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Abstract 
The ability to recognize abstract features of voice during auditory perception is a complex, yet poorly 
understood, feat of human audition. For the listener, this occurs in near-automatic fasion to seamlessly 
extract complex cues from a highly variable auditory signal. Voice perception depends on specialized 
regions of auditory cortex, including superior temporal gyrus (STG) and superior temporal sulcus (STS). 
However, the nature of voice encoding at the cortical level remains poorly understoood. We leverage 
intracerebral recordings across human auditory cortex during presentation of voice and non-voice 
acoustic stimuli to examine voice encoding in auditory cortex, in eight patient-participants undergoing 
epilepsy surgery evaluation. We show that voice-selectivity increases along the auditory hierarchy from 
supratemporal plane (STP) to the STG and STS. Results show accurate decoding of vocalizations from 
human auditory cortical activity even in the complete absence of linguistic content. These findings show 
an early, less-selective temporal window of neural activity in the STG and STS followed by a sustained, 
strongly voice-selective window. We then developed encoding models that demonstrate divergence in the 
encoding of acoustic features along the auditory hierarchy, wherein STG/STS responses were best 
explained by voice category as opposed to the acoustic features of voice stimuli. This is in contrast to 
neural activity recorded from STP, in which responses were accounted for by acoustic features. These 
findings support a model of voice perception that engages categorical encoding mechanisms within STG 
and STS. 

Significance Statement 
Voice perception occurs via specialized networks in higher order auditory cortex, yet how voice features 
are encoded remains a central unanswered question. With human intracerebral recordings of auditory 
cortex, we provide evidence for categorical encoding of voice in STG and STS and occurs in the absence 
of linguistic content. This selectivity strengthens after an initial onset response and cannot be explained 
by simple acoustic features. Together, these data support the existence of sites within STG and STS that 
are specialized for voice perception. 
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Introduction 
Vocalizations are a crucial social signal and a fundamental driver of human and animal behavior. 

Humans and other animals can easily distinguish con-specific vocalizations from other complex sounds in 
their acoustic environment (1). With normal voice perception, one can quickly and accurately deduce 
gender, size, age, emotional state, and intentions purely from vocalization content (2). These voice 
recognition abilities begin to develop prenatally (3), precede development of linguistic abilities (4) and are 
formed through the processing of acoustic and paralinguistic aspects of voice (5). How humans are able to 
rapidly extract such rich information from vocalizations remains a central unanswered question.  

 
Neuroimaging studies have identified regions of auditory cortex theorized to mediate voice 

processing which demonstrate robust BOLD response when listening to voice stimuli, including superior 
temporal sulcus (STS) and superior temporal gyrus (STG), collectively referred to as temporal voice areas 
(6–11). Recent neuroimaging work suggests that voice selectivity of STS and STG contributes to voice 
perception across primate species (1, 12–14). These regions exhibit robust connectivity with auditory 
regions in the supratemporal plane (STP), including Heschl’s gyrus, and higher order association cortices 
implicated in voice perception and voice identity recognition (15–18). Bilateral STS exhibits voice selective 
responses, although some studies suggest hemispheric asymmetry in STS anatomic structure and function 
(9, 19). Current understanding of regional voice selectivitity and temporal dynamics of these responses in 
auditory cortex is driven primarily by neuroimaging studies, therefore studies employing methods on 
physiologic timescales are needed to further examine the contribution of STS and STG to voice perception. 
 

Whether activity in putative voice-selective areas of STG and STS are actually driven by voice and 
not the acoustic or linguistic properties of speech remains under debate (12, 20). A speech-driven model 
of voice coding is supported by some neuroimaging studies (7, 18, 20–23). Extant behavioral work also 
suggests voice perception may rely heavily on linguistic content (24). However, other studies have shown 
voice selectivity persists when controlling for the unique acoustic properties of voice stimuli (11). It remains 
unknown to what extent processing of complex auditory stimuli, such as speech, music, or naturally 
occurring environmental sounds, rely on shared or unique neural mechanisms (23, 25, 26) and how these 
mechanisms are organized across the auditory cortical hierarchy (27–30). Specific features driving neural 
encoding of voice and the timing and organization of this coding will also be advanced by approaches with 
greater temporal resolution. 
 

To understand the cortical representation of voice at physiologic timescales, we measured local 
neural activity directly from the STS, STG, and surrounding auditory cortex in patient participants 
undergoing clinical intracerebral recordings as part of epilepsy surgery (31). To date, evidence for voice 
coding in human auditory cortex has largely been supported by fMRI studies. The low temporal resolution 
of fMRI limits interpretation of temporal dynamics of these responses, given physiologic delay and low-pass 
filtered nature of BOLD responses compared to peak spike frequency (32, 33). Here we leverage 
intracerebral recordings that uniquely allow direct electrophysiological measurements from sulcal banks, 
such as the STS and Heschl’s gyrus. We combined this recording technique with decoding and encoding 
modeling approaches to measure voice selectivity across the audiotry hierarchy and test the hypotheses 
that vocalizations are represented categorically in STG and STS. Here we provide data in support of voice 
category discrimination in neural recordings within STG/STS, and describe the temporal dynamics of these 
responses across temporal voice selective areas. 
 
Results 

We recorded neural data from eight patient-participants undergoing intracerebral recordings as part 
of routine epilepsy surgery evaluation. Recording sites in each participant included sites in both the STP, 
STG, and STS, including Heschl’s gyrus (HG). Each participant performed an auditory 1-back task of 
natural sounds stimuli adapted from either Norman-Haginere et al., 2015 (20) (Natural Sounds; NatS) or 
Belin et al., 2000 (6) (Voice Localizer; VL). Each of these stimulus sets include vocal and non-vocal sounds 
that can be used to assess vocal selectivity similar to previous studies (6, 34). To measure local neuronal 
response to auditory stimuli, broadband high gamma activity (35–37), or HGA, was extracted (Fig. 1B and 
C), and each channel’s auditory responsiveness was assessed using a 2-sample t-test that compared mean 
HGA between a post-stimulus onset window (0 to 500ms) and a silent baseline (-600 to -100ms relative to 
onset). Channels that exhibited a significant auditory response (p < .05, FDR-corrected) were included in 
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subsequent analyses. This resulted in between 28-72 auditory-responsive channels per patient, for a total 
of 399 channels. 

 
Decoding Voice from Non-Voice Acoustic Stimuli.   

To establish the magnitude and temporal dynamics of vocal separability for the neural activity of each 
participant’s auditory responsive channels, we used HGA to decode between voice and non-vocal sounds. 
For full models (Fig. 2A), classification accuracy reached significance in each subject at p < .001 
(permutation tests), with accuracy ranging from 82-93% for the VL stimulus set and 82-92% for NatS stimuli 
(see Acoustic Stimuli). To address whether separability was driven by encoding of linguistic information (i.e. 
speech) rather than voice, the full model decoding analysis was performed again with NatS data, excluding 
all speech stimuli (i.e., native and foreign speech, lyrical music), so that the vocal category contained only 
non-speech vocal sounds such as laughter, crying, and coughing. Accuracy ranged from 65-80% and 
remained statistically significant (p < .001 for 7 subjects, p < .01 for 1) (light blue bars, Fig. 2A).  

Decoding accuracy time courses are shown in Fig. 2B, averaged across all patients for both NatS 
and VL. Across patients and stimulus sets, significant decoding emerged as early as 50ms (range of 50-
150ms), with decoding accuracy falling below chance between 25ms before to 500ms after stimulus offset. 
Decoding accuracy trajectories were significant for the duration of the stimulus length for both NatS and 
VL, demonstrating that once vocal separability emerges, it persists for the duration of the sound. 

Next, we examined the generalizability of our findings across different stimulus sets for the three 
subjects that performed both VL and NatS. Most notably, models trained on data from one stimulus set 
were able to decode vocal category membership on data from the other stimulus set (cross-task decoding, 
Fig. 2C), demonstrating similar HGA response properties despite completely distinct stimulus sets. 
Additionally, the sliding window accuracy profiles between VL and NatS were highly correlated within patient 
during the VL stimulus window (550ms; R = 0.80, 0.81, and 0.95 respectively). 
 
Distribution of Voice-Selective Sites 

Next, to test the hypothesis that vocal separability is driven by activity in TVAs (STG/STS) we 
compared HGA across individual cortical recording sites in STP, comprised of HG and planum temporale 
(PT), versus STG/STS. Across all channels, STG/STS had smaller overall auditory HGA responses (p < 
10-5) and decreased vocal – non-vocal (V-NV) separability (p < 10-5) relative to STP (Fig. 3A; rank-sum 
tests). We suspected that the latter finding, which ran counter to our a priori hypothesis, may have been 
driven by a significant difference in the proportion of channels showing significant V-NV separability (88% 
STP vs 52% STG/STS; p < 10-5, Fisher exact test). However, even when excluding non-significant 
channels, STG/STS did not exhibit greater V-NV separability than STP. 

The onset of V-NV separability was also estimated in STP and STG/STS. This onset is highly 
sensitive to the response strength, i.e., channels with poor signal-to-noise might show later separability 
onsets due to noise contamination. Therefore, we calculated the median onset time for only the 50% most 
separable channels in a given ROI. This resulted in median separability onsets of 130ms in STP and 150ms 
in STG/STS.  

Next, we investigated the voice preference strength across the auditory cortical hierarchy. V-NV 
separability merely describes how distinguishable vocal responses are from non-vocal responses. A 
channel may be separable if both V and NV responses are elevated above baseline to differing degrees, 
as is the case with the PT channel in Fig. 3B, or if only V responses are elevated, demonstrated by the 
uSTS (upper bank of STS) channel. Responses exhibited 2 windows of distinct activity, consisting of an 
onset (0-500ms) and a sustained response (500-2000ms). The mean HGA response within these windows 
and across stimulus categories is shown for the 2 example channels in Fig. 3C. The category preference 
strength was then defined as the difference between mean V and NV responses, relative to their sum (Fig. 
3D). Responses that are more exclusively confined to only V stimuli exhibit HGA ratios closer to 1, while 
ratios close to 0 represent much weaker category preference. Fig. 3D confirms the apparent trend in panel 
B: the cyan PT channel displays a weak category preference (HGA ratio < 0.25) throughout the stimulus 
duration, while the green uSTS channel transitions from a moderate to a strong category preference 
between the onset and sustained window. 

Fig. 3E shows HGA ratio results across all separable channels (those with non-zero V-NV 
separability), revealing that the trend from Fig. 3B generalizes across channels. Specifically, across the 
auditory hierarchy, V-NV separability in the onset window is broadly driven by a weak category preference, 
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strengthening to a stronger preference in the sustained window (p < 10-5, sign-rank test). Furthermore, 
STG/STS channels displayed a stronger vocal category preference relative to STP channels in both 
windows (onset: p=1.4x10-6, sustained: p=4.7x10-6, rank-sum tests). Taken together, these results suggest 
that STG/STS demonstrates a strong category preference that emerges only after an initial onset window 
during which all natural stimuli are processed. 
 
Voice Feature Encoding Demonstrates Category-Level Representation of Voice in the STS 

Finally, we investigated whether categorical voice responses could be explained by lower-level 
acoustic processing. To this end, we used the audio-processing software OpenSMILE to extract acoustic 
features of varying complexity (38, 39). Specifically, we used the functionals feature set, which produces 
statistical summaries (e.g., mean, standard deviation, peak rate) of acoustic features (e.g., loudness, 
formants, mel-frequency cepstral coefficients, jitter, shimmer) for each stimulus. An additional binary feature 
was included to indicate vocal category membership. Encoding models were built to predict onset and 
sustained mean HGA (as in Fig. 3C) for each V-NV separable channel in auditory cortex using this feature 
space. Full encoding models used the full feature space, while nested encoding models were built without 
the categorical voice feature. 

Two metrics were derived from this analysis that, when taken together, provide insight into a 
channel’s encoding properties. First, the percent of variance explained (R2) by the full model describes how 
well the input features explain the response magnitudes for a given channel. Second, the likelihood ratio 
test compares the nested to the full model and provides an estimate of the added value conferred by the 
introduction of the vocal category membership feature. Under the null hypothesis that both models fit the 
data equally well, this ratio is chi-square distributed. 

Among encoding models with significant R2 values (p < .001, permutation tests), two qualitatively 
different types of responses emerged in the STP and STG/STS. The first group, clustered in STP, 
represents auditory feature encoding and is characterized by a combination of large R2 and low χ2 values. 
These channels are well-explained by encoding models in both the onset and sustained windows but show 
minimal improvement in model performance when a vocal category feature is added. The second group of 
channels, clustered in lateral STG and STS, demonstrates categorical encoding properties by showing 
substantial model improvement (large χ2) with the addition of categorical voice information (as well as large 
R2 values). ROI analysis confirms that χ2 values were significantly larger in STG/STS compared to STP in 
both the onset (p = .017) and sustained windows (p = .013, rank-sum tests). R2 values were not significantly 
different between regions in either window.  
 
Discussion  
active for vocal soundit hits on a debate. 

The human STS has long been associated with vocal category preference, but the exact 
computations that occur in the STS remain debated (20, 24, 40). One hypothesis is that, similar to face 
processing, temporal voice regions perform a voice detection gating function in which incoming auditory 
stimuli are categorized as vocal or non-vocal prior to higher level vocal processing (41–43). If such a model 
were correct, one would expect category-level encoding of vocal stimuli in temporal voice regions. Our 
results demonstrate cortical sites in the STG and STS, the putative sites of TVAs, have strong vocal 
category preference using two distinct voice localizer tasks. Notably, the data show that voice category 
preference strengthens along the auditory cortical hierarchy from STP to STG/STS in a temporally dynamic 
fashion, with an initial less-specific onset response followed by a sustained response with pronounced 
category preference in STG/STS. Importantly, our results also demonstrate that higher order voice 
preferring sites in the STG/STS are driven most robustly by voice category, rather than lower-level acoustic 
features. In contrast, voice-sensitive sites in the STP were driven primarily by acoustic rather than voice 
category features. 

Whether voice category selectivity in human auditory cortex is driven by low-level acoustic features 
or whether neural response selectivity actually reflects more abstract representation of voice category 
remains an open question (12, 20, 24); some have suggested that voice specialization actually reflects 
specialization for speech (20, 21, 24, 44). First, our results show that while speech information plays a role 
in vocal neural coding, vocal decoding can occur even in the absence of speech. Second, our encoding 
model results demonstrate that in the STG/STS voice category plays a far more influential than low-level 
acoustic features. Thus, our results support a model in which there is a gradient of voice category selectivity 
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across the auditory hierarchy, with lower-level acoustic features playing the most important role in 
supratemporal plane, and strong voice category selectivity emerging in bilateral STG/STS.  

This study also sheds light on critical temporal dynamics of voice processing across the auditory 
system. Previous HD-EEG work reported an N200 signal distinguishing vocal from non-vocal stimuli with 
an onset at 164ms (45). Meanwhile, a subsequent MEG study showed a dissociation in the neural activity 
of vocal and non-vocal activity starting at 150ms (46). These studies both inferred a similar localization of 
this effect: the MEG study showed maximal dissociation around bilateral STS, while the HD-EEG study also 
proposed a similar anatomical locus. In agreement with these findings, we observed an onset of V-NV 
separability around 150ms in STG/STS channels. Interestingly, our decoding results revealed a slightly 
earlier onset across auditory cortex, starting between 50-150ms. These results may be due to decoding 
models exhibiting higher sensitivity to early weak separability, given the inclusion of multiple channels 
simultaneously. 

While we found that separability between vocal and non-vocal responses is maximal in STP, several 
response characteristics suggest that voice selectivity is localized in STG/STS. Vocal category preference 
strength and categorical voice encoding are both stronger in this region, particularly during the sustained 
window following onset responses. In contrast, STP sites that display V-NV separability show a weak 
category preference strength, possibly related to acoustic feature encoding rather than true category 
specificity. This explanation is supported by the finding that responses in this region encode acoustic but 
not categorical features. Additionally, our results support the idea of dynamic selectivity (47) in the STS (i.e. 
there are two distinct phases of selectivity), whereby vocal category preference strength evolves from weak 
during the onset window to strong during the sustained response. 

The NatS stimulus set was not designed as a voice localizer and thus possesses a lower proportion 
of non-speech vocal stimuli. To ensure this stimulus set functioned similarly as a temporal voice area 
localizer to VL, we performed a cross-decoding analysis between the natural sounds and voice localizer 
paradigms, which show that responses to vocal versus non-vocal sounds are similar across these separate 
stimulus sets (Fig 2C). This stands in contrast to functional neuroimaging work that used the NatS stimulus 
set to show that temporal voice regions may not exist (14). A recent study using artificially-generated 
sounds demonstrated that temporal voice regions may encode vocal perceptual quality, i.e., the extent to 
which a sound is voice-like (48). Since the environmental sounds stimuli do not sufficiently sample across 
this perceptual continuum, the current data are unable to shed light on this possibility directly. However, a 
weak (STP) versus strong (STG/STS) category preference strength could reflect encoding of acoustic and 
perceptual features respectively.  
 We demonstrate dynamic category-driven encoding of voice in the human STG/STS. Further, with 
the spatiotemporal resolution of intracerebral recordings, our results demonstrate a gradient of selectivity 
across auditory processing regions with distinct temporal dynamics underlying different aspects of voice 
processing. Taken together, our findings support a voice gating mechanism of voice coding by temporal 
voice regions.  
 
Materials and Methods 
 
Participants and electrode implantation 
 

sEEG recordings of the STS, STG, and STP (including HG) were performed in 8 neurosurgical 
patients with drug-resistant epilepsy as part of clinical evaluation for epilepsy surgery. Written informed 
consent and assent (for patients >14 yrs old) was obtained from all subjects. The research protocol was 
approved by the University of Pittsburgh Institutional Review Board.  

All patients underwent preoperative neuropsychological evaluation. sEEG electrode implantation 
was performed as previously described (31). Briefly, Dixi Medical Microdeep® electrodes were used, with 
a diameter of 0.8mm, contact length of 2mm, and center-to-center spacing of 3.5mm. Electrodes contained 
between 8 and 18 contacts each. 
 
Data collection 
 

Patients performed an auditory 1-back task using short clips of natural environmental sounds (see 
next section for more details). Audio was presented binaurally via Etymotic ER-3C earphones, with volume 
adjusted to a comfortable level for each patient separately before the start of the experiment(s). Inter-
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stimulus intervals were randomized uniformly between 1-2 s. Patients were instructed to indicate 1-back 
stimulus repeats using a button box (Response Time Box, v6). Repeats occurred on about 16% of all trials. 
Each stimulus was presented a minimum of 2 (VL) or 3 (NatS) times, though the 1-back task design resulted 
in some stimuli with more presentations (up to 4 for VL and 5 for NatS). 

Neural data were recorded at 1kHz using the Ripple Grapevine Nomad system (model R02000) with 
a real-time notch filter applied at 60, 120, and 180Hz. For patients P3-P8, the audio signal was split using 
a commercial splitter with separate volume controls; for P1-P2, the audio was fed into a distribution amplifier 
(Rolls, model DA134). In both cases, the split audio signal was presented to patients and simultaneously 
recorded synchronously with neural data by the Ripple amplifier. 

 
Acoustic stimuli 
 

Two different types of stimuli were used in separate experiments, which we refer to as Voice Localizer 
(VL) and Natural Sounds (NatS). VL stimuli were modified versions of the stimuli used in the Belin voice 
localizer (6). These original stimuli were designed for fMRI experiments and consisted of 8 s clips, with 
each clip containing a series of either vocal (e.g., speech, laughter, coughing) or non-vocal (e.g., 
mechanical, music, animal vocalizations) sounds only. These stimuli were adapted to capitalize on the 
temporal resolution afforded by intracranial research: PRAAT silence-based segmentation was used to 
extract and save individual sounds from each clip (49). Sounds with duration shorter than 550 ms were 
discarded; all other sounds were shortened to this duration, linear-ramped on and off by 50 ms, and rms-
normalized. This procedure generated 80 non-vocal and 72 vocal sounds; to ensure balanced classes, only 
the first 72 non-vocal sounds were selected. 

NatS stimuli were the same as those originally used by Norman-Haignere et al. (20). Each of the 165 
sounds are 2s in duration and belong to one of 11 categories, defined in the original study, which we 
grouped into superordinate categories of vocal and non-vocal sounds. Vocal categories consisted of 
English and foreign speech, human vocalizations, and lyrical music. Similar to VL, non-vocal sounds were 
more varied and included categories such as mechanical sounds, non-lyrical music, and animal 
vocalizations. 

Importantly, the NatS stimulus set contained human non-speech vocal sounds that might not activate 
voice-selective regions of cortex. Specifically, crowd-generated cheering and laughter may be categorically 
different from vocal sounds generated by individuals. Furthermore, following the heuristic outlined by Belin 
et al. (6), we excluded sounds without vocal fold vibrations, namely breathing and whistling. Based on these 
two considerations, we reclassified four NatS stimuli from the vocal to the non-vocal category. 

 
Data preprocessing 
 

A common average reference (CAR) filter was used to remove noise common across channels. 
Voltages were epoched by extracting a window of 1000ms before stimulus onset to 1450ms after offset in 
the case of VL, or 1000ms after offset for NatS. Each channel was then normalized relative to the pre-
stimulus period across all trials. All channels whose centroid was further than 3mm from the closest cortical 
vertex (either the pial surface or the grey-white matter boundary) were excluded. 

To estimate broadband high-gamma activity (HGA), epoched data was forward- and reverse-filtered 
using a bank of 8 bandpass Butterworth filters (6th order), with log-spaced center frequencies (70-150Hz) 
and bandwidths (16-64Hz). The analytic signal amplitude was extracted using the Hilbert transform. Each 
band was then normalized relative to a common baseline across all trials; in estimating the mean and 
standard deviation for normalization, the earliest 100 ms of baseline were discarded due to edge effects, 
and the 100 ms immediately preceding stimulus onset were discarded to prevent any contamination from 
low-latency responses. HGA was then calculated as the mean across these 8 bands, which was down-
sampled to 100 Hz and clipped to a window of 900 ms before onset to 900 ms after offset. 

Auditory-responsive channels were identified using 2-sample t-tests comparing mean HGA between 
a 500 ms window immediately following stimulus onset to a baseline period defined as -600 to -100ms pre-
onset. Only channels with p < .05 (FDR-corrected) were used in subsequent analysis. For patients that 
completed both VL and NatS, channels were labeled auditory-responsive if they surpassed this threshold 
in at least one of the 2 tasks. At this point, HGA was averaged across all presentations of a stimulus, which 
we refer to as a stimulus response. Unless otherwise noted, stimulus responses (as opposed to single-trial 
responses) were used in all subsequent analysis. 
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Decoding analysis 
 

For each patient, decoding was performed via L1-regularized logistic regression using the MATLAB 
package glmnet. Input features consisted of mean HGA in 100ms windows, sliding every 50 ms. Relative 
to stimulus onset, window centers spanned from -50 to 1500 ms for VL and -50 to 2450 ms for NatS. Full 
models that included all channels and time windows, as well as sliding models that used single windows, 
were built. 

In addition to regularization, cross validation (5-fold) was used to prevent overfitting and explore 
generalizability. Within each cross-validation fold, input features in the training and testing sets were z-
scored relative to the training set. Additionally, each observation was weighted by the inverse of its class 
prevalence during the training phase, to prevent models from biasing toward the most numerous class. This 
step was especially important for NatS, due to a large class imbalance (37 vocal, 128 non-vocal stimuli).  
Lastly, an inner-loop 10-fold cross validation was used to test 20 different regularization parameters; the 
parameter was selected based on the model that minimized the mean deviance across inner folds. 
Balanced decoding accuracies were reported, in which the within-class accuracy for vocal and non-vocal 
stimuli were calculated separately and then averaged. Non-speech vocal decoding (Fig. 2A, light blue bars) 
was performed using single-trial (as opposed to stimulus) responses, due to the scarcity of NSV exemplars 
in the NatS stimulus set. For cross-task decoding, input features were limited to the shorter stimulus 
duration of VL, i.e., only windows within the first 550 ms. A single model was built on all data in one task 
and then tested on all data in the other task. 

Statistical significance was assessed for sliding window decoding via a permutation-based clustering 
approach (50). Briefly, V-NV labels were shuffled, and sliding window decoding was performed 1000 times. 
At each window, this generated separate accuracy null distributions from which critical values were drawn, 
identified as the upper 95th percentile. For each permutation, values that exceeded their window’s critical 
threshold were saved, and temporally adjacent values were summed to create a cluster mass. The max 
cluster mass for each permutation was stored, generating a null distribution of 1000 cluster masses (if a 
permutation contained no windows that exceeded threshold, the max cluster mass was set to 0). Finally, 
the same procedure was applied to the true (unshuffled) sliding window accuracies, and each resultant 
cluster mass was assigned a p-value equal to the proportion of null cluster masses that exceeded it. 

 
Single-channel analysis 
 

Single channel V versus NV separability was estimated using a similar approach. However, rather 
than using decoding accuracy, time-varying 2-sample t-statistics were calculated on single-trial responses. 
V-NV separability (Fig. 3A) was quantified as the sum cluster mass, i.e., the sum of masses for all significant 
(p < .001) clusters for a given channel. The importance of using this metric (as opposed to the max cluster 
mass) can be appreciated in the upper panel of Fig. 3B: summing across this channel’s 5 separate clusters 
gives a more accurate description of the overall separability. 

Across V-NV separable channels, HGA response profiles appeared to share consistent 
morphological characteristics, namely onset and sustained responses of varying magnitudes. The longer 
stimulus durations in the NatS stimulus set provides a better estimate of sustained response properties and 
is thus the focus of this analysis. We first averaged HGA across an onset window (initial 500ms following 
stimulus onset) and a sustained window (remainder of the stimulus length, 500-2000ms), and then 
calculated the mean HGA within V and NV stimuli. To investigate response characteristics to V versus NV 
stimuli, we then calculated the HGA ratio, defined as the difference in mean HGA between these stimulus 
categories, normalized to the sum of these responses. Normalization helps account for a potential signal-
to-noise confound: if a given channel’s overall response is scaled, the V-NV difference will be amplified as 
well. 

 

𝑟!"# =
𝐻𝐺𝐴$ −𝐻𝐺𝐴%$
𝐻𝐺𝐴$ +𝐻𝐺𝐴%$

 

 
Assuming positive values for both HGAv and HGAnv, this measure ranges between –1 and 1, with a 

value near 1 indicating a strong preference for vocal stimuli and a value near –1 indicating a strong 
preference for non-vocal stimuli. Among auditory-responsive channels that also demonstrated V-NV 
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separability, a small fraction of them (7%) exhibited negative mean HGAs across NV stimuli, representing 
a NV-associated decrease in the HGA response relative to baseline. To constrain the HGA ratio between 
–1 and 1, these values were set to 0 before the calculation. 

 
Encoding models 
 

By averaging across stimulus categories, the acoustic variability between individual stimuli has thus 
far been ignored. One possibility is that channels exhibiting a strong preference for vocal sounds are 
actually encoding lower-level acoustic properties that are inherently different between vocal and non-vocal 
sounds. To explore this possibility, encoding models were used to predict stimulus responses, i.e., mean 
HGA in both onset and sustained windows, for each channel that exhibited V-NV separability. Our approach 
closely mirrored the encoding model methods reported by Staib and Fruholz (48).  

The OpenSMILE acoustic processing package, implemented in python, was used to extract the 
“functionals” set of 88 acoustic features for each NatS stimulus (38, 39). These features consist of statistical 
summaries (e.g., mean, standard deviation, percentiles) of acoustic features of varying complexity (e.g., 
loudness, mel-frequency cepstral coefficients, spectral flux, formant values). This feature space contained 
a high degree of collinearity between features; therefore, we used principal component analysis to reduce 
its dimensionality. The first n principal components that captured 99.99% of the variance in the original 
feature space were kept. Lastly, a categorical feature was added indicating vocal category membership. 
One stimulus (chopping food) was removed due to outliers in its acoustic features.  

Linear regression encoding models were then built in one of two ways, corresponding to two relevant 
measures of interest. First, the overall model fit was calculated as the out-of-sample R2 value using leave-
one-out cross-validation. Statistical significance of R2 values was assessed using permutation tests with 
1000 permutations, in which rows of the feature matrix were shuffled before model building. 

Second, the likelihood ratio test statistic was calculated between the full model and a nested version 
that excluded the vocal category feature. This statistic estimates the likelihood that the vocal category 
feature provides additional information beyond the acoustic features and is χ2 distributed under the null 
hypothesis. Log likelihoods for both full and nested models were attained from models trained on full 
stimulus sets.  
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Tables 
Table 1. Participant epilepsy and behavioral characteristics  

 
  

 Summary  P1 P2 P3 P4 P5 P6 P7 P8 
Age (years) 15 (3) 16 16 9 18 13 15 15 14 
Female, n (%) 2 (25) Male Male Male Male Female Male Female Male 
Right-handed, n (%) 7 (87) Left Right Right Right Right Right Right Right 
WASI-II score 85 (16) 76* 62* 67 95 94 81 102 104 
Left hemisphere language  5 (63) Left Left Left Right Bilateral Left Right Left 
Epilepsy onset (years) 8 (5) 1 0 8 12 3 10 13 13 

Seizure locus  
Right 
parietal 
lobe 

Right 
temporal 
lobe 

Frontal lobe 
Left 
frontotemporal, 
Heschl's gyrus 

Right 
Amygdal
a 

Mesial 
temporal 
lobe 

Mesial 
tempor
al lobe 

Left 
temporal 
gyrus 

Epilepsy etiology  Unknown Unknown Autoimmune 
encephalitis 

Autoimmune 
encephalitis 

Mesial 
temporal 
sclerosis  

Heterotopias 
and FCD FCD 

Pilocytic 
astrocyto
ma 

Electrode contacts  
(auditory responsive / all) 72 / 256 70 / 226 32 / 120 37 / 127 28 / 104 55 / 117 58 / 

117 47 / 52 

NatSounds performance (% 
correct) 85 (16) 100 99 55.6 74.7 73.7 93.9 96 90.9 

NatSounds median RT (ms) 1153 (346) 929 1291 1064 1145 1912 818 1174 887 
VL performance (% correct) 88 (15) 100 71.4 91.1 - - - - - 
VL median RT (ms) 837 (136) 682 898 932 - - - - - 
Summary statistics reported as mead (SD) unless otherwise specified; * = WISC-V; FCD = focal cortical dysplasia 
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Figures  
 

 
Figure 1. Auditory-evoked high gamma activity. (A) Example channel in left Heschl’s gyrus, patient P7. 
(B) Auditory-evoked spectral response averaged across all NatS stimuli in channel from (A). Vertical lines 
represent stimulus on- and offset, with horizontal lines demarcating frequency boundaries for broadband 
high gamma activity (HGA) at 70 and 150 Hz. (C) Mean HGA in the same channel. (D) Auditory 
responsiveness, quantified as the 2-sample t-value between mean HGA in 500ms pre- and post-stimulus 
onset windows. Small white dots represent channels with no auditory response, i.e., t-values that failed to 
reach significance (p < .05, FDR-corrected).   

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 23, 2021. ; https://doi.org/10.1101/2021.11.23.469682doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.23.469682
http://creativecommons.org/licenses/by-nd/4.0/


 
 

14 
 

 
Figure 2. Decoding accuracy results. (A) Full model (i.e., all channels and time windows) decoding 
accuracy of vocal vs. non-vocal for each patient. Dark and light blue bars correspond to NatS results with 
speech stimuli included or excluded, respectively (e.g., light blue is non-speech human vocalizations vs. 
non-vocal auditory stimuli). Dots represent statistical significance (white: p < .001, red: p < .01, 
permutation tests). (B) Sliding window results. Vertical lines represent stimulus offset for the 2 tasks, with 
horizontal lines showing fraction of patients with statistically significant decoding in that window (p < .001, 
cluster-based permutation tests). (C) Cross-task decoding accuracy, with color indicating the training set 
(white: p < .001, red: p < .01, permutation tests). 
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 Figure 3. Single channel results. (A) HGA separability between vocal and non-vocal Natural Sounds 
stimuli, across all patients. Channel sizes are proportional to t-statistics comparing auditory response 
magnitude between 500ms pre- and post-stimulus onset windows, same as Fig. 1D. (B) HGA for 2 
example channels located in planum temporale (upper panel) and near the STS/STG border (lower). 
Black bars show clusters of significantly different timepoints; V-NV separability (panels A, E) is the sum of 
all clusters for a given channel. Note that while both channels achieve V-NV separability throughout the 
duration of the stimulus, the magnitude of the non-vocal response differs between the 2 channels, with 
the NV response of the STG channel returning near baseline after the initial onset window. In contrast, 
the V response remains elevated in both onset and sustained windows, for both the PT and uSTS 
channels. (C) Mean HGA averaged across two different windows: onset (0-500ms) and sustained (500-
2000ms). (D) The HGA ratio is calculated as the difference between vocal and non-vocal responses, 
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relative to their sum. This metric, spanning from -1 to 1, describes a channel’s vocal category preference 
strength: a value near 1 (or -1) represents a channel that responds only to vocal (or non-vocal) stimuli, 
while a value of 0 represents equal HGA responses to both stimulus categories. (E) All channels with V-
NV separability exhibit onset responses to both stimulus categories: in this early window, HGA ratios 
reveal that STG and STS (compared to STP) shows a slightly diminished response to non-vocal relative 
to vocal stimuli. During the sustained window, a strong preference for vocal stimuli emerges in STG and 
STS, while non-vocal responses return near silent baseline. 
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 Figure 4. Encoding model results. Linear regression models demonstrate encoding of acoustic features 
in STP and category-like representations in STG and STS. Model inputs consisted of both low- and high-
level acoustic features such as loudness, MFCCs, spectral flux, and relative formant ratios. Full models 
also included a binary feature indicating vocal category membership. Likelihood ratio test statistics 
compare this full model to a nested, acoustic-only model and thus describe the improvement conferred by 
V-NV class information. Well-fit channels in STP are modeled best by acoustic features throughout both 
the onset and sustained windows. Meanwhile, STG and STS channels also perform well and benefit from 
the addition of category-level information, with a slight skew toward the later sustained window. 
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