts (columns). Contrasts are labelled by ASD model gene. 

D. Gene ontology enrichment on specific overlapping gene sets. Bar length represents the 

proportion of genes enriched with the term in the cluster and the line plot represents the FDR 

of the enrichment. 

E. Heatmaps plotted to compare the direction of dysregulation to the consensus from mouse 

data. Genes examined are the mouse common core, and plots are annotated on mouse 

common down and mouse common up. Only ASD contrasts with significant overlap to MeCP2 

core are included. 

 

Supp Figure 5: Downsampling analysis 

A.  DEG analysis run on subsets of n = 10 from the MeCP2 data set. Cutoffs are sample numbers 

9 through 3. Each cutoff number was repeated 100 times, with random samples discarded each 

time. Downsampled MeCP2 data at FDR thresholds < 0.01, 0.05, and 0.1. Rand index calculated 

for each downsampled result against full (n = 10) sample space. 

B. DEG analysis run on subsets of n = 9 psoriatic skin data set. Cutoffs are sample numbers 8 

through 3. Each cutoff number was repeated 100 times, with random samples discarded each 

time. Downsampled MeCP2 data at FDR thresholds < 0.01, 0.05, and 0.1. Rand index calculated 

for each downsampled result against full (n = 9) sample space. 

C. PCA, MAplot, eCDF, and distribution of fold change for both MeCP2 and psoriatic skin data. 

 

Supp Figure 6: Batch effect UMAP visualization  

A. UMAP on normalized and batch-corrected data from MeCP2 mouse data, colored for meta-

characteristics. Some show good clustering on the characteristic (cell fraction) and some do not 

(sequencing depth). 

B. UMAP on normalized and batch-corrected on Alzheimer’s data, colored for meta-

characteristics. 
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