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ABSTRACT

Mesoscopic (0.1-0.5 mm) interrogation of the living human brain is critical for a comprehensive
understanding of brain structure and function. However, in vivo techniques for mesoscopic imaging
have been hampered by the sensitivity challenges of acquiring data at very high resolutions and the
lack of analysis tools that can retain fine-scale detail while also accurately positioning measurements
relative to the complex folded structure of the cerebral cortex. Here, we present an experimental
dataset in which we image the anatomical structure of the visual and auditory cortices of five
participants at 0.35 x 0.35 x 0.35 mm? resolution. To analyze this challenging dataset, we design
and implement two sets of novel methodology: a method for mitigating imaging artifacts related
to blood motion and a suite of software tools for accurate quantification and visualization of the
mesoscopic structure of the cortical surface. Applying these methods, we demonstrate the ability
to clearly identify structures that are visible only at the mesoscopic scale, including cortical layers
and intracortical blood vessels. We freely share our dataset and tools with the research community,
thereby enabling investigations of fine-scale neurobiological structures in both the current and future
datasets. Overall, our results demonstrate the viability of mesoscopic imaging as a quantitative tool
for studying the living human brain.
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Mesoscopic Quantification of Cortical Architecture in the Living Human Brain

1 Introduction

A central goal in neuroscience is to achieve a comprehensive assessment of the structure of the living human brain.
Centuries of work have been dedicated to characterizing the human brain from its macroscopic features (e.g., lobes,
gyri, sulci) to its microscopic constituents (e.g., dendrites, cell bodies) (Finger et al., 2009, Ch. 1-10). The history
of neuroscience has witnessed steady improvements in technologies for imaging the brain at increasing levels of
detail (Bentivoglio & Mazzarello, 2009). From the late 19" to the early 20" century, major advancements in tissue
staining and photography opened new doors for measuring the human brain’s cytoarchitecture (Geyer, 2013, Part 1),
myeloarchitecture (Nieuwenhuys, 2013), fiber architecture (Kleinnijenhuis, 2014, Ch. 1), and angioarchitecture (Pfeifer,
1940).

In seminal works of neuroscience, it has been acknowledged that ex vivo experiments on animal and human brains are
valuable but temporary necessities (Stahnisch, 2010). Fortunately, new technologies that enable study of the living
human brain have emerged. The second half of the 20th century has brought computerized tomography (CT), positron
emission tomography (PET), and magnetic resonance imaging (MRI) (Raichle, 2009a). Though these new technologies
were far from the microscopic details provided by older methods, they quickly became indispensable due to their
non-invasive nature. MRI has proven particularly useful for its flexibility to measure different tissue contrasts as well as
hemodynamic measures of brain activity (Raichle, 2009b). Most recently, MRI at ultra-high magnetic field strength
(>7 Tesla) has breached the mesoscopic scale (Barbier et al., 2002; Budde et al., 2011; Duyn et al., 2007; Federau &
Gallichan, 2016; Fukunaga et al., 2010; Huber et al., 2017; Kemper et al., 2018; Liisebrink et al., 2021; Liisebrink et al.,
2017; Zwanenburg et al., 2011), which we define as resolutions between 0.1 mm and 0.5 mm (Edwards et al., 2018).
However, in vivo mesoscopic MRI has not advanced beyond the proof-of-concept stage, and has not been incorporated
into the toolkit of practicing neuroscientists. We suggest three main reasons why this is the case: (i) lack of practical
high-resolution data acquisition protocols that provide sufficient coverage of the brain, (ii) lack of dedicated analysis
tools that can optimally process mesoscopic imaging data, and (iii) lack of high-quality quantitative MRI datasets that
can serve as benchmarks for the field.

In this paper, we deliver these missing elements - acquisition protocols, analysis tools, benchmark data - and demonstrate
the viability of mesoscopic imaging as a quantitative tool for studying the living human brain. Our data are acquired
using a practical adaptation of two conventional imaging sequences for performing measurements at the mesoscale. The
data are acquired at the challenging resolution of 0.35 mm isotropic voxels and cover a substantial portion (approximately
one-third) of the human brain. To compensate for low signal-to-noise ratio (SNR) and blood motion artifacts, we
implement a compositing method that combines information across multiple phase-encoding-rotated acquisitions. To
address the challenges of processing spatial detail at the mesoscopic scale, we develop new algorithms and image
processing tools. One major innovation is a cortical flattening approach that accurately positions cortical measurements
with respect to the 3D geometry of the cortical surface while minimizing data interpolation and computational burden.
Finally, using the acquired dataset and the developed image processing tools, we demonstrate the feasibility of systematic
study of the mesoscopic architecture of the living human brain. Specifically, we show how appropriate processing and
visualization can provide qualitative and quantitative assessments of cortical substructures such as layers and vessels.
All data, tools, and processing pipelines are freely shared with the community (see Section [5).

2 Methods

2.1 Data Acquisition
2.1.1 Session 1: T,” with MEGRE

In the first session, we acquired 3D multi-echo gradient recalled echo (MEGRE) images with bipolar readouts (Eckstein
et al., 2018) to measure T," (see Table . The nominal image resolution was 0.35 x 0.35 x 0.35 mm?, and parameters
included TR =30 ms, TE;¢c = [3.83, 8.20, 12.57, 16.94, 21.31, 25.68] ms, FA = 11°, 576 x 576 x 104 voxels, FOV =
20.16 x 20.16 x 3.64 cm?, elliptic k-space filling, 15 minutes duration, and no flow compensation. See Figure for
the achieved coverage. In total, 4 successful MEGRE runs totalling 60 minutes were acquired in this scanning session.
Between acquisitions of the 3D MEGRE we changed the phase-encoding direction by 90° (right-left, anterior-posterior,
left-right, posterior-anterior). These 90° changes were introduced in order to control the direction of the blood motion
artifacts (this artifact is called "spatial misregistration of the vascular flow" by Larson et al., 1990). As a result of
this artifact, we see the vector component of the blood flow in the readout direction as a displacement (see Figure
[2A-B). Note that the bipolar readouts have odd- and even-numbered echos acquired with opposite (180°) readout
directions, which is known to introduce a slight spatial shift between their corresponding images due to the change
in readout direction (Cohen-Adad, 2014). Nevertheless, we found that this shift is negligible compared to the flow
artifact caused by the time elapsed between the encoding and readout stages. In addition to the MEGRE acquisition, a


https://doi.org/10.1101/2021.11.25.470023
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.11.25.470023; this version posted November 25, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

Mesoscopic Quantification of Cortical Architecture in the Living Human Brain

A) Session 1

Mesoscopic T," imaging (MEGRE) coverage
[0.35 x 0.35 x 0.35 mm? voxels]

B) Session 2

Mesoscopic T, imaging (MP2RAGE) coverage
[0.35 x 0.35 x 0.35 mm? voxels]

Heschl's Gyrus Heschl's Gyrus

Calcarine Sulcus Calcarine Sulcus

S S S
lcm +P lcm lcm +P lcm

Inversion 1

Inversion 2 =

B

TE=16.9ms > %
TE=21.3ms & s
TE=25.7ms

Figure 1: Spatial coverage and image quality of the MRI data acquisition. Here we show data quality for an
example participant (sub-01) for the first (A) and second scan sessions (B) after preprocessing. High-resolution imaging
slabs (in warm colors) are overlaid on top of the whole-brain lower-resolution image. The imaging slabs are positioned
to cover both the calcarine sulci and Heschl’s gyri (transverse temporal gyrus). Transversal images are averaged across
runs. Despite the very high spatial resolution (0.35 mm isotropic), SNR of our averaged images is high, allowing
detection of cortical substructures even in the single echos in MEGRE and clearly distinguishing between gray and
white matter in MP2RAGE. See Table [I]for acquisition parameters, and Section [5]for data availability and sequence
parameter documents.

whole-brain magnetization prepared 2 rapid acquisition gradient echos (MP2RAGE) image (Marques et al., 2010) at 0.7
mm isotropic resolution was also acquired to provide whole-brain anatomical reference. Parameters included TR =
5000 ms, TI;, =[900, 2750] ms, TE = 2.46 ms, FA;, = [5°, 3°], 320 x 320 x 240 voxels, FOV =22.4 x 22.4 x 16.8
cm’.

2.1.2 Session 2: T; with MP2RAGE

In the second session, we acquired MP2RAGE images (Marques et al., 2010) (see Table EI) The nominal image
resolution was equal to the T," images at 0.35 x 0.35 x 0.35 mm?, and parameters included TR = 5000 ms, TE = 2.91
ms, T1;, = [800, 2700] ms, FA | = [4°, 5°], 576 x 576 x 120 voxels, 20.16 x 20.16 x 4.2 cm? slab dimensions, and 10
minutes duration. See Figure 1B for the achieved coverage. In total, 6 successful MP2RAGE runs totalling 60 minutes
were acquired in this scanning session. For completeness, we changed the phase-encoding direction by 90° in each run
similar to the MEGRE images acquired in Session 1. However, the effect of the flow-misencoding artifact is negligible
because of the very short TE used in MP2RAGE images compared to MEGRE.
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Table 1: Acquisition parameters for the high-resolution scanning protocols.
Sequence MEGRE MP2RAGE

Voxel size

0.35 x 0.35 x 0.35 mm?

0.35 x 0.35 x 0.35 mm?

Field of view (FOV) 201.6 x 201.6 x 36.4 mm? 201.6 x 201.6 x 42 mm>
Slab dimensions 576 x 576 x 104 voxels 576 x 576 x 120 voxels
Bandwidth 240 Hz/Px 250 Hz/Px

TR 30 ms 5000 ms

TE [3.83,8.20, 12.57, 16.94, 21.31, 25.68] ms  2.91 ms

Flip angle (FA) 11° [4°, 5°]

TI N/A [800, 2700] ms
Read-out gradient mode  Bipolar Monopolar

Phase partial Fourier Off 6/8

GRAPPA 2 2

Volume acquisition time 15 min 10 min

Total duration 4 x 15 min = 60 min 6 x 10 min = 60 min

2.2 Data Analysis
221 T, Images (MEGRE)

Each MEGRE image series consists of odd- and even-numbered echos with opposite readout direction (while phase-
encoding was rotated by 90° between acquisitions). Our processing pipeline aimed at reducing two sources of artifacts
while improving the signal-to-noise ratio: (i) head motion across acquisitions, (ii) blood motion artifacts across echos.
The processed data is then used to compute T>" and Sy contrasts.

2.2.2 Head motion correction

We started by cropping our images to exclude the frontal brain regions (01_crop.py). This is done to reduce com-
putational requirements for the upcoming steps. Then we averaged signal intensities across all echos per voxel
(02_avg_echos.py). This averaged image improves SNR and is used only in the estimation of motion. We also
upsampled both the original echos and the averaged images to 0.175 mm isotropic resolution with cubic interpolation;
this allows fine-scale detail to be preserved during the motion correction process (Allen et al., 2021) (03_upsample. py).
Head motion was estimated from the averaged images using rigid-body transformation (6 degrees of freedom) while
using a manually defined brain mask covering our regions of interest; then, data were corrected using linear in-
terpolation (04_motion_correct.py) (Yushkevich et al., 2006). Note that all runs are co-registered to the first
MEGRE run. The estimated rigid body transformation matrices were applied to each upsampled echo separately
(05_split_echos.py, 07_apply_reg.py, 08_merge_echos.py), resulting in a final set of brain volumes with
nominal 0.175 mm resolution.

2.2.3 Blood motion artifact mitigation

After motion correction, we averaged the MEGRE images with the same phase-encoding axes for each echo
(PE, for right-left and left-right; PE, for anterior-posterior and posterior-anterior) to improve signal-to-noise ratio
(09_average_same_PE_axes.py). This step is performed because the blood motion artifact direction is independent
of the phase-encoding direction, and only dependent on the vector component of the blood flow along the readout axis
(Larson et al., 1990). Then we composited a new image by selecting voxels from the PEy and PE, phase encoding axis
images using a minimum operator (10_composite.py). Selecting the minimum intensity observed across the two
images mitigates the blood motion artifact. Such image compositing operations are commonly used in the movie-making
visual effects field (Brinkmann, 2008). In compositing, the main idea is to piece together a new image by using parts of
multiple other images (see Figure[2). Since the blood motion artifact will be different across images with 90° rotated
phase-encoding axes (PEy and PEy), it is conceivable to composite a new image (i.e. a new set of echos) by selecting
the signal of each voxel from the original set that is not affected by the artifact (a voxel affected by the artifact in PE;
will not be affected in PEy). As the last step to mitigate the residual blood motion artifacts, we detected those voxels
that do not decay across echos (e.g. points on the decay curve showing a higher signal compared to the echo that comes
before), and replaced its value with an average of the echo before and after (11_fix_nondecay.py). Note that our
procedure is best viewed as mitigating as opposed to correcting the blood motion artifact: we are attempting to suppress
the misencoded artery signal, not move it back to its correct location.
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Figure 2: Compositing method to mitigate blood motion artifacts in T,"-weighted images. Here we show results
from an example participant (sub-03). (A) Zoomed-in view of three of the six echos acquired using the right-left
phase encoding axis. (B) Same echos acquired using anterior-posterior phase encoding axis. See that the blood motion
artifact appears along the vector component of the blood flow along the readout axis (which is perpendicular to the
phase-encoding axis). (C) Result of compositing the acquired images using the minimum operator. We show maximum
intensity projection over a small slab (see the first panel for the scale bar) in order to enhance the visibility of the arterial
signal. The dotted line superimposed on all images indicates the medial axis of an artery that was manually identified
from the shortest TE (3.83 ms) image where the blood motion artifact is minimal.



https://doi.org/10.1101/2021.11.25.470023
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.11.25.470023; this version posted November 25, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

Mesoscopic Quantification of Cortical Architecture in the Living Human Brain

2.2.4 T, fitting

We fit a monoexponential decay function (Stg = Sy - exp(—TE/Ty)) to the processed MEGRE images by fitting a
line to the logarithm of the signal using ordinary least-squares (12_fit_T2star.py) (Cohen-Adad et al., 2012) using
Nibabel, Scipy, and Numpy (Brett et al., 2017; Jones et al., 2001; Van Der Walt et al., 2011). Note that in addition to
providing an estimate of T,", this procedure also provides an estimate of S, (see Figure ).

2.3 T; Images (MP2RAGE)

Our processing strategy for the T images is aimed at correcting head motion across acquisitions while boosting
signal-to-noise ratio through averaging.

2.3.1 Head motion correction

MP2RAGE images were processed similarly to the MEGRE images for the first two steps of cropping and upsampling
(01_crop.py, 02_upsample.py). All runs are co-registered to the first MP2RAGE run using the INV2 contrast with
the GREEDY (Yushkevich et al., 2016) registration algorithm (acquired from: https://github. com/pyushkevich/
greedy). We used the second MP2RAGE inversion time (INV2) contrast to drive registration because it has the best
overall brain and non-brain signal-to-noise ratio. A brain mask focusing on our regions of interest was manually
drawn in ITK-SNAP (Yushkevich et al., 2006) and used to constrain the registration cost metric. Registration was
estimated using GREEDY rigid-body transformation (6 degrees of freedom) and data were corrected using linear
interpolation (03_motion_correct.py). The estimated transformations were applied to all of the MP2RAGE contrasts
(04_apply_reg.py). Finally, we computed the average across all motion-corrected images (05_average . py).

2.3.2 Registration to T,"

The MP2RAGE data were registered to the MEGRE using the second inversion time (INV2) contrast from the
MP2RAGE and the S, image resulting from T, " fitting of the MEGRE. This choice was made due to the similarity of
tissue contrast in these images. We used the GREEDY registration with 6 degrees of freedom and linear interpolation
(06_register_to_T2s.py).

2.4 Segmentation

Accurate identification of gray and white matter is critical for proper interpretation of cortical architecture. We carefully
segmented four main regions of interest in the registered MP2RAGE UNI images. These regions consisted of brain
tissue in and around the calcarine sulcus and Heschl’s gyrus in each hemisphere. To determine these regions, we
centered a spherical mask at each of the relevant sulcal and gyral landmarks. We refer to these masks as scoops of
interest (see Figure[3]A). We used an interactive intensity histogram thresholding method (Gulban et al., 2018) to obtain
our initial tissue segmentation within each scoop of interest based on the MP2RAGE UNI contrast. After this step,
each scoop of interest was manually edited by an expert (O.F.G.) and quality controlled for accurate and precise tissue
segmentation (R.H.). The manual editing process took approximately 8 to 10 hours for each subject. We have chosen
a laborious manual segmentation process over a fully automatic one because of the lack of optimized and validated
segmentation tools for our very high resolution data. The resulting tissue segmentations are available as a part of our
data repository and can be freely inspected. Note that we used the scoops of interest to focus our efforts on achieving
the best segmentation for our regions of interest.

2.5 Cortical Depths

After completing the tissue segmentation, we used LayNii v.2.2.0 (Huber et al., 2021) to compute equi-volume cortical
depths (Bok, 1959). Specifically, we prepared the segmentation input, i.e. the motion-corrected and averaged T;-
weighted images (00_prep. py), and used the LN2_LAYERS program to compute equi-volume normalized cortical
depth measurements for each gray matter voxel (01_layers.py). Note that the voxel-wise cortical depth metric
computed in LN2_LAYERS ranges between 0 and 1 and reflect normalized units: cortical depth measurements (in mm)
are normalized by local cortical thickness measurements (in mm) and then adjusted within this closed vector space to
determine the equi-volume metric (see Figure 3B and Figure dB) (this implementation is described in Huber et al.,
2021). In addition, this program computes cortical curvature at each gray-matter voxel. See (Bok, 1959; Waehnert et al.,
2014) for general references on the equi-volume principle of cortical layering.

To facilitate anatomical quantification, we also calculated distances for voxels that lie beyond the inner and outer
gray-matter boundaries. This was done using LayNii program LN2_GEODISTANCE (02_beyond_gm_prep.py.
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Figure 3: Segmentation, cortical depths, and regions of interest identified for an example subject (sub-04). (A-C)
Major processing steps for characterizing our cortical regions of interest. The cortical cylinders in C were geodesically
centered at the calcarine sulci and Heschl’s gyri anatomical landmarks based on the middle gray-matter voxels. Careful
manual tissue segmentation was performed, enabling extraction of gray-matter boundaries and cortical surface topology.
(D-E) T; and T," measurements in the regions of interest with overlaid gray-matter boundaries. Notice that the quality
of the T," image allows visualization of fine-scale cortical substructures such as the Stria of Gennari and intracortical

vessels.
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03_beyond_gm_distances.py). These beyond-gray-matter distances are quantified in mm units and we included
voxels that are maximally 0.75 mm away from any gray matter border. Then, we created a collated distance file, com-
bining the equi-volume depth metric together with the beyond-gray-matter distances (04_beyond_gm_collate.py,
05_beyond_gm_stitch.py). This file is used to plot cortical depth profiles together with voxels above and be-
low the gray matter in Figures[7H10|(01_singlesub_depth_vs_T2star.py, 02_singlesub_depth_vs_T1.py,
01_group_depth_vs_T2star.py, 01_group_depth_vs_T1.py) using Matplotlib (Hunter, 2007).

2.6 Patch Flattening

To enable effective and accurate visualizations of the convoluted cortical surface, we designed a cortex flatten-
ing procedure that is optimized for partial brain coverage. We implemented this procedure as two separate pro-
grams: LN2_MULTILATERATE and LN2_PATCH_FLATTEN within LayNii v2.2.0 (Huber et al., 2021). First,
we use the LN2_MULTILATERATE program to inject a flat coordinate system within our segmented regions
(01_multilaterate.py). This program uses combinations of fast marching geodesic distance computations (Sethian,
1996) to impose a flat 2D coordinate system (which we refer to as UV coordinates, see Figure[djA) on the convoluted
cortex. UV coordinates are initially computed on gray matter voxels positioned mid-way through the cortical thickness.
We select an origin voxel, and then define a geodesic disc (i.e. a disc with respect to the folded surface) around this
voxel. Next, we isolate the disc perimeter voxels and find 4 points equally spaced along this perimeter using an iterative
method. These four points are used to compute four distinct distances for each gray-matter voxel based on fast marching.
Pairwise subtraction of these point-based distances yield two separate signed distance fields. These signed distance
fields form our UV coordinates (i.e., right minus left yields U and up minus down yields V). Then the coordinates are
propagated to the rest of the cortical thickness to cover the whole cortical depth (see Figure[3|C). Finally, we use the
LN2_PATCH_FLATTEN program to combine the voxel-wise UV coordinates with the equi-volume cortical depth
measurements (abbreviated as D coordinate, see Figure dB) to generate fully flattened and parameterized cortical
brain chunks (02_patch_flatten.py). The end result of this procedure is a full continuous mapping between flat
cortex space (UVD) and the original folded cortex space (XYZ). In essence, we are able to quickly determine UVD
coordinates for any point in XYZ space, and vice versa. This mapping allows us to accurately and efficiently plot data
from our regions of interest in "virtual Petri dishes", in which we visualize the cortical landscape across the cortical
surface and through cortical depth (see Figure dB). We note that a conceptual predecessor of our mapping approach
with a completely different implementation is shown in Kemper et al. (2018). In addition, we are able to rapidly change
the resolution of the virtual Petri dish with respect to cortical depth (e.g. from 11 to 1000 bins) or cortical landscape
(e.g. from 100 x 100 to 2000 x 2000 bins to represent the 30 mm diameter cylindrical surface), without incurring
substantial computational overhead. To highlight the effectiveness of the virtual Petri dishes for interactively surveying
mesoscopic data, we provide example animations at https://osf.io/nbbj7|under Supplementary Figures folder. To
summarize data across depths, in some cases we compute a median projection by calculating the median value observed
across depth (03_median_projection.py) (see Figure[5A-B).

3 Results

3.1 Mitigation of Blood Motion Artifact Using Compositing

We acquired images of the living human brain at 0.35 x 0.35 x 0.35 mm? resolution while covering the visual and
auditory cortices of five participants. Our processing focused on ensuring that the fine-scale details in our images are
retained while improving our SNR. However, we addressed another major high-resolution imaging problem. Even in the
absence of head motion, blood is moving within the cerebral vessels. Therefore, collecting in vivo data at mesoscopic
resolution requires detailed consideration of moving particles. The combination of acquisition parameters, blood flow
velocity, and the orientation of vessels with regards to the spatial encoding directions in MRI results in significant
spatial shifts of the signal associated with large arteries (Wehrli, 1990). This artifact is called “spatial misregistration of
the vascular flow” and its underlying theory is detailed in (Larson et al., 1990). For brevity, we refer to this phenomenon
simply as blood motion artifact. The blood motion artifact obstructs measurement of nearby cortical tissue (up to
several millimeters away), and may lead to erroneous interpretation of the local tissue microstructure (e.g. when the
signal from a large artery shifts onto cortical gray matter).

We observe the blood motion artifact in our MEGRE images at an unprecedented level of detail. In Figure 2A-B,
we show that this artifact exhibits itself as a bright signal moving outside of the arterial location following the vector
component of blood flow along the readout axis. This is a major problem for gray matter T," measurements because
the blood motion artifact causes an artifactual inflation of T," in nearby gray matter tissue. By performing 90° phase-
encoding axis rotations across multiple data acquisitions, we were able to change the direction of the blood motion
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artifact. Note that maximum intensity projection over 3.85 mm is used to highlight the artifact in Figure 2JC. However,
the artifact can be easily observed in single slices using interactive data browsers (see Section 3.

We developed a simple artifact mitigation method that does not incur extra scanning time nor require major assumptions.
As we need to increase SNR by taking into account the multiple data acquisitions in any case, we leverage the
dependence between the artifact’s direction and the phase-encoding direction by compositing two 90°-rotated phase-
encoding axis images into a single image via a minimum operation. As a consequence of this method, the bright arterial
signal can to a large extent be removed from the single-echo images (see Figure [2JC). The residual bright spots visible
in the composited image are voxels where the artifact exhibits itself in such a way that 90° phase-encoding rotation does
not alter the artifactual brightness. Note that even at an early 8.2 ms echo time, 90° phase-encoding axis rotated images
show different artery paths. This means that the true location of the large arteries (~1 mm diameter) is very hard to
identify from a single-echo image. However, the true location of the artery can be estimated by considering the earliest
echos. The exact flow direction is hard to understand from single slices, but the artery can be traced back towards
the main cerebral arteries to deduce the flow direction. We have manually indicated the estimated artery location and
designated it with dotted lines with arrows in Figure[2] The arrows on the dotted line indicate flow direction.

Figure 2] shows that our blood motion artifact mitigation method is effective. It can be seen [that we obtain cleaner
single echos for non-artery tissues and suppress the arterial signal. This is advantageous for T," fitting within the gray
matter because the fit will not be affected by strong artifactual artery-induced jumps in the measured decay curves
(Wehrli, 1990). Note that by applying a minimum operator across independent acquisitions, we are also enhancing
overall SNR, as variability in signal intensity within a given tissue type is reduced. From a global T, measurement
perspective, the blood motion artifact has a fairly minor impact on the distribution of T," values, because the large
arteries (> 1 mm diameter) supply limited portions of the brain compared to the rest of the gray- and white-matter tissue.
However, from a local perspective (one which mesoscopic imaging promotes), not accounting for the blood motion
artifact risks greatly inflated T," values.

3.2 Accurate Cortical Flattening at the Mesoscopic Scale

Human cerebral cortex is extremely convoluted. To understand mesoscopic cortical architecture in our data, we
developed a novel set of geometric tools that enable parameterization of cortical surface topology and cortical flattening
while preserving all fine-scale detail present in the high-resolution anatomical volumes. As a result of these tools, we are
able to transform the folded cortex into a flattened volume format, which enables not only looking through the cortical
depths but also looking across the mesoscopic landscape (see Figure diC-D). Although it is inevitable that projecting
the folded cortex into a flattened format will cause local distortions (Fischl, Sereno, & Dale, 1999; Fischl, Sereno,
Tootell, et al., 1999), Figure E]E shows that our cortical patch flattening method has desirable distortion characteristics
compared to the conventional triangular mesh based tools shown in (Kay et al., 2019). Specifically, our method is
able to minimize distortion with respect to the entire cortical thickness and distributes distortion evenly throughout
the cortical patch. Moreover, by avoiding explicit construction of triangular meshes, we avoid time-consuming mesh
generation and the loss of resolution that can occur when resampling data to a new space. Our approach enables the
values of the original high-resolution folded brain to be organized into a flattened cortical representation efficiently and
at arbitrary desired resolution.

3.3 Intracortical Vessels and Layers Revealed in Flattened Cortices

Given the high quality of our 0.35 mm acquisition and analysis approach, we find that simple inspections of the
data reveal clearly visible properties of intracortical vessels. For the first time, by exploiting the mesoscopic image
processing tools we have developed we are able to visualize penetrating vessel trunks over the cortical surface similar
to what is seen with invasive measurement techniques (Duvernoy et al., 1981, Fig. 64). Figure [5|shows that there are
multitude of local T," signal decreases across the cortical surface. We have manually labeled the most visible dips
similar to (Duvernoy et al., 1981) in this initial investigation; however, future studies can improve the detection of such
intracortical vessels by developing automatic methods similar to (Bernier et al., 2018; Huck et al., 2019). Following
Duvernoy’s nomenclature, we call these intracortical vessels, and they most likely belong to groups 4 and 5 of the
intracortical veins. The labeled intracortical veins in our images often penetrate through the majority of the cortical
thickness, as expected. Examples of intracortical veins can be observed in the original 3D folded brain space in Figure

BE.

Browsing superficial gray matter reveals large differences between T, and T; measurements due to the presence
of pial vessels that lie above the cortex. Flgure@A shows measurements sampled from the superficial depth in and
around the calcarme sulcus. Branching impressions of the pial vessels can easily be seen as contlguous low T, regions.
Comparing the T," data with T; reveals that the T; maps do not show similarly visible impressions. This might be due
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Figure 4: Demonstration of cortical flattening and depth assignment. Cortical cylinders in the form of virtual Petri
dishes are used for flattening our regions of interest. A cylinder is centered at our anatomical landmarks and its radius is
set to 15 mm. The cylinder height covers the whole cortical thickness. (A) Cortical flat coordinates visualized for a
2D slice. (B) Cortical equi-volume depth assignment for the same slice. (C) Structure of cortical cylinder in original
3D folded brain space (XYZ coordinates). The red line indicates the location of the 2D slice in panels A and B. (D)
Structure of cortical cylinder after flattening (UVD coordinates). (E) Assessment of flattening distortion. Here we use
the ’surface voxels’ technique (Kay et al., 2019, Fig. 4) and construct a synthetic test volume consisting of 2.1 mm
isotropic voxels and visualize the resulting positions of these voxels in the flattened visualization. Each individual
colorful patch corresponds to the cross-section of exactly one 2.1 mm cube. Compared to the extensive shrinkage in
sulci and expansion in gyri shown in (Kay et al., 2019, Fig. 4B), the amount of distortion is fairly modest and equally
distributed across gyri and sulci.
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Figure 5: Comparison between in vivo flattened cortical surface representation of T," measurements and
ink-gelatin perfusion images from Duvernoy et al. (1981). (A-B) Curvature (top) and median-projected T,"
measurements (bottom) for two example cortical patches. Median projection is performed to summarize all cortical
depths into a single image. (C) Manually labeled schematic (top) and original ink injection images (bottom) for a
sample patch of tissue as reproduced from Duvernoy et al. (1981).

to the deoxyhemoglobin in the vessels affecting the T»" signal outside of their trunks (Bause et al., 2020), while in T,
maps it is mostly indistinguishable from the neighboring gray matter. Cross-sections through these cortical cylinders
reveal the extent of the pial vessel effects on T," (Figure 6B—C). It can be seen that the extent of darkening can be up to
approximately % of the cortical depth. In addition, the penetrating blood vessels are clearly visible as vertical bands.

In addition to the clearly visible vascular impressions across the cortical surface, laminar structures can be seen as
horizontal features in Figure EB-C. It can be seen that there are lower T, values around the middle of the cortical
thickness. This structure is likely the stria of Gennari (Fulton, 1937; Gennari, 1782; Glickstein & Rizzolatti, 1984).
However, we refrain from attributing this laminar structure only to neuronal layers because Duvernoy et al. (1981) and
Pfeifer (1940) showed that there are angioarchitectonic layers within the cortex as well.

3.4 MRI Signal Across Cortical Depths

3.4.1 Empirical T," cortical depth profiles

One of the types of anatomical data we acquired are quantitative T," measurements. Such measurements are valuable
because optimization and interpretation of several MRI sequences such as T,"-weighted anatomical or functional
imaging depend on the reported gray matter T," values (Cohen-Adad et al., 2012; Deistung et al., 2013; Markuerkiaga
et al., 2021; Marques et al., 2017). For instance, high-resolution functional imaging studies make use of the T," values
across cortical depths to model unwanted vein effects. Therefore, the unprecedented in vivo quantitative imaging
resolution of our dataset is highly valuable. In addition, optimal T,"-weighting parameters are known to vary across
brain regions, and previously reported gray matter T," values are biased towards the occipital cortex (Peters et al., 2007).
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Figure 6: Comparison of flattened T," and T| measurements in a single subject (sub-04). (A) Measurements
across the cortical surface at the superficial cortical depth. The color associated with each pixel in these images come
from exactly one folded brain voxel (processed at 0.175 mm isotropic resolution). T," effects of the pial vessels can be
seen as dark impressions in the middle image. (B—C), Measurements for two different cross-sections of cortex. Laminar
variations, pial vessel effects (rectangles), and intracortical veins (ellipses) are all visible.

Therefore, we report gray matter T, values across cortical depths for both the visual and auditory cortices to form the
quantitative basis upon which further optimization and interpretation work can be built.

We plotted single-subject T»" measurements across cortical depths for the calcarine sulci and Heschl’s gyri in both
hemispheres in Figure It can be seen that there is a dip in T, values at the middle depth of the gray matter in the
calcarine sulci, while a similar dip is not visible for Heschl’s gyri. This observation follows what is visible to the naked
eye in Figure , namely there is a layer of low T," values within the calcarine sulcus (Barbier et al., 2002; Budde et al.,
2011; Duyn et al., 2007; Federau & Gallichan, 2016; Fukunaga et al., 2010; Kemper et al., 2018; Zwanenburg et al.,
2011). This observation holds for every subject and is qualitatively consistent across the left and right hemispheres of
each subject. It can be said that average T," is biologically perturbed across cortical depths.

Looking at the group results in Figure 8| l we observe that T," variance increases towards the superficial depths in every
subject. This could be due to the increased partial voluming with both pial vessels (which causes low T,") and CSF
(which causes high T, ") that lie above gray matter, and indicates T," is not only neurobiologically biased across depth
but also heteroskedastic. Thus, when modelling cortical MRI signals (Havlicek & Uludag, 2020; Markuerkiaga et al.,
2021; Uludag et al., 2009), care must be taken not only to account for varying T," but also accounting for the varying
amounts of T," variance across cortical depths. In contrast, when considering the white-matter voxels below the gray
matter, variance appears to be similar to the deep gray-matter voxels. Overall, we observe slightly reduced T," values in
white matter compared to gray matter, which could be attributed to the increased myelin content in white matter as well
as increased iron content in U-fibers (Kirilina et al., 2020).
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Figure 7: 2D histograms of T," as a function of cortical depth for a single subject (sub-04). The vertical lines
show gray matter borders: blue for the inner gray-matter border and orange for the outer gray-matter border (see Figure
-E). Horizontal white lines show the average T, for different tissue sections: below gray matter, gray matter, and
above gray matter. Note the topmost bins within the above gray-matter section showing very high T," voxels that
are out of range. See figure supplements showing each individual at https://osf.io/n5bj7 under Supplementary
Figures folder.

3.4.2 Empirical T; cortical depth profiles

We also acquired quantitative T values using the MP2RAGE sequence (Marques et al., 2010). T|-weighted images are
often used for segmentation of brain tissue. T, contrast is also known to be related to myelination and therefore used for
delineating areal borders (Cohen-Adad et al., 2012; Deistung et al., 2013; Dick et al., 2012; Haast et al., 2016; Marques
et al., 2017). While there have been efforts to acquire mesoscopic resolution T; and T;-weighted images in the past
(Federau & Gallichan, 2016; Liisebrink et al., 2021; Liisebrink et al., 2017), there has not yet been a quantitative T,
dataset together with T,” at mesoscopic resolution in the living human brain.

We plot single-subject T; measurements across cortical depths for the calcarine sulci and Heschl’s gyri in both
hemispheres in Figure[9] We observe a dip of T; values in middle of the cortical thickness in the calcarine sulci, but a
similar dip is not visible for Heschl’s gyri. This T dip is harder to identify in individual brain images compared to the
dip in T,". Looking at the variance of T across cortical depths in group results (Figure 10), we find that variance does
not increase as drastically as in T, profiles. This suggests that T| is less sensitive to laminar architecture than T,".
Looking at the above gray-matter voxels, it can be seen that the variance increases, but less than in the T," profiles.
This is because vessels show on average similar T; to gray matter, while CSF has a higher T; (Zhang et al., 2013).

A comparison between T; and T," images leads to interesting observations (e.g. Figure -E). CSEF, arteries, and veins
can be considered as the three main tissue types that lie above gray matter. When looking at the T, images, vessels can
be seen as regions with low T," while CSF has very high T,". In Figure -E, looking at the low T," voxels in T}
images reveal that large (> 1 mm diameter) arteries and veins seem to have very different T| values. This difference
might be due to the higher velocity of the blood in the arteries compared to veins affecting proper inversion of the
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Figure 8: Line plots of T," as a function of cortical depth for all five subjects. Format similar to Figure (7, White
lines show the median T," calculated for successive bins of cortical depth. Red lines show the 5" & 95" percentiles
observed for these bins.

arterial signal during MP2RAGE acquisition. However, aside from the arteries, it can be seen that most of the low T,"
voxels above gray matter are not visible in MP2RAGE T, images. This observation is interesting because it shows
that T," contrast, which is sensitive to macromolecular content and iron, is highly advantageous for localizing veins
compared to T contrast, which is mostly sensitive to the macromolecular content.

4 Discussion

In this study, we have demonstrated acquisition and analysis of high-quality mesoscopic anatomical data from five
living human brains. Our primary results include the following: (i) We obtain images of the living human brain at 0.35
x 0.35 x 0.35 mm? resolution. Our images measure both empirical T," and T, values while covering 1/3 of the brain
including the visual and auditory cortices. (ii) In the process of acquiring these data, we reveal a blood motion artifact
and develop a simple and effective mitigation method. (iii) To retain fine details in our images, we develop image
analysis tools suited for the mesoscopic scale that quantify cortical thickness, cortical curvature, geodesic distances, and
are able to parameterize the cortical surface as well as flatten chunks of cortex. (iv) With these tools, we demonstrate
mesoscopic cortical substructures of the living human brain such as layers and intracortical vessels, and these are
discernible without any statistical analysis. (v) To facilitate future progress in the study of neurobiological structures,
we freely share this unique dataset and the associated tools.

4.1 Mesoscopic Image Analysis Tools

A major contribution of the present work is the development of mesoscopic image analysis tools. We performed this
work because conventional cortical surface analysis tools are inadequate and inconvenient for retaining fine-scale
mesoscopic details in our images. Conventional cortical surface processing leverages the triangular mesh data structure
(Botsch et al., 2010), which is efficient for representing the cortex as a 2D manifold embedded in 3D. However, this
data structure is not optimal for retaining and representing fine-scale image details as it involves resampling the original
data defined on a regular grid of voxels onto irregular grid vertices. While creating higher resolution meshes is one
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Figure 9: 2D histograms of T; as a function of cortical depth for a single subject (sub-04). The vertical lines show
the gray-matter borders: blue for the inner gray-matter border and orange for the outer gray-matter border (see Figure
BD-E). Horizontal white lines show the median T, for different tissues: below gray matter, gray matter, and above gray
matter. See figure supplements showing each individual at https://osf.io/n5bj7 under Supplementary Figures
folder.

potential strategy (Kay et al., 2019), this quickly becomes computationally cuambersome. Similar arguments against the
triangular meshes are also made by Kemper et al. (2018).

In addition to these issues, the triangular meshes is not well designed for representing the thickness of the cortical
surface: the cortical surface is not a 2D sheet but actually a 3D sheet containing varying levels of thickness. We
wholesale replace the triangular meshes and associated surface-based analysis algorithms by developing a delayed
surface mapping method. That is, we estimate a full continuous mapping between the original brain space (XYZ) and
the cortical surface space (UVD) without explicitly committing to a specific mesh representation of the surface. This
allows us to create representations and visualizations that refer to the original brain space, thereby allowing the user
to avoid or at least delay interpolation until the end. In addition, we can conveniently use the mapping to create flat
representations at arbitrarily high resolution, allowing us to not only browse them using standard volume visualization
software (e.g. ITK-SNAP, FSLeyes, Brainvoyager), but also to explore the cortical landscape using novel animations
(https://osf.io/nbbj7 under Supplementary Figures folder) that leverage the unconnected nature of the rendered
elements (point clouds) rather than being constrained by the connected nature of the triangular mesh data structure
(Botsch et al., 2010). This adds a whole new toolkit of point-cloud-based volumetric rendering techniques (Berger et al.,
2017) to the arsenal of flat cortex visualization techniques. We have implemented our geometric approach within the
LayNii software suite (Huber et al., 2021) and have made them publicly available (see Section[5). Our mesoscopic
tools can, in principle, be used for any type of voxel-based 3D images, including high resolution fMRI, histology, and
lightsheet microscopy images (Amunts et al., 2013; Berman et al., 2021; Hildebrand et al., 2019; Huber et al., 2020).
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Figure 10: Line plots of T; as a function of cortical depth for all five subjects. Format similar to Figure[9] White
lines show the median T, calculated for successive bins of cortical depth. Blue lines show 5" & 95™ percentiles
observed for these bins.

4.2 Mesoscopic Properties Observed in Visual and Auditory Cortices

Our mesoscopic images reveal clear cortical substructures. Two main types of cortical substructures are visible: layers
and vessels. With regards to the cortical layers, there appears to be a substantial difference between the visual and
auditory cortices. In the visual cortex, a distinct layer around the middle gray-matter depth is clearly visible as has been
previously shown with in vivo MRI at mesoscopic resolutions (Barbier et al., 2002; Budde et al., 2011; Duyn et al.,
2007; Federau & Gallichan, 2016; Fukunaga et al., 2010; Kemper et al., 2018; Liisebrink et al., 2021; Zwanenburg
et al., 2011). This structure is likely the stria of Gennari (Fulton, 1937; Gennari, 1782; Glickstein & Rizzolatti, 1984).
On the other hand, in our auditory cortex images, a equally distinct layering was not immediately visible, consistent
with post-mortem imaging studies (Wallace et al., 2016; Wallace et al., 2002) and previous sub-millimeter attempts to
identify layers within the auditory cortex (De Martino et al., 2015; Dick et al., 2012; Dick et al., 2017; Wasserthal et al.,
2014). The difference between the visual cortex layers and the auditory cortex layers in T," and T, images highlight
how unique the visual cortex layering is compared to the rest of the cortex. However, as argued within (Wallace et al.,
2016), mesoscopic in vivo imaging may still be insufficient to capture the subtle changes in myeloarchitecture aside
from primary visual cortex where the stria of Gennari is extremely thick.

Our T," images show clear presence of vascular substructures within the cortex. This is interesting because seminal
neuroscience works highlight laminar cytoarchitecture, myeloarchitecture, and fiber architecture (Turner, 2013a, 2013b),
but rarely mention laminar angioarchitecture. It has been shown that the angioarchitecture of the cortex exhibits a
laminar arrangement both across depths and over the cortical surface (Duvernoy et al., 1981; Pfeifer, 1940). Specifically
within Duvernoy’s work, 4 angioarchitectural layers are postulated. When angioarchitecture layer 1 and 2 are combined,
it can be seen that these 4 layers almost equally divide the human cortex. Given that T," contrast has a substantial
contribution from the presence of blood, the laminar patterns we are observing within the visual cortex (see Figure BE)
may also reflect laminar angioarchitecture. Indeed, Pfeifer (1940) showed increased density of blood vessels in middle
cortical layers, which might be the origin of the T," dip we have observed. More broadly, what constitutes the living
brain might be biased by the post-mortem focus within the last century where angioarchitectonic layering within the
cortex is largely ignored due to the draining of blood and degradation of blood vessels during fixation and embedding
processes. We invite others to make use of our mesoscopic dataset to further study cortical angioarchitecture.
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4.3 Challenges That Remain for Mesoscopic Imaging

While we believe we have made substantial progress for mesoscopic MRI, there are several remaining challenges. The
most obvious challenge of in vivo mesoscopic MRI is head motion (Jezzard & Clare, 1999; Zaitsev et al., 2015). In our
study, all participants were highly experienced for being scanned and were able to keep their heads relatively still within
the data acquisition periods. In addition, we used 3D acquisition sequences rather than 2D sequences; in 3D sequences,
within-run head motion is more forgiving. Another advantage of 3D sequences is that they generally enable higher
resolution and SNR (Poser et al., 2010; Stirnberg et al., 2017). As a result of using 3D acquisitions and experienced
participants, we achieved highly detailed images of cortical substructures, even those as small as intracortical vessels.
This result shows that mesoscopic MRI is practical when head motion is minimized and when using 3D acquisition
sequences with sufficient SNR. However, for general application, it would be critical to use systems to minimize head
motion for less experienced participants, such as prospective motion correction (Liisebrink et al., 2021; Liisebrink et al.,
2017; Maclaren et al., 2012; Zaitsev et al., 2017), 3D printed head casts (Power et al., 2019), and field monitoring
(Barmet et al., 2008). We think that more advanced head motion minimization methods have potential to yield crisper
mesoscopic images and broaden the application of mesoscopic MRI to a larger audience.

Even in an ideal case of no head motion, in vivo MRI presents a unique challenge, namely, effects due to the motion
of blood. Especially within large arteries, blood reaches very high speeds (Rahman Rasyada & Azhim, 2018). Such
moving blood is known to cause imaging artifacts (Larson et al., 1990; Wehrli, 1990), especially when the time between
the phase-encoding and readout (frequency encoding) stages of the MRI signal acquisition gets longer. An obvious
case where blood motion artifacts are visible is multi-echo acquisition, where each phase-encoded line of k-space is
measured using several successive readouts to acquire multiple echos. Our MEGRE images have captured this artifact
in unprecedented detail (Figure 2). Importantly, this artifact is not specific to our anatomical multi-echo acquisition.
Any MRI sequence that has long (> 4 ms) time difference between the phase-encoding and readout stages is bound to
have this artifact, given that the arterial signal is not effectively nulled. Especially in echo planar imaging (EPI) readouts
(Bernstein et al., 2004) commonly used for fMRI, where the image is acquired within very long readout durations
(e.g. > 30 ms), this blood motion artifact will strongly exhibit itself. Fortunately, the blood motion artifact is limited to
regions near large arteries (> 1 mm diameter). However, studies that rely on accurate and precise quantification of the
brain tissue (e.g. see literature within Mancini et al., 2020), such as multi-parametric mapping and in vivo histology
(Edwards et al., 2018) should be aware of this artifact. In addition, studies that rely on weighted contrasts, such as
T, -weighted, should be cautious of this artifact because the arterial signal can be smeared towards the gray matter,
causing artifactually hyperintense regions. Moreover, the artifact may corrupt contrast locally by introducing dark
regions in the actual position of an artery as its signal is displaced away from its trunk. This can cause arteries to appear
similar to the venous signal in T,"-weighted images. Thus, dark regions in T,"-weighted images - especially near the
pial surface - cannot be conclusively labelled as veins, as has been suggested (Kay et al., 2019; Moerel et al., 2018;
Olman et al., 2007).

In our study, we used conservative amounts of image acquisition acceleration (see Table 1). This resulted in somewhat
lengthy but still feasible anatomical acquisition durations (10-14 min). The choice of minimal acceleration was
deliberate in order to minimize artifacts, maximize SNR, and thereby establish a benchmark dataset. However, a
persistent challenge for mesoscopic imaging is long data acquisition times. Faster acquisitions are especially needed for
clinical populations. From a methods development perspective, our fully sampled high-resolution multi-echo dataset
might be useful for efforts in which a dataset is subsampled and methods are developed to optimally recover the full
dataset from limited data, such as parallel imaging or model based reconstructions (Ye, 2019).

4.4 Future Neuroscience Applications for Mesoscopic MRI

Our study suggests exciting possibilities for mesoscopic imaging. From a clinical perspective, mesoscopic in vivo
imaging of human cortical architecture creates the opportunity to develop a novel set of biomarkers for the healthy
development of adult cortical laminar structure and its disruption in neurological and psychiatric disorders (McColgan
et al., 2021). Prime candidate conditions for mesoscopic imaging include well-established but subtle abnormalities in
laminar structure that currently lack clear imaging correlates such as layer-specific neuronal loss in amyotrophic lateral
sclerosis (Braak et al., 2017) and Huntington’s disease (Riib et al., 2016), as well as developmental disruption of cortical
layering in focal cortical dysplasia (Bliimcke et al., 2011). From a cortical parcellation perspective, future analyses
may investigate whether inter-regional variability in laminar structure can be leveraged for parcellating cortical areas
using approaches like those used for cytoarchitectonic data (Gulban et al., 2020; Morosan et al., 2001; Schleicher et al.,
1999; Zachlod et al., 2020). With additional acquisition time, it is clear that mesoscopic coverage of 1/3 of the brain can
be easily increased to include the whole brain by scanning different slabs and stitching them together. From an fMRI
perspective, imaging the angioarchitectonic substructure of the cortex is necessary for building biophysical models of
the fMRI signal (Akbari et al., 2021; Bdez-Y4anez et al., 2020; Cheng et al., 2019; Havlicek & Uludag, 2020; Polimeni
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& Lewis, 2021). The spatial variability of fMRI signals due to mesoscopic angioarchitecture is not well understood.
The effect of intracortical veins has been the focus of fMRI signal modelling so far (Havlicek & Uludag, 2020; Heinzle
et al., 2016; Markuerkiaga et al., 2016; Markuerkiaga et al., 2021; Uludag et al., 2009), although empirical studies
have shown considerable contributions from pial veins (Bause et al., 2020; Olman et al., 2007; Turner, 2002; Winawer
et al., 2010). Further, several sub-millimeter fMRI studies have found heterogenous response profiles across cortical
depths (Chen et al., 2013; Fracasso et al., 2018; Kashyap et al., 2018). Thus, the angioarchitecture information in our
mesoscopic images might help extend classical models of fMRI signals to consider the heterogeneity of the underlying
vasculature and improve the interpretability of laminar BOLD fMRI profiles.

5 Data and Code Availability Statement

Unprocessed data, sequence (MP2RAGE and MEGRE) parameters PDFs, and part of the processed data (due to data
storage constraints) used in this study are available at: https://osf.io/n5bj7/|under Data folder. Geometric
analysis algorithms developed for this study (LN2_MULTILATERATE and LN2_PATCH_LATTEN) implemented
in C++ within LayNii software suite v2.2.0 are available at: https://github.com/layerfMRI/LayNii. Data
processing pipelines used in this study are available at: https://github. com/ofgulban/meso-MRI.
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