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Abstract

The paradigmatic disordered protein tau plays an important role in neuronal func-

tion and neurodegenerative diseases. To disentangle the factors controlling the balance

between functional and disease-associated conformational states, we build a structural

ensemble of the tau K18 fragment containing the four pseudorepeat domains involved in

both microtubule binding and amyloid fibril formation. We assemble 129-residue-long

tau K18 chains at atomic resolution from an extensive fragment library constructed with

molecular dynamics simulations. We introduce a reweighted hierarchical chain growth

(RHCG) algorithm that integrates experimental data reporting on the local structure

into the assembly process in a systematic manner. By combining Bayesian ensemble

refinement with importance sampling, we obtain well-defined ensembles and overcome

the problem of exponentially varying weights in the integrative modeling of long-chain

polymeric molecules. The resulting tau K18 ensembles capture nuclear magnetic res-

onance (NMR) chemical shift and J-coupling measurements. Without further fitting,

we achieve excellent agreement with measurements of NMR residual dipolar couplings.

The good agreement with experimental measures of global structures such as single-

molecule Förster resonance energy transfer (FRET) efficiencies is improved further by

ensemble refinement. By comparing wild-type and mutant ensembles, we show that

pathogenic single-point P301 mutations shift the population from the turn-like con-

formations of the functional microtubule-bound state to the extended conformations

of disease-associated tau fibrils. RHCG thus provides us with an atomically resolved

view of the population equilibrium between functional and aggregation-prone states of

tau K18, and demonstrates that global structural characteristics of this intrinsically

disordered protein emerge from its local structure.

Introduction

Intrinsically disordered proteins (IDPs) are enriched in the proteomes of higher eukaryotes,

where they perform essential functions.1–3 In healthy neurons, the paradigmatic IDP tau
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binds and stabilizes microtubules.1 In diseased neurons, tau loses the ability to bind to mi-

crotubules and forms the toxic aggregates associated with Alzheimer’s and other neurodegen-

erative diseases.2 Hyperphosphorylation of tau correlates with the progression of Alzheimer’s

disease. Tau has recently been shown to form biomolecular condensates.3–6 Dysregulation

of the formation of biomolecular condensates by mutations7 and aberrant post-translational

modifications such as phosphorylation4,7 may underlie the pathogenicity of tau. Some tau

mutations, e.g., P301L and P301S, show drastic effects in patients and are used in mouse

models of tau pathology.8,9 The conformational dynamics of tau around P301 may play a

direct role in modulating the aggregation of tau in disease,10–12 as studied also by molecular

dynamics (MD) simulations of tau fragments.12 Efforts to gain a clearer picture of the local

conformational dynamics of tau promise a deeper understanding of its roles in health and

disease.

The challenges in resolving structural ensembles of IDPs ask for an integrative approach.13

Important progress in dealing with the high flexibility of disordered biomolecules has been

made using nuclear magnetic resonance (NMR) spectroscopy,14–17 solution X-ray scattering

(SAXS)18 and single-molecule Förster resonance energy transfer (FRET).19–23 To harness

the full power of these experiments and interpret the data in detail, the construction of

ensembles of structures24–32 has proved to be a powerful strategy, especially for the interpre-

tation of NMR experiments and the combination of multiple experimental methods.31,33,34

For instance, Borgia et al.32 combined data from single-molecule FRET, SAXS, dynamic

light scattering, and fluorescence correlation spectroscopy with MD simulations to charac-

terize the ensembles of a marginally stable spectrin domain and the IDP ACTR over a broad

range of solution conditions. Gomes and co-workers35 recently described an ensemble of

the disordered N-terminal region of the Sic protein, obtained by integrating different com-

binations of SAXS, single-molecule FRET and NMR experiments using the ENSEMBLE

approach.36

Structural ensembles obtained from computational modeling can be combined with exper-
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imental data by using Bayesian and maximum entropy ensemble refinement methods.29,37–45

The Bayesian formulation accounts naturally for uncertainties in the measurements, the

model used to generate the ensemble, and the calculation of observables from the ensem-

ble members.39 Input ensembles46 are obtained, e.g., from MD simulations44,47–49 or chain

growth,26,28,50–53 and are then minimally modified to account for the experimental observa-

tions. However, for long protein or nucleic acid chains, it is difficult to create initial ensembles

that have sufficient overlap with the true ensemble for reliable ensemble refinement. For ex-

perimental data that report on the local structure along the chain of a disordered protein,

we expect that cumulative systematic errors in the MD force field will cause the summed

squared error χ2 between model and experiment to grow linearly with the length of the chain.

As a consequence, the overlap between input and true ensemble deteriorates exponentially

as the chain grows in length. Consequently, for long IDPs only a few chains will tend to

dominate the ensemble after refinement, with the rest of the large ensemble being mostly

irrelevant.

The problem of poor overlap between initial and true ensemble can be overcome by ap-

plying a bias already in the generation of the initial ensemble, e.g., by imposing restraints

directly on observables or related quantities in the initial MD simulations. In an early

combination of biased chain growth with Bayesian weighting applied to tau K18,28 overlap-

ping peptide fragments were stitched together. Fragment selection was biased to double the

radius of gyration in an otherwise overly compact ensemble. Steric clashes were resolved

by energy minimization in implicit solvent, and high-energy structures were randomly re-

moved in a pruning step. Excellent agreement with NMR observables27 could be achieved

by adjusting the weights of the ensemble members. However, formal and practical questions

are raised: how does one incorporate experimental data already during chain growth with-

out compromising the Bayesian framework of ensemble refinement, where such information

would normally be used a posteriori? And how does one ensure that the final ensemble is

well defined and fully reproducible?

4

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted November 24, 2021. ; https://doi.org/10.1101/2021.11.23.469691doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.23.469691


We will show here that in a Bayesian formulation any bias in ensemble generation can

be accounted for fully and quantitatively in a final global refinement step by exploiting the

direct connection of ensemble refinement to traditional free energy calculations.39 Meaningful

input ensembles can thus be generated without sacrificing the rigor and reproducibility of

the ensemble refinement procedure.

We propose reweighted hierarchical chain growth (RHCG) as a general method to in-

tegrate data reporting on local structure into models of disordered and flexible polymeric

molecules such as disordered proteins or nucleic acids. Protein chains are assembled from

fragment structures, as obtained here from MD simulations. As in hierarchical chain growth

(HCG),52 chains with steric clashes are consistently removed in such a way that the resulting

ensemble does not depend on arbitrary choices such as the direction of chain growth, N-to-C

versus C-to-N. In RHCG, fragment choice is biased according to experiments reporting on

the local structure. In a final reweighting step, any resulting bias is then removed. RHCG

is thus a form of importance sampling.

Using RHCG, we arrive at an integrative model of tau K18 with atomic resolution. Tau

K18 contains the four pseudorepeat domains R1-R4 involved both in functional binding to

microtubules54 and in forming amyloid fibrils.10,12 NMR chemical shift data that report on

local structure are incorporated already during chain growth. We then show that these

ensembles also capture the global structure of tau K18, as probed by NMR, RDC, single-

molecule FRET and SAXS measurement.

By comparing wild-type (WT) and mutant sequences, we provide a molecular view of

possible differences between tau in a healthy cell and tau with pathogenic mutations. Our

modeling of tau K18 reveals turns as in microtubule-bound states and extended structures

as in tau fibrils. We found that pathogenic single-point P301 mutations shift the equilibrium

from the former to the latter, emphasizing the close connection between functional forms of

tau in solution and the fibrillar structures in tau-associated pathologies.
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Theory

Bayesian Ensemble Refinement of Polymeric Molecules

We combine molecular simulations with ensemble refinement to create ensembles of proteins

or nucleic acids that faithfully reflect the distribution of conformations in experiment. To

create an initial ensemble, we adapt the hierarchical chain growth (HCG) method intro-

duced recently,52 as described in detail below. We then use Bayesian Inference of Ensembles

(BioEn)39 to adjust the weights of the individual ensemble members according to the exper-

imental data, e.g., NMR chemical shifts.

BioEn ensemble refinement minimally adjusts the vector w = (w1, . . . , wC) of normalized

weights of individual chains c = 1, . . . , C in the ensemble to match the experimental data.

We define a posterior P (w|data, I) as a function of the weights w,

P (w|data, I) ∝ P0(w|I)P (data|w, I), (1)

with P0(w|I) the prior and P (data|w, I) the likelihood. Here, I denotes background in-

formation, e.g., that we model polymeric molecules with internal structure. The BioEn

maximum-entropy prior38 is given by

P0(w|I) ∝ exp (−θSKL) =
C∏
c=1

(
w0
c

wc

)θwc

(2)

θ is a hyperparameter that controls the strength of the entropy regularization and thus

expresses our confidence in the initial ensemble of chains.39 SKL is the Kullback-Leibler

(KL) divergence

SKL =
C∑
c=1

wc ln
wc
w0
c

, (3)

which reports how close the normalized refined weights wc are to the normalized reference

weights w0
c .
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Assuming Gaussian uncorrelated errors, the likelihood is P (data|w, I) ∝ exp (−χ2/2)

with

χ2 =

Mdata∑
i=1

(
C∑
c=1

wcy
c
i − Yi

)2

/σi
2 (4)

The first sum is over the different experimental observations i = 1, . . . ,Mdata with measured

values Yi, and the second sum over the ensemble members c = 1, . . . , C. For each chain c and

observable i, we use a forward model to compute individual observations yci . The error σi2 is

the sum of the squared standard errors of the measurements Yi and the forward calculations

yci .

In applications of BioEn to long biopolymers, small but systematic weight corrections

at the monomer level can add up to large corrections overall. For NMR chemical shifts, for

instance, the sum over i in eq 4 corresponds to a sum over residues. As a result, the χ2

statistic is extensive, i.e., it tends to grow linearly with the length of the chain. Reweighting

of assembled chains thus becomes progressively more challenging as the length of the chain

grows (i.e., for chains with more fragments). The reason is that it becomes progressively

unlikely that all fragments in an assembled chain occupy the relevant subspace with proper

weight. As a result, chains will contribute with very uneven weights after BioEn reweighting.

In other words, a few chains will dominate, and the rest of the large ensemble is more or less

irrelevant.

Reweighted Hierarchical Chain Growth

We address the problem of poor overlap between initial and true ensemble by using impor-

tance sampling. In MD simulations of complete biopolymer chains, bias potentials could be

introduced, acting for instance on the torsion angles to better match NMR chemical shifts

or J-couplings. Here, we focus instead on fragment-based chain growth. The key idea is to

grow chains by using fragment libraries that have already been biased to enrich the ensemble

with members of high weight, and then to correct for this biased choice of fragments in a
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final reweighting step. If the bias weights were chosen perfectly, the final step would give

each chain equal weight.

In RHCG, we adapt HCG52 to assemble polymer chains from fragments. At each of the

N positions, fragments are picked at random from a fragment library and then combined

by superimposition of residues at their termini with the equivalent residues in the adjacent

fragments. Any models with steric clashes are discarded. In HCG, all fragments have equal

weight; in RHCG, the fragments in the library {ifn}
f=1,...,F
n=1,...,N (with F the number of fragments

created at position n) are picked according to a weight wfn normalized to
∑F

f=1w
f
n = 1 for

all n. These weights are our initial guess as to how likely a particular fragment is in the final

reweighted ensemble of chains. The probability p[f c] for a particular chain c to be created

in this way is given by the product of weights for each of its fragments,

p[f c] ≡ p[f c1 , . . . , f
c
N ] =

N∏
n=1

wf
c
n
n (5)

where f cn ∈ {1, . . . , F} is the index of fragment n in chain c.

BioEn Reweighting of Assembled Chains

After the biased assembly of an ensemble chains, we use BioEn39,40 to correct for the bias in

chain growth and to reweight the entire ensemble globally. To correct for the bias in chain

assembly, chain c enters the global BioEn refinement with a relative weight proportional to

the reciprocal of the bias probability, w0
c ∝ 1/p[f c], with which its fragments were selected.

Normalization of these relative weights gives us

w0
c =

(p[f c])−1∑C
j=1

(
p[f j]

)−1 (6)
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or, expressed more compactly in terms of reciprocal weight factors,

1

w0
c

=
C∑
j=1

p[f c]

p[f j]
(7)

where the sum extends over the C chains of the ensemble. To the ensemble with these initial

weights we then apply BioEn reweighting, using as reference experimental data reporting on

local or global structural properties.

Chain Growth with Non-Bonded Interactions beyond Steric Repul-

sion

Fragment assembly can, in principle, be extended to account for non-bonded interactions

beyond steric repulsion to account, e.g., for electrostatic interactions between fragments.55

This can be accomplished by using a free energy function G(f c1 , .., f
c
N) that describes the

inter-fragment interactions in chain c and can be calculated from an implicit solvent model

or, by free energy calculations, from explicit solvent models. Chains c assembled from

fragments f c1 , . . . , f cN are then weighted by an additional factor exp[−βG(f c1 , .., f
c
N)] with

1/β = kBT and kB the Boltzmann constant and T the absolute temperature. In the Bayesian

formulation, the normalized reference weight of chain c in an ensemble of C chains then

becomes

w0
c =

e−βG(fc1 ,..,f
c
N )∑C

j=1 e
−βG(fj1 ,..,f

j
N )

(8)

To sample efficiently from this distribution, one can again use importance sampling by

performing hierarchical assembly52 with biased fragment selection. If, as above, wfn is the

bias weight factor to choose fragment f at position n, then eq 7 becomes

1

w0
c

=
C∑
j=1

p[f c]eβG(fc1 ,..,f
c
N )

p[f j]eβG(fj1 ,..,f
j
N )

(9)
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Here, we use only excluded volume interactions, which amounts to exp(−G) = 1 for chains

without inter-fragment steric clashes and exp(−G) = 0 with clashes.

Assessment of Importance Sampling

In ideal importance sampling, we would grow chains of equal relative importance. Global

BioEn reweighting would then give each member of the resulting ensemble equal weight, wc =

1/C. We use the KL divergence of the BioEn-optimized weights wc from ideal importance

sampling to assess the effectiveness of our bias in chain growth:

Sbias
KL =

C∑
c=1

wc ln
wc

1/C
=

C∑
c=1

wc ln (Cwc) (10)

If Sbias
KL . 1, the overlap between the ensembles produced by biased chain growth and after

BioEn refinement is large; conversely, if Sbias
KL � 1, the chain growth protocol should be

optimized.

Methods

Hierarchical and Reweighted Hierarchical Chain Growth

We generated structural ensembles of tau K18 (residues 244-372) using HCG52 and RHCG.

Tau structures were assembled from 43 pentamer fragments with two residues overlap be-

tween subsequent fragments. All fragments had their N and C termini capped by acetyl and

N-methyl groups, respectively. The first (N-terminal) fragment started from the last residue

outside tau K18, which was then removed in chain assembly. Fragment structures were sam-

pled in all-atom replica exchange molecular dynamics (REMD) with explicit solvent. For

each fragment, we used 24 replicas spanning a temperature range of 278-420 K. Each pen-

tamer fragment was simulated for 100 ns as in our previous study.52 We used structures from

the T = 278 K ensemble to assemble tau K18 chains, which corresponds to the temperature
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of the NMR experiments.27 To investigate the effect of point mutations at the P301 position,

we also sampled fragments with P301 and mutations P301L, P301S and P301T. We repeated

fragment simulations for WT P301, P301L, P301S and P301T fragments with residue 301

at the central position of their respective fragments instead of the second position of its

respective pentameter. We note that in all fragment REMD simulations P301 was sampled

exclusively as trans isomer.

We biased the fragment selection in RHCG according to Cα chemical shifts measured by

NMR. At each fragment position n, we performed independent BioEn reweighting39,40 using

the chemical shift data reported for the non-terminal residues in this fragment (Supporting

Information (SI) Text). A large confidence parameter of θ = 10 ensured improved consistency

of the chemical shifts (with the average χ2 across fragments dropping from 0.856 to 0.688)

with minimal weight changes (SBioEn
KL = 0.004 on average). These local BioEn calculations

gave us fragment weight factors wfn.

We then used RHCG to build ensembles of between 2000 and 106 WT tau K18 models

from the reweighted fragment libraries. For reference, we also constructed unbiased ensem-

bles of WT tau using HCG52 with unweighted fragment libraries. HCG was also used to

construct tau K18 ensembles of P301 mutants. If not specified otherwise, the results shown

are for ensembles of C = 50000 chains. Following the procedure described in ref 52, we

assembled 10000 representatives at each hierarchy level below the final assembly level to

sample a high diversity of possible local conformations. At the final level, full-length models

were assembled from this pool. The assembly process was trivially parallelized by using

different random number seeds. In a final step, the RHCG ensembles were reweighted using

BioEn to correct for the biased fragment choice while retaining consistency with the NMR

chemical shift data. In this global BioEn reweighting step, the confidence parameter was set

to θ = 5 according to an L-curve analysis (SI Text and Figure S1A). The resulting ensembles

were structurally diverse and, among 50000 HCG and RHCG structures, did not contain any

knots (SI Text).
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Calculation of Experimental Observables

NMR Secondary Chemical Shifts and J couplings. For comparison with NMR ex-

periments, we calculated chemical shifts from fragments and full-length structures using

SPARTA+.56 We subtracted random-coil shifts calculated using POTENCI57 to compare to

secondary chemical shifts ∆C. We computed 3JHNHα couplings with the Karplus parameters

by Vögeli et al.58 with the mdtraj Python library.59

NMR Residual Dipolar Couplings. RDCs were calculated from the ensembles of full-

length structures with PALES60,61 in the steric alignment mode. The value D(r)
HN for a par-

ticular residue r was calculated by computing the alignment of each chain c in the ensemble

with PALES and then taking the average over all structures

D
(r)
HN =

Dmax
HN

C

C∑
c=1

〈P2(cos(ϑ(r)
c ))〉 , (11)

where Dmax
HN = 21.7 kHz for an idealized amide bond length of 1.04 Å,62 ϑ(r)

c is the angle

between the amide bond vector of residue r in chain c and the external magnetic field,

P2(x) = (3x2 − 1)/2 is the second-order Legendre polynomial, and 〈· · · 〉 denotes an average

over the orientations of the chain biased by the alignment.

Small-Angle X-Ray Scattering. We used FoXS63 to calculate SAXS intensity profiles

for the tau K18 structures in an ensemble, and then calculated the weighted average over

the ensemble. In the FoXS calculations, we took the solvation shell into account by setting

c2 = 3. The excluded-volume parameter was set to the default value of c1 = 1. Geometric

RG values were computed using the MDAnalysis library.64,65 To compare measured scatter-

ing intensities to those predicted for the weighted ensemble, I(q)sim, we first estimated an

intensity scale factor a and a constant for background correction b according to

I(q)sim,scaled = aI(q)sim + b (12)
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by performing least-square fitting. The best fit to experiment was achieved with the coef-

ficients a = 1.11 × 10−11 and b = 3.75 × 10−05. We further took possible mild aggregation

into account by approximating the scattering intensity of possible aggregates as

I(q)agg ∼= I0,a exp(−R2
G,a/3q

2) (13)

with q being the scattering vector. By adding I(q)agg to I(q)sim,scaled and adjusting the

respective amplitudes as well as RG,a by least-square fitting, we accounted for the observed

increase in scattering intensity at low q-values. A second set of scattering data18 is cut off

at low q and, therefore, no correction is required.

Comparison to Single-Molecule FRET Experiments. We compared Cα-Cα distances

extracted from FRET experiments using the SAW-ν polymer model66 to RHCG models.

To quantify the effect of the fluorescent dyes on the distance distribution, we performed

additional calculations in which we adapted the RHCG method to add dyes67 during chain

growth (SI Text and Figure S2).

Experiments

Single-Molecule FRET Experiments. For the single-molecule FRET experiments, tau

K18 was labeled with Alexa Fluor 488 and CF660R at C291 and C322 (SI Text). The labeled

tau K18 was diluted to a concentration of 100 pM in 50 mM sodium phosphate buffer, pH

6.8, 1 mM DTT, 0.001% Tween 20 or 20 mM HEPES, 5 mM KCl, 10 mM MgCl2, pH 7.4, 1

mM DTT, 0.001% Tween 20. The experiments were performed at 295 K on a MicroTime 200

confocal single-molecule instrument (Pico-Quant, Berlin, Germany) as described in detail in

the SI Text. The SAW-ν model was used to analyze the single-molecule FRET data to

extract distances and the polymer properties of tau K1866 (SI Text).
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Small-Angle X-Ray Scattering Experiments. SAXS data were collected at 298 K

from monodisperse samples of K18 ranging from 50 µM to 67 µM in 20 mM Hepes, 5 mM

KCl, 10 mM MgCl2, 1 mM DTT at pH 7.4. Scattering profiles were analyzed with stan-

dard procedures using ATSAS.68 SAXS measurements were performed at DESY (Hamburg,

Germany) and Diamond Light Source (Oxford, UK) stations.

Results and Discussion

RHCG Produces a Diverse Ensemble of tau K18 Chains. During chain assem-

bly, we applied a gentle bias on the fragment choice by using fragment weights from BioEn

reweighting against Cα chemical shifts. To correct for the bias, the assembled chains were

then reweighted with BioEn, again using the chemical shift data as experimental reference.

In this global BioEn reweighting step, the chains were given near-uniform weights wc with

Sbias
KL � 1 (Figure S1B). The resulting structural ensemble of tau is comprised of highly di-

verse structures at atomic resolution (Figure 1C). The typical Cα root-mean-square distance

(RMSD) between two chains is about 26 Å (Figure S3 and SI Text).

RHCG Models of tau K18 Capture the Average Local Structure of tau as Re-

ported by NMR. Chemical shifts are accurate reporters of local structure and secondary

structure.16,17,27,29,56,69 Overall, we found that the Cα chemical shifts calculated for the RHCG

ensemble of tau K18 are close to random coil values, with secondary chemical shifts ∆C

mostly close to zero. Despite the residual amplitude typically being smaller than the error of

≈1 ppm56 in the forward chemical shift calculation, the models capture important features

of the variation of experimental secondary chemical shifts along the tau K18 amino acid se-

quence, such as a drop in secondary chemical shift going from L285 to V300. HCG without

reweighting of the fragment library underestimates the populations of extended and β-strand

like structures and overestimates the helical-like conformations. Going from HCG to RHCG,

the average residual drops from 0.35 ppm to 0.27 ppm, and Pearson’s r for the secondary
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Figure 1: Atomic-resolution ensemble from RHCG reproduces global structural features of
tau K18. (A) Comparison of experimental (grey) and predicted (blue) 1H-15N RDCs, which
were not used in the construction of the RHCG ensemble (see Table S1 for the amino acid se-
quence of tau K18). (B) Scatter plot of calculated and measured RDCs. (C) Backbone traces
of 30 members of the RHCG ensemble. Zoom-ins show superpositions of ten representative
structures of a turn at position L284-S285 (top) and an extended segment at position Q276-
I277 (bottom) with negative and positive RDCs, respectively, as highlighted by shading in
panel A. (D) Comparison of calculated (blue) and experimental SAXS scattering intensity
profiles (grey symbols) and from ref 18 (black line). Dashed line: Predicted scattering in-
tensity I(q)RHCG + I(q)agg in the presence of mild aggregation. Inset: Distribution of RG

in the RHCG ensemble. Vertical dashed lines indicate the average RG from RHCG (blue)
and experiment18 (grey; ±SEM shown by shading). (E) Distribution of Cα-Cα FRET-label
distance inferred from FRET experiments using the SAW-ν model66 (grey), RHCG (blue),
and RHCG* (orange). Root-mean-square distances are indicated as (dashed) vertical lines.
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chemical shifts ∆C of the Cα atoms increases from 0.28 to 0.41. RHCG lowers in particular

positive ∆C values, e.g., at the S420 position (Figure S4A,B). In light of the considerable

uncertainties in the forward calculation (≈1 ppm) and the small ∆C amplitudes, a lower θ

value resulting in an even tighter fit was not justified (Figure S1A).

We also calculated NMR 3JHNHα couplings, which report primarily on the φ-dihedral

angles of the protein backbone. The couplings calculated for our models agree well with the

NMR experimental data27 (Figure S5). Also in terms of 3JHNHα, RHCG somewhat improves

the representation of the local structures over HCG, as reflected by the increase of Pearson’s

r from 0.59 to 0.62. Overall we conclude that reweighting in fragment assembly alleviates the

small but systematic deviations caused by small imbalances in state-of-the-art force fields

used to generate fragment libraries. As a result, the local structure of the tau K18 chains

produced by RHCG is more consistent with NMR chemical shift and J-coupling experiments.
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Figure 2: Large ensembles are required to capture NMR RDC measurements. (A) Distri-
bution of 1H-15N RDC values for L285 in RHCG ensembles of different size, as calculated
by PALES61 without rescaling. (B) Average 1H-15N RDC for L285 in dependence of the
ensemble size for HCG (dark green) and RHCG (blue). Error bars indicate ±SEM. (C)
Ensemble-size dependence of Pearson r correlation coefficient between tau K18 1H-15N RDC
measurements27 and calculations from RHCG (blue) and HCG (green), respectively.

The RHCG ensemble of tau K18 Reproduces the Experimental NMR Residual

Dipolar Couplings. We calculated the RDCs for the assembled tau K18 chain using the

steric alignment mode of PALES,61 and then averaged the RDC values over the ensemble with

the respective weight of the chain. The measured27 and calculated RDCs agree remarkably

well and capture both the signature as a function of position along the chain (Figure 1A)
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and the magnitude at individual residue positions (Figure 1B). Without further fitting, we

obtained Pearson r correlation coefficients of 0.73 for RHCG and 0.70 for HCG for tau K18

ensembles of 50000 models. This consistency not only validates the ensemble, but also gives

direct insights into the interpretation of the RDCs measured for IDPs. RDCs inform on

how restricted a chain is locally, with larger absolute RDCs expected for more restricted

segments than for fully flexible segments.15 The RDC DHN ∝ 〈P2(cos(θ))〉 reports on the

relative orientation of an amide bond vector with respect to the magnetic field. Changes

in the sign of the measured RDCs have been interpreted as changes in the direction of

the protein backbone.27 Our conformational ensemble reproduces the four changes in the

sign of DHN found in experiments.27 Importantly, as highlighted for the region centered on

L284-S385 in Figure 1C, our structures on average trace a turn in the region where the sign

changes, as indicated by a shortened distance across the four-residue segments (Figure S6).

By contrast, in regions such as Q276-I277, where the sign of DHN does not change, our

structures do not show a preference in the chain direction and scatter around an average

straight chain (Figure 1C). We note that simple polymeric models that ignore amino acid

chemistry and the correlations between subsequent residues tend not to capture the trends

in the experimental RDCs, as previously noted.15,27,70

Residual Dipolar Coupling Calculations Require Large Ensemble Sizes. The need

for large ensembles has been highlighted before.26 Building large ensembles relies on the pos-

sibility to quickly generate statistically independent atomic-resolution models of IDPs. The

RDC values predicted for particular residues in our models are widely and asymmetrically

distributed with a range of about ±25 Hz (Figure 2A). By contrast, the experimental av-

erage is roughly in the range of −5 to 10 Hz (Figure 1A). As a result, RDCs calculated

from small ensembles are biased (Figure 2B). We found that relatively large ensembles of

≥ 10000 tau K18 chains are needed to get converged RDC values (Figure 2B). We found

in particular that Pearson’s r correlation coefficient improved with increasing ensemble size.
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The ensemble-size dependence is similar for RHCG and HCG, even if the RHCG ensemble

consistently performs somewhat better than the HCG ensemble (Figures 1D, 2B,C and S7).

C

A

0 1 2 3 4 5

RMSD C [Å]

0.0

0.2

0.4

0.6

0.8

1.0

C
D
F

5V5B

6TJO

random

B

0 1 2 3 4 5

RMSD C [Å]

0.0

0.2

0.4

0.6

0.8

1.0

C
D
F

2ON9

6TJO

6GX5

5O3O

5O3T

6HRE

6HRF

6NWP

6VI3

random

D

V306 Q307 I308 V309 Y310 K311

V275 Q276 I277 I278 N279 K280

Figure 3: Atomic-resolution RHCG ensembles feature the extended conformations seen in
high-resolution structures of tau fibrils. (A,B) 275VQIINK280 and (C,D) 306VQIVYK311

hexapeptide motifs are compared to their experimental structures in tau fibrils. (A,C) Five
RHCG structures (Cα RMSD < 0.5 Å from RHCG are superimposed on experimental struc-
tures (gray, PDB: 5V5B and 2ON9). (B) Cumulative distribution of RMSD to experimental
structure. For reference, gray line show the distributions obtained for the RMSD between
50000 randomly chosen six amino-acid segments in our model ensembles and the motifs
in 5V5B. (D) Cumulative distribution of RMSD to experimental structure. For reference,
the gray line shows the distribution of the RMSD between randomly chosen six amino-acid
segments and the hexapeptide motif in the fibril (PDB: 2ON9).

The RHCG Ensemble Captures the Extension of tau K18 in Solution. The RHCG

ensemble also captures the size and shape of tau K18 in solution as probed by SAXS measure-

ments (Figure 1D). The mean scattering profiles calculated from our tau K18 models agree

well with the experimental scattering profiles (Figure 1D), taking possible unspecific aggre-
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gation in the low q regime into account. The computed root-mean-square radius of gyration

of approximately 39 Å coincides with the experimentally determined RG of 38 ±3 Å.18 The

RHCG ensemble (〈Rh〉 = 34 Å) is also consistent with the hydrodynamic radius Rh 34±6 Å,

as reported by dynamic light scattering (DLS).71 Rh was computed from the RHCG ensem-

ble using an empirical approach.72,73 Moreover, our RHCG ensemble agrees quite well with

NMR paramagnetic relaxation enhancement (PRE) measurements (Figure S8), which were

also not used in the generation of our ensembles. Spin-label dynamics were modelled with a

rotamer-library approach74 and the overall shapes of the experimental profiles measured for

four different spin-labels71 were captured without any refinement.46 In particular, the widths

of the valleys with reduced PREs close to the spin label are in line with the experimental

profiles and thus the compaction of the chain on the scale of 20-30 amino acids is captured

well. The good agreement with SAXS, dynamic light scattering, and NMR measurements

suggests that the RHCG ensemble captures the global conformational properties of tau K18

in solution quite well without further refinement.

Structure of tau K18 as Assessed by Single-Molecule FRET. Comparison to

single-molecule FRET experiments suggests that our RHCG models are somewhat too ex-

tended (Figure 1E), with longer Cα-Cα distances in the RHCG ensemble than those ex-

tracted from the FRET experiments.45 However, in a BioEn calculation we found that

already a small correction of the chain weights suffices to match the mean distance de-

duced from FRET perfectly (Figure S2D), with a Kullback-Leibler divergence of SKL ≈ 0.2

corresponding to a change of the underlying MD simulation potential energy function of

SKLkBT =
∫
dxp(opt)(x)

[
U (opt)(x)− U(x)

]
≈ 0.5 kJ/mol on average.39 Conversely, this sen-

sitivity also highlights the intricacies of the free energy landscape of disordered proteins,

where subtle shifts in the energetics result in appreciable changes in conformation.75

We explored possible effects of the fluorescent dyes by generating RHCG models with

dyes attached. For these models, we calculated the mean FRET efficiency and compared it
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directly to the experimental measurement (Figure S2C). We found that an even smaller force

field correction of 0.35 kJ/mol on average39 would be sufficient to achieve full consistency of

the ensemble means (Figure S2D). Overall, reweighting according to the FRET data does

not appreciably affect the agreement with SAXS. Reweighting according to the FRET data

changes the RG from 39.4 Å (RHCG) to 37.4 Å (RHCG*), and with explicit dye models

from 40.1 Å (RHCG+dyes) to 39.1 Å (RHCG+dyes*), respectively.

The scaling exponent of 0.57 inferred from the SAW-ν model66 is close to the value of an

excluded-volume chain. The tau K18 segment is thus more extended than most moderately

charged disordered IDPs.21 Interestingly, the transfer efficiency and average distance between

the Cys residues of tau K18 from single-molecule FRET are virtually independent of salt

concentration (Figure S2C), indicating that the rather pronounced expansion of this segment

is not caused by charge repulsion. The FRET experiments are thus in line with our modeling

which highlights that residual structure rather than charge-charge interactions shape the

ensemble of tau K18 and its overall extension and shape.

Aggregation-Prone Extended Structures Feature Prominently in the Solution

Ensemble of tau K18. Interestingly, a small but significant fraction of our atomic res-

olution models feature conformations of the two aggregation-prone hexapeptide motifs10 as

seen in the high-resolution structures of tau fibrils.76,77 Chain growth thus captures bio-

logically important structural features. For the first hexapeptide motif 275VQIINK280, we

found that about 9% of the models are within 1 Å Cα RMSD of a tau fragment fibril struc-

ture (PDB: 5V5B77) (Figure 3A,C). A similar fraction of the tau K18 population has local

structures matching that of a fibril from a corticobasal degeneration (CBD) patient sample78

(PDB: 6TJO). The fraction of our ensemble that closely matches the experimental structures

(Figure 3B and Figure S9) is clearly larger than what would be expected for a random six

amino acid segment. For the second hexapeptide motif 306VQIVYK311, we also found that

about 8% of the models are within 1.0 Å Cα RMSD of the X-ray structure (PDB: 2ON976)
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(Figure 3B,D), about 2.5 times more than what would be expected for random hexapeptide

segments. We found similar consistency for the second hexapeptide motif with the struc-

tures of tau fibrils (Figure S9), as formed in Alzheimer’s disease (PDB: 5O3O,79 5O3T,79

6HRE,80 6HRF80), CBD (6TJO,78 6VI381), Pick’s disease (6GX582) and chronic traumatic

encephalopathy (6NWP83). Experiments on tau K18 in solution suggest that these motifs

should be partially in extended conformations, consistent with our ensemble.16,27
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Figure 4: Tau P301 mutations favor more extended local structures. (A) Cumulative dis-
tributions of the minimum Cα RMSD of 300VPGGG304 to the closest representative of the
NMR structural ensemble.54 Results are shown for the RHCG ensembles of WT tau K18
and for the HCG ensemble of the P301L variant. (B) Cumulative distributions of O(V300)-
N(G303) distances for WT tau K18 from RHCG compared to P301L, P301S and P301T tau
K18 variants from HCG. (C) Five representative structures of 300VPGGG304 from RHCG
(oxygen: red; nitrogen: blue; carbon: cyan; Cα RMSD < 0.5 Å) are superimposed on a rep-
resentative of the NMR structural ensemble (gray sticks, PDB: 2MZ7, structure 17). Tubes
indicate the amino-acid backbone. The O(300)-N(303) hydrogen bond is indicated by the
blue dashed line. (D) Representative local structures of WT tau K18. (E) Representative
local structures of the P301L variant. In D and E, the structures were aligned on residues
300 and 301. Tubes indicate the backbone. Side-chain heavy atoms and amide nitrogen and
Cα of residue 301 are shown as licorice.
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The Solution Ensemble Contains the Functional Conformations of tau in Com-

plex with Microtubules. We found that a considerable fraction of WT tau K18 adopts

locally compact turn-like structures (Figure 4A-C). Similar turn-like structures have been

resolved by NMR NOESY experiments probing the conformations of microtubule-bound

tau,54 with an O(300)-N(303) distance below 4 Å in 18 out of the 20 structures in the NMR

ensemble (PDB: 2MZ7; see Figure 4C). In the WT RHCG ensemble, 15 % of structures

of the 300VPGGG304 segment are within 1 Å Cα RMSD of the closest representative of the

NMR ensemble (Figure 4A). This provides a strong indication that tau samples the turn-like

structures of the microtubule-bound form also free in solution.

RHCG Captures the Effect of Mutations Towards Aggregation-Prone Structures.

The PG motifs at the end of each repeat favor turn structures.84 We expect that mutations

of the prolines shift the local structure away from turns. To test the effect of mutations at the

301 position, we considered the mutations P301L, P301S and P301T. The P301L mutation

has been shown to strongly promote tau aggregation.9,10

According to chemical shift mapping, P301 mutations do not affect the global struc-

ture of tau.11 However, in our hierarchical modeling the P301L, P301S and P301T variants

consistently form more extended structures than WT, both in ensembles of full-length tau

K18 (Figure 4B-E) and in fragment MD simulations (Figure S10). This loss of turn-like

structures is indicated by a more than twofold reduction in the fraction of O-N distances

<4 Å between V300 and G303. The shift from turns to extended structures rationalizes

the enhanced aggregation propensity of tau P301L in vitro10,12 because extended structures

predominate in fibrils. Locally more extended structures in the mutant proteins facilitate

intermolecular contacts between tau chains and subsequent assembly and aggregation via

intermolecular β-sheets. The shift to extended structures seen here also explains why P301L

tau binds less strongly to microtubules.11,85 In a population-shift mechanism, P301L, P301S

and P301T mutations thus appear to decrease the fraction of tau with locally compact turn
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structures, which are competent to bind to microtubules, and to increase the fraction of

aggregation-prone extended structures (Figures 5 and S11). The combination of these two

effects may render P301 mutations deleterious both with respect to a loss in function and

an increased tendency to form disease-associated fibrils.

P301L 

P301 

Aggregation 

extended  

turn 

Figure 5: P301 mutations shift the balance from functional to aggregation-prone conforma-
tions. Turn conformations (bottom) are required for functional microtubule binding (left),
whereas extended conformations (top) are associated with aggregation and the formation
of pathogenic fibrils (right). In the wild-type ensemble (P301; bottom), turn-like structures
predominate. By contrast, extended structures are significantly populated in the mutant en-
semble (P301L; top). The zoom-ins on the right show representative backbone traces around
amino acid 301 as tubes.

Conclusions

We showed that reweighted hierarchical chain growth captures both the local and the global

structures of tau K18. Locally, NMR Cα chemical shifts were reproduced within the expected

uncertainties without any fitting. The agreement was improved further with only a gentle
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Bayesian ensemble refinement against NMR chemical shift data. Globally, the tau K18

chains assembled in this way reproduced SAXS, FRET and NMR RDC measurements, and

thus captured the overall shape, dimension and changes in orientation. The global structure

of tau K18 thus emerged from its local structure.

Fragment assembly and coil models have proved remarkably successful in the modeling of

disordered proteins.24–26,28,36,52,55,70 The quality of the ensemble models can be improved even

further by integrating experimental data.26,35 However, if the summed squared error χ2 of the

models grows roughly linearly with chain length, e.g., because of systematic errors in the force

field used to generate the fragment models, the relative weights of the assembled chains in a

refined ensemble will vary widely. As a result, the overlap between the ensemble of assembled

chains and the true ensemble becomes exponentially small and ensemble refinement becomes

increasingly inefficient.

Reweighted hierarchical chain growth is an importance sampling procedure designed to

address this problem by producing evenly weighted ensembles. By applying a bias already

during chain assembly, we ensure that the assembled chains have near-uniform weights in

the final ensemble. By using hierarchical chain growth52 and correcting for any bias in the

assembly process in a formally rigorous manner using a form of Bayesian ensemble refine-

ment, BioEn,39 we ensure further that the final ensemble is well defined and independent

of arbitrary choices in the assembly process, such as the strength of the bias in fragment

selection or the direction of chain growth.

The tau K18 ensembles obtained by reweighted hierarchical chain growth revealed how

deleterious mutations shift the balance from protein function to disease. In modeling the

effect of mutations, we took advantage of a chemically informed description70,86–93 of the

disordered tau protein. We found that already free in solution, the microtubule-interacting

regions of tau K18 populate local structures as observed in the microtubule-bound state by

NMR. Also consistent with conformational selection, we found that a comparable fraction

of free tau K18 chains exhibits local structures as observed in pathogenic tau fibrils. We
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could further show that the disease-associated mutations P301L, P301S and P301T shift the

balance away from the microtubule-bound local turn structures toward the fibril-associated

extended structures (Figure 5). Such shifts can have dramatic effects on the kinetics of ag-

gregation94 by lowering the barrier to nucleation. Indeed, a shift to extended structures was

recently reported to be associated with fibril formation in tau condensates.95 The emergence

of global structure from local structure thus extends beyond chain shape, dimension and

orientation to the competition between tau’s role as microtubule-bound regulator of cellular

transport and as fibril-forming driver of neuropathologies.

Supporting Information Available

Structural and topological analysis of tau K18 ensembles, Comparison to Cα chemical shifts,

construction of fragment pool, modeling of P301 mutations, global BioEn reweighting, anal-

ysis of turn structures detected by RDCs, comparison to PRE experiments, comparison

to NMR structure of microtubule bound 301PGGG304, details on the sample preparation

and setup of single-molecule FRET experiments and further comparison of single-molecule

FRET experiments and ensembles from RHCG, analysis of the structural consequences of

P301 mutations, sequence of tau K18 and positions of spin labels and FRET dyes.
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