
 1 

Multiparametric quantitative phase imaging for real-time, single cell, drug 

screening in breast cancer 
Edward R. Polanco1, Tarek E. Moustafa1, Andrew Butterfield2,3, Sandra D. Scherer2,3, Emilio 
Cortes-Sanchez2,3, Tyler Bodily1, Benjamin T. Spike2,3, Bryan E. Welm2,4, Philip S. Bernard2,5,6, 
Thomas A. Zangle1,2* 

 

1Department of Chemical Engineering, University of Utah, Salt Lake City, UT 
2Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 
3Department of Oncological Sciences, University of Utah, Salt Lake City, UT 
4Department of Surgery, University of Utah, Salt Lake City, UT 
5Department of Pathology, University of Utah, Salt Lake City, UT 
6ARUP Institute for Clinical and Experimental Pathology, Salt Lake City, UT 
 
*tzangle@chemeng.utah.edu 
  

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 27, 2021. ; https://doi.org/10.1101/2021.11.26.467625doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.26.467625
http://creativecommons.org/licenses/by/4.0/


 2 

Abstract  

Quantitative phase imaging (QPI) measures the growth rate of individual cells by quantifying 

changes in mass versus time. Here, we use the breast cancer cell lines MCF-7, BT-474, and 

MDA-MB-231 to validate QPI as a multiparametric approach for determining response to single-

agent therapies. Our method allows for rapid determination of drug sensitivity, cytotoxicity, 

heterogeneity, and time of response for up to 100,000 individual cells or small clusters in a single 

experiment. We find that QPI EC50 values are concordant with CellTiter-Glo (CTG), a gold 

standard metabolic endpoint assay. In addition, we apply multiparametric QPI to characterize 

cytostatic/cytotoxic and rapid/slow responses and track the emergence of resistant 

subpopulations. Thus, QPI reveals dynamic changes in response heterogeneity in addition to 

average population responses, a key advantage over endpoint viability or metabolic assays. 

Overall, multiparametric QPI reveals a rich picture of cell growth by capturing the dynamics of 

single-cell responses to candidate therapies. 

 

  

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 27, 2021. ; https://doi.org/10.1101/2021.11.26.467625doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.26.467625
http://creativecommons.org/licenses/by/4.0/


 3 

Introduction 

Precision oncology holds the promise of improving outcomes in cancer patients by 

tailoring effective therapies to an individual’s tumor while minimizing toxic side-effects from 

ineffective drugs1. Biomarker-driven personalized cancer treatment has been shown to improve 

response rates and extend progression free survival2. Sequencing studies using large oncogene 

panels in advanced cancers find an actionable DNA mutation in 5-35% of cases, depending on 

associated tumor histology3, 4. Although there are exceptional responders to targeted therapy5, 6, 

rarely do advanced cancer patients with a candidate ‘targetable’ mutation exhibit long-term 

survival. Thus, there is a movement in precision oncology to implement functional cell-based 

assays to complement genomic panels7. 

Recent advances in tumor cell expansion have allowed for the development of ex vivo 

patient-derived models of cancer that faithfully recapitulate clinical behavior in terms of drug 

response 8-10. Ex vivo testing is also amenable to clinical testing since it can be multiplexed and 

completed within weeks of tumor sample collection, allowing many more drugs to be screened at 

a lower cost, and on a timescale with the potential for informing patient care11. A variety of 

analytic methods for measuring the response of cultured cells to drug exposure are presently 

employed10, 12-14. Cell culture-based drug-screening assays vary from simple cell counts and 

determination of live:dead ratios with stains, to metabolic assays (e.g.  release of ATP or 

lactate12), to measurement of specific programmed cell death effectors such as caspases or BH3-

domain activation13. However, these measures are typically applied as bulk, endpoint assays, and 

are incapable of capturing the dynamics of single cell responses to therapy.  

In contrast to endpoint assays, real-time assays can elucidate the temporal dynamics of 

drug response, and can discriminate between a cytostatic response where cell growth is 

substantially reduced and a cytotoxic response where the therapy induces cell death15. For 

example, incubator-housed microscope systems for measuring real-time cell proliferation (e.g. 

Incucyte) have been shown to yield results concordant to CellTiter-Glo and BH3 profiling15-17. 

As a longitudinal imaging approach, the Incucyte measures parameters such as population 

averaged proliferation rate and cell viability throughout the experimental duration granting 

insight into changes in cell behavior throughout the course of imaging. An emerging alternative 

is to use cell mass accumulation rate as a measure of cell growth18-20. For example, suspended 

microchannel resonators are a highly sensitive tool for measuring changes in cell mass. 
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Microchannel resonators can measure statistically meaningful changes in cell growth from very 

short duration (~10 min) measurements,21 or individual resonators can be used for longitudinal 

imaging of cell behavior in response to drugs22. However, this approach is limited by the need to 

flow cells through individual resonators and works best with non-adherent cell types. 

Quantitative phase imaging (QPI) is a real-time, label free technique for determining the 

growth of individual cells by measuring the phase shift of light as it passes through a transparent 

sample such a cell20, 23. This quantity is directly proportional to cell mass, which increases due to 

cell growth, such as during progression through the cell cycle24, 25. QPI is a real-time, high 

throughput tool for measuring the growth response of individual cells to therapy. However, 

previous applications of QPI have narrowly focused on measuring the overall sensitivity26 or 

toxicity27 of potential therapies with only limited studies of the heterogeneity of response28. 

Previous work with CTG has shown that combining multiple measures of cell response is 

superior to only measuring drug sensitivity.29 QPI, therefore, can have greater impact as a tool 

for functional medicine by enabling simultaneous measurement of multiple parameters that are 

indicative of cancer cell response to therapy. 

Here we introduce QPI as a quantitative multiparametric method to characterize dynamic 

changes in growth rate, drug sensitivity, drug toxicity, heterogeneity, and time of response (ToR) 

with sufficient throughput to make this approach suitable for clinical applications. We 

demonstrate that these parameters are orthogonal measurements that cannot be derived from 

traditional measurements such as mean drug sensitivity alone. These parameters can also be 

combined to quantify drug-dependent, dynamic responses of cell populations in terms of time-

varying mean and standard deviation of growth rates. Taken together, the QPI-derived 

parameters we develop here give a richer, more complete description of cell response to therapy 

than conventional drug screening approaches.  
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Results 

Measurement of specific growth rate from QPI data 

 We imaged breast cancer cell lines, representing diverse clinical subtypes (Table S1) 

using a custom QPI microscope (Fig. S1a) based on differential phase contrast (DPC) 

microscopy30, 31. Our system is optimized to conduct assays in a 96-well plate with 6-point dose 

response curves and up to five therapies in triplicate including solvent controls (Fig. 1a, Fig. 

S1b, Table 2). Two plates were set-up simultaneously for each experiment: one plate was 

incubated for 27 h post drug exposure prior to CTG analysis (3 h equilibration + 24 h), which 

measures cell ATP content as a surrogate for cell viability, and the other was imaged for 72 h 

after 3 h equilibration followed by CTG (Fig. 1b). For QPI, nine imaging locations were chosen 

in each well with a minimum of 10 cells or small cell clusters per location and imaged for72 h 

(Fig. 1c-d, Fig. S2a-d). Therefore, across all 864 imaging locations, we measured the growth 

response of 20,000 to 130,000 cells or cell clusters per 72 h experiment (Movies M1-M3). 

Cells/clusters were automatically segmented (methods) from background for individual 

quantification of cell mass differentiating healthy growing cells (Fig. 1e-g, Fig. S2e-j) from 

arrested or dying cells (Fig. 1h-j, Fig. S2k-p).  

 QPI mass versus time data have several key features that underlie the ability of QPI to 

distinguish multiple dynamic characteristics of cell response to drugs. First, the rate of mass 

accumulation (dm/dt) can be used to characterize cell growth17, 18, 26, 27, 32, 33. In healthy cells the 

mass accumulation rate is constant as cells grow during each cell cycle (DMSO control, green 

line in Fig. 1g, Fig. S2g,j, Movie M4-6). The mass accumulation rate is typically proportional to 

the mass of the cell or cluster22. We therefore normalized the slope of a linear regression for 

individual cells/cluster mass versus time by the cell/cluster initial mass to find the specific 

growth rate (SGR), in order to account for variations in growth rate due to differences in cell or 

cluster size (Fig. S3a-c). For proliferating cells, the resulting SGR matches the exponential 

growth constant measured by cell counting (Fig. S3d-f) as cells double their mass with each cell 

cycle34. However, when exposed to therapies, mass versus time tracks of individual cell or 

clusters reveal complex dynamic responses. For example, one individual MDA-MB-231 cell 

exposed to 2 µM doxorubicin exhibits robust growth (SGR = 0.0358 h-1, tD = 19 h) for the first 

10 h before showing reduced growth (SGR = 0.0105 h-1, tD = 66 h) during the next 26 h, 

followed by an abrupt decrease in mass during cell death (SGR = -0.217 h-1) and a subsequent 
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gradual loss of mass (SGR = -0.0033 h-1, Fig. 1h-j, Fig. S4, Movie M7). These dynamics are 

highly heterogeneous from cell to cell or cluster to cluster (Fig. 1f, Fig. S2h,p red versus gray 

traces, Movie M8-10). A broad range of dynamic behaviors are thus captured by label-free, 

single-cell QPI data during drug response measurements. 

 

Determination of sensitivity, EC50, and depth of response (DoR) 

A dose-dependent change in growth, as indicated by a change in the rate of mass 

accumulation or loss, is the first key parameter that can be extracted from QPI dose-response 

data18, 27. For example, the SGR distribution for MCF-7 cells decreases with increasing 

doxorubicin concentration to a minimum of -0.003 +/- 0.004 h-1 (mean +/- standard deviation, 

SD) at 20 µM, the highest dose tested, indicating cellular response to the drug (Fig. 2a). We fit 

the average SGR of each condition to a sigmoid dose-response curve using the Hill equation35, 36. 

To determine if there is a response, we test for goodness of fit adjusted for degrees of freedom 

using an F-test at significance p < 0.01 by comparison to a flat line, as an indicator of no 

response (Fig. 2b). For cases with a better fit to the Hill equation, the resulting 4-parameter Hill 

curve can be used to determine the EC50, the effective concentration at which 50% of the cells 

respond to therapy (Fig. 2b, Fig. S5). 

For conditions with a response, the DoR is computed as the asymptotic growth rate at 

high concentration (asymptote of the Hill curve at high concentration) subtracted from the 

baseline growth (asymptote of the Hill curve at low concentration) normalized by the baseline 

growth to account for variations in the control growth rates for each cell line. A DoR less than 1 

represents a cytostatic response with reduced cell growth relative to control; a DoR greater than 

1 represents a cytotoxic response resulting in loss of mass associated with cell death (Fig. 2c). 

The EC50 measured using QPI is highly concordant to the EC50 measured using 72 h CTG as a 

gold-standard of drug response14, 37 with a correlation coefficient of 0.83 (p < .001) (Fig. 2d) and 

concordance coefficient of 0.84 (95% confidence interval = [0.57,0.98]). Additionally, 

predictions of cell line/compound pairs that show no response (n = 14) versus those showing a 

response (n = 59) are highly concordant with CTG 72 h results (86%, Fig. 2e). Concordance at 

24 h and 72 h time points was generally high for EC50 values but low for DoR when comparing 

QPI to CTG, indicating that drugs can affect cell growth distinctly from measurable changes in 

ATP (Fig. S6). 
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Measurement of time of response (ToR) from dynamic QPI data  

By precisely measuring the mass of individual cells during treatment, QPI gives rapid and 

sensitive insight into the dynamic response of cells to therapy throughout the experiment with 

high temporal resolution. For example, the normalized mass versus time for BT-474 cells treated 

with 20 µM of palbociclib, 0.016 µM of docetaxel, and 20 µM of vinblastine, the nearest 

concentration tested above the measured EC50s, initially behave similarly to the control, but then 

exhibit differential, time-dependent responses (Fig. 3a). Of these conditions, palbociclib, a CDK 

4/6 inhibitor that prevents the transition from G1 to S phase, elicits the fastest response, within 

5 h from the start of imaging (8 h post-exposure), and with the largest DoR as indicated by a 

reduction in mass (Fig. 3a). The temporal dynamics of response are also dose-dependent, with 

higher concentrations resulting in a substantially faster response than lower concentrations as a 

larger proportion cells respond more quickly at higher doses (Fig. 3b, Fig. S7a,b). To study 

response dynamics, we examined the changing distributions of SGR of single cells or cell 

clusters as a function of time (Fig. 3c, Fig. S7c,d). In the case of BT-474 cells treated with 

20 µM vinblastine, for example, we observed that the average growth rate slowly decreases over 

12-60 h of treatment, as indicated by a gradual separation of the control and treated cell 

populations (Fig. 3c). We then used the Hellinger distance to quantify the time required for cells 

to respond to therapy (Fig. 3d). Hellinger distance provides a measure of dynamic response cells 

relative to any time-dependent changes in plate-matched solvent controls and is impacted by 

both changes in the mean response as well as the shape of the distributions38 (Fig. S8). This 

enables us to quantify the ToR consistently across conditions and cell types. We defined the ToR 

as the time point when Hellinger distance crossed the threshold set by the maximum Hellinger 

distance of the solvent control from the untreated control (Fig. 3d, Fig. S9a-c). Often, the 

concentration tested just below the EC50 elicited no response. As expected, drugs that elicited no 

response never crossed our Hellinger distance response threshold (Fig. S9d-f). We, therefore, 

used the ToR at the tested concentration just above the calculated EC50 as a nearest 

approximation of ToR at the calculated EC50. Comparing ToR to DoR indicates that cytotoxic 

conditions elicited the fastest response, but even conditions classified as cytostatic often elicited 

a response in less than 24 h with a moderately negative relationship between ToR and DoR (R = 

-0.5, p = 0.016, Fig. 3e). Plotting the ToR against the EC50 further classifies drug-cell pairs based 

on sensitivity and the speed of response (Fig. 3f). 
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Measurement of heterogeneity and tracking of outliers 

SGR in control populations show intrinsic heterogeneity (Fig. S10a-c), and this intrinsic 

heterogeneity is impacted by treatment, with some drugs reducing heterogeneity by as much as 

4-fold, as in MDA-MB-231 with 20 µM doxorubicin (Fig. 4a, Fig. S10d-e). Additionally, cell-

to-cell heterogeneity evolves over time during drug treatment, and this change is captured by 

QPI. For example, MDA-MB-231 cells treated with 20 µM docetaxel show a gradual change in 

SGR distribution over 72 h with a distinctive long tail of non-responders that persists at 72 h, 

despite treatment with a cytostatic compound for > 2.5 cell cycles (Fig. 4b). Since QPI is based 

on longitudinal tracking of cells from microscopy images, we can track individual non-

responders backwards through the duration of the experiment (Fig. 4b-c). For example, select 

MDA-MB-231 cells treated with 20 µM docetaxel show growth that is distinctly different from 

the periodic doubling of cell mass observed in control populations (Fig. 4c). This results in cells 

with a distinctively large mass as compared to control cells (Fig. 4d-f, Movie M10). Given that 

docetaxel primarily acts as a microtubule inhibitor, QPI data implies that treated cells, unable to 

divide or undergo apoptosis, reenter the cell cycle and continue accumulating mass at a similar 

rate as the control (Fig. 4c). This change in heterogeneity is dose-dependent (Fig. 2a), with an 

increase in dose corresponding to a reduction in cell-to-cell heterogeneity of growth (Fig. S11). 

Such impacts are drug-specific. Some compounds induce a significant decrease in the mean 

response, but no significant change to the spread (i.e. SD) within the population, even at high 

concentrations of therapy, such as in BT-474 treated with 20 µM docetaxel and 20 µM 

vinblastine (Fig. S10d). There was little relationship between SD near the EC50 and EC50 or 

ToR, indicating that the impact of drugs on growth heterogeneity provides a measurement of 

drug impacts that is independent of sensitivity of speed of response (Fig. 4f-g). 

 

Multiparametric measurements of cancer cell drug response with QPI 

To further elucidate the relationships among QPI parameters, we computed the Pearson 

correlation coefficient between all QPI measured parameters (EC50, DoR, ToR at EC50, and SD 

at EC50), as well as CTG-based EC50 and DoR (Fig. 5a, Fig. S12). We found that the ToR at 

EC50 has a moderate negative correlation to DoR (R = -0.5, p = 0.016) indicating that more toxic 

drugs tend to cause a decrease in the time it takes to elicit a response (Fig. S12). We determined 
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the EC50 for heterogeneity based on 4-parameter Hill equation fitting (Fig. S11) and found it was 

strongly correlated to the EC50 measured for cell growth (R = 0.76, p = 0.01), (Fig. 5b). We also 

found the SD at 20 µM is strongly correlated to the SD at EC50 indicating that increased 

concentration beyond the EC50 does not cause heterogeneity to decline beyond its level at the 

responding concentration (R = 0.76, p < .001, Fig. 5c). However, we found low correlations 

between the change in heterogeneity, the ToR, and the EC50. Furthermore, dimensional reduction 

using principal component analysis (PCA) suggests that EC50 and DoR alone only account for 

about 70% of the information present in the data with the other 30% being split between SD and 

ToR. Thus, this group of 4 parameters derived from QPI provide mostly orthogonal 

measurements that independently describe different aspects of how cells respond to therapy (Fig. 

S12).  

To study how growth rate and heterogeneity change as a function of time, we 

parameterized these two variables by time and observed unique drug- and dose- dependent 

behaviors (Fig. 5d,e). For example, we found that the change in heterogeneity for both MDA-

MB-231 and BT-474 cells occurred simultaneously with a change in growth rate, but when 

treated with 4HT, an estrogen receptor targeted therapy that should affect ER positive lines such 

as MCF-7, their behaviors were quite different (Fig. 5d,e, Fig. S13). MDA-MB-231 cells treated 

with 4HT first experienced a reduction in growth rate before heterogeneity was affected (Fig. 

5d). Once the cells started dying, the heterogeneity of the population decreased dramatically at a 

constant growth rate. BT-474 cells however increased in heterogeneity while their growth rate 

was decreasing (Fig. 5e). We found that more generally, MDA-MB-231 cells responded to 

treatment with both reduced growth rate and reduced heterogeneity (Fig. S14, Fig. S15a,b), but 

BT-474 cells responded to treatment with both reduced growth rate and slightly increased 

heterogeneity for vinblastine, docetaxel, and 4HT (Fig. S15c,d, Fig. S16).  
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Discussion 

We demonstrated the application of QPI as a multiparametric, label-free, high-throughput 

tool for measuring the growth response of adherent cells to cancer therapies. QPI determined 

drug sensitivity, in terms of both determination of non-responders and EC50 concentrations, is 

strongly concordant with traditional CTG measurements, but offers several additional analytic 

metrics for characterization of drug response at the single cell level. The DoR measured using 

QPI is a useful tool for classifying the effect of therapies as either cytostatic or cytotoxic. As a 

method capable of tracking growth rates over time, QPI measures response dynamics of single-

cells, including ToR and heterogeneity, and allows tracking of outliers. Considering all these 

parameters (EC50, DoR, ToR at EC50, and SD at EC50) reveals significant orthogonality and 

reveals the dynamic responses of populations over time. 

QPI measures the time averaged growth rate for individual cells/clusters, both on the 

scale of the entire experiment as well as the growth rate over smaller time intervals 

demonstrating how QPI tracks the temporal dynamics of growth and heterogeneity (Fig 3c, 

5d,e). This allows QPI to trace those cells back through the assay to determine whether those 

cells were intrinsically resistant or recovered from the initial growth inhibition by adapting to its 

presence in the environment (Fig. 4b). We also found both MCF-7 cells and BT-474 cells to be 

sensitive to lapatinib, a therapy targeting the HER2 receptor, with an EC50 of approximately 1.5 

µM. Although the sensitivity to lapatinib for the two cell lines was very similar, BT-474, a 

HER2+ cell line, shows a cytotoxic response, a decrease in heterogeneity by 30% relative to 

MCF-7, and a ToR that is 60 h faster than the cytostatic response of MCF-7. Together, this 

demonstrates how these multiple parameters together show how much more effective lapatinib is 

against BT-474 than MCF-7 cells than sensitivity alone. This level of insight is crucial for 

understanding how resistant cells and subpopulations develop and for identifying therapies that 

overcome resistance. 

There are several key aspects of multiparametric QPI that point towards clinical 

applications, in addition to its concordance with CTG, which is already widely used in clinical 

trials of functional oncology10, 11, 14. QPI is a direct readout of cell response and is marker free. It 

is therefore not susceptible to drug-stain interference or false positives from sub-lethal/sub-

cytostatic alterations in ATP production. QPI requires relatively few cells, making it amenable 

for application to clinical samples with limited cell number or where expansion is difficult. The 
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experiments described here required approximately 200,000 cells to achieve sufficient density 

for imaging in each of 96-wells, with QPI measuring the response of up to half of the total cells 

plated. 

We also showed that 72 h QPI experiments are not always required for measuring cell 

sensitivity to therapy. In 22/24 of cases, 24 h QPI was able to predict treatment response relative 

to CTG and 24 h QPI results are strongly correlated with 72 h QPI results (Fig. S6). This is 

consistent with ToR data showing that 16 conditions elicited a response near the EC50 

concentration in less than 24 h. Taken together, this suggests that QPI can be applied to classify 

drug responses as either fast or slow responders based on ToR and then this data can be used to 

streamline testing of clinical samples. As part of a clinical workflow, this would require plating 

samples on two or more plates and starting all drug treatments at the same time after plating. Fast 

responders would be imaged for the first interval (ex. 24 h) and slow responders for the next 

period (ex. 24-48 h). In this way, QPI can be applied to rapidly quantify drug responses to a 

larger panel of drugs with varying mechanisms in as little as 48 h. Overall, our work here 

indicates that the rich, quantitative data on cell responses measured by QPI can generate new 

insights into drug response that may ultimately inform clinical decision-making. 
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Methods 

QPI 

QPI was performed with a custom-built differential phase contrast (DPC)30, 31 microscope with a 

high-speed xy translation stage placed inside a cell culture incubator for temperature, humidity 

and 5% CO2 control. Images were acquired using a 10x, 0.25 numerical aperture objective and 

Grasshopper3 USB camera containing 1920x1200 pixels that are 0.54 µM in size (Teledyne 

FLIR, Wilsonville, OR). Focus was maintained with an automated focusing algorithm39. At each 

imaging location, four images were captured with half circle illumination (top, bottom, left, 

right) of a 18 mm square 8x8 light emitting diode (LED) array controlled via an Arduino Metro 

M4 (Adafruit, U.S.A.) to obtain 4 images of a single field of view in less than one second. Phase 

shift through the sample was then reconstructed from opposing pairs of images30, 31. 

 

Image Processing 

Cells were segmented using a Sobel filter to find cell edges, and morphological operators to 

create a mask. Single MDA-MB-231 cells were further segmented using a watershed algorithm. 

Cells were masked and an 8th order polynomial fit was removed from the background prior to 

averaging images from each experiment to correct for aberrations and optical artifacts. A rolling 

ball filter, using a disk structuring element of 100 px, was applied to remove high spatial 

frequency noise. Cell mass was then computed using a cell average specific refractive increment 

of 1.8 x 10-4 m3/kg20. Segmented cells were tracked from frame to frame based on approximate 

minimization of the distance between cell objects in successive frames in terms of cell mass and 

position in x and y40. Code is available on GitHub (https://github.com/Zangle-Lab). 

 

Drug mixing and dilution 

Prior to the start of the experiment, drugs were mixed with the appropriate volume of solvent to 

make a 20 mM stock solution. Stock solutions were stored in a -20 °C freezer and were never 

thawed more than five times to preserve the efficacy of the therapies. The stock concentration of 

the therapies were then aliquoted into media to make a 40 µM solution, which was serially 

diluted on 96-well plate with 1 mL wells to make a solution that is double the desired 

concentration for the assay. The diluted therapies were added to cells 3 h prior to the start of the 
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assay at a 1:1 ratio of drugged media to cell media, to dilute the concentration of therapy to its 

final concentration.  

 

QPI assay 

1500 cells were plated in each well of two 96 well plates with 100 µL of media to allow space 

for drugged media to be added. Cells were incubated in cell culture conditions for 18 h prior to 

dosing. 100 µL of diluted cancer treatments and solvent controls were added to the cells 3 h prior 

to the start of imaging. Cells were allowed to incubate on the microscope in cell culture 

conditions (37 °C and 5% CO2) for an hour prior to focusing the center of each well. Nine 

imaging positions were selected per well and each location was imaged every 20 min with a 

single autofocus before each imaging cycle to account for thermal and z-stage drift. After 24 h of 

imaging plate 1, the first CTG assay was performed on plate 2 (Fig. 1b) while continuing to 

image plate 1 for a total of 72 h. After 72 h of imaging, the second CTG assay was performed on 

plate 1.  

 

Cell counting 

Cell counting experiments were done by measuring proliferation throughout the duration of an 

experiment. Cells were counted in 3 different ethanol treated wells at 0 h, 18 h, 36 h, 48 h, and 

72 h to measure the doubling time for MCF-7 and MDA-MB-231 cells. The following equation 

was used to compute the exponential growth constant for each cell line: 

𝑆𝐺𝑅 =
ln	(2)
𝑡!"#$%&'(

 

Such that tdoubling is the doubling time measured using cell counting for each cell line, ln(2) is the 

natural logarithm of 2, and SGR is the specific growth rate also known as the exponential growth 

constant. 

 

Cell culture 

All cell lines were acquired from ATCC and routinely screened for mycoplasma infection using 

the Agilent MycoSensor qPCR assay. MCF-7 cells were cultured in Dulbecco’s Modified Eagle 

Medium F12 (DMEM/F12) supplemented with 10% heat-inactivated fetal bovine serum (FBS) 

and 1% penicillin/streptomycin (Pen-Strep). MDA-MB-231 cells were cultured in RPMI 
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medium supplemented with 10% FBS and 1% Pen-Strep. BT-474 cells were cultured in Hybri-

Care Medium 46-X prepared with 18 MΩ deionized water supplemented with 1.3 mM of sodium 

bicarbonate, 10% heat-inactivated FBS and 1% Pen-Strep. Cells were passaged on 10 cm cell 

culture treated dishes at 37℃/5% CO2 and passaged by washing with Dulbecco’s phosphate 

buffered saline and then incubating with Trypsin at 37℃ with 5% CO2 for 7 min before splitting 

at a 1:5 ratio. 

 

CTG assay 

100 µL of media was removed from each well on the plate and replaced with an equal amount of 

CellTiter-Glo reagent (Promega, G7572). Assayed plates were shaken at 500 RPM for 20 

minutes and allowed to rest for 10 min. 100 µL of volume from each well was transferred to a 

white 96-well plate (Perkin Elmer, 6005680). Luminescence data was then collected from each 

well using an Envision plate reader (Perkin Elmer) and normalized against the solvent control to 

measure ATP content. We fit a 4-parameter hill curve to the dose response to compute the EC50 

and depth of response. 

 

Statistics 

We measured the correlation between variables using the Pearson correlation coefficient as 

implemented in Matlab that tests the null hypothesis that there is no relationship between the 

variables. We also used Lin’s concordance coefficient to measure the concordance between 

variables41. We computed the confidence interval by bootstrapping based on resampling the 

observed data 10,000 times and reporting the confidence interval as the minimum and maximum 

of the middle 95% of this data. 

 

SGR calculation and filtering tracks for goodness of fit 

Cell mass versus time data with a minimum length of 20 frames were median filtered, with a 

kernel size of 5 frames, to remove small fluctuations. Data with a mean mass lower than 110 pg 

were removed from the analysis, as these were found to be debris. We time shifted each mass 

over time plot, such that the first mass measurement of each cell starts at t = 0. Linear regression 

was applied to find the slope, which defines the growth rate (pg/h), and the y-intercept, which 

was used as the initial mass. SGR is then the growth rate divided by the initial mass. The 
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standard error of the estimate (sy.x) and normalized slope (specific growth rate; k) was used to 

remove outliers. An outlier was defined as 3 median absolute deviation (MAD) from the median. 

 

Normalized mass versus time 

The overall mass of an imaging location is the summation of the mass of individual pixels after 

background correction. Overall mass is collected for each location over time, median filtered, 

then normalized by the mass at the state of the imaging. All locations in all wells for a given 

condition were averaged. The standard deviation was calculated for each triplicate of wells. 

 

Logistic fitting and depth of response calculation 

Average SGR data for individual treatments were fit to both a response (Hill equation) and a no-

response (flat line) model. The response model is a four-parameter logistic (Hill equation) 

function for fitting SGR versus concentration, C: 

𝑆𝐺𝑅	 = 	𝐸)*+ +
𝐸, − 𝐸)*+

11 + 3C ∗ (𝐸𝐶-,)78
./ 

Such that E0 is asymptote at lowest concentration, Emax is asymptote at maximum concentration, 

EC50 is the inflection point of the hill curve, and HS is the Hill slope. The no-response model is a 

flat line parallel to the concentration axis. The residual variance from each fit was then compared 

using an F-test with a p value of 0.01. For responding conditions (logistic fit better than no-

response fit as determined by F-test), depth of response (DoR)was computed as 

DoR =
𝐸, − 𝐸)*+

𝐸,
 

 

Temporal growth dynamics 

To measure dynamic changes in SGR over time, cell mass versus time tracks were first broken 

up into overlapping 24 h intervals centered on each imaging time point in the experiment for a 

total of 144 total intervals. The tracks within each interval were then filtered for a minimum path 

length of 20 frames within each interval, a minimum mean mass of 110 pg, and goodness of fit to 

a linear model as described above. The specific growth rate for each cell in each time interval 

was then found by time shifting each track to start at t = 0, and then using a linear regression to 

find the rate of mass accumulation and this slope was normalized by the y-intercept of each 
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regression of the time shifted data in the interval. We binned 8 adjacent intervals together to 

produce 18 bins throughout the duration of the experiment. We computed the kernel density 

function in each bin using the mean SGR of each cell in the bin.  

 

Hellinger distance measurements 

We measured the Hellinger distance between growth rate distributions by fitting a probability 

density function (PDF) to the distribution of raw growth rates of each cell or cluster normalized 

by its initial mass such that an integral over the PDF is equal to 1. The Hellinger distance is 

defined as38: 

𝐻0(𝑓, 𝑔) = 1 − @A𝑓(𝑥)𝑔(𝑥)𝑑𝑥 =
1
2@3A𝑓(𝑥) − A𝑔(𝑥)7

0
𝑑𝑥 

which is then discretized to: 

𝐻0(𝑆, 𝑇) = 	
1
2E3A𝑠& − A𝑡&7

0
 

Such that H is the computed Hellinger distance between probability distribution functions s and 

t. We computed this sum using a histogram bin size of 10-4 h-1 so that the bin size was small 

enough to capture differences in growth rate for BT-474 cells, the slowest growing cell line we 

tested. 

 

ToR calculation 

We computed the ToR by plotting the Hellinger distance between the drug treated group and the 

control against time, and fitting the data to the following equation: 

𝐻 = 𝑎 − 𝑏 ∗ 𝑒12 

Such that a, b, and c are fit parameters to minimize the sum of least squared residuals. We fit this 

model to the Hellinger distance measured between the controls to find the Hellinger distance 

threshold as the maximum distance between controls for each cell line. We computed the ToR by 

first fitting this model to the Hellinger distance vs time for each therapy and analytically solving 

for t: 

𝑡 = 	
1
𝑐 log	 L

𝑎 − 𝐻
𝑏 M 

Where H is equal to the threshold Hellinger distance, and a, b, and c are the fitting parameters for 

the model.  
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Figure 1: QPI measures drug sensitivity and temporal dynamics for more than 20,000 cells 
in a single experiment. (a) Example plate setup for measuring a 6-point dose response of 5 
cancer therapies in triplicate in addition to two solvent controls (left). Growth response of cells 
are first measured non-invasively using QPI (center) before being assayed using CTG (right). (b) 
Experimental timeline showing two plates set up in parallel to measure cell viability using CTG 
at 27 h after drug exposure (24 h after start of imaging and 3 h of microscope setup) and 75 h 
after drug exposure (after 72 h of imaging and 3 h of microscope setup) (c) Representative QPI 
data from a single location within a single DMSO control well at 0 h, (d) and at 72 h with 10-100 
MDA-MB-231 cells imaged per location. Scalebar is 200 µm. (e) QPI image of a growing cell in 
DMSO (solvent control) at 1 h (f) and at 16 h. Automatically segmented boundary for healthy 
growing cell is shown in green. (g) Corresponding measurement of growing cell mass versus 
time (green) and other cells from the same well (gray). (h) QPI image of a dying cell in 2 µM 
doxorubicin shown at 20 h while still growing (i) and at 60 h, after the cell death event has 
occurred. Automatically segmented boundary for dying cell shown in red. (j) Corresponding 
mass versus time for dying cell (red) and other cells from the same well (gray).  
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Figure 2: Dose response measurement with QPI is concordant to CTG and also 
characterizes mechanism-dependent depth of response. (a) QPI measurements of the specific 
growth rate distributions for MCF-7 cells at increasing concentrations of doxorubicin. Individual 
specific growth rate measurements are indicated by points in the distribution. Blue: DMSO 
control, red: doxorubicin. Black outline is a kernel density function fit to the distribution of 
specific growth rates for each condition. *p < 0.05, **p < 0.01. (b) Each point on the dose 
response curve represents the specific growth rate of 450 to 700 MCF-7 cell clusters averaged 
over 27 individual imaging locations used to fit a 4-point Hill equation to dose response data for 
measurement of EC50 and depth of response. Color indicates drug. Cytostatic response is noted 
as a moderate decrease in SGR, while cytostatic responses are indicated by a minimum 
asymptote of the hill curve at or below zero. (c) Average mass normalized by the initial mass of 
each cluster versus time for 486 clusters in response to 20 µM doxorubicin treatment, 615 
clusters in response to 20 µM fulvestrant, and 476 clusters treated with DMSO control. 
Cytostatic response can be observed as the population slows mass accumulation (fulvestrant) 
while a cytotoxic response results in a gradual loss of mass due to cell death (doxorubicin). (d) 
Comparison of EC50 from Hill equation fitting to CTG and QPI data. Gray line shows the 
expected relationship (EC50,CTG = EC50,QPI). Color indicates drug, symbol indicates cell line. 
Correlation coefficient, R, = 0.83, p = 7.5 x 10-7, Concordance coefficient = 0.84. (e) Confusion 
matrix showing the precision and accuracy of QPI relative to CTG by comparing the frequency 
QPI predicts the same outcome as CTG. Error bars show standard error of the mean (SEM).  
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Figure 3. QPI reveals temporal dynamics of response to therapy. (a) Mass versus time 
normalized by the initial mass averaged over all BT-474 clusters at each time point for 20 µM 
palbocliclib, 20 µM vinblastine, and 0.016 µM docetaxel (nearest concentration to the measured 
EC50). Error bars show SEM. (b) Mass versus time normalized by the initial mass averaged over 
all cells at each time point for .08 µM, .4 µM, and 20 µM of vinblastine. Error bars show SEM. 
(c) MDA-MB-231 response to 20 µM vinblastine (magenta) versus DMSO control (blue) in 12 h 
bins show an initially similar distribution that slowly begins to deviate over time. Solid lines 
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represent the median of the distribution as a function of time. Individual data points show the 
specific growth rate of individual cells within population distributions. (d) Hellinger distance, a 
measure of the similarity between two probability distributions, versus time for 20 µM 
vinblastine and 0.016 µM docetaxel quantifies the difference between each drug treated group 
and the control to identify when the difference is significant enough to determine the ToR as 
shown by the threshold. Black dashed line represents the threshold determined by the maximum 
Hellinger distance between the DMSO and untreated control, the magenta dashed line shows the 
ToR for vinblastine, the maroon dashed line shows the ToR for docetaxel. (e) ToR near EC50 
versus depth of response (DoR) from QPI data classifies each drug based on its cytotoxicity and 
how quickly it affects cell growth. Vertical dashed line is at DoR= 1 as the threshold between a 
cytostatic and cytotoxic response. Horizontal dashed line is at ToR = 24 h, as the division 
between fast and slow-acting drugs. (f) ToR near EC50 plotted against the EC50 classifies 
responses as fast or slow relative to drug sensitivity. The shape of each data point shows the cell 
line and the color describes the drug condition with error bars show SEM in panels (e) and (f). 
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Figure 4: QPI measures growth heterogeneity in healthy and drug treated populations. (a) 
Growth rate distribution of 21,791 MDA-MB-231 cells at the end of 72 h of 20 µM of the 
indicated drug exposure. Individual cell data are plotted and bound by the kernel density function 
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of the distribution (black outline). Mean population response shown as a horizontal line. Dashed 
line shows a growth rate of zero. (b) MDA-MB-231 population growth rate distributions 
throughout during 72 h treatment with DMSO (blue) and 20 µM docetaxel (maroon). Two cells, 
with growth rates greater than mean of control (growth rate shown as square and triangle) at the 
end of experiment are traced back in time to determine how their growth rate evolved throughout 
the experiment. Dashed line shows a growth rate of zero. (c) Mass versus time tracks for these 
two indicated cells demonstrates that these cells grew robustly throughout the experiment despite 
the high concentration of docetaxel. A dying cell from this experiment (grey) and normally 
growing cells from DMSO control (black) are also shown. (d) Control cell from panel c 
indicating normal cell size and appearance. (e) Aberrantly large cell from panel c persisting in 
the presence of 20 µM docetaxel. (f) Histogram showing the final mass for docetaxel treated 
cells (red) as well as for DMSO treated cells (blue) (g) Standard deviation at EC50 plotted against 
EC50 for cell growth. Points below horizontal dashed line (24 h) represent fast responders, 
vertical dashed line divides sensitivity from insensitivity of a cell line to a particular therapy. (h) 
Standard deviation at EC50 plotted against DoR. Horozontal dashed line divides fast responders 
from slow responders, vertical dashed line divides cytotoxic conditions from cytostatic. Error 
bars in (g) and (h) show SEM. Heterogeneity is abbreviated as hetero. 
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Figure 5: QPI functionally classifies drugs based on how they affect cell behavior. (a) 
Correlation matrix showing how functional measurements are related and predictive of how 
cancer therapies affect heterogeneity. (b) EC50,SD is strongly correlated with EC50,k (R = .76, p = 
.01) (c) Standard deviation in growth at 20 µM concentration is strongly correlated with standard 
deviation of growth at EC50. (d) Plot of mean specific growth rate plotted against standard 
deviation in growth parameterized by time for MDA-MB-231 cells treated with maximal 
concentration of drug panel A. (e) Plot of mean specific growth rate plotted against standard 
deviation in growth parameterized by time for BT-474 cells treated with maximal concentration 
of drug panel A. Control cells for (d) and (e) are shown as a cluster of black dots. Arrows in (d) 
and (e) show forward direction in time. Error bars show SEM. 
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