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Abstract

Serial section Electron Microscopy can produce high throughput imaging of large biological specimen vol-
umes. The high-resolution images are necessary to reconstruct dense neural wiring diagrams in the brain, so
called connectomes. A high fidelity volume assembly is required to correctly reconstruct neural anatomy and
synaptic connections. It involves seamless 2D stitching of the images within a serial section followed by 3D
alignment of the stitched sections. The high throughput of ssEM necessitates 2D stitching to be done at the
pace of imaging, which currently produces tens of terabytes per day. To achieve this, we present a modular
volume assembly software pipeline ASAP (Assembly Stitching and Alignment Pipeline) that is scalable and
parallelized to work with distributed systems. The pipeline is built on top of the Render [18] services used in
the volume assembly of the brain of adult Drosophila melanogaster [2]. It achieves high throughput by oper-
ating on the meta-data and transformations of each image stored in a database, thus eliminating the need to
render intermediate output. The modularity of ASAP allows for easy adaptation to new algorithms without
significant changes to the workflow. The software pipeline includes a complete set of tools to do stitching,
automated quality control, 3D section alignment, and rendering of the assembled volume to disk. We also
implemented a workflow engine that executes the volume assembly workflow in an automated fashion trig-
gered following the transfer of raw data. ASAP has been successfully utilized for continuous processing of
several large-scale datasets of the mouse visual cortex and human brain samples including one cubic mil-
limeter of mouse visual cortex [1, 25]. The pipeline also has multi-channel processing capabilities and can be
applied to fluorescence and multi-modal datasets like array tomography.

Introduction

Serial section electron microscopy (ssEM) provides the high spatial resolution in the range of a few nanome-
ters per pixel that is necessary to reconstruct the structure of neurons and their connectivity. However, imag-
ing at a high resolution produces a massive amount of image data even for a volume that spans a few millime-
ters. For example, a cubic millimeter of cortical tissue imaged at a resolution of 4 × 4 × 40 nm3, generates more
than a petabyte of data and contains more than 100 million individual image tiles [1]. These millions of images
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are then stitched in 2D for each section and aligned in 3D to assemble a volume that is then used for neuronal
reconstruction. With parallelized high throughput microscopes producing tens of terabytes of data per day, it
is necessary that this volume assembly process is automated and streamlined into a pipeline, so that it does
not become a bottleneck. The ideal pipeline should be capable of processing data at the speed of imaging [30]
and produce a high fidelity assembled volume. To match the speed of the EM imaging, the volume assembly
pipeline needs to be automated to handle millions of images per day from multiple microscopes.

Several tools used in various stages of volume assembly pipelines perform image registration by extract-
ing and matching similar features across overlapping images [6, 28, 8, 3]. Image registration using Fourier
transformation [28] was used to successfully align mouse and zebrafish brain datasets acquired using wager
mapper ssEM imaging technology. The Fiji [9, 10] plugin TrakEM2 [6] includes a comprehensive set of tools
and algorithms to perform stitching and alignment of various types of microscopy image formats. AlignTK
[8] implements scalable deformable 2D stitching and serial section alignment for large serial section datasets
using local cross-correlation. An end-to-end pipeline to perform volume assembly and segmentation using
existing tools were developed by R. Vescovi et al. [11] and was designed to run on varied computational sys-
tems. The pipeline was shown to process smaller datasets through supercomputers efficiently. While these
approaches have been successfully used in the volume assembly of smaller datasets, they do not scale well
for large scale datasets, lack support for different classes of geometric transformations, or do not incorporate
reliable filters for false matches due to imaging artifacts [12].

We propose a volume assembly pipeline - ASAP (Assembly Stitching and Alignment Pipeline) that is
capable of processing peta-scale EM datasets with high fidelity and processing rates that match the speed
of imaging. Our pipeline is based on the volume assembly framework proposed in [2] and is capable of
achieving high throughput by means of meta-data operations on every image in the dataset. The meta-data
and transformations associated with each image are stored in a MongoDB database fronted by Render [18]
services to dynamically render the output at any stage in the pipeline. The effectiveness of the pipeline has
been demonstrated in the volume assembly of multiple peta-scale volumes.

The pipeline described here for assembly of large connectomics volumes is divided into two sections: 1) A
software package that is scalable, modular, and parallelized and is deployable in varied computing environ-
ments to perform volume assembly of EM serial sections; 2) A workflow engine and a volume assembly work-
flow that utilizes these tools to automate the processing of raw EM images from a multi-scope setup using
high performance computing (HPC) systems. The tools in ASAP are open-source and include abstract level
functionalities to execute macro level operations in the pipeline. The modularity of the tools allows for easy
implementation of other algorithms into the pipeline without making major changes to the existing setup.
The software tools can be easily deployed in different computing environments such as HPC systems, cloud
based services, or on a desktop computer in a production level setting. The software stack also includes a set
of quality control tools that can be run in an automated fashion to assess the quality of the stitched montages.
These software tools can be easily utilized by workflow managers running the volume assembly workflow to
achieve high throughput. The tools are designed to generalize well for other datasets from different domains
(that carry the assumption of generating overlapping images) and can be adapted to process such datasets. We
have also developed a workflow manager BlueSky (github.com/AllenInstitute/blue sky workflow engine)
that implements the volume assembly workflow using our software stack. The proposed pipeline combined
with BlueSky has been successfully used to stitch and align several high-resolution mm3 EM volume from the
mouse visual cortex and a human dataset at speeds higher than the imaging rate of these serial sections from
a highly parallelized multi-scope setup.

Results

Development of a stitching and alignment pipeline

The pipeline (ASAP) described in this work is based on the principles described by Kaynig et al. [4], Saalfeld
et al. [5] and Zheng et al. [2], and scales the software infrastructure to stitch and align petascale datasets. It
includes the following stages: 1) Lens distortion computation, 2) 2D Stitching 3) Global section-based non-
linear 3D alignment, 4) Fine 3D alignment and 5) Volume assembly. ASAP performs feature-based stitching
and alignment in which point correspondences between two overlapping images are extracted and a geomet-
ric transformation is computed using these point correspondences to align the images.

Figure 1 shows the volume assembly pipeline (ASAP) for building 3D reconstruction out of serial section
Transmission Electron Microscopy (ssTEM) images. First single images from serial sections from ssTEM are
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Figure 1: ASAP - Volume Assembly Workflow. (a) The different steps of image processing in ASAP for EM
serial sections. The infrastructure permits multiple possible strategies for 3D alignment, including a chunk
based approach in case it is not possible to 3D align the complete dataset at once, as well as using other
workflows [17] (https://www.microns-explorer.org/cortical-mm3) for fine 3D alignment with the global 3D
aligned volume obtained using ASAP. (b, c and d) Representation of different modules in the software in-
frastructure. The green boxes represent software components, the orange boxes represent processes and the
purple processes represent databases. The color of the outline of the box matches its representation in the
image processing steps shown in ”a”. (b) Schematic showing the lens distortion computation. (c) Schematic
describing the process of data transfer and storage along with MIPmaps generation using the data transfer
service Aloha. (d) Schematic illustrating the montaging process of serial sections. The same software infras-
tructure of (d) is then also used for 3D alignment as shown by the red boxes in ”a”.

collected. As the field of view is limited, multiple images that overlap with each other are imaged to cover the
entire section. Images acquired by ssTEMs can include dynamic nonlinear distortions brought about by the
lens system. A compensating 2D Thin Plate Spline transformation is derived using a custom triangular mesh-
based strategy [15] based on point correspondences of overlapping image tiles as in Kaynig et al. [4]. The
point correspondences (also referred as point-matches) are extracted using SIFT [19] and a robust geometric
consistency filter using a local optimization variant of RANSAC [21] and robust regression [5] (see Methods
for more details). These point correspondences, in lens-corrected coordinates, are then used to find a per im-
age affine/polynomial transformation that aligns the images in a section with each other to create a montage.
The affine/polynomial transformations are computed using a custom Python package, BigFeta [7], which im-
plements a direct global sparse matrix solving strategy based on Khairy et al. [12]. The stitched montages are
then globally aligned with each other in 3D. The 3D global alignment is performed by extracting point cor-
respondences between low-resolution version of the 2D stitched sections and solved with BigFeta to obtain
a Thin Plate Spline per section transformation. This 3D alignment is the result of a progressive sequence of
Rotational, Affine, and Thin Plate Spline solves with tuned regularization parameters such that each solution
initializes the next more deformable, yet increasingly regularized transformation. The globally aligned trans-
formations can then be used as an initialization for computing finer and denser alignment transformations
(An example of this is the fine alignment described in [17]), which is computed on a per image basis at a much
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higher resolution. Several iterations of the global 3D alignment are performed to achieve a good initialization
for the fine alignment process. For all the datasets presented in this manuscript, after global alignment the
data was then transferred and fine alignment using SEAMLESS [17]) was applied.

In a continuous processing workflow scenario, the serial sections from multiple ssTEMs are stitched im-
mediately once they are imaged. 3D alignment is performed on chunks of contiguous sections that partially
overlap with their neighboring chunks. These independently 3D aligned chunks can be assembled to a full
volume by aligning them rigidly and interpolating the transformations in the overlapping region (Figure 1).

Software infrastructure supporting stitching and alignment

Our software infrastructure is designed to support EM imaging pipelines such as piTEAM [1] that produce
multiple serial sections from a parallelized scope setup every hour. The infrastructure is designed for process-
ing peta-scale datasets consisting of millions of partially overlapping EM images. The infrastructure consists
of four core components: 1) A modular set of software tools that implements each stage of ASAP (asap-
modules), 2) A service with REST APIs to transfer data from the microscopes to storage hardware (Aloha);
3) REST APIs for creating, accessing and modifying image meta-data (Render) and; 4) A matrix based reg-
istration system (BigFeta). Below we provide a brief description of these components with a more detailed
description in the methods section ASAP modules.

ASAP is implemented as a modular set of tools that includes abstract level functions to execute for each
stage of the volume assembly pipeline. It also includes quality control (QC) tools to assess stitching quality,
to render results to disk at any stage of the pipeline, to obtain optimal parameters for computing point-
correspondences, and to obtain optimal parameters for solving for optimal transformations. asap-modules
is supported by render-python for read/writes to the database and argschema for its input and output data
validation (See Methods section for more details).

Aloha is an image transfer service (Figure 1c) that receives raw images and their meta-data from the
microscopes, stores them in primary data storage and losslessly compresses the original data to reduce the
storage footprint. It includes REST APIs for clients to GET/POST images and their meta-data. It also produces
downsampled representations of the images for faster processing and visualization.

Render [18] provides logic for image transformation, interpolation and rendering. It is backed by a Mon-
goDB document store that contains JSON tile specifications with image meta-data and transformations. Ren-
der’s REST APIs are accessed by asap-modules using render-python to create, access and modify image meta-
data in the database. The REST APIs allow the user to access the current state of any given set of image tiles
during the stitching process. Render also includes a point-match service that handles the storage and retrieval
of point correspondences in a database, since computing point correspondences between millions of pairs of
images is computationally expensive. Another advantage of storing the point correspondences in a database
is that it is agnostic to the algorithm that is used for the computation of these point correspondences. The
point-match service (Fig. 1c and e) handles the data ingestion and retrieval from the database using REST APIs
with both operations being potentially massively distributed.

BigFeta [7] is a matrix-based registration system that estimates the image transformations using the point
correspondences associated with the image. BigFeta includes transformations such as rotations to implement
rigid alignments, and 2D Thin Plate Spline transformations that are useful for 3D image alignments. BigFeta
can also be integrated with distributed solver packages such as PETSc [22] for solving large sparse matrices
involving billions of point correspondences.

We also developed a workflow manager BlueSky as well as an associated volume assembly workflow
to automatically process serial sections as they are continuously ingested during the imaging process. It
utilizes the abstract level functions in asap-modules to create workflows for each stage of the volume assembly
pipeline.

Our alignment pipelines operate only on meta-data (point correspondences and transformations) derived
from image tiles - a feature derived from the Render services, thus allowing efficient processing of peta-scale
datasets and the feasibility of real-time stitching with proper infrastructure. Where possible, the pipeline
works with down-scaled versions of image tiles (MIPmaps) which dramatically increases processing speed
and reduces disk usage as raw data can be moved to a long-term storage for later retrieval.

Beyond the use of this software infrastructure for EM data, which drove the development that we de-
scribe in this manuscript, the pipeline also has multi-channel processing capabilities and can be applied to
fluorescence and multi-modal datasets like array tomography (see Figure 7)
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Figure 2: Data flow diagram. A schematic diagram showing the flow of image data, meta-data, and pro-
cessed data between microscopes. Raw images and meta-data are transferred from microscopes to our data
transfer system (Aloha) and TEM database, respectively. Aloha generates MIPmaps and compresses images
and transfers them to the storage cluster for further processing by ASAP. Meta-data is transferred to BlueSky
through TEM database, which triggers the stitching and alignment process. The meta-data from the stitching
process is saved in the Render services database. The final assembled volume is transferred to the cloud for
further fine alignment and segmentation.

Data Acquisition and initiation of image processing

An important first step in our pipeline is the correction of lens distortion effects on raw images. Lens distor-
tions are calculated from a special set of images with high tile overlap. These calibration montages are collected
at least daily and after any event that might affect the stability of the beam (e.g. filament replacement). This
step is followed by the acquisition of the neuroanatomical dataset, for which a bounding box is drawn around
the ROI in each ultra-thin section. In certain situations, multiple ROIs are required per section. The volume
assembly workflow accepts multiple entries referencing the same placeholder label to support re-imaging. At
the end of each acquisition session, the tiles, tile manifest, and session log are uploaded to the data center
storage cluster and the lens correction and montaging workflows in the volume assembly workflow are trig-
gered. Figure 2 shows the specialized services that facilitate data transfer and tracking from high-throughput
microscopes to shared compute resources.

This infrastructure was used to process multiple petascale datasets, including a 1 mm3 (mouse dataset 1)
of the mouse brain that is publicly available on microns-explorer.com [25]. Over 26,500 sections were imaged
at 4 nm/pixel resolution using 5 microscopes, running in a continuous and automated fashion [1]. Each
montage is composed of ~5,000 tiles of 15 µm × 15 µm with an overlap of 13% in both x and y directions. The
total file size of a single montage is about 80 GB and thus a daily throughput of 3.6 TB per system is produced
in a continuous imaging scenario. Part of the dataset was imaged using a 50 MP camera with an increased
tile size to 5,408 × 5,408 pixels. This resulted in montages with approximately 2,600 tiles at an overlap of 9%
in both x and y directions. The infrastructure was also used to process two other large mouse datasets and a
human dataset. The details about these datasets are shown in Table 1.
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Dataset
# of
sec-
tions

Pixel
resolution
(nm/pixel)

Image size
Tile
overlap

Total size
(PiB)

Total
size
(non-
overlap)
(PiB)

ROI size (in mi-
crons)

Mouse
dataset 1

19945 3.95-4

3840 × 3840
(20MP camera),
5408 × 5408
(50MP camera)

13%, 9% 1.6 1.2 1300× 870

Mouse
dataset 2

17593
4.67-5
(4.78
mean)

5376× 5376
9-10%,
9.4%
mean

0.984 0.807 1191× 815

Mouse
dataset 3

17310
3.8-4.15
(3.91
mean)

5376× 5376
9-10%,
9.1%
mean

0.665 0.549 647× 672

Human 9673
4.65-4.95
(4.78
mean)

5376× 5376
9-10%,
9.5%
mean

1.18 0.968 2315× 987

Table 1: Details of datasets processed using ASAP - Volume assembly pipeline

Automated petascale stitching

Besides stitching and aligning large scale datasets, a requirement for the volume assembly pipeline is to
achieve high fidelity at a rate that matches or exceeds the imaging speed, so as to provide rapid feedback on
issues with the raw data encountered during the stitching process. This is achieved in our pipeline using an
automated workflow manager (BlueSky) that executes the volume assembly pipeline to continuously process
serial sections from 5 different autoTEMs [1].

The images from the autoTEMs are transferred to the Aloha service without sending them to storage
servers directly. The Aloha service generates MIPmaps, compresses the raw images and then writes them
to the storage servers. The sections processed by Aloha are then POSTed to the BlueSky workflow man-
ager which initiates the montaging process. During an imaging run each microscope uploads raw data and
meta-data to Aloha using a concurrent upload client. Limitations of the autoTEM acquisition computers
cap the aloha client throughput at 0.8–1.2 Gbps per microscope, which is sufficient for daily imaging with a
50 Megapixel camera as described in Yin et al. [1]. Transferring previously-imaged directories from high-
performance storage servers has shown that an Aloha deployment on multiple machines is capable of sat-
urating a 10 Gbps network uplink. The serial sections are assigned pseudo z indices to account for errors in
meta-data from the scopes such as barcode reading errors that assigns incorrect z indices. The lens correction
workflow is triggered to compute a transformation that can correct lens distortion effects on the raw images.
This transformation is updated in the image meta-data so as to be used in subsequent stages of volume assem-
bly. The montaging workflow in BlueSky triggers the generation of point correspondences and stores them in
the database using the point-match service, followed by calculating the globally optimal affine/polynomial
transformation for each image tile in the montage using the BigFeta solver. The transformations are saved
as meta-data associated with each tile image in the Render services database. The montages go through an
automated quality control (QC) process to ensure a high fidelity stitching (see Section Automated montage
QC), followed by a global 3D alignment of the entire dataset.

ASAP is capable of performing the global 3D alignment in chunks, making it scalable to use in larger
datasets or with fewer computational resources. However all our datasets have been 3D aligned as a single
chunk. The montages are rendered to disk at a scale of 0.01 and point correspondences are computed be-
tween the neighboring sections represented by their downsampled versions. A per section Thin Plate Spline
transformation is computed using 25-49 control points in a rectangular grid. The per-section transformation
is then applied to all the tile images in that section to globally align them in 3D.

Automated montage QC

Quality control is a crucial step at each stage of processing in EM volume assembly to ensure that the outcome
at each stage is of high quality. ASAP-modules include a comprehensive set of tools to perform quality control

6

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 25, 2021. ; https://doi.org/10.1101/2021.11.24.469932doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.24.469932
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 3: 2D Stitching and automated assessment of montage quality. (a) Schematic diagram of the montage
transformation using point correspondences. (b) Montage 2D stitched section from mouse dataset 1 (publicly
available at www.microns-explorer.org [25]). (c) Single acquisition tile from the section in (b). (d and e) Detail
of synapses (arrow heads) from the tile shown in (c). (f) QC plot of a stitched EM serial section with non-
optimal parameters. Each blue square represent a tile image on how they appear aligned in the montage.
The red squares represent tile images that have gaps in stitching with neighboring tile images and are usually
located in regions with resin or film. (g) A zoom in region of the 2D montage in (f) showing the seam (white
arrows) between tiles causing misalignment (red arrowheads) between membranes. (h) A zoomed in region
of the section showing a tile having a gap with its neighbors. (i) QC plot of a stitched EM serial section after
parameter optimization. (j) A zoom in region of the 2D montage in (i) showing no seams in the same region as
in (g). The read arrow heads show the same locations as in (g). (k) A schematic plot representing the number
of point correspondences between every pair of tile images for a section of the human dataset. Each edge
of the squares in the plot represent the existence of point correspondences between tile images centered at
the end points of the edge. The color of the edge represents the number of point correspondences computed
between those tile image pairs.
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of the computed lens correction transformations, the stitched montages, and the 3D aligned volume. These
tools are integrated within the lens correction and montaging workflow in the volume assembly workflow to
automatically compute statistical metrics indicating the stitching quality and also generates maps of montages
showing potential stitching issues (see Figure 3). The stitched montages that pass QC are automatically moved
to the next stage of processing thus enabling faster processing with minimal human intervention but ensuring
a high quality volume assembly.

The quality control maps (Fig. 3f and i) of the montages provide a rapid means to visually inspect and
identify stitching issues associated with the montage without the need to materialize or visualize large scale
serial sections. The QC map reveal the location of gaps and seams between tiles in addition to providing
an accurate thumbnail representation of the stitched section. A seam (Fig. 3g) is defined as a misalignment
between two tiles and is identified by means of the pixel residuals between point correspondences between
the tiles. Misalignments can be eliminated by solving for correct transformations using optimized sets of
parameters. A gap between tile images (Fig. 3h) is usually the result of inaccurate montage transformations
that are caused by lack of point correspondences between tile pairs where the gap appears. Tile pairs that
include features like blood vessel, resin or film region, etc. (see Fig. 3h) lack point correspondences thus
causing a gap between the tiles during stitching. The stitching issues associated with the resin or film region
are ignored, while the gaps in tiles containing blood vessels are solved with optimal parameters to ensure no
misalignments between the tile and its neighbors. The density plot of point correspondences between tiles
within a montage are shown in Fig. 3k and is a quick way to visualize areas with poor point correspondences,
if any.

Sections that failed QC are examined by a human proofreader and moved to the appropriate stage of
re-processing. Sections with insufficient point correspondences are sent to the point-matching stage of the
montage workflow for generation of point correspondences at a higher resolution. Sections with misalign-
ments are sent to the solver stage with new parameters. These parameters were heuristically chosen by means
of a parameter optimization algorithm based on the stitching quality metrics (see Methods section Montage
Parameter Optimization for more details).

Un-optimized parameters can also lead to distorted montages where individual tiles are distorted (see
Figure 4c and d for distorted and un-distorted versions of the same montage). The Median Absolute Deviation
(MAD) (Figure 4a and b) statistic provides a computational assessment of the quality of the montage and aids
in the selection of optimized set of parameters to solve for a montage with high fidelity. The optimal x and y
MAD statistic values were heuristically selected for every dataset.

Performance of the volume assembly pipeline - ASAP

High quality 2D stitching and 3D alignment are necessary for accurate neuro-anatomy reconstruction and
detection of synaptic contacts. The 2D stitching quality is assessed by a residual metric, which computes the
sum of squared distances between point correspondences post stitching (see Fig 5a). A median residual of
less than 5 pixels was achieved for sections from all our datasets (Fig. 5), which is a requirement for successful
3D segmentation ([17]) in addition to having no other stitching issues as described above. A small number
of sections reported high residuals even with the optimized set of solver parameters (Fig. 5). An attempt to
re-montage them with parameters that will reduce the residuals resulted in distorting individual tile images.
Hence, these sections were montaged using a set of parameters that produces a montage with less distorted
tiles and a residual that can be tolerated by the 3D fine alignment process and further segmentation. Overall,
we aim to achieve high fidelity stitching by attempting to keep the residuals within the threshold, while
preserving the image scales in both x and y closer to 1 (Fig. 5) and occasionally allowing montages with
residuals above the threshold.

The global 3D alignment process produces a volume that is “roughly” aligned as the point correspon-
dences are generated from montages materialized at 1% scale. This rough alignment provides a good initial
approximation for fine alignment of the volume and for generating point correspondences at higher resolu-
tions. The quality of global non-linear 3D alignment is measured by computing the angular residuals between
pairs of sections (within a distance of 3 sections in z). The angular residual is computed using the point cor-
respondences between a section and its neighbors. The angular residual is defined as the angle between two
vectors formed by a point coordinate (from first section) and its corresponding point coordinate from a neigh-
boring section. The origin of the two vectors is defined as the centroid of the first sections’ point coordinates.
The median of the angular residuals is reported as a quality metric for the global 3D alignment for our datasets
(see Fig. 6f). The quality metric ensures a high quality global non-linear 3D alignment of the sections in all
three (xy, yz, zx) planes of the volume (see Fig. 6 for global non-linearly 3D aligned slices from mouse dataset
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Figure 4: Median absolute deviation (MAD) statistics for montage distortion detection. (a) Schematic de-
scription of computation of Median Absolute Deviation (MAD) statistics for a montage. (b) A scatter plot
of x and y MAD values for each montage. A good stitched section without distorted tile images falls in the
third quadrant (where point (d) is shown). (c) An example of a distorted montage of a section solved using
un-optimized set of parameters. Row 1 shows the downsampled version of the montaged section, row 2
shows the QC plot of the section showing the distortions, and row 3 shows the x and y absolute deviation
distribution for the un-optimized montage. (d) Section shown in (c) solved with optimized parameters with
row 1 showing the downsampled montage, row 2 showing the QC plot of the section, and row 3 showing the
x and y absolute deviation distribution for the section.

1 and supplemental figures 1, 2, and 3 for slices from other datasets).
Table 2 provides a comparison of both dataset acquisition times and their volume assembly. The acqui-

sition times represent the serial sections imaged using 5 different ssTEMs running in parallel. Each of the
dataset processing times are under the same infrastructure settings, but with several optimizations imple-
mented in ASAP with every dataset. All of our datasets were processed in a time frame that matches or
exceeds the acquisition time, thus achieving high-throughput volume assembly.

Application to other imaging pipelines: Array Tomography

The software infrastructure described in this manuscript can also be applied to fluorescence and multi-modal
datasets such as array tomography (Figure 7). Array tomography presents some unique challenges for image
processing because imaging can be performed in both light and electron microscopy. In addition, multi-
ple channels can be imaged simultaneously and multiple rounds of imaging can be performed on the same
physical sections with light microscopy [26]. To properly integrate all these images, in addition to the image
processing steps of 2D stitching and alignment that apply to EM, the multiple rounds of light microscopy of
the same section must be registered to one another, and the higher resolution EM data must be co-registered
with the light microscopy data. Finally, alignments based on one set of images must be applied to the other
rounds and/or modalities of data. The Render services allow for image processing steps to define new trans-
formations on the image tiles without making copies of the data, including transformations that dramatically
alter the scale of the images, such as when registering between EM and light microscopy data. The Render
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Figure 5: Performance of 2D stitching pipeline. (a) Schematic diagram explaining the computation of resid-
uals between a pair of tile images. Panels b, c, d, and e show the median of tile residuals per section grouped
by their acquisition TEMs (Top) and median residual distribution of x and y scales of the tile images (after
montaging) per section grouped by their acquisition TEMs (Bottom) for all our datasets. (b) Mouse dataset 1.
(c) Mouse dataset 2. (d) Human dataset. (e) Mouse dataset 3.

and point-match services provide a flexible framework for corresponding positions between tiles to be anno-
tated, allowing those correspondences to be used as constraints in calculating the appropriate transformations
at each step of the pipeline. The result is a highly multi-modal representation of the dataset that can be dy-
namically visualized in multiple channels and resolutions, at each step of the process through the integration
of Render services with the Neuroglancer visualization tool (Figure 7).

Discussion

The volume assembly pipeline ASAP was designed to produce a high throughput and high fidelity EM vol-
ume and is scalable, flexible, modular, upgradeable, and easily deployable on a variety of environments
including large scale distributed systems. The pipeline leverages Render service’s capability of processing by
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Figure 6: Global non-linear 3D aligned volume of the mouse dataset 1. a. View of the global non-linear 3D
aligned volume from the xz plane. The figure shows the view of the global non-linear 3D alignment of the
sections with the volume sliced at position marked by the red lines in (e). b. View of the global non-linear
3D aligned volume from the yz plane. Figure shows the view of the volume sliced at position marked by the
red lines in (e). c. Zoomed-in area from (a) showing the quality of global non-linear 3D alignment in the xz
plane. d. Zoomed-in area from (b) showing the quality of global non-linear 3D alignment in the yz plane.
e. Maximum pixel intensity projection of the global non-linear 3D aligned sections in the z-axis showing the
overall alignment of sections within the volume. The red lines represent the slicing location in both xz and yz
plane for the cross section slices shown in (a) and (b). f. A plot showing the distribution of median angular
residuals from serial sections grouped by the dataset.
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Dataset # of sections
Acquisition
time

ASAP process-
ing time

Mouse dataset 1 26,500 6 months 4 months
Mouse dataset 2 17,584 3 months 6 weeks
Human dataset 9,661 2 months 4 weeks
Mouse dataset 3 17,309 3 months 10 days

Table 2: Processing time comparison between acquisition system and ASAP. The acquisition times shown
are based on serial sections imaged using 5 different ssTEMs running in parallel. The stitching time for all
the datasets include the time it took to stitch all the serial sections including semi-automated QC and re-
processing sections that failed QC on the first run and the global 3D alignment. The stitching was done in
a non-continuous fashion which included correctly uploading / re-uploading corrupted, duplicate sections,
etc. Each section was stitched using a single node from the compute cluster. The different processing times
of the different datasets reflect the optimization of the pipeline over time, while still keeping a throughput in
pace with imaging acquisition.

means of meta-data operations and persisting data in databases. This largely facilitates multiple iterations of
processing the data until a desired aligned volume is achieved. The need for rendering intermediate output
is also eliminated at each iteration, since the output can be dynamically rendered by applying the meta-data
associated with the images. This potentially saves computational time and resources in addition to increasing
the throughput. Demonstrating its scalability, ASAP has been used to process several large scale datasets
including a millimeter cube of mouse cortex that is already public in www.microns-explorer.org. Though
ASAP is compatible with several strategies for fine alignment (Figure 1) the one used for all the datasets in
this manuscript was SEAMLESS, which is described in [17].

Several improvements were made to the volume assembly pipeline while processing the datasets to max-
imize the speed and quality of stitching and alignment. One of the main improvements is the addition of a
parameter optimization module that generates optimized sets of parameters for 2D stitching. This parame-
ter optimization was introduced for montage solves in the mouse dataset 2, mouse dataset 3 and the human
dataset. The use of optimization parameters resulted in less distorted montages with residuals within accept-
able threshold values. It also compensated for some deviation in lens distortion correction accuracy, while
reducing the number of iterations of processing.

The statistical metrics such as median absolute deviation (MAD) of the image scales to auto detect de-
formed montages combined with detecting other stitching issues by the QC module facilitates faster pro-
cessing while ensuring that the stitched sections meet the QC criteria. Also, early detection of poor point
correspondences by the QC module drastically reduces the need for reprocessing montages through several
iterations. About 2% of sections undergo this re-computation of point correspondences at a higher scale.
Speed-up is also achieved by automating data transfer and ingestion into our volume assembly workflow
from imaging. This is achieved by means of automatically querying the imaging database for sections that
have been imaged and have passed imaging QC [1]. The meta-data of the QC passed sections are automat-
ically ingested into the volume assembly workflow, which also triggers the stitching process. The imaging
database was not developed during imaging of mouse dataset 1, hence the status of imaging and QC for each
section was maintained in a spreadsheet and manually updated.

ASAP is capable of handling re-imaged serial sections without overwriting the meta-data for its earlier
versions during processing. Also, the system is capable of handling missing sections (in case of serial section
loss during sectioning or aperture burst/damage during imaging) and partial sections (sections that are cut
partially from the volume). The missing sections are treated as ”gaps” in the volume and have minimal
impact on the quality of alignment. Currently, the pipeline has successfully handled a gap of 3 consecutive
sections (and 5 consecutive sections for the human dataset) in the volume. Feature-based computation of
point correspondences is effective in finding features across sections with gaps between them and also robust
to contrast and scale variations between image pairs.

The software stack includes capabilities to interface with different solvers through BigFeta including a
scipy.sparse-based solver and the interfaces provided by PETSc ([22], [23], [24]). This has allowed us to non-
linearly globally 3D align an entire volume on a single workstation as well as on a distributed system. Our
code-base was also improved to allow for re-processing individual sections that are re-imaged and inserting
them in existing global non-linear 3D aligned volume. In addition to file storage, our software tools now
support object stores using an S3 API such as Ceph, Cloudian, and AWS, enabling real-time processing of
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Figure 7: Stitching of multi-channel conjugate array tomography data. a:Top) Experimental steps in con-
jugate array tomography: Serial sections are collected onto glass coverslips, and exposed to multiple rounds
of immuno-fluorescent (IF) staining, imaging and elution, followed by post-staining and imaging under a
FESEM. a:Bottom) Schematic illustrating the substeps of image processing large scale conjugate array tomog-
raphy data. 2D stitching must be performed on each round of IF imaging and EM imaging. Multiple rounds
of IF imaging of the same physical section must be registered together to form a highly multiplexed IF image
of that section. The higher resolution by typically smaller spatial scale FESEM data must then be registered to
the lower resolution but larger spatial scale IF data for each individual 2D section and FESEM montage. Fi-
nally, alignments of the data across sections must be calculated from the IF, or alternatively EM datasets. In all
cases, the transformations of each of these substeps must be composed to form a final coherent multi-modal,
multi-resolution representation of the dataset. b-d) Screenshots of a processed dataset, rendered dynamically
in Neuroglancer through the Render web services b)An overview image of a single section of conjugate ar-
ray tomography data which shows the result of stitching and registering multiple rounds of IF an EM data.
Channels shown are GABA (blue), TdTomato (Red), Synapsin1a (green), PSD95 (yellow), and MBP (purple).
Small white box highlights the region shown in c. c) A zoom in of one area of the section where FESEM data
was acquired, small white box shows the detailed region shown in d. d) A high resolution view of an area of
FESEM data with IF data overlaid on top. One can observe the tight correspondence between the locations of
IF signals and corresponding ultra-structural correlates, such a myelinated axons on MBP, and post-synaptic
densities and PSD95.

large-scale datasets in the cloud as well as on-premises. The entire software stack is designed and developed
using open-source dependencies and licensed under the permissive Allen Institute Software License. Also,
our software stack and its modules are containerized allowing rapid deployment and portability. It also in-
cludes integration tests for each module for seamless development and code coverage. Automated processing
of EM datasets can be accomplished with a custom workflow based on an open-source workflow manager
(BlueSky) that is well suited to incorporate complex workflows with readable, flexibility workflow diagrams
allowing rapid development.

The reconstruction of neural circuits requires high spatial resolution images provided by EM and dras-
tic advances made in the field of EM connectomics ([1, 25, 31]) make it suitable for imaging large scale EM
volumes and produce dense reconstructions. ASAP aligns well with such large scale EM volume production
systems facilitating seamless processing of data through automated data ingestion, 2D stitching, 3D align-
ment, and QC - all chained together as a continuous process. Developing a pipeline that can produce a high
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throughput, high fidelity EM volume at a rate better than imaging was the most challenging problem. In addi-
tion, we invested heavily to develop a set of software tools that is modular, easily adaptable and upgradeable
to new algorithms, computing systems and other domains, and able to run in a production level setting. Our
pipeline was developed with a focus on standardization and was built entirely with open source libraries as
an open source package.

The modularity of ASAP can be leveraged to include GPU based algorithms at various stages of the
pipeline, thus paving the way for further increase in throughput. Processing in parallel with imaging, we
were able to stitch and globally non-linearly 3D align 2 PB of EM images from the 1 mm3 mouse visual cor-
tex at synapse resolution within a period of ~4 months, and other peta-scale datasets with a montaging rate
exceeding the imaging rate. With improvements made to the pipeline, stitching and global non-linear 3D
alignment of a dataset similar in size took just 10 days of processing time for mouse dataset 3. This through-
put makes the volume assembly pipeline suitable for processing exascale datasets that spans larger cortical
areas of the brain across species. Although the pipeline was designed for EM connectomics, it can be easily
adapted to process datasets from any other domain of image sets that share the basic underlying assumptions
in imaging.

Methods

Imaging with Electron Microscopy

Three of the samples processed by the infrastructure described in this manuscript originated from mice. All
procedures were carried out in accordance with Institutional Animal Care and Use Committee approval at
the Allen Institute for Brain Science. All mice were housed in individually ventilated cages, 20–26°C, 30–70%
Relative Humidity, with a 12 h light/dark cycle. Mice(CamK2a-tTA/CamK2-Cre/Ai93, CamKII-tTA/tetO-
GCaMP6s, Slc-Cre/GCaMP6s). Preparation of samples was performed as described earlier ([1]), briefly mice
were transcardially perfused with a fixative mixture of 2.5% para-formaldehyde and 1.25% glutaraldehyde
in buffer. After dissection, slices were cut with a vibratome and post-fixed for 12–48 h. Human surgical
specimen was obtained from local hospital in collaboration with local neurosurgeon. The sample collection
was approved by the Western Institutional Review Board (Protocol # SNI 0405). Patient provided informed
consent and experimental procedures were approved by hospital institute review boards before commencing
the study. A block of tissue approximately 1 × 1 × 1 cm of anteromedial temporal lobe was obtained from a
patient undergoing acute surgical treatment for epilepsy. This sample was excised in the process of accessing
the underlying epileptic focus. Immediately after excision, the sample was placed into a fixative solution of
2.5% paraformaldehyde, 1.25% glutaraldehyde, 2 mM calcium chloride, in 0.08 M sodium cacodylate buffer
for 72 h. Samples were then trimmed and sectioned with a vibratome to 1000 µm thick slices, and placed
back in fixative for ~96 h. After fixation, slices of mouse and human were extensively washed and prepared
for reduced osmium treatment (rOTO) based on the protocol of Hua et al. [27] potassium ferricyanide was
used to reduce Osmium tetroxide and thiocarbohydrazide (TCH) for further intensification of the staining.
Uranyl acetate and Lead aspartate were used to enhance contrast. After resin embedding, ultrathin sections
(40 nm or 45 nm) were manually cut in a Leica UC7 ultra-microtome and a RMC Atumtome. After sectioning,
the samples were loaded into the automated Transmission Electron Microscopes (autoTEM) and we followed
the TEM operation routine (described in [1] and [25]) to bring up the HT voltage and filament current and
then align the beam. Calibration of the autoTEM involved tape and tension calibration for bar-code reading,
measuring beam rotation and camera pixels, and stage alignment. After which, EM imaging was started. The
mouse datasets were obtained from primary visual cortex and higher visual areas, the human dataset was
obtained from the Medial Temporal Gyrus (MTG).

Image Catcher (Aloha) service

Aloha is a core component of our acquisition infrastructure designed to facilitate the transfer and pre-processing
of images intended for the image processing workflow. Aloha is implemented as a scale-out python web ser-
vice using flask/gunicorn. This service is designed to accept image arrays defined by a flat-buffers protocol
and atomically write them in a designated location in losslessly-compressed tiff format. While the array is
in memory, the service also writes progressively downsampled versions of that image (MIPmaps) to another
designated location. By using the uri-handler library [16], aloha can write to various cloud providers and
on-premises object storage systems as well as file system-based storage. The Aloha library includes a set of
client scripts which allow uploading from an existing autoTEM-defined directory as well as utilities to encode
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numpy arrays for the REST API. Aloha web service is configured to interact with the piTEAM’s TEMdb back-
end and tracks the state of transfers in a set of custom fields. In the automated workflow, a process queries
these fields in order to ingest completed montage sets to the volume assembly workflow. Aloha can be easily
replaced with a data transfer module of choice based on the imaging infrastructure and the volume assembly
workflow allowing for modularity.

Render services

The Render services are a core component of the infrastructure. They provide the main logic for image trans-
formation, interpolation and rendering. They also provide a rich API:

• A REST API for creating and manipulating collections of tiles or image “boxes” (also called canvases;
canvases are regions that can span multiple and partial tiles).

• A REST API for accessing image tile, section and stack meta information: For example the number of
tiles, dimensions, ids, camera setup.

• A REST API and core logic for rendering/materializing image tiles/canvases, arbitrary regions that
span a number of (or partial) tiles, or even whole sections. In that capacity, it is used to reflect the current
state of any given tile collection. (This is invaluable to proofreading intermediate stitching results). In
combination with dynamic rendering (i.e. rendering that is not based on materializing image files to
storage), the Render provides light-weight feedback to detect imaging and stitching issues.

The Render services are backed by a MongoDB document store that contains all tile/canvas data including
tile transformations. Both the Render services and the MongoDB document store are supported by ded-
icated hardware. The Render services code base is available and documented here: https://github.com/
saalfeldlab/render

Point-match service

A time-consuming and CPU-intensive process in the volume assembly pipeline is the computation of point
correspondences between image tile pairs since this is the only stage of processing where the image data is
read in memory besides the process of rendering the aligned volume to disk. Persisting this data is therefore
invaluable. Robust rotation and contrast invariant correspondence candidates are generated using SIFT [19].
These candidates are then filtered by their consensus with respect to an optimal geometric transformation, in
our case an affine transformation. We use a local optimization variant of RANSAC [21] followed by robust re-
gression [5]. Local optimization means that, instead of picking the ‘winner’ from a minimal set of candidates
as in classic RANSAC, we iteratively optimize the transformation using all inlier candidates and then update
the inlier set. The ‘winner’ of this procedure (the largest set of inliers) is then further trimmed by iteratively
removing candidates with a residual larger then 3 standard deviations of the residual distribution with re-
spect to the optimal transformation and then re-optimizing the transformation. We use direct least-squares
fits to optimize transformations. The computed point correspondences are stored in a database and can be re-
trieved/modified using the point-match service. The advantage of such a database is that it is agnostic to the
source of point correspondences. Therefore, it can receive input from the point-match generator, regardless
of the method of point-match generation such as SURF, SIFT, phase-correlation, etc.

Render-python API

The other core component of the software stack include render-python, a Python API client and transforma-
tion library that interacts with both asap-modules and the Render services. The render-python components
interact with Render service Java clients that perform computationally expensive operations locally to avoid
taxing Render services running on centralized shared hardware.

render-python is a python-based API client and transformation library that replicates the data models in the
Render services. While Render services utilize the mpicbg Fiji library to implement transformations, render-
python reproduces these using using numpy to enable analysis in a python ecosystem. render-python is
continuously integration tested against Render for compatibility and provides dynamic access to the database
and client scripts provided by Render.

Besides render-python, ASAP interfaces with other tools for solving for transformations and for visual-
izations. A description of these tools are as follows;
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Figure 8: Set of software tools developed to perform peta-scale real-time stitching

BigFeta: The BigFeta package implements a python-based sparse solver implementation of alignment
problems based on the formulation in EMAligner [12]. In addition to optimizations and new transform func-
tionality, BigFeta extends the previous approach to use PETSc (petsc.org) for scalable computation and allows
input and output using render-python objects as well as JSON file, MongoDB document store, and Render
services interaction.

em stitch: em stitch includes tools based on BigFeta and render-python for use as a standalone montage
processing package without connecting to a database or REST API, ideal for online processing utilizing the
same hardware running a microscope. Importantly, em stitch includes a module to derive a mesh-based lens
distortion correction from highly-overlapping calibration acquisitions and pre-generated point correspon-
dences.

vizrelay: vizrelay is a configurable micro-service designed to build links from a Render services instance to
a Neuroglancer-based service and issue redirects to facilitate visualization. This provides a useful mechanism
for setting Neuroglancer defaults, such as the extent of the volume or color channel options when reviewing
alignments.

ASAP modules

The ASAP volume assembly pipeline includes a series of modules developed using Python and the render-
python library that implement work-flow tasks with standardized input and output formatting. The sub-
modules in ASAP include scripts to execute a series of tasks at each stage of the volume assembly pipeline.
Some of the workflow tasks included in ASAP are as follows:

• asap.dataimport: import image (tile) meta-data to the Render services from custom microscope files, gen-
erate MIPmaps and update the meta-data, render downsampled version of the montaged serial section.

• asap.mesh lens correction: include scripts to compute the lens distortion correction transformation.

• asap.pointmatch: generate tile pairs (see Fig. 1d) and point-correspondences for stitching and alignment.

• asap.point match optimization: Find the best possible set of parameters for a given set of tile pairs.

• asap.solver: interface with BigFeta solver for stitching the serial sections.

• asap.em montage qc: generate QC statistics on the stitched sections as explained in Section Automated
petascale stitching.

• asap.rough align: compute per-section transformation for 3D alignment, and scale them to match their
original layered montage collection and generate new meta-data describing the alignment at full reso-
lution.

• asap.register: register an individual section with another section in a chunk. This module is typically
used to align re-imaged sections to an already aligned volume.

• asap.materialize: materialize final volume as well as downsampled versions of sections in a variety of
supported formats.
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ASAP modules are schematized for ease of use with argschema, an extension of the marshmallow python
package which allows marshalling of command-line arguments and input files.

Montage Parameter Optimization

BigFeta implements the optimization described by Khairy et al. [12] such that the regularization parameter
λ can differently constrain distinct terms of a transformation such as the translation, affine, and polynomial
factors on an individual tile basis.

min
x
‖D(Ax− b)‖2

2 + λ‖Bx− d‖2 (1)

Montage quality in ASAP is evaluated by metrics of residuals and rigidity of the output montage (Figure 3,
Figure 4). For tile deformations that are well-defined by an affine transformation, these metrics are most im-
pacted by the translation and affine regularization parameters (λ) used in the BigFeta solver step (equation 1).
As the optimal configuration of these values can be impacted by the accuracy of the initialization as well as
the weight and distribution of point correspondences, it is sometimes necessary to re-evaluate the regular-
ization parameters for different imaging, tissue, or pre-processing conditions. We provide an “optimization”
module, asap.solver.montage optimization, which leverages the fast solving capabilities of BigFeta to sweep
across a range of regularization parameters and provide an acceptable set of parameters given targets for
correspondence residual in pixels and tile scale MAD value.

3D Realignment

A common use case after 3D global alignment involves re-aligning a subset of the dataset while maintain-
ing the global alignment reached for the rest of the volume. The asap.solver.realign zs module implements
this operation by increasing the λ parameters in equation 1 for neighboring sections while allowing custom
inputs for the sections that need to be realigned. As such, it is possible to integrate re-montaged sections, re-
computed point correspondences, or more deformable transformations into an existing 3D alignment without
requiring changes on the global scale. For all the datasets presented in this manuscript, after global alignment
the data was then transferred for fine alignment using SEAMLESS [17]). The fine alignment was performed
by the team of Sebastian Seung in Princeton or ZettaAI.

Chunk Fusion

The asap.fusion package provides modules to support chunk-based 3D alignment workflows. The 3D aligned
chunks can then be fused together. asap.fusion.register adjacent stack provides utilities to register overlap-
ping 3D aligned chunks using translation, rigid, similarity, or affine transformations. Then, given a JSON-
defined tree describing the layout and relative transformation between chunks, asap.fusion.fuse stacks will
assemble meta-data representing a combined volume using Render’s “InterpolatedTransform” to interpolate
between independently optimized transformations in the overlap region of two chunks.

BlueSky workflow engine for automated processing

The automated workflow engine called BlueSky was developed in Django backed by a PostgreSQL database
with stable backups, graceful restarts, and easy migrations. It provides a web based user interface for the user
to visualize, run, edit running jobs at various stages in the workflow. BlueSky uses Celery and RabbitMQ
to run workflow tasks in diverse computing environments, from local execution on a workstation to remote
execution using a compute cluster (PBS, MOAB, SLURM). BlueSky is flexible in terms of designing complex
workflows as the workflow diagrams (see supplementary Figs. 4 and 5) can be specified in readable formats
such as YAML, JSON or Django allowing rapid development. BlueSky can be used for many different pur-
poses, but for the image processing task related to this manuscript the workflow includes the following steps:
(1) ingest montage sets, (2) generate MIPmaps, (3) apply MIPmaps, (4) wait for the assigned lens correction
transform, (5) apply the lens correction transform, (6) extract tile pairs for determining point correspondences,
(7) generate 2D montage point correspondences, (8) run the 2D montage solver, (9) automatically check for
defects, (10) place potential defects in a manual QC queue and (11) generate downsampled montage. BlueSky
is publicly available at GitHub (https://github.com/AllenInstitute/blue sky workflow engine). The volume
assembly workflow is designed to use BlueSky workflow engine for processing our datasets. The custom EM
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volume assembly workflow (https://github.com/AllenInstitute/em imaging workflow) facilitates continu-
ous processing of the datasets at speeds that match or exceed data acquisition rates (see supplementary Figs. 6
and 7).

Acknowledgements

We thank our project manager Shelby Suckow for her exceptional work on keeping us aligned and on time.
We thank Allan Jones and Gerry Rubin for starting the conversation that lead to this collaboration and for their
support and leadership. We also thank Hongkui Zeng and Christof Koch for their support and leadership.
We thank D. Brittain, M. Scott and J. Borseth for their help collecting and imaging the EM datasets. We thank
Sebastian Seung, Thomas Macrina, Nico Kemnitz, Manuel Castro, Dodam Ih, and Sergiy Popovych in Prince-
ton University and ZettaAI for discussions and feedback on image processing strategies and improvements.
We thank Brian Youngstrom, Stuart Kendrick and the Allen Institute IT team for support with infrastructure,
data management and data transfer. We thank Jay Borseth, DeepZoom LLC for his contributions to em stitch.
We thank Andreas Tolias, Jacob Reimer and their teams at the Baylor College of Medicine for providing mice
used for electron microscopy. We also thank Saskia de Vries, Jerome Lecoq, Jack Waters and their teams at
the Allen Institute for providing mice used for electron microscopy. This work was supported by the Intelli-
gence Advanced Research Projects Activity (IARPA) of the Department of Interior/Interior Business Center
(DoI/IBC) through contract number D16PC00004; and by Allen Institute for Brain Science. The views and
conclusions contained herein are those of the authors and should not be interpreted as representing the offi-
cial policies or endorsements, either expressed or implied, of the funding sources including IARPA, DoI/IBC,
or the U.S. Government. The authors wish to thank the Allen Institute founder, Paul G. Allen, for his vision,
encouragement, and support.

Conflict of Interest

There is no conflict of interest to declare.

Author Contributions

N.M.C. and R. C. Reid conceptualized the project and funding acquisition. G.M., R.T. validated and optimized
the pipeline software (asap-modules) and executed the stitched and aligning of the datasets. D.K. developed
EM aligner. T. F. developed BlueSky workflow manager and the volume assembly workflow. Saalfeld, S.
and E.T.T are primary developers of the Render services. K.K. is the primary developer of the MATLAB
version of EM aligner. R.T. developed Aloha with help of S.K., K. K. conceptualized the stitching pipeline
using Render services. E. P. developed multi-channel support for asap-modules and vizrelay. G.M., R. T, F.
C., Seshamani, S. and E.P. developed the software packages (asap-modules, render-python) and maintained
the infrastructure and continuous integration testing used by the Render backed pipeline. J.B., D.B, N.M.C,
M.T and W.Y. contributed to the generation of mouse EM data. J.B., D.B, N.M.C, E.L., J.N., M.T and W.Y.
contributed to the generation of human EM data. Seshamani, S. and F.C. generated Array tomography data.
G.M., R.T. and N.M.C. wrote the manuscript with contributions from other authors.

18

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 25, 2021. ; https://doi.org/10.1101/2021.11.24.469932doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.24.469932
http://creativecommons.org/licenses/by-nc-nd/4.0/


References

[1] Yin W, Brittain D, Borseth J, Scott ME, Williams D, Perkins J, Own CS, Murfitt M, Torres RM, Kapner D,
Mahalingam G, Bleckert A, Castelli D, Reid D, Lee WA, Graham BJ, Takeno M, Bumbarger DJ, Farrell C,
Reid RC, da Costa NM. A petascale automated imaging pipeline for mapping neuronal circuits with high-
throughput transmission electron microscopy. Nat Commun. 2020 Oct 2;11(1):4949. doi: 10.1038/s41467-
020-18659-3. PMID: 33009388; PMCID: PMC7532165.

[2] Z. Zheng, J. S. Lauritzen*, E. Perlman, C. G. Robinson, M. Nichols, D. Milkie, O. Torrens, J. Price, C. B.
Fisher, N. Sharifi, S. A. Calle-Schuler, L. Kmecova, I. J. Ali, B. Karsh, E. T. Trautman, J. A. Bogovic, P.
Hanslovsky, G. S. X. E. Jefferis, M. Kazhdan, K. Khairy, S. Saalfeld, R. D. Fetter, D. D. Bock, A complete
electron microscopy volume of the brain of adult Drosophila melanogaster, Cell. Published online July 19, 2018.
doi: 10.1016/j.cell.2018.06.019

[3] B. Karsh, Aligner for large scale serial section image data, https://github.com/billkarsh/Alignment Projects,
2016.

[4] Kaynig, V., Fischer, B., Müller, E., Buhmann, J. M., Fully Automatic Stitching and Distortion Correction of
Transmission Electron Microscope Images , Journal of Structural Biology, 171(2), August 2010, 163-173
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