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Abstract4

The neural tracking framework enables the analysis of neural responses (EEG) to continuous natural speech, e.g., a

story or a podcast. This allows for objective investigation of a range of auditory and linguistic processes in the brain

during natural speech perception. This approach is more ecologically valid than traditional auditory evoked responses

and has great potential for both research and clinical applications. In this article, we review the neural tracking

framework and highlight three prominent examples of neural tracking analyses. This includes the neural tracking

of the fundamental frequency of the voice (f0), the speech envelope and linguistic features. Each of these analyses

provides a unique point of view into the hierarchical stages of speech processing in the human brain. f0-tracking

assesses the encoding of fine temporal information in the early stages of the auditory pathway, i.e. from the auditory

periphery up to early processing in the primary auditory cortex. This fundamental processing in (mostly) subcortical

stages forms the foundation of speech perception in the cortex. Envelope tracking reflects bottom-up and top-down

speech-related processes in the auditory cortex, and is likely necessary but not sufficient for speech intelligibility. To

study neural processes more directly related to speech intelligibility, neural tracking of linguistic features can be used.

This analysis focuses on the encoding of linguistic features (e.g. word or phoneme surprisal) in the brain. Together

these analyses form a multi-faceted and time-effective objective assessment of the auditory and linguistic processing

of an individual.
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Hearing loss is typically defined as a loss of perception of soft sounds, but hearing-impaired people tend to complain6

more about struggles to understand speech. To provide hearing-impaired people with appropriate rehabilitation, their7

hearing abilities need to be carefully evaluated in terms of both sound perception and speech intelligibility. The8

current golden standard methods for hearing evaluation, i.e. tone and speech audiometry, require active feedback9

from the tested person, which is not always obtainable (e.g. young children) or accurate (e.g. malingering). For this10

reason researchers are working towards new ‘objective’ methods, which rely on bodily signals, to asses hearing in11

clinical practice. One particularly promising objective measure is derived using the neural tracking framework, where12
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electrical activity in the auditory pathway is measured with electroencephalography (EEG) while a participant listens13

to continuous speech, e.g. a story or a podcast. The use of continuous speech is a promising innovation as this type of14

stimulus is more relevant for communication in daily life than the tones and short speech samples used for behavioural15

audiometry. In this article, we discuss the neural tracking framework and its (dis)advantages, and review how it may16

be used to objectively asses auditory perception and predict speech intelligibility. We also discuss the opportunities17

and challenges for clinical implementation.18

1. The neural tracking framework19

1.1. Introduction20

Traditional objective measures, like the auditory brainstem response (ABR), the auditory steady-state response (ASSR)21

or the frequency following response (FFR), require EEG measurement while a participant listens to repetitive presen-22

tations of a short sound stimulus (for a review, see Picton (2010)). Typical stimuli include clicks, tones, chirps and23

vowels. The repetitive stimulation is necessary as response instances need to be averaged to reduce measurement24

noise, but it is highly unnatural and demotivating for the listener (Theunissen et al., 2000; Hamilton and Huth, 2018).25

In recent years, technical advances have made it possible to analyse neural responses measured while a participant26

listens to continuous natural speech, without repetition (for a review, see Brodbeck and Simon, 2020). These neural27

responses to continuous speech are called neural tracking responses as they reflect how the auditory system of the28

listener ‘tracks’ the presented speech. They were originally proposed by Lalor et al. (Lalor et al., 2009; Lalor and29

Foxe, 2010) and the methods were further developed by, amongst others, Ding and Simon (2012a,b), O’Sullivan et al.30

(2015) and Crosse et al. (2016).31

The possibility to investigate continuous speech processing with the neural tracking framework is an important in-32

novation. Humans do not communicate with repetitive tones or clicks, as used for traditional objective measures.33

Context-rich continuous speech better approximates natural language use and as a result, research findings with these34

stimuli are more relevant for auditory processing in day-to-day communication (Kei et al., 1999; Pichora-Fuller et al.,35

2016; Hamilton and Huth, 2018; Keidser et al., 2020). Moreover, continuous speech is more comfortable and inter-36

esting for the listener. The stimulus can even be targeted towards the population of interest: e.g. a fairy-tale for young37

children or a podcast for adults. When a participant is interested in the content of the stimulus, they maintain attention38

for longer and as a result, the neural response measurement may be of higher quality. Finally, natural speech stimuli39

are better suited for research with hearing aids. Hearing aid signal processing is designed specifically for natural40

speech and may behave unpredictably with artificial sounds, corrupting the experiment.41

In the neural tracking framework, neural responses to continuous speech are analysed without averaging over response42

instances. The most common approach to do so is based on linear encoding/decoding models. Other response analysis43

methods exist, including inter-trial coherence (ITC) (Zion Golumbic et al., 2013; Bourguignon et al., 2020), cross-44

correlation (Kong et al., 2014; Aiken and Picton, 2008; Petersen et al., 2016), mutual information (Gross et al., 2014;45
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Zan et al., 2020; Kaufeld et al., 2020) and neural networks (Katthi et al., 2020; Accou et al., 2021), but these will not46

be discussed further.47

Linear modelling within the neural tracking framework requires two inputs: neural responses in the form of single-48

channel or multi-channel EEG (or MEG) and one or more features that represent the stimulus (see section 1.4). In the49

neural tracking framework, relations between the EEG and the stimulus feature are modelled, to investigate how well50

the stimulus information is encoded in the neural activity. The framework allows linear modelling in two directions:51

reconstructing the feature from the EEG (backward decoding, section 1.2) and conversely, reconstructing the EEG52

from the feature (forward encoding, section 1.3). As will be discussed below, the two analyses provide different but53

complementary information about the neural tracking responses. It is also possible to model in both directions at the54

same time with canonical correlation analysis (CCA), as described by de Cheveigné et al. (2019).55

1.2. Backward modelling56

In backward modelling, one reconstructs the stimulus feature from a weighted sum of the EEG signals from the57

different recording channels and their time-shifted versions. The time-shifted versions are included to account for58

neural processing delays. This delay or latency is estimated at about 5-10 ms for auditory processing in the upper59

brain stem and at least 12-30 ms for processes in the primary auditory cortex (Tichko and Skoe, 2017; Brugge et al.,60

2009). Higher-order cortical processes that modulate the neural response, like attention and interpretation of the61

speech, occur with delays of 200 ms or more (for a review, see Martin et al., 2008).62

The backward modelling procedure, visualised in panel A of Figure 1, typically includes a training and a testing63

phase. First, the weights that provide the optimal reconstruction are determined based on a training data set (time-64

shifted EEG + corresponding stimulus feature). Then those weights are applied to the EEG from a separate testing65

data set, resulting in a reconstructed stimulus feature for the test data. The reconstructed feature is correlated with the66

actual stimulus feature of the test data to determine the reconstruction accuracy. This indicates how well the stimulus67

information can be reconstructed from the EEG, i.e., how well the speech is tracked by the brain. Note that this68

analysis is only reliable if the testing data is completely separated from the training data set. By training and testing69

on the same data, large reconstruction accuracies can be obtained, but the model has likely over-fitted on particularities70

of the data and will not generalise well to new data.71

The backward modelling approach is a powerful analysis tool since the information of multiple EEG channels (often72

32 or more) can be combined to predict a stimulus feature with often only one dimension (although multi-dimensional73

features are possible). However, this also means backward modelling is an ill-posed problem, complicated by linear74

dependency between EEG channels and their time-shifted versions, and therefore regularization is necessary to obtain75

a single solution (e.g. Hastie et al., 2001; Machens et al., 2004).76

A disadvantage of backward modelling is that the weights are extraction patterns and these cannot and should not77

be interpreted to investigate the spatial pattern of the response (Haufe et al., 2014). One could assume that large78
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a) Backward modelling b) Forward modelling

Figure 1: A. Schematic representation of backward modelling. In backward modelling, the stimulus feature is reconstructed based on a linear

combination of time-shifted EEG data. In the training phase, the model is estimated by optimizing the decoder weights to minimise the MSE

(mean squared error) between the reconstructed stimulus feature and the actual stimulus feature for a training data set. Then, in the testing phase,

the weights are applied to reconstruct the stimulus feature for the testing dataset. The final output is the correlation between the reconstructed

stimulus feature and the actual stimulus feature for the testing dataset. B. Schematic representation of forward modelling. In forward modelling,

the EEG data in each EEG channel is predicted based on a linear combination of time-shifted stimulus features. Again, the encoder weights or

TRFs (temporal response functions) are estimated by minimizing the reconstruction MSE for a training data set. Then the TRFs can be studied as

is, or they can be used to predict the EEG for a testing data set. The output of the testing phase is the correlation between predicted EEG and the

actual EEG.

weights mean that the corresponding EEG channels contain a lot of response information. However, when an EEG79

channel captures information about a noise component, it can be used in the modelling process to ’subtract’ the80

noise component from other EEG channels. As a result, some channels may receive large weights because they are81

helpful for noise reduction purposes and not because they contain response information (Montoya-Martı́nez et al.,82

2021).83

1.3. Forward modelling84

Forward modelling can be used to study the spatio-temporal properties of the response: the EEG signal in each85

channel is predicted from a weighted sum of the stimulus feature and its time shifted versions. Panel B of figure 186

schematically presents the forward modelling process. Note that for the forward modelling, the time-shifting occurs87

in the opposite direction than for backward modelling. Each EEG channel is considered separately, causing forward88

models to be less powerful, as they cannot combine information across channels. The advantage of this approach is89

that the weights are activation patterns and not extraction patterns and can thus be interpreted. Forward modelling90

may solely include a training phase, which results in interpretable weights (see below), or there may be a testing phase91

where the weights are applied to predict the EEG for a separate data set. In that case, similar to the backward modeling92

approach, the actual and predicted EEG responses can be correlated to obtain each EEG channel’s prediction accuracy.93

Higher prediction accuracies can be related to better encoding of the speech features in the EEG, and therefore in the94

brain, but other factors that impact the SNR of the EEG could be at play as well.95
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For each channel, the weights estimated at the different time shifts form a temporal response function (TRF) that96

reflects response amplitude (∼ weight) as a function of response latency (∼ time shift). A TRF can be interpreted as97

the impulse response of the auditory system: the information in the input stimulus (∼ the feature) is transformed with98

this impulse response to produce the output response (∼ the EEG). The channel-specific TRFs tend to be noisy and99

are therefore often averaged over a selection of EEG channels and subjects. Based on the time shifts that receive large100

weights for many of the EEG channels/subjects, we can derive the dominant latencies of the response. These latencies101

(or delays) can then be used to estimate which stages of neural processing along the auditory pathway contribute to102

the response. The spatial properties of the response can be further investigated by looking at the spatial distribution103

of the magnitude of TRF weights over the scalp. This information is usually visualised on a topoplot. Examples of104

TRFs and topoplots are available in figure 3, which will be discussed further on. Note that such topoplots only allow105

for spatial information on scalp level, where the electrodes were located. To study the actual sources of the neural106

responses within the head, the inverse problem needs to be solved, i.e. transforming the information from electrode107

space to neural source space (e.g. Brodbeck et al., 2018c).108

1.4. The stimulus feature109

The stimulus feature is derived from the presented speech and reflects how a particular speech characteristic varies110

over time. Many stimulus features can be used, ranging from low-level acoustic characteristics (e.g. the acous-111

tic envelope) to high-level linguistic information (e.g. word surprisal). This flexibility makes the neural tracking112

framework highly versatile. It also underlies one of the most prominent advantages of the framework: a single EEG113

measurement can be analysed with respect to various features of the stimulus and provides information on a range of114

auditory/language processes. This includes f0 tracking, envelope tracking, phoneme tracking, semantic tracking, etc.115

Since data collection is often time-intensive, this type of ‘multi-functional’ data and analysis can considerably speed116

up scientific progress and is also promising for clinical implementation.117

We will focus on three prominent (groups of) stimulus features corresponding to three types of neural tracking analyses118

in the following sections. We discuss them following the hierarchical organisation of the auditory pathway: starting119

with auditory processing of the fundamental frequency (f0, section 2), which happens mostly in subcortical stages120

of the auditory pathway, then moving on to envelope processing (section 3) which happens in the auditory cortex121

and ending with linguistic processing (section 4) which happens in the language network of the brain. We focus on122

how these stimulus features can be used to investigate different aspects of speech processing and different parts of the123

auditory pathway. Moreover, we provide example results and review findings from relevant studies, including how124

the responses relate to important clinical measures like hearing thresholds and speech perception.125
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Figure 2: Example of stimulus and derived features for an example sentence by a male speaker. The f0 (panel A) and envelope feature (panel B)

are derived from the stimulus waveform, whereas linguistic features (panel C) are derived from the stimulus transcription. The f0 and envelope

features concern different spectral ranges with the envelope focusing on low frequencies (< 50 Hz) and the f0 focusing on higher frequencies

(∼ 85 − 300 Hz). Linguistic features can focus on different segmentation levels, including phoneme level and word level. Panel C visualises an

example onset and surprisal feature for each level.
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2. Neural tracking of the f0126

Neural tracking of the fundamental frequency of the voice, or f0-tracking, is used to investigate how the f0 is rep-127

resented in the brain activity (Forte et al., 2017; Etard et al., 2019; Van Canneyt et al., 2021c). The f0 is a periodic128

modulation in the speech signal generated by vocal fold vibration during speech production. It is related to the per-129

ception of pitch. The f0 of adult speakers typically ranges from 85 to 300 Hz, with male and female voices situated130

respectively at the lower and higher ends of the range. The f0 is an essential characteristic of the human voice and131

it is vital to convey intonation and emotion, but proper perception of the f0 is not required for speech intelligibility132

(e.g. cochlear implant listeners). Nevertheless, f0-tracking can provide information on the quality of fine temporal133

processing in the early stages of the auditory pathway, which is the foundation for proper speech processing in the134

brain.135

Temporal processing of the f0 in the human auditory system happens through the synchronization of the activity of136

the neurons to the f0 modulations, i.e. phase-locking. Due to the relatively high frequency of the f0 modulations, this137

phase-locking occurs mainly in peripheral and subcortical stages of the auditory pathway, up to the upper brain stem.138

Neurons at cortical stages have poor phase-locking above about 100 Hz and are therefore less likely to contribute to139

f0-tracking (Joris et al., 2004). However, it has been shown that early cortical contributions to f0-tracking responses140

(and FFRs) can occur for low-frequency stimuli (85-100 Hz, e.g. low male voices) (Coffey et al., 2016, 2017; Van141

Canneyt et al., 2021c).142

F0 tracking analysis requires an f0 feature that represents the f0 modulations in the presented speech. The f0 feature143

can be extracted from the speech stimulus in various ways. A simple yet effective way is to band-pass filter the144

stimulus in the range of the f0 (Etard et al., 2019; Van Canneyt et al., 2021c). An example of this type of feature145

is provided in panel A of figure 2. More complicated and computationally expensive techniques have been explored146

as well, including empirical mode decomposition (Etard et al., 2019; Forte et al., 2017) and auditory modelling (Van147

Canneyt et al., 2021b). Constructing an f0 feature that approximates the expected neural response using auditory148

modelling has proven particularly effective, nearly doubling the reconstruction accuracies obtained with the neural149

tracking analysis (Van Canneyt et al., 2021b).150

Section 1 of figure 3 shows the results of a typical forward modelling analysis for f0-tracking, obtained using the151

methods described in Van Canneyt et al. (2021c). The data set used for this visualisation (and all others in figure 3)152

contained 64-channel EEG data from 32 young normal-hearing subjects measured in response to male-narrated speech153

(dataset from Accou et al., 2021). Panel A shows the mean TRF across subjects for the channel selection indicated154

in pink on panel B. The TRF for each subject is plotted as well to indicate the variance. The TRFs in this example155

are modified with a Hilbert transform to present the amplitude of the TRF without phase information resulting in only156

positive values. This technique suppresses the auto-correlative periodicity in the f0-tracking TRFs (see further) and157

aids with interpretation (for more information, see Van Canneyt et al. (2021c)). The TRF pattern indicates that the158
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activity in the auditory system (∼ EEG) best reflects the f0 information (∼ the feature) at a latency of about 10-25 ms.159

Panel B of figure 3 presents an example f0 tracking topoplot with common-average rereferencing at 15 ms latency.160

The topoplot indicates strong response activity in the center of the head and across the back of the head. The temporal161

and spatial response patterns are consistent with dominant f0-related activity in the upper brain stem and early cortical162

regions. Saiz-Alia et al. (2020) has performed detailed computational modelling of the subcortical sources of the f0163

tracking response, demonstrating important contributions from the cochlear nuclei and the inferior colliculus. Van164

Canneyt et al. (2021c) argues for additional contributions from the right primary auditory cortex for f0 tracking of165

low-frequency voices.166

Although f0-tracking was only recently developed, the technique has led to several interesting findings. Forte et al.167

(2017) and Etard et al. (2019) have demonstrated that the f0 tracking response holds information on selective attention,168

possibly indicating that neural mechanisms for attention influence the brain stem. Kulasingham et al. (2020) and169

Van Canneyt et al. (2021a) have investigated how the age of the listener impacts f0 tracking. Kulasingham et al.170

(2020) found no age effects using MEG, which is most sensitive to cortical sources. In contrast, Van Canneyt et al.171

(2021a) found a significant reduction in response strength with advancing age using EEG (which is more sensitive172

to subcortical sources). This observation is in line with an age-related decrease in the phase-locking ability of the173

subcortical (and early cortical) auditory system. Van Canneyt et al. (2021a) also studied the effect of hearing loss and174

found increased f0-tracking responses in participants with hearing impairment compared to age-matched controls. The175

response enhancement was due to additional cortical activity phase-locked to the f0 (with latency of ∼40 ms), likely176

compensating for the reduced quality of bottom-up auditory input due to diminished peripheral auditory sensitivity.177

Moreover, the amount of additional compensatory cortical activity was significantly related to the pure tone average178

(PTA) hearing loss of the participant. As such, a significant relation exists between the degree of hearing loss of an179

individual and the strength of their f0 tracking response.180

At the moment, f0-tracking also has some limitations, which future advances may mitigate. One of the main issues is181

auto-correlative smearing in TRFs and topoplots because the f0 stays relatively steady over multiple f0 periods. This182

periodic smearing over latencies can be somewhat mitigated with Hilbert-transformed TRFs, which disregard phase183

information. However, TRF and topoplot interpretation are still limited to the most dominant peaks (see Van Canneyt184

et al. (2021c) for more details). A second limitation is that the f0 is only present in speech during voiced sounds185

(∼ 50-60 % of the time) and not during unvoiced sounds (∼ 40 % of the time), including silences. During analysis,186

these unvoiced sections in the speech stimulus (and corresponding sections in the EEG) are disregarded. As a result187

only about half of the measured data can be used to analyse f0-tracking, increasing the required measurement time.188

Another limitation is that the f0 tracking response is reduced for voices with higher and more variable f0, leading to189

weak and often non-significant responses for typical female voices. This occurs because neural phase-locking ability190

is decreased for higher and more variable f0s, especially for cortical sources. As such, the stimulus choice has a large191

impact on the f0 tracking response. A final limitation is that f0-tracking requires careful interpretation: f0-tracking192
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reflects the capability of the auditory system to phase-lock to the f0, but it does not reflect the ability of a person193

to perceive pitch or speech in general. Fortunately, neural tracking analyses with other features help complete the194

picture.195

Figure 3: Example of forward modelling results: TRFs and topoplots. The figure is divided into three sections on f0-tracking, envelope tracking

and linguistic tracking, respectively. For each type of tracking, an example mean TRF (+ individual TRFs) is presented (panel A, C, E and G),

together with a corresponding topoplot at an important latency (panel B, D, F and H). The channels indicated with pink on the topoplot represent

the channel selection used to obtain the corresponding TRF. Note the drastically different time scales in the TRFs, reflecting the presence of neural

activity at different latencies for each feature.
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3. Neural tracking of the speech envelope196

The speech envelope consists of slow-varying modulations (< 50 Hz) in the speech signal. It contains acoustic197

temporal information (Rosen, 1992) but also reflects phonemes, syllables and word transitions (Peelle and Davis,198

2012). Moreover, it also correlates with the area of the mouth opening during articulation (Chandrasekaran et al.,199

2009). Therefore it is not surprising that research indicates that the envelope is an essential acoustic cue for speech200

intelligibility (Shannon et al., 1995; Drullman et al., 1994a,b).201

Envelope tracking is used to analyse the neural encoding of the speech envelope during speech perception (Ding and202

Simon, 2012a; O’Sullivan et al., 2015; Vanthornhout et al., 2018). From animal studies (Wang et al., 2008) and human203

studies with electrocochleography (ECoG), it is known that the speech envelope is processed in the primary auditory204

cortex, specifically in Heschl’s Gyrus (Nourski et al., 2009). A growing body of evidence demonstrates envelope205

tracking is a requirement for speech understanding. Correspondingly, multiple studies show that neural tracking of206

the speech envelope is strongly correlated with behaviourally measured speech intelligibility (e.g. Ding et al. (2014);207

Vanthornhout et al. (2018); Lesenfants et al. (2019); Iotzov and Parra (2019); Verschueren et al. (2021)). As a specific208

example, Vanthornhout et al. (2018) found a significant correlation of 0.69 between the speech reception threshold209

(SRT) estimated based on envelope tracking and the SRT measured with behavioural speech audiometry.210

Although the full-band envelope can be used, it is also possible to study the neural response to specific frequency211

bands of the envelope. Envelope tracking responses are most commonly investigated in the delta band (0.5-4 Hz),212

theta band (4-8 Hz) and gamma band (> 30 Hz) (Ding and Simon, 2013; Verschueren et al., 2021; Molinaro and213

Lizarazu, 2017). The lower envelope frequencies are often the main interest as they correspond with word onsets and214

the syllabic rate of the speech, which is hypothesised to be crucial for speech intelligibility. Some studies suggest that215

speech intelligibility is specifically related to the theta band (4-8 Hz) and not the delta band (1-4 Hz) (Ding and Simon,216

2013). Other studies indicate the opposite (Verschueren et al., 2021; Molinaro and Lizarazu, 2017). In our opinion,217

the outcome may depend on the speech material. The syllabic rate is often very close to 4 Hz, and as such, envelope218

tracking to a slow speaker could be more dominant in the delta band while envelope tracking to a fast speaker could219

be more dominant in the theta band.220

Envelope tracking responses can be analysed using a forward, backward or bidirectional model. In any case, the model221

requires an envelope feature that is extracted from the stimulus waveform. In essence, the envelope is just a curve222

outlining the peak values of the stimulus, which can be easily obtained by taking the absolute value of the Hilbert223

transform. Although this is a prevalent method, it is not the best choice as it disregards human perception. To better224

approximate human envelope perception, two important aspects of auditory processing need to be taken into account.225

First, the stimulus should be split into frequency bands before the actual envelope extraction process to mimic how226

the basilar membrane in the cochlea divides a sound stimulus into different auditory filters. Second, the compression227

and non-linear behaviour of the auditory system should be accounted for. To incorporate these factors in the envelope228
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extraction process, complex computational models of the auditory periphery can be used (Yang et al., 2015; Bruce229

et al., 2018). However, Biesmans et al. (2017) evaluated various extraction methods in an auditory attention detection230

paradigm and proposed a simplified approach. They found that a combination of a gammatone filterbank, which231

simulates the auditory filters on the basilar membrane, followed by a power law to account for compression and non-232

linearity in the auditory system, performed equally well as the more complex and computationally expensive auditory233

models. Although AAD is not the same as envelope tracking, the underlying model is identical and the proposed234

technique is valid here as well. An example envelope feature obtained using this technique is provided in panel B of235

figure 2.236

A visualisation of the results of a typical forward modelling analysis for envelope tracking is visualised in section 2 of237

figure 3. These results were obtained by applying the methods described in Vanthornhout et al. (2019) and Lesenfants238

et al. (2019) to the data set described earlier. Panel C presents the mean TRF, averaged over subjects and a channel239

selection (indicated in pink on panel D). The TRFs of the individual subjects are visualised with a thin line to indicate240

the variance. The TRF displays three distinct peaks. The P1 peak (50 ms), the N1 peak (93 ms) and the P2 peak (170241

ms). This typical P1-N1-P2 complex is also found in AEP studies with impulse-like stimuli and can thus be used242

to infer the neural source of the peaks. The P1 peak originates in Heschl’s Gyrus, and the N1 peak originates in the243

Superior Temporal Gyrus (O’Sullivan et al., 2019b; Steinschneider et al., 2011). The origin of the P2 peak is less244

clear but is probably in the (higher) auditory cortex (Godey et al., 2001). The topoplot shows negative weights for the245

temporal channels and positive weights for the central channels. This distribution is an indication of a dipole located246

near the auditory cortex. Without analyses in source space, the exact location is difficult to pinpoint.247

Over the past decade, envelope tracking has been used to study, among others, how cortical speech processing is248

affected by individual factors like age and hearing status. Decruy et al. (2019) and Brodbeck et al. (2018b) found249

stronger envelope tracking for older participants compared to younger participants, even though older adults typi-250

cally have more difficulty understanding speech. Similarly, Decruy et al. (2020b) and Fuglsang et al. (2020) found251

increased envelope tracking for hearing-impaired listeners compared to age-matched normal-hearing listeners. The252

enhanced tracking in older listeners or listeners with a hearing impairment may be explained by a compensatory cen-253

tral gain mechanism (Parthasarathy et al., 2019; De Villers-Sidani et al., 2010; Chambers et al., 2016), recruitment of254

additional cortical resources (Brodbeck et al., 2018b; Gillis et al., 2021a) and increased listening effort and attention255

(Decruy et al., 2020a; Vanthornhout et al., 2019; Lesenfants and Francart, 2020). With an innovative artefact removal256

technique, Somers et al. (2019) succeeded to analyse envelope tracking for cochlear implant listeners as well. For257

both hearing-impaired listeners (with simulated amplification) (Decruy et al., 2020b) and cochlear implant listeners258

(Verschueren et al., 2019) the tracking strength was significantly correlated to behaviourally-measured speech intelli-259

gibility, indicating a similar relation with speech intelligibility as observed for normal hearing listeners (Vanthornhout260

et al., 2018).261

One challenge with envelope tracking is that its functional interpretation is unclear. The main complicating factor is262
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that the envelope itself is highly correlated with linguistic cues, like the onsets of words and syllables. As such, the263

envelope represents multiple unique features that all may contribute to the observed neural tracking response and are264

hard to disentangle. In addition, the interpretation of envelope tracking is complicated by the fact that it is modulated265

by top-down effects, such as attention and audio-visual integration (O’Sullivan et al., 2019a). A final challenge is that266

the exact relation between envelope tracking and speech intelligibility remains a point of discussion (Ding and Simon,267

2014; Brodbeck and Simon, 2020). Multiple studies have shown that envelope tracking reflects experimental changes268

in speech intelligibility (Vanthornhout et al., 2018; Lesenfants et al., 2019; Verschueren et al., 2021), even in the case269

of degraded speech with an intact envelope (Ding et al., 2014). However, it is unlikely that envelope tracking is a270

direct reflection of successful speech intelligibility as neural tracking responses have been observed for non-speech271

signals (Zuk et al., 2021) and foreign languages (Etard and Reichenbach, 2019). As such, envelope tracking is likely272

necessary but not sufficient for speech intelligibility. To gain further insight into how the brain processes the meaning273

of speech, i.e. speech intelligibility, linguistic features can be used.274

4. Neural tracking of linguistic features275

In pursuit of an accurate neural marker of speech intelligibility, recent studies focus on linguistic speech features.276

While the f0 and speech envelope are derived from the acoustic waveform of the speech, linguistic features are derived277

from the content of the speech. Proper encoding of these features in the brain requires accurate linguistic processing278

and not mere acoustic processing.279

Linguistic features can be divided in two categories. Features in the first category denote lexical segmentation. They280

represent (aspects of) a sequence of small building blocks that make up spoken language, e.g., sequences of phonemes,281

phonetic features, words, or specific word categories like content and function words (Di Liberto et al., 2015; Lesen-282

fants et al., 2019). These features are arrays consisting of zeros with a fixed, non-zero entry (∼ spike) at the onset283

of each lexical building block (see features in light green on Panel C of figure 2). Features in the second category284

reflect higher-level linguistic aspects of the speech, e.g., how familiar, predictable or surprising a word or phoneme285

is in its context (Weissbart et al., 2019; Brodbeck et al., 2018a; Koskinen et al., 2020). These features can be applied286

on three levels, which require different amounts of linguistic context: (1) at the level of a phoneme (e.g., phoneme287

surprisal or cohort entropy), (2) at the level of a word (e.g., word frequency or word surprisal), and (3) at a semantic288

contextual level (e.g., semantic dissimilarity). These features consist of arrays of zeroes and ones, similar to lexical289

segmentation features. However, in this case the spike amplitude at each onset is not fixed but modulated by the290

linguistic information of the specific phoneme or word (see features in dark green on Panel C of figure 2).291

The fact that linguistic features are sparse arrays consisting of mostly zeroes with some non-zero entries (∼ spikes),292

makes them different from the continuous f0 and envelope features and poses challenges for response analysis. In293

backward modelling the reconstructed feature needs to be compared to the actual feature but traditional measures to294

do so, like MSE or correlation, are not well-behaved with sparse inputs. These problems do not occur for forward295
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modelling, where the non-sparse reconstructed and actual EEG are compared. Therefore the forward model is a more296

common choice for analysis with linguistic features.297

Panels E-H of figure 3 present a visualisation of the results of a typical forward modelling analysis for linguistic298

tracking with phoneme suprisal and word suprisal features (see Brodbeck et al., 2018a; Gillis et al., 2021b, for detailed299

methods). The TRFs at both phoneme (panel E) and word level (panel G) show a negative response, situated centrally300

in the topography (panel F and H), around respectively 250 and 350 ms. The earlier response peak for phonemes301

compared to words is consistent with the hierarchy of the language processing of these linguistic building blocks, i.e.,302

the phonemes making up a word are processed before the word’s surprisal can be estimated. Moreover, the response303

to word surprisal resembles the N400 response, which is classically observed in ERP paradigms (Lau et al., 2008).304

These congruent topographic responses indicate that this small and specific language response can also be observed305

when listening to natural running speech rather than stand-alone sentences.306

Measuring neural tracking of linguistic features is an exciting avenue to test psycho-linguistic theories of speech307

understanding. It is accepted that listeners use linguistic context to continuously adapt expectations of upcoming308

concepts, words and phonemes, but it is unclear how these expectations are integrated with what is actually being309

perceived. Brodbeck et al. (2021) showed that the neural prediction of an upcoming phoneme or word relies on310

contextual processing in a parallel manner, combining both bottom-up and top-down processing. Additional evidence311

of the presence of top-down processing comes from Heilbron et al. (2020) who observed that higher-level predictions312

influence the predictions at lower levels (i.e., word prediction affects the predictions at phoneme level).313

Another exciting research path is the disentanglement of acoustic and linguistic neural processing. Verschueren et al.314

(2022) disentangled acoustic and linguistic neural processing by changing the speech rate, which kept the linguistic315

content the same while varying the acoustic properties and the intelligibility of the speech. As the speech rate became316

higher, the neural tracking of acoustic properties increased. This means that better neural encoding was observed,317

even though the speech became harder to understand. In contrast, neural tracking of linguistic properties decreased318

with increasing speech rate. This indicates that linguistic tracking provides a more accurate objective measure for319

speech intelligibility.320

Linguistic speech representations can also provide insight into age-related speech intelligibility deficits. We are aware321

of two studies that study the speech intelligibility deficits in older adults. Although Mesik et al. (2021) did not322

report differences, Broderick et al. (2021) reported that older adults rely less on pre-activated semantic representations323

than younger adults. Furthermore, they showed that older adults who relied more on this semantic pre-activation324

mechanism showed higher verbal fluency. Please note that due to the novelty of linguistic tracking, many of the325

studies mentioned here have not yet passed peer review.326

Linguistic tracking is an up-and-coming research technique but it also has a few difficulties. Firstly, the linguistic327

representations coincide with the boundaries of phonemes and words. These boundaries are often associated with high328
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acoustic power, and therefore, it is necessary to carefully control for acoustic properties of the speech when evaluating329

linguistic representations. If not, the speech tracking analysis might be biased to find spurious significant linguistic330

representations due to its correlations with acoustic representations (Daube et al., 2019). One way to overcome this331

issue is by investigating the added value of linguistic representations (as used in e.g. Broderick et al., 2018; Gillis332

et al., 2021b). Such an approach requires two model fits: a baseline model, accounting for acoustic and lexical333

segmentation features, and a more complex model that includes linguistic information on top of the baseline model.334

The performance (i.e., prediction accuracy) of the baseline model is then subtracted from the performance of the335

more complex model to obtain the added value of linguistic representations. Note that this approach is conservative336

and restrictive: it only quantifies unique information contributed to the model by the linguistic features, neglecting337

acoustic and linguistic information that is shared with other features in the model.338

Secondly, due to sparse features, the analyses are often based on forward modelling. Prediction accuracies, i.e.339

correlations, obtained with forward models are typically small in magnitude: only around 3 to 7% of the variance340

in the EEG signal can be explained by neural responses time-locked to the presented stimulus. Moreover, most341

of this variance is explained by acoustic characteristics of the speech, as these lower-level acoustic representations342

evoke responses over large parts of the auditory system. In contrast, linguistic tracking targets the neural response343

from a precisely localized neural process related to intelligibility. Therefore, the associated magnitudes of these neural344

processes measured at the scalp level are much smaller. As the prediction accuracies of the forward model are small in345

magnitude, finding a significant improvement of the linguistic representation over and beyond acoustic representations346

is statistically challenging (e.g. an improvement of ∼1% corresponds to an increase in prediction accuracy of 3.4×10−4
347

using the conservative and restrictive approach as described above Gillis et al. (2021b)).348

5. Clinical applications of neural tracking responses349

To provide people with hearing problems with evidence-based and innovative health care, it is useful to review the350

merits and limitations of all (objective) audiological measures and investigate how the measures may be combined to351

form a complete assessment.352

The current gold standard methods, i.e. tone and speech audiometry, have proven their worth but they are challenging353

in key patient populations like young children. To remedy this, objective measures for sound perception like the ABR354

and the ASSR have been introduced in the clinical toolset. However, there is no clinically available objective measure355

of speech intelligibility. Since speech intelligibility is the basis for human communication, this is a significant gap to356

fill. Various populations may benefit from such a measure, including young children, stroke patients (especially those357

with aphasia) and people with dementia.358

The versatile neural tracking paradigm is highly promising for this purpose: based on a single twenty-minute long359

EEG recording, a wide range of speech processing abilities may be assessed (incl. phase locking to the f0, envelope360
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tracking, phonetic processing, phonemic processing and even linguistic processing). This versatility may lead to a361

highly time-effective objective assessment of both auditory and language abilities. Moreover, neural tracking is easily362

automated, paving the way to improved automated screening, diagnostics, and automatic fitting of auditory prostheses,363

or even auditory prostheses that continuously adapt themselves to the listener based on their brain activity (Geirnaert364

et al., 2021).365

Future studies preparing for clinical implementation may need to shift focus from group-level analyses towards366

subject-specific analyses. Moreover, they may focus on which combination of neural tracking features provides367

the most information and how these can be optimally analysed. As the features are highly correlated with each other,368

special care needs to be taken to investigate the effect of each feature (Gillis et al., 2021b). Subsequent research efforts369

are also required to decide on the best speech stimuli (required to work well for all types of tracking) and the best EEG370

measurement set-up, including the number of EEG electrodes and their position (Montoya-Martı́nez et al., 2021). It is371

also essential to validate the measures in a comprehensive sample of the population, including participants of all ages372

and with various audiological and non-audiological pathologies. Furthermore, the neural tracking results need to be373

transformed into an easy-to-interpret set of scores and visualisations, to allow for intuitive use by clinicians.374
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Petersen, E. B., Wöstmann, M., Obleser, J., and Lunner, T. (2016). Neural Tracking of Attended versus Ignored Speech Is Differentially Affected524

by Hearing Loss. Journal of Neurophysiology, 117(1):18–27.525

Pichora-Fuller, M. K., Kramer, S. E., Eckert, M. A., Edwards, B., Hornsby, B. W., Humes, L. E., Lemke, U., Lunner, T., Matthen, M., Mackersie,526

C. L., Naylor, G., Phillips, N. A., Richter, M., Rudner, M., Sommers, M. S., Tremblay, K. L., and Wingfield, A. (2016). Hearing Impairment527

and Cognitive Energy: The Framework for Understanding Effortful Listening (FUEL). Ear & Hearing, 37(1):5S–27S.528

Picton, T. W. (2010). Human Auditory Evoked Potentials. Plural Pub.529

Rosen, S. (1992). Temporal Information in Speech: Acoustic, Auditory and Linguistic Aspects. Phil. Trans. R. Soc. Lond. B, 336(1278):367–373.530

Saiz-Alia, M., Reichenbach, T., Saiz-Alı́a, M., and Reichenbach, T. (2020). Computational modeling of the auditory brainstem response to531

continuous speech. Journal of Neural Engineering, in press(3):0–31.532

Shannon, R. V., Zeng, F.-G., Kamath, V., Wygonski, J., Ekelid, M., Series, N., and Oct, N. (1995). Speech Recognition with Primarily Temporal533

Cues. Source: Science, New Series, 270(5234):303–304.534

Somers, B., Verschueren, E., and Francart, T. (2019). Neural tracking of the speech envelope in cochlear implant users. Journal of Neural535

Engineering, 16(1).536
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