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Abstract:  Human gut microbial dynamics are highly individualized, making it challenging to 32 

link microbiota to health and to design universal microbiome therapies. This individuality is 33 

typically attributed to variation in diets, environments, and medications, but it could also emerge 34 

from fundamental ecological forces that shape primate microbiota more generally. Here we 35 

leverage extensive gut microbiome time series from wild baboons—hosts who experience little 36 

interindividual dietary and environmental heterogeneity—to test whether gut microbial dynamics 37 

are synchronized across hosts or largely idiosyncratic. Despite their shared lifestyles, we find 38 

strong evidence for idiosyncrasy. Over time, samples from the same baboon were much more 39 

similar than samples from different baboons, and host-specific factors collectively explained 40 

30% of the deviance in microbiome dynamics, compared to just 3% for factors shared across 41 

hosts. Hence, individualization may be common to mammalian gut microbiota, and designing 42 

universal microbiome interventions may face challenges beyond heterogeneity in human 43 

lifestyles.  44 

 45 

Introduction 46 

Mammalian gut microbiomes are highly complex, dynamic ecosystems. From these 47 

dynamics emerge a set of life-sustaining services for hosts, which help them digest food, process 48 

toxins, and resist invading pathogens. Despite their importance, our understanding of gut 49 

microbial dynamics, especially the collective dynamics of microbial communities from hosts 50 

living in the same population, is remarkably poor (1). This gap exists in part because we lack 51 

time series data that track gut microbiota longitudinally across many hosts in the same 52 

population. As a result, we cannot answer key questions. For example, when host populations 53 

encounter shifting environments and resources, does each host’s microbiota respond similarly—54 

i.e., in synchrony—or idiosyncratically to these changes? Further, are microbial dynamics 55 

especially similar when hosts live in the same social unit or have shared traits, such as age, sex or 56 

social status?  57 

Answering these questions is important because synchronized host microbiomes could 58 

help explain shared microbiome-associated traits in host populations, such as patterns of disease 59 

susceptibility (2, 3). A high degree of microbiome synchrony could also be good news for 60 

researchers working to predict microbiome dynamics because it would suggest that similar 61 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 24, 2021. ; https://doi.org/10.1101/2021.11.24.469913doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.24.469913
http://creativecommons.org/licenses/by-nc-nd/4.0/


 Submitted Manuscript: Confidential 

3 
 

ecological principles govern microbiome dynamics across hosts (4). There is also theoretical 62 

justification to expect some degree of synchrony, as host populations and their microbiomes can 63 

be considered a ‘microbiome metacommunity’ (see e.g., 5, 6-8). Metacommunity theory predicts 64 

that synchrony will arise across microbiomes if hosts experience similar environmental 65 

conditions and/or high rates of microbial dispersal between each host’s microbiome (9, 10). 66 

However, even in the presence of synchronizing forces like shared environments and 67 

high rates of microbial dispersal, there are many reasons why hosts in a microbiome 68 

metacommunity could exhibit idiosyncratic (i.e., individualized) microbiome compositions and 69 

dynamics. Idiosyncratic dynamics are expected when the same microbes in different hosts 70 

respond in different ways to environmental fluctuations, chance events, and/or interactions with 71 

other microbes (11-14). These forces are likely to be important in the gut microbiome where 72 

priority effects, functional redundancy, and horizontal gene flow can cause the same microbial 73 

taxon to perform different functions, play different ecological roles, and exhibit different 74 

environmental responses in different hosts (15, 16). Furthermore, in humans, gut microbiome 75 

dynamics are often described as “personalized” (17, 18). However, personalized dynamics in 76 

humans are nearly always attributed to large interpersonal differences in diet, medications, and 77 

lifestyles (19-22), and not to fundamentally different microbiome responses to the environment 78 

itself (19). If personalized dynamics persist in a different primate species, even in the presence of 79 

shared environments, this pattern would suggest that: (i) host-specific dynamics are a common 80 

feature of primate gut microbial communities (i.e., are not unique to humans and are not solely 81 

attributable to large interpersonal differences in human lifestyles); (ii) predicting gut microbial 82 

dynamics in individual hosts may prove difficult; and (iii) microbiome interventions to improve 83 

human health may face challenges beyond heterogeneity in human lifestyles, and instead may be 84 

related to the fundamental ecological principles that govern the gut microbiome.  85 

 86 

Data and methods 87 

Here we test the degree to which gut microbiome compositions and dynamics in a host 88 

population are synchronized versus idiosyncratic using extensive time series data from a 89 

population of wild baboons in the Amboseli ecosystem in Kenya (23). Baboons are terrestrial 90 

primates that live in stable social groups, typically with 20 to 130 members. The 600 baboons in 91 
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our data set lived in 12 social groups over a 14-year span (April 2000 to September 2013; 5 92 

original groups and 7 groups that were fission/fusion products from these original groups; Fig. 93 

1A). The baboons were members of the well-studied Amboseli baboon population (23), which 94 

has been studied by the Amboseli Baboon Research Project since 1971. This project collected 95 

detailed longitudinal data on the weather the animals experienced; their social group 96 

memberships, ranging patterns and diets; and host traits such as age, sex, social relationships, 97 

and dominance ranks (see Supplementary Materials).  98 

Importantly, like many natural host populations, the Amboseli baboons experience shared 99 

diets, environments, and opportunities for between-host microbial dispersal that could drive 100 

microbiome synchrony across hosts. Because baboons are not territorial, all 12 baboon social 101 

groups used an overlapping ~60 km2 range (Fig. 1B; video S1; (24)). Hence all animals were 102 

exposed to similar microbes from the environment and shared seasonal changes in rainfall and 103 

temperature (24-26). The Amboseli ecosystem is a semi-arid savanna where very little rain falls 104 

from June to October, with highly variable rainfall between November and May (Fig. 1C; mean 105 

annual rainfall between 2000 and 2013 was 319 mm; range = 140 mm to 559 mm). These 106 

seasonal shifts in climate drive a rotating set of foods consumed by the baboons: during the dry 107 

season the baboons rely largely on grass corms, shifting to growing grass blades and grass seed 108 

heads in the wet season (Fig. 1D). Within baboon social groups, diets and environments are 109 

especially congruent because group members travel together in a coordinated fashion across the 110 

landscape, encountering and consuming resources and feeding on the same seasonally available 111 

foods at the same time (24, 27-31). Group members also groom each other, combing through 112 

each other's fur and placing some items in their mouths, which may contribute to host-to-host 113 

microbial transmission (32). Finally, at the level of individual hosts, host genetic variation has a 114 

consistent, albeit modest, effect on gut microbiome composition in this population (24). Other 115 

host-specific traits, like age, sex, and social status, also lead some individuals to share aspects of 116 

their behavior, immune profiles, and physiology, which could also lead to more congruent 117 

microbiome dynamics.  118 

A key advance in our study is longitudinal sampling of gut microbial composition via 119 

16S rRNA gene sequencing from fecal samples collected from hundreds of known baboons 120 

throughout their lives (Fig. 1A). Such dense, long-term, longitudinal microbiome sampling is 121 

difficult to achieve in many animals, including humans. The 17,265 fecal samples in our study 122 
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were collected from baboons who ranged in age from 7.4 months to 27.7 years, spanning these 123 

animals’ natural lifespans (fig. S1A). Each baboon was sampled a median of 19 times, and 124 124 

baboons were sampled at least 50 times (fig. S1B). On average, these samples spanned 4.3 years 125 

of a baboon’s life (range = 4 days to 13.2 years; fig. S1C), with a median of 35 days between 126 

consecutive samples (fig. S1D).  127 

A large majority of the microbiome samples we use here were published in Grieneisen et 128 

al. (24), but we include 1,031 additional samples that were generated at the same time using the 129 

same methods (they were not included in Grieneisen et al. (24) because we lack pedigree 130 

information for these hosts). Briefly, we generated 896,911,162 sequencing reads (mean = 131 

51,913.6 reads per sample; range = 1021 - 477,241, fig. S1E). We retained microbial amplicon 132 

sequence variants (ASVs) with a minimum of 3 reads per sample that were seen in at least 20% 133 

of the samples, resulting in 341 microbial taxa at the ASV level (mean = 162 ASVs per sample; 134 

range = 19 - 311 ASVs; fig S1F). DNA concentration and ASV diversity were not predicted by 135 

time since sample collection (fig. S1G, S1H). Read counts were centered log-ratio transformed 136 

prior to all subsequent analyses (33, 34).  137 
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 138 

Fig. 1. Baboons in Amboseli experience shared environments at multiple scales. (A) The 139 

microbiome time series consisted of 17,265 16S rRNA gut microbiome profiles. Each point 140 

represents a microbiome sample, plotted by the date it was collected (x-axis). Each row (y-axis) 141 

corresponds to a unique individual host. Samples were collected from 600 wild baboons living in 142 

5 original social groups (indicated by dark colors marked with black dots in the legend) and 7 143 
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groups that fissioned/fused from these original groups (no black dots). (B) All baboon groups 144 

ranged over a shared ~60 km2 area, and the social groups had largely overlapping home ranges. 145 

Ranges are shown as 90% kernel densities over the sampling period specific to each group; 5 146 

original social groups are shown with solid borders, fission and fusion products with dashed 147 

borders. (C) Monthly rainfall amounts (blue bars, in mm) with yellow and green stripes 148 

representing dry and wet seasons, respectively, with the width reflecting the number of months 149 

within the focal year that had at least 1 mm rainfall. (D) Temporal shifts in diet from the years 150 

2000 – 2013, shown as the relative abundance of diet components in the 5 original social groups 151 

over 30-day sliding windows. Colors correspond to the 13 most common food types, while the 152 

grey bars correspond to other or unknown food types. Colored boxes around each panel reflect 153 

each of the 5 original, most extensively sampled social groups (colors as in plots A and B). The 154 

white bars indicate time periods where no diet data were collected.  155 

 156 

To test whether shared environmental conditions and host traits lead to similar gut 157 

microbial compositions and synchronized dynamics across the microbiome metacommunity, we 158 

used three main approaches (see Supplementary Materials for details of all analyses). First, we 159 

characterized patterns of temporal autocorrelation to identify hallmarks of compositional 160 

similarity and synchrony over time. Our expectation was that, if different baboons exhibit similar 161 

gut microbiome compositions and synchronized microbiome dynamics, then samples collected 162 

close in time across the metacommunity should be compositionally similar, and samples 163 

collected from the same host should not be substantially more similar than samples from 164 

different baboons. Alternatively, if hosts or social groups exhibit idiosyncratic compositions and 165 

dynamics, then samples collected close in time from the same baboon, or the same group, should 166 

be much more similar than they are to samples collected from different baboons living in 167 

different groups. These analyses were run in R (v 4.0.2; (35)) using custom-written functions 168 

(code and analyzed data are available on GitHub/OSF; see Data Statement). 169 

Second, to test whether dispersal limitation could explain microbiome idiosyncrasy, we 170 

estimated metacommunity-wide microbial migration probabilities in each season and year using 171 

the Sloan Neutral Community Model for Prokaryotes (36, 37). This model assumes that each 172 

local community, defined as the microbial composition of a single host in a given season-year 173 
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combination, is the outcome of stochastic population dynamics and microbial immigration from 174 

other hosts in the microbiome metacommunity (i.e., other local communities). Briefly, local 175 

communities have a constant size N, and individual microbes within each local community die at 176 

a constant rate. These deaths create vacancies that can be occupied, either by individuals 177 

immigrating from the microbiome metacommunity (with probability m), or by the offspring from 178 

any taxon within the local community (i.e., from reproduction within the same host, with 179 

probability 1-m). Species that are common in the metacommunity have a higher chance of 180 

occupying vacancies than rare species. Without immigration from the microbiome 181 

metacommunity, ecological drift leads each host’s microbial diversity to reduce to a single taxon. 182 

Thus, the migration probability, m, represents the metacommunity-wide probability that any 183 

taxon, randomly lost from a given host/local community, will be replaced by dispersal from the 184 

microbiome metacommunity, as opposed to reproduction within hosts (36, 37). Following Burns 185 

et al. (38), m can be interpreted as a measure of dispersal limitation, such that low migration 186 

probabilities signify high dispersal limitation. We estimated season and hydrological year-187 

specific values for m by defining the microbiome metacommunity as either the hosts’ social 188 

group or the whole host population. We fit neutral models using nonlinear least-squares 189 

regression as implemented in the R package tyRa (39). 190 

Third, to quantify the relative magnitude of idiosyncratic versus synchronized gut 191 

microbiome dynamics for different microbiome features, we used generalized additive models 192 

(GAMs) to capture non-linear, longitudinal changes in 52 gut microbiome features, including 193 

three principal components of microbial community variation, three indices of alpha diversity 194 

(species richness, the exponent of Shannon’s H, and the inverse Simpson index, as computed by 195 

the function reyni from the R package vegan (40)), and the relative abundances of all 12 phyla 196 

and 34 families present in our data set, post filtering. GAMs allowed us to calculate the percent 197 

deviance in each feature’s dynamics attributable to factors that could contribute to synchronized 198 

dynamics at different scales; percent deviance is a measure of goodness-of-fit for nonlinear 199 

models and is analogous to the unadjusted R2 for linear models. We considered three scales: 200 

factors experienced by the whole host population (e.g., rainfall and temperature), those 201 

differentiated by social groups (e.g., group identity, group home range location, and diet), and 202 

those differentiated at the level of individual hosts (e.g., host identity, sex, age, and social 203 

dominance rank; see below for complete model structures). If shared environments and traits 204 
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synchronize gut microbiome dynamics across hosts, these factors should explain substantial 205 

deviance in microbiome dynamics. Alternatively, if microbiome dynamics are idiosyncratic, 206 

population- and group-level factors will not explain considerable deviance and, instead, a large 207 

fraction of the deviance will be attributable to host identity, controlling for shared environments, 208 

behaviors, and traits. To ensure sufficiently dense sampling for identifying host- and group-level 209 

dynamics, all three models were run on a subset of the full data set, consisting of 4,277 16S 210 

rRNA gene sequencing profiles from the 56 best-sampled baboons living in the 5 social groups 211 

sampled the longest (between 2002 and 2010; min=48; median = 72.5; max = 164 samples; fig. 212 

S2). GAMs were fit using the R package mgcv (41-43). 213 

Notably, the GAM approach allows us to identify the percent deviance attributable to 214 

host identity, but does not identify the specific characteristics that account for host identity 215 

effects. Genetic effects are a likely candidate, as previous analyses demonstrate that taxon 216 

abundance and summaries of gut microbiome position are lowly to moderately heritable in this 217 

population (24). To evaluate this possibility, we tested the relationship between the deviance 218 

explained in our GAMs for each microbiome taxon and the heritability of that taxon’s relative 219 

abundance (24). If host effects on microbiome dynamics are in part explained by host genotype, 220 

we predicted that taxon heritability should be positively correlated with deviance explained at the 221 

host level (i.e., model P+G+H), but not at the group or population level (i.e., model P and model 222 

P+G).  223 
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Results and Discussion 224 

Baboon gut microbiota exhibit cyclical shifts in community composition across seasons and 225 

years  226 

We began by visualizing annual and inter-annual fluctuations across the gut microbiome 227 

metacommunity over the 14-year span of the data. Consistent with prior research on primates 228 

(44-46), we found population-wide, cyclical shifts in microbiome composition across seasons 229 

and years (Fig. 2). This wet-dry seasonal cyclicity was primarily observable in the first principal 230 

component (PC1) of a principal component analysis (PCA) of clr-transformed read counts for all 231 

17,265 samples (Fig. 2A, 2B; fig. S3-S5; PC1 explains 16.5% of the variance in microbiome 232 

community composition). PC1 tended to exhibit low values during the dry season, and high 233 

values during the wet season, mirroring monthly rainfall (Fig. 2B; fig. S5). PC1 was also linked 234 

to annual rainfall across years, exhibiting especially low values throughout 2008 and 2009, 235 

which corresponded to the worst continuous drought in the Amboseli ecosystem in 50 years (Fig. 236 

2A, 2B). We also observed small, but statistically significant seasonal differences in PC2 and 237 

PC3 (8.4% and 3.7% of variation in community composition; Fig. 2C; fig. S3-S5) and in 238 

measures of alpha diversity (Fig. 2C; fig. S5, S6), as has been reported in other ecosystems (47).  239 

In terms of individual microbiome taxa, 17% of phyla (2 of 12) and 38% of families (13 240 

of 34) exhibited significant changes in relative abundance between the wet and dry seasons (Fig. 241 

2C; table S1; linear models with a false discovery rate (FDR) threshold = 0.05 for n = 393 242 

models). These changes were significant for the phyla Firmicutes and Tenericutes (Fig. 2C, 2D; 243 

fig. S7), and were especially pronounced for the families Helicobacteraceae, Coriobacteriaceae, 244 

Burkholderaceae, Bacteroidales RF16 group, vadinBE97, Spirochaetaceae, and 245 

Campylobacteraceae (Fig. 2C; fig. S8). 28% of ASVs also exhibited significant changes in 246 

abundance across seasons (97 of 341 ASVs; linear models with FDR threshold = 0.05 for n = 247 

393 models; fig. S9; table S2). The majority of gut microbial taxa at the ASV, family and 248 

phylum level did not exhibit significant changes in abundance across seasons, suggesting that 249 

these taxa play consistent roles in the gut ecosystem throughout the year, including 250 

Kiritimatiellaeota, Elusomicrobia, Ruminococcacaceae, Clostridiaceae 1, and Rikenellaceae 251 

(Fig. 2C; fig. S7, S8; table S1).  252 
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 253 

Fig. 2. Baboons show population-wide, cyclical shifts in microbiome composition across 254 

seasons and years. (A) Changes in microbiome PC1 mirror monthly rainfall across the 14 years 255 

of the data set. The grey points show each sample’s value for PC1 (y-axis) on the date it was 256 

collected. The black line shows the predicted daily trend for PC1 across samples, treating time 257 

(x-axis) as a continuous variable from April 21, 2000 to September 19, 2013. The corresponding 258 

gray ribbon shows the 95% simultaneous confidence interval. Blue bars show monthly rainfall 259 

(right-hand y-axis). Yellow and green bars in the background represent dry and wet seasons, 260 

respectively, with the width reflecting the number of months within the focal year with at least 1 261 

mm rainfall. (B) Changes in microbiome PC1 on an annual scale across the 14 years of the data 262 

set. The box plots show the average distribution of microbiome PC1 in wet (green) and dry 263 

(yellow) seasons. The black line shows the estimated annual trend for PC1 across all 264 

hydrological years, and the blue triangles show total annual rainfall (right-hand y-axis). (C) The 265 
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effect of season varies across 52 features of the microbiome, including six community features 266 

(top panel) and 46 taxonomic features (bottom panel; 12 phyla: light blue vertical bar; 34 267 

families: turquoise vertical bar; for 341 ASVs, see Fig. S12). Each horizontal bar shows the 268 

effect of season from linear mixed models, with each feature as the dependent variable. Asterisks 269 

indicate features that changed significantly between the wet and dry seasons (FDR threshold = 270 

0.05 for n = 393 models). See figs. S7, S8 for feature-specific smooths and fig. S9 and table S2 271 

for results for ASVs. Samples from the same host collected on the same date were averaged prior 272 

to running the linear models. (D) Bar plots showing the relative abundance of all 12 microbial 273 

phyla (above) and 34 families (below) across all samples. Green and yellow bars in the 274 

background represent wet and dry seasons, with the width corresponding to the number of 275 

samples in the focal hydrological year and season.    276 

 277 

Baboons exhibit largely idiosyncratic gut microbiome compositions and dynamics 278 

While the microbiome metacommunity exhibited cyclical, seasonal shifts in 279 

composition, microbiome dynamics across different baboons were not strongly synchronized. 280 

Instead, patterns of temporal autocorrelation indicated that each baboon exhibited largely 281 

individualized gut microbiome compositions and dynamics (Fig. 3). In support, samples 282 

collected from the same baboon within a few days were much more similar to each other than 283 

they were to samples collected from different baboons over the same time span, regardless of 284 

whether those animals lived in the same or a different social group (Fig 3A, 3B; Kruskal-Wallis: 285 

p < 2.2x10-16 for all comparisons). Likewise, a PERMANOVA of Aitchison distances between all 286 

samples revealed that host identity explained 8.6% (p < 0.001) of the variation in community 287 

composition, much larger than sampling day or month (r2 = 2.5% and 1.4%), group membership 288 

(2.2%), or the first three principal components of diet (0.04% to 2.4%; table S3; fig. S10).  289 

Compositional similarity among samples from the same baboon fell steeply for samples 290 

collected a few days to a few months apart (Fig. 3A, 3C). However, similarity rose again slightly 291 

at 12-month intervals, reflecting the seasonal dynamics in Fig. 2. These 12-month peaks in 292 

similarity were visible, even for samples collected more than 5 years apart, indicating that 293 

individual hosts and the population at large return to somewhat similar microbiome community 294 

states on 12-month cycles across years (Fig. 3C). Individualized host compositional signatures 295 
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persisted for several years (Fig. 3A, 3C; fig. S11). Indeed, the 95% confidence intervals on 296 

Aitchison similarity between samples collected from the same vs different hosts rarely 297 

overlapped for samples collected less than two years apart (fig. S11B, S11C).  298 

Individualized gut microbiome dynamics can also be seen by visualizing microbiome 299 

compositional similarity between hosts living in the population at the same time (Fig. 3D; fig. 300 

S12). For instance, especially dense sampling during the 2008-2009 hydrological year meant that 301 

we were able to collect at least one sample, for at least 10 months of the year, from 17 of our 302 

study subjects. When we aligned these time series, we observed no shared pattern of change in 303 

the top three principal components of microbiome composition across time beyond some overall 304 

seasonal patterns in PC1, nor did we see convergence to similar values within any given month 305 

(Fig. 3D). Consequently, the microbiome of each baboon took a different path over the 306 

ordination space over the same 1-year span (fig. S12). We found similar results for another dense 307 

sampling period in the 2007-2008 hydrological year (fig. S13). 308 

Microbiome taxa varied in their contributions to individualized gut microbiome 309 

compositions (Fig. 3E; fig. S14). For example, for the 56 best-sampled hosts (fig. S2), several 310 

phyla and families exhibited substantial variation in host mean (clr-transformed) relative 311 

abundance (i.e., across repeated samples for that host) compared to their mean (clr-transformed) 312 

relative abundance across all hosts. These taxa included members of the phyla Cyanobacteria, 313 

Spirochaetes, Lentisphaerae, and Elusimicrobia, and the families Spirochaetaceae, vadinBE97, 314 

Elusimicrobaceae, and Muribaculaceae (Fig. 3E; fig. S14). These highly variable taxa tended to 315 

exhibit, on average, below-average abundance compared to less variable taxa that tended to 316 

exhibit, on average, above-average abundance, indicating that idiosyncratic dynamics may be 317 

more often linked to uncommon than common taxa (fig. S15). 318 

To test whether individualized gut microbiome compositions and dynamics could be 319 

explained by microbial dispersal limitation between hosts, we used the Sloan Neutral 320 

Community Model for Prokaryotes to estimate metacommunity-wide migration probabilities, m, 321 

for each season and hydrological year (36, 37). As described above, m provides a measure of 322 

dispersal limitation because it represents the probability that “vacancies” in a local community 323 

(i.e. a host’s microbiome) will be replaced by the process of dispersal from the microbiome 324 

metacommunity (i.e. other hosts), as opposed to reproduction within a focal host’s microbial 325 
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community (36, 37). We found little evidence that dispersal limitation contributed to 326 

idiosyncratic compositions and dynamics; the estimated probability that a given ASV lost from a 327 

host’s microbiota would be replaced by an ASV from another host in the population was nearly 328 

40% (the average host population-wide across season and hydrological years m = 0.373; range = 329 

0.332 to 0.416; black points on fig. S16). These migration probabilities are generally lower than 330 

those Sieber et al. (8) found for marine sponges sampled from the same coastal location (range of 331 

m across sponge species: min=0.36; median=0.78; max=0.86) but much higher than for mice and 332 

nematodes, both in natural and laboratory populations (mice: mwild = 0.11 and mlab = 0.18; 333 

nematode: mwild = 0.03 and mlab = 0.01), indicating that dispersal limitation is relatively low for 334 

baboon microbiota in Amboseli. 335 

Interestingly, when we re-defined the microbiome metacommunity to be the host’s social 336 

group, instead of the whole host population, migration probabilities were similar (average m 337 

across groups = 0.355; range = 0.347 to 0.365; colored points on fig. S16). Hence, social group 338 

membership likely does not represent a large barrier to microbial colonization between baboons, 339 

as ASVs are widely shared across all members of the host population. 340 

 341 
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Fig. 3. Baboons exhibit idiosyncratic gut microbiome compositions and dynamics. (A) 342 

Temporal autocorrelation in microbiome Aitchison similarity (y-axis) as a function of the time 343 

between samples, plotted on a daily scale (x-axis), ranging from samples collected on the same 344 

day to samples collected 5 years apart. Small tick marks correspond to months. Brown points 345 

show average Aitchison similarity between samples collected from the same baboon; green 346 

points show similarity between samples from different baboons living in the same social group; 347 

orange points show similarity between samples from different baboons living in different social 348 

groups. The lines represent moving averages (window size = 7 days). (B) Average Aitchison 349 

similarity among samples collected within 10 days of each other. Samples from the same baboon 350 

are significantly more similar than samples collected from different baboons in the same or 351 

different social groups (Kruskal-Wallis; p = 2.22 × 10-16). (C) Temporal autocorrelation in 352 

microbiome Aitchison similarity on monthly scales for samples collected up to 10 years apart. 353 

(D) Microbiome dynamics for 17 baboons for which we had at least one sample from 10 of the 354 

12 months of the 2008-2009 hydrological year (Nov 2008 to Oct 2009). Panels show each 355 

individual’s values for microbiome PC1, PC2, and PC3; each colored line represents a distinct 356 

host. See fig. S13 for similar results during another densely sampled time period. Gaps indicate 357 

that the focal host did not have a sample in a given month. (E) Some taxa have more 358 

idiosyncratic abundances than others. Each horizontal bar shows a given taxon’s minimum and 359 

maximum absolute log fold change in abundance across the 56 best-sampled hosts (hosts are 360 

represented as points within the bars; see fig. S2 for information on the best-sampled hosts). 361 

Absolute fold changes were calculated, for a given taxon in a given host, as the taxon’s average 362 

clr-transformed abundance across all samples from that host, relative to the taxon’s grand mean 363 

in all hosts in the population. Hosts with large absolute fold changes for a given taxon therefore 364 

have abundances of that taxon that are either well above or below-average compared to its 365 

abundance in the host population at large (hosts with points close to zero exhibited taxonomic 366 

abundances typical of the population at large). For many taxa, hosts varied in their absolute log 367 

ratio values, indicating that they also deviated substantially from each other in the abundance of 368 

those taxa. Taxa (y-axis) are ordered (from top to bottom) by their highest absolute log ratio 369 

value across the 56 best-sampled hosts. Blue bars represent microbial phyla; green bars represent 370 

families. See fig. S14 for a longitudinal version of this analysis for the most and least 371 

idiosyncratic phyla and families. 372 
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 373 

Shared environmental conditions are linked to modest synchrony across hosts 374 

To quantify the relative magnitude of idiosyncratic versus synchronized gut microbiome 375 

dynamics across the host population, social groups, and individual hosts, and to test whether 376 

synchrony varies for different microbiome features, we used generalized additive models 377 

(GAMs) to capture the nonlinear, longitudinal changes in 52 microbiome features (3 PCs of 378 

community variation, 3 metrics of alpha diversity, and clr-transformed relative abundances of 12 379 

phyla and 34 families). For each feature, we ran three GAMs to measure the deviance explained 380 

in gut microbiome dynamics by successive sets of parameters, reflecting the nested nature of our 381 

variables (Fig. 4A; x-axis of Fig. 4C; table S4). The population-level model (i.e., model P) 382 

captured factors experienced by the whole host population, including average rainfall and 383 

maximum daily temperature in the 30 days before sample collection and random effect splines to 384 

capture monthly and annual cyclicity in microbiome features (e.g., Fig. 2A and B). The group-385 

level model (i.e., model P+G) included all the predictor variables in model P, and added a 386 

random effect spline for each social group, as well as variables to capture temporal changes in 387 

each group’s diet, home range use, and group size (Fig. 4A, 4C). The host-level model (i.e., 388 

model P+G+H) included all of the predictor variables in model P+G, and added a random effect 389 

spline for each host, and variables for host traits, including sex, age, and social dominance rank 390 

(Fig. 4A, 4C).  391 
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 392 

Fig. 4. Multilevel modeling identifies idiosyncratic dynamics. (A) We fit three hierarchical 393 

GAMs to 52 microbiome features measured in 4,277 samples from the 56 best-sampled baboons 394 

living in the 5 social groups sampled the longest (between 2002 and 2010; min=48; median = 395 

72.5; max = 164 samples; fig. S2). Each model contained successive sets of predictor variables 396 

reflecting population-level factors (pink), group-level factors (green) and host-level factors 397 

(yellow). The factors at each level are listed at the bottom of panel C and defined in table S4). 398 

Panel (B) shows for each microbiome feature (i.e., response variable), the deviance explained by 399 

model P and the successive sets of predictor variables added in model P+G and model P+G+H, 400 

respectively (table S5). Panel (C) shows the loss in deviance explained for model P+G+H as we 401 

successively removed each predictor variable in turn from model P+G+H, keeping the model 402 

otherwise intact (table S6). Losses in deviance are shown in green, and we only provide numeric 403 
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values for losses in deviance > 15%. Gains in deviance are shown in red; we only show numeric 404 

values for gains > 0.1%. 405 

 406 

Consistent with our autocorrelation analyses (Fig. 3), comparing the deviance explained 407 

for each microbiome feature across the three models revealed primarily idiosyncratic dynamics 408 

for most microbiome features (Fig. 4B, 4C). Specifically, model P only explained on average 409 

3.3% (range = 0.46% to 14.0%) of the deviance across all 52 microbiome features (pink bars in 410 

Fig 4B; table S5), compared to 8.1% on average for adding group-level factors to the 411 

population-level model (increase from model P to model P+G; range = 2% to 25%; green bars in 412 

Fig. 4B; table S5), and 30.1% of the deviance for including host-level dynamics (model P+G+H; 413 

range = 11.0% to 62.2%) in the same set of features (yellow bars in Fig. 4B; table S5). 414 

Importantly, the added deviance for model P+G+H compared to model P or model P+G was not 415 

simply caused by including more parameters. Specifically, randomizing host identity and traits 416 

across samples, while keeping each sample’s annual, seasonal, and group identity intact, led to a 417 

substantial drop in deviance explained relative to the real data (fig. S17). For instance, for PC2, 418 

which captured the strongest host-level effects of all three PCs, the deviance explained by model 419 

P+G+H dropped from 55% to 16.6% when host identity and traits were randomized (fig. S17; 420 

see supplement and fig. S18 for an additional analysis investigating the effect of model 421 

complexity on deviance explained). That said, for PC3, the addition of randomized host-level 422 

dynamics still resulted in more than negligible deviance explained relative to the real data (3% vs 423 

6.6%) suggesting that deviance explained may be inflated for some microbiome features. 424 

44 of the 52 microbiome features exhibited greater gains in deviance explained by adding 425 

host-level factors to model P+G, compared to adding group-level factors to model P, with 22 426 

features gaining more than 20% deviance explained between model P+G and model P+G+H 427 

(Fig. 4B; table S5). Three of the most common phyla, Actinobacteria, Bacteroidetes, and 428 

Firmicutes all gained >20% deviance explained between model P+G and model P+G+H 429 

(Actinobacteria = 27.1%; Bacteroidetes = 24.6%, and Firmicutes = 25.2%; Fig. 4B; table S5). 430 

The most idiosyncratic features (i.e., those that gained >30% deviance explained by adding host-431 

level factors), were microbiome PC2, the phylum Euryarchaeota, and the families 432 

Campylobacteraceae, Methanomethylophilaceae and Desulfovibrionaceae (Fig. 4B; table S5). 433 
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Notably, even the most synchronous feature, microbiome PC1 (14% deviance explained by the P 434 

model), gained 23.2% deviance explained when adding host-level factors to the P+G model.   435 

Removing covariates from model P+G+H one at a time, while keeping all other 436 

covariates intact, revealed that host identity explained nearly all of the deviance in our models 437 

(Fig. 4C; table S5; average loss in deviance explained by removing host identity = 17.3% 438 

compared to 0.2% deviance for all other factors). Beyond host identity, the next most important 439 

factor was the geographic area where the group had been travelling in the 30 days prior to 440 

sample collection, which on average, explained 1% of the deviance across all 52 features, with 441 

the strongest effects on microbiome PC1, Bifidobacteraceae, and Kiritimatiellaeota (fig. S19; 442 

table S5). The removal of all other individual predictor variables had only minor effects on 443 

deviance explained (fig. S19; table S5). 444 

To investigate whether some of the idiosyncrasy we observed, especially at the host level, 445 

was due to genetic effects, we tested for a relationship between the deviance explained by each 446 

GAM and the narrow-sense heritability (h2) of microbiome taxon abundance as estimated by 447 

Grieneisen et al. (24). We found that higher levels of deviance explained by model P+G+H were 448 

predicted by higher taxon heritability (Pearson correlation: R=0.37, p=0.016; Fig. 5A). 449 

Reassuringly, we found no such effect at the population or group level, as expected since 450 

genotype is a property of individual hosts, not groups or populations (model P+G: R=0.047, 451 

p=0.76; model P: R=0.0085, p=0.96; Fig. 5B). In particular, we explained substantially more 452 

deviance by adding the host level to model P+G for microbiome taxa with moderate to high h2 453 

values (i.e., those > 0.05) than we did for taxa with low h2 values (model P+G+H: min=16.0, 454 

median=32.6, max=53.4 vs model P+G: min=4.6, median=11.1, max=26.8; Fig. 5B). These 455 

results suggest that some idiosyncrasy in gut microbiome dynamics is a consequence of host 456 

differences in genotype. We note, however, that because h2 estimates from the animal model 457 

cannot be mapped directly onto estimates of deviance explained in GAMs, direct estimates of 458 

genetic versus environmental effects on host dynamics remain an important topic for future 459 

work. 460 
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 461 

Fig. 5. Microbiome taxon heritability is associated with idiosyncratic dynamics. (A) 462 

Deviance explained (y-axis) by the phylum and family level GAMs (from Fig. 4) plotted against 463 

the focal taxon’s heritability estimate (h2; x-axis). Pink, green and yellow denote model P, model 464 

P+G and model P+G+H, respectively. (B) Deviance explained (y-axis) across the model 465 

hierarchy (pink: model P; green: model P+G; yellow: model P+G+H) for each taxonomic feature 466 
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(i.e., at the phylum and family level; x-axis). The x-axis is ordered by increasing heritability with 467 

light blue and turquoise squares representing phyla and families, respectively. Horizontal dashed 468 

lines show the average deviance explained per model for taxa with low heritability estimates (h2 469 

< 0.05; light gray); medium heritability estimates (0.05 < h2 < 0.1; dark gray); and high 470 

heritability estimates (h2 ≥ 0.1; black).     471 

 472 

Gut microbiome dynamics among social group members are more synchronized than for 473 

the host population at large 474 

Previous research in humans and other social mammals, including the Amboseli baboons, 475 

finds that hosts in the same social group often have more similar gut microbiome compositions 476 

than hosts in different social groups (e.g. 32, 48-50). Likewise, in our current data set, several 477 

taxa exhibited abundances that were, on average, higher or lower within a given social group 478 

compared to their average abundance in the host population at large (fig. S20, S21). Hence, we 479 

tested whether shared social group membership is linked to greater microbiome synchrony than 480 

hosts in different groups. In support, the patterns of temporal autocorrelation in Fig. 3A showed 481 

that hosts in the same group have detectably more similar microbiomes than those in different 482 

groups, especially for samples collected within 10 days of each other (Fig. 3B; Kruskal-Wallis: p 483 

< 2.2x10-16). Likewise, samples from the same group tended to occupy similar ordination space 484 

over time (video S2). While small, these group-level similarities were detectable, even for 485 

samples collected more than 2 years apart (Fig. 3C; fig. S11A). The addition of group-level 486 

splines to our GAMs led to gains in deviance that explained more than 10% for 15 of 52 487 

microbiome features, including all three microbiome PCs, five phyla, and seven families (Fig. 488 

4B, 4C; table S5). Several of these taxa were abundant in hosts, such as Firmicutes, 489 

Bacteroidetes, and Bifidobacteriaceae (Fig. 4B, 4C; table S5).  490 

Because each social group has a somewhat distinctive gut microbiota, the effects of 491 

climate and diet on microbiome dynamics may differ across groups. To test this idea, we added 492 

interaction effects between group identity and climate variables (rain and temperature), or 493 

between group identity and the first three PCs of diet to model P+G+H. However, these 494 

interactions did not lead to substantial gains in deviance explained in our models (fig. S22; table 495 

S7). For instance, adding the climate interactions explained on average an additional 0.95% 496 
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deviance across all 52 features (range = -1.9% to 5.4%; table S7), and diet interactions 497 

explained, on average, an additional 1.2% deviance across all 52 features (range = -0.7% to 498 

5.6%; table S7). 499 

Gut microbial congruence among group members could also be linked to shared 500 

behaviors and environments: baboons in the same group eat the same foods at the same time, 501 

travel as a unit across the landscape, and may be grooming partners that are frequently in 502 

physical contact (Fig. 1B, 1C; video S1; (24, 27-31)). Indeed, after host identity, the next most 503 

important predictor variable in model P+G+H was the group’s home range in the 30 days before 504 

sample collection (fig. S19; table S6). Despite previous evidence for increased similarity in 505 

microbiome profiles among grooming partners in the Amboseli baboons (32), we did not find 506 

evidence for this pattern in our current data set (fig. S23). Indeed, samples collected within 30 507 

days of each other from individuals with strong grooming bonds were not substantially more 508 

similar than samples from animals with weak or no observed grooming relationship (mean 509 

Aitchison similarity between pairs with strong bonds = 0.645; mean Aitchison similarity between 510 

pairs weak or no bond = 0.646; fig. S24). Because of differences in methodology, the lack of a 511 

grooming effect in this data set should be interpreted with caution. Our prior research on this 512 

topic (32) characterized microbial communities using shotgun metagenomic sequencing from 513 

>90% of social network members, all within 30 days of each other. In contrast, this current data 514 

set relies on 16S rRNA gene sequencing data from sparsely-sampled networks. Shotgun 515 

metagenomic data provide much higher taxonomic resolution than 16S rRNA identities, and may 516 

therefore more accurately capture the direct transmission between hosts.  517 

 518 

Conclusions 519 

We tested, for the first time, whether gut microbiome dynamics are synchronized among 520 

hosts experiencing strong synchronizing forces, including shared environments, similar diets, 521 

and high rates of between-host microbial dispersal. Despite these forces, baboons in Amboseli 522 

exhibit largely idiosyncratic gut microbiome dynamics: samples from the same baboon collected 523 

within a few days of each other were much more similar to each other than samples from 524 

different baboons, and host-specific factors, especially host identity, collectively explained 30% 525 

of the deviance in microbiome dynamics, compared to just 3% for factors shared across the host 526 
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population. These idiosyncratic dynamics suggest that microbiome personalization is a 527 

widespread phenomenon that is likely not unique to humans, and instead may be shared with 528 

other social mammals. This microbiome personalization likely emerges from ecological and 529 

evolutionary phenomena that are a normal part of complex microbial communities, such as 530 

priority effects, functional redundancy, and horizontal gene flow. Together, these forces are 531 

expected to lead microbes with the same taxonomic identity in different hosts to perform 532 

somewhat different functions, experience different competitive landscapes and selective regimes, 533 

and play different ecological roles (15, 16). As a result, the same microbial taxa may often 534 

respond in different ways to environmental fluctuations, chance events, and/or interactions with 535 

other microbes in different hosts, producing personalized, rather than synchronized dynamics.  536 

This personalization means that microbiome research aimed at improving human and 537 

animal health could face challenges to developing broadly applicable therapies, beyond those 538 

caused by heterogeneity in host diets, behaviors, and environments. Microbiome researchers aim 539 

to predict microbiome changes, link microbiome taxa and dynamics to health outcomes, and 540 

design microbiome interventions that work well for large segments of the human population. 541 

Personalization in humans is already presenting problems in attaining these goals. For instance, 542 

predictive models of gut microbiome dynamics from one person have been shown to fail when 543 

they are applied to other people (19). Our results suggest that microbiome predictions and 544 

interventions focused on microbiome taxa will require approaches that are either personalized or 545 

focus on microbial functions, as opposed to taxonomic identities. Even then, “universal” 546 

microbiome therapies that work the same way for all hosts may be unattainable. Instead, 547 

microbiome interventions will likely work best when they are designed for specific host groups 548 

or populations that have shared compositions and dynamics. Further, we expect that the types of 549 

prediction and intervention efforts that will suffer least from gut microbiome personalization are 550 

those that focus on microbiome functional traits (e.g., metabolites; functional pathways), rather 551 

than taxonomic composition. Together, our results provide novel insights about the extent and 552 

ecological causes of microbiome personalization, and point towards ways to overcome these 553 

barriers.  554 

 555 
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