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Abstract

Enhancer is a class of non-coding DNA cis-acting elements that plays a crucial role in
the development of eukaryotes for their transcription. Computational methods for
predicting enhancers have been developed and achieve satisfactory performance.
However, existing computational methods suffer from experience-based feature
engineering and lack of interpretability, which not only limit the representation ability
of the models to some extent, but also make it difficult to provide interpretable analysis
of the model prediction findings.In this paper, we propose a novel deep-learning-based
model, iEnhancer-CLA, for identifying enhancers and their strengths. Specifically,
iEnhancer-CLA automatically learns sequence 1D features through multiscale
convolutional neural networks (CNN), and employs a self-attention mechanism to
represent global features formed by multiple elements (multibody effects). In particular,
the model can provide an interpretable analysis of the enhancer motifs and key base
signals by decoupling CNN modules and generating self-attention weights. To avoid the
bias of setting hyperparameters manually, we construct Bayesian optimization methods
to obtain model global optimization hyperparameters. The results demonstrate that our
method outperforms existing predictors in terms of accuracy for identifying enhancers
and their strengths. Importantly, our analyses found that the distribution of bases in
enhancers is uneven and the base G contents are more enriched, while the distribution
of bases in non-enhancers is relatively even. This result contributes to the improvement
of prediction performance and thus facilitates revealing an in-depth understanding of
the potential functional mechanisms of enhancers.

Author summary

The enhancers contain many subspecies and the accuracy of existing models is difficult 1

to improve due to the small data set. Motivated by the need for accurate and efficient 2

methods to predict enhancer types, we developed a self-attention deep learning model 3

iEnhancer-CLA, the aim is to be able to distinguish effectively and quickly between 4

subspecies of enhancers and whether they are enhancers or not. The model is able to 5

learn sequence features effectively through the combination of multi-scale CNN blocks, 6
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BLSTM layers, and self-attention mechanisms, thus improving the accuracy of the 7

model. Encouragingly, by decoupling the CNN layer it was found that the layer was 8

effective in learning the motif of the sequences, which in combination with the 9

self-attention weights could provide interpretability to the model. We further performed 10

sequence analysis in conjunction with the model-generated weights and discovered 11

differences in enhancer and non-enhancer sequence characteristics. This phenomenon 12

can be a guide for the construction of subsequent models for identifying enhancer 13

sequences. 14

Introduction 15

During the development of most eukaryotes, transcription is the first and key step in 16

gene expression of DNA [1,2]. Enhancers combine transcription factors (TFs), 17

cofactors, and chromatin complexes to act on the promoter to activate or enhance gene 18

transcription [3–6] . In addition, the genetic variation in enhancers was shown to be 19

associated with many human diseases, such as various types of cancer and inflammatory 20

bowel disease [7–14]. Therefore, predicting enhancers becomes a challenging job. 21

Traditional enhancer prediction is mainly conducted by biological experiments, such 22

as comparing enhancers with TFs [15–17]. However, the biological approach to identify 23

enhancers through experimental techniques is time consuming and inefficient. Thus, 24

many computational methods, such as CSI-ANN [18], ChromeGenSVM [19], rfECS 25

[20] have been proposed in recent years to predict enhancers and mitigation the 26

limitations of experimental methods. 27

Enhancers are a large set of functional elements consisting of many different 28

subgroups [21], such as strong enhancers, weak enhancers, inhibitory enhancers, and 29

inactive enhancers. Early computational methods are unable to identify the strength of 30

enhancers. For example, EnhancerFinder, GKM- SVM and DEEP [22–24]. 31

iEnhancer-2L [25] is first proposed to solve the enhancer strength prediction problem 32

using a two-layer model. The accuracy is difficult to improve effectively because of the 33

small dataset and insufficient optimization of the base classifier. Despite, many models 34

are proposed to improve the accuracy of predicting enhancers and their strengths such as 35

EnhancerDBN [26], iEnhancer-EL [27], iEnhancer-5Step [28], iEnhancer-ECNN [29] 36

but the accuracy improvement was not significant. The latest model iEnhancer-GAN 37

[30],uses adversarial neural networks to compensate for the significant improvement in 38

enhancer recognition accuracy from small datasets. However, current machine learning 39

methods are still in the black-box learning stage and it is difficult to make interpretable 40

analysis of the model. Although, our previous work iEnhancer-XG [31] have made 41

interpretable analysis of the feature extraction of the model. Nevertheless, there is still 42

much room for improving the interpretability of models and sequences. 43

In this study, a novel deep learning framework called iEnhancer-CLA is proposed to 44

identify enhancers and their strengths. The model provides a visualization of the model 45

by decoupling the CNN layers to extract position weight matrices (PWMs) and 46

generating the self-attention weights. Provide sequence interpretability by using 47

self-attention weights in combination with other sequence analysis tools, we obtained 48

differences in base combination specificity and base content of different kinds of 49

sequences. The contributions of our model are as follows: 50

• Construction of a novel multi-scale deep-learning model for identifying enhancers 51

and their strengths. The model could also be extended to predict more enhancer 52

subtypes for future prediction development. 53

• Using multiscale combination module and Bayesian optimization. Multi-scale 54

modules could extract more sequences of different features and Bayesian 55
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optimization could obtain global optimal hyperparameters to improve the 56

efficiency and accuracy of the model. 57

• Visualization analysis of enhancer sequences and model. The multi-head 58

self-attention layer could generate self-attention weights for each sequence. We 59

find the pattern of bases that are evenly distributed in non-enhancers, in which A 60

and T bases are more enriched, and bases that are not evenly distributed in 61

enhancers, in which base G is enriched that to guide the subsequent drug 62

development. 63

Materials and methods 64

Benchmark dataset 65

In the experiments, the dataset is divided into a training set and an independent test 66

set according to the method of Liu et al [25] (Please see the supplementary file, sec.1 67

for details). 68

Model framework 69

The basic framework diagram of iEnhancer-CLA is shown in Fig 1. The enhancer 70

sequence consists of four nucleotides, namely, adenine (A), guanine (G), cytosine (C), 71

and thymine (T). Enhancer sequences for the four nucleotides (A, C, G, and T) are 72

encoded using one-hot encoding (OHE). The input sequence length is fixed at 200 nt to 73

use the small-batch technique for training and prediction. Therefore, the sequence 74

matrix obtained from the input layer is a fixed-length matrix (4*T, T=200) after using 75

OHE. For the model to learn more sequence features of different lengths, a multi-scale 76

CNN layer with 48 filters of 15 lengths and 48 filters of 25 lengths is applied. With the 77

multi-scale CNN layer being followed by the maximum pooling layer, only the highest 78

value of each four consecutive hidden neurons (pooling length=4 and pooling step=4) is 79

retained in the convolutional layer. The highest value of the layer is retained such that 80

length T ′ = T . After the maximum pooling layer filtered out the highest values, the 81

next layer is the BLSTM layer. The sequence length remained the same after BLSTM, 82

and only the encoding size is changed to 32. Lastly, the multi-head self-attention layer 83

is applied. In this frame work, the multi-head self-attention mechanism is used to assess 84

the contribution of sequence regions for localization by multiple heads (head=6), which 85

has the ability to generate self-attention weights for each sequence during the prediction. 86

Stacking of deep learning models at different scales gives the model the ability to adapt 87

to more complex higher order functions. Then, the outputs of the two multi-head 88

self-attention layers are concatenated and fully connected to the output layer, which 89

contains three neurons for the three localization categories. Finally, a softmax 90

activation function is utilized in the output layer, resulting in a prediction value 91

between 0 and 1 for each category. 92

Multi-head self-attention 93

The multi-head self-attention model is first established to be used in natural language 94

processing, proposed by [32]. This approach is mainly able to effectively address the 95

problem that the overall semantics of a sentence is composed of multiple components, 96

and the multi-head self-attention model could focus on different parts of the utterance. 97

The method is borrowed in the present work, and the number of heads is set to six 98

(derived from hyperparameter tuning). The final weight of the non-enhancer and 99

enhancer are the average weight of the weights obtained for the number of six heads. 100
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Fig 1. A flowchart of iEnhancer-CLA works. Non-enhancers and enhancers
sequences are tagged, sequence fixed length to 200nt and, one-hot encoded. The features
are input into the model, and hyperparameters of the model are obtained by Bayesian
optimization. Final prediction results of non-enhancers and enhancers can be obtained
from the model. The attention weights can be used for visualization of the sequences.

On the basis of this weight, which part of the enhancer determines whether the 101

sequence is an enhancer or not and the strength of the enhancer could be analyzed. The 102

attention matrix A must first be calculated using Eq (1) to obtain the weights. 103

A = softmax(Ws2 tanh(Ws1H
T )), (1)

where H is the 50-by-32 hidden neuron of the path output obtained from each 104

BLSTM layer; Ws1 is a weight matrix of shape D − by − 32; D is the attention 105

dimension hyperparameter, which is 60; Ws2 is the matrix of the parameters with shape 106

heads− by −D; and the head denotes the number of attention heads, which is 6. Ws1 107

and Ws2 are set to the same weight loss values to overcome overfitting and obtain 108

sparse energy scores. The embedding sequence M , calculated as a weighted sum by 109

multiplying A and H as in Eq (2), is also retained for further prediction. 110

M = AH, (2)

When training the model, the following penalty term P in Eq (3) is introduced. 111

P =
∥∥(AAT − I)

∥∥2
F
, (3)

where A is the attention matrix, I is an identity matrix, and ‖·‖F denotes the 112

Frobenius parametrization of the matrix. The greater the similarity between these two 113
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attention vectors is, the higher the loss. Thus, by this penalty term, the self-attention 114

model is able to focus on different parts of the enhancer sequence. The loss weight of 115

the penalization term is 0.001. 116

Sequence binding motifs visualization in CNN layer 117

The position weights matrices (PWM) of the sequence binding motifs acquired in each 118

convolutional kernel can be obtained from the CNN filter. Here we follow the approach 119

of Wang et al [33] to obtain the position weights. In the two types of CNN filters (the 120

15-length, 25-length), we scan each CNN layer to obtain the motifs learned by the 121

convolutional kernel in it. For each convolutional kernel we obtain a set of sequence 122

fragments that have the same length as the convolutional kernel. Finally, we obtained 123

48 PWMs for 15-length CNN,48 PWMs for 25-length CNN. 124

Models and sequences visualization 125

The model is visualized using a combination of the following two methods. (1) 126

Obtaining PWMs from the CNN layer and comparing them with the motifs of the 127

sequences can prove the validity of the sequence features learned in this layer. (2) 128

Visualize the sequence self-attention weights generated by the self-attention layer to find 129

out the base combinations of the sequence positions corresponding to the highest values 130

of the weights, which can clearly understand the sequence features learned by this layer. 131

Visual images of the distribution of bases at the first and end; gapped motif and 132

ungapped motif of three different sequences, are obtained separately using different 133

methods. The visualization method for the enhancer sequence is as follows: 134

• The ”ggseqlogo [34]” package is applied to visualize the frequency and attention 135

weights of each base at each position, in which the sequence is divided into two 136

segments being the first 50 bases and the last 50 bases of the sequence. This 137

division allows analyzing the attention at the head end and the end. 138

• Next, the ”GLAM2 [35]” method, a tool in MEME suite 5.1.0, to use to find 139

variable-length, gapped motifs to analyze the attention of the sequence in the 140

middle of the enhancer. 141

• The most recent tool ”STREME [36]” was used to discover sequence ungapped 142

motifs. Using this motif as a sequence motif is compared with PWMs obtained in 143

CNN convolution kernels on the ”TOMTOM [37]” tool. 144

• Visualize the sequence self-attention weights generated in the self-attention layer 145

to find the base combinations at the sequence positions corresponding to the 146

highest values in them. 147

Parameter tuning and neural network training 148

The hyperparameters used in the model are the best values obtained by Bayesian 149

optimization, including hidden dimension; number of the attention; dropout rate; etc. 150

In the iEnhancer-CLA model 5 subsets of data sets are obtained by five-fold cross 151

validation respectively and Bayesian optimization is performed on each of the five 152

subsets. The hyperparameters of the sub-model with the highest accuracy are set as the 153

global optimal model. The Adam stochastic optimization method [38] is also used, with 154

a learning rate of 0.001 and a learning rate decay of 5e-5. 155

The iEnhancer-CLA model uses five-fold cross-validation to dividing the dataset into 156

five parts, four of which are applied for model training and the remaining one for 157

November 22, 2021 5/15

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 23, 2021. ; https://doi.org/10.1101/2021.11.23.469658doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.23.469658
http://creativecommons.org/licenses/by/4.0/


evaluation. The final iEnhancer-CLA model is a collection of five models, and the 158

predictions of the enhancers are the average of the predictions of the five models. For a 159

classification problem, the training goal is to distinguish as little as possible between the 160

prediction vector and the true label vector. The prediction of an enhancers sample is 161

denoted as xi, and its corresponding true label vector is denoted as yi. Each element of 162

y is a binary value, denoted as yij , j ∈ [1, 2, 3], indicating whether the enhancer sample 163

belongs to a certain positional category. If yij is 1, then xi belongs to category j; 164

otherwise, it belongs to 0. A binary cross-entropy loss function is applied to process 165

each category independently. The loss of sample xi is defined as follows: 166

Lossi =
3∑
1

yij · log pij + (1− yij) · log (1− pij) , (4)

where pij ∈ [0, 1]is an element of pi, which represents the prediction vector of sample 167

xi. Given the three locus categories, the loss of sample xi is the sum of the losses of the 168

individual locus categories. In the construction of this deep learning model, the 169

framework of TensorFlow 1.13.1 and Keras 2.3.0 was used to implement it. The model 170

was trained and tested using GPU Nvidia RTX 2080ti. 171

Results and discussion 172

Performance evaluation metrics 173

Here, a five-fold cross-validation method was used to obtain fair data. The area under 174

the ROC curve (AUC), accuracy-recall (PR) curve and Matthew correlation coefficient 175

(MCC) were used to evaluate the performance of the model. Accuracy (ACC), 176

specificity (SP) and MCC were also used to compare the performance with other models 177

(Please see the supplementary file, sec.2 for details). 178

Sequence analysis 179

In this model, we first extracted the first 50 bases at the beginning and 50 bases at the 180

end of the sequence for three kinds of sequences (strong enhancer, weak enhancer, 181

non-enhancer). Using the ”ggseqlogo” sequence visualization tool, and the results are 182

shown in Fig 2. The visualization results of the non-enhancer are shown in Figure 2A 183

and 2B. Compared with the enhancer sequence the distribution of bases in the 184

non-enhancer sequence is more uniform, and it can be seen from the figure that the 185

signals of all four bases are obvious. The signal intensity of bases base A and T is 186

higher, which proves that bases A and T are more enriched in the sequences. Strong 187

enhancer sequences are shown in Figure 2C and 2D. It can be seen from the figure that 188

the signal disappears in many positions, which proves that the distribution of bases of 189

different strong enhancer sequences is not specific, and also proves the uneven 190

distribution of bases. From the position of signal, the signal of bases G and C is more 191

significant. Weak enhancer sequences are shown in Figure 2E and 2F, a few positions of 192

the weak enhancer sequences showed the loss of base signals, which proved that the 193

distribution of bases in different weak enhancer sequences was similar. Meanwhile, the 194

signals of bases A and T are more obvious, which proves that bases A and T are more 195

enriched in the sequences. 196

We summarize the visualization results of the three different sequences to obtain the 197

following conclusions: The results from the signal distribution of bases at the first and 198

last ends. The distribution of bases in different sequences in the weak enhancer and 199

non-enhancer sequences were similar. The distribution of bases in different sequences of 200
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A B

C D

E F

Fig 2. Note the 50-base attention weights near the end of the
non-enhancer and enhancer sequences level, which indicates a potential
localization signal. (A) First segment of non-enhancer. (B) Last segment of
non-enhancer. (C) First segment of strong enhancer. (D) Last segment of strong
enhancer. (E) First segment of weak enhancer. (F) Last segment of weak enhancer.

strong enhancers was in different positions, so signal deletion occurred. From the results 201

of signal intensity of bases. The signal intensities of bases A and T of weak enhancer and 202

non-enhancer were higher, which proved that these two bases appeared more frequently 203

and more abundantly in the sequences. The higher signal intensity of bases G and C in 204

strong enhancers proves that bases G and C are more enriched in strong enhancers. 205

In ”ggseqlog”, the difference in the intensity of the base signals of the enhancers and 206

non-enhancers were found at the first and last ends. Some problems from it were also 207

found, as the base signals of the strong and weak enhancers are not obvious. One 208

possible reason is that the same sequence features do not appear at the same positions. 209

Therefore, the binning signals in the middle of the enhancer sequences were analyzed 210

and visualized using the ”GLAM2” tool in the MEME suite, a method that could find 211

the same sequence features at different positions in different sequences. In Fig 3, the 212

localization signals of 300 randomly selected non-enhancer, strong-enhancer, and 213

weak-enhancer sequences were visualized. All parameters were used as default values for 214

the ”GLAM2” online tool. 215

The internal signals of two different enhancers and non-enhancers were obtained in 216

”GLAM2”. As shown in Fig 3, the signal is the same base combination at different 217

positions of different sequences of three kinds of sequences. Regular expression (RE) of 218

the motif refers to the same base combination sequence, where the concept of A/T is 219

that the base at this position could be A or T, while X represents could be any base. 220

The motifs of different sequences in the Fig 3 have their corresponding scores. The 221

higher the score, the more frequent the motif appears in the sequence. We can obtain 222
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Fig 3. The GLAM2 results for segments from non-enhancers and
enhancers sequences. For each result, its rank, score, sequence logo and the regular
expression (RE) of the motif are given.

the base combination characteristics of the three different sequences from Fig 3, which 223

is a guide for the subsequent enhancer prediction. 224

We have combined the two methods to conclude the following from Fig 2 and 3. 225

The distribution of bases in different sequences in the non-enhancer is similar, with 226

higher intensity of base A and T signals. The most frequent base combination in the 227

non-enhancer was found to be (RE: 228

A-T-A/T-A/T-A/T-G-A/CT-A/T-A/G-A/CG-A/T-A/T-T) by ”GLAM2”. Combining 229

the above findings leads to the conclusion that bases A and T are more enriched in 230

non-enhancers than G and C. The distribution of the bases of different strong enhancer 231

sequences is different, and the signal intensity of bases G and C are higher. 232

Using ”GLAM2”, the base sequence of this sequence was found to be (RE: 233

A/TG-C/G-A/T-G-X-A/G-C/A/G/A/G-A/G-A/CG-X-A/CG-A-G-A/G-A/T-T- 234

A/T-A/G-A). Thus, it is concluded that base G is more enriched in strong enhancers. 235

The different weak enhancer sequences have similar base distribution and higher 236

intensity of base A and T signals. The most frequent base combinations in the weak 237

enhancers were found by ”GLAM2” was (RE: A/C-A/T-A/CG-A/G-A/G-A/G-A/G-X- 238

A/CG-A/G-A/G-X-A/G-A/G-A/G-A/G-X-A/G-A/G-A/CG-A/T-A/G). Thereby, the 239

base A is more enriched in the weak enhancer. 240

Analysis of CNN motifs 241

We first used ”STREME” tool to analyze the three sequences separately, and obtained 242

10 ungapped motifs from non-enhancer sequences, 4 ungapped motifs from strong 243

enhancer sequences, and 3 ungapped motifs from weak enhancer sequences. Then, in 244

the multiscale CNN filter, PWMs matrices of 2 lengths (15-length, 25-length) were 245

obtained separately. The PWMs were used to represent the sequence binding motifs. 246

Finally, we use the TOMTOM tool to map the motifs learned from each convolutional 247

kernel to each of the three different sequences motifs obtained in STREME. 248

The best match in the 15-length CNN filter is obtained as shown in Fig 4 (The top 249

half of the figure is the motif obtained in STREME, and the bottom half is the PWMs 250

extracted from the CNN filter). We can see in Figures 4A and 4B that the CNN 251

extracted PWMs are able to match the two different motifs of the non-enhancer. This 252
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also shows that the CNN layer is able to learn useful sequence features in the model. 253

The motifs of the strong and weak enhancers also have matching PWMs respectively. 254

Combining the above 6 sets of comparisons, we can conclude that in this model, the 255

first layer using CNN layer is able to learn many useful sequence features that 256

contribute to the model results. 257

Fig 4. Comparison of the motifs of non-enhancer and enhancer sequences
with the PWMs extracted by CNN. (A) and (B) Comparison of different motifs
of non-enhancer sequences with different PWMs extracted from CNN. (C) and (D)
Comparison of different motifs of strong enhancer sequences with different PWMs
extracted from CNN. (E) and (F) Comparison of different motifs of weak enhancer
sequences with different PWMs extracted from CNN.

At the same time, the ungapped motif obtained in ”STREME” is combined with the 258

results obtained by the previous two tools to further prove our conclusion. The high 259

signal intensity of bases A and T in the non-enhancer motifs in Figures 4A and 4B 260

proves that the content of bases A and T in the non-enhancer sequence is higher than 261

other bases, and the combination of bases A and T is also characteristic of the 262

non-enhancer sequences. Similarly, Figure 4C and Figure 4D show the motif obtained 263

for the strong enhancer in ”STREME” shows that the signal intensity of bases G and C 264

is higher than that of other bases. It proves that bases G and C are more enriched in 265

strong enhancers, and the combination of bases G and C is the sequence characteristic 266

of strong enhancers. Motif obtained for the weak enhancer in ”STREME” in Figure 4E 267

and Figure 4F shows that the signal intensity of bases A and G is higher than that of 268

other bases. It proves that bases A and G are more enriched in weak enhancers, and the 269

combination of bases A and G is the sequence characteristic of weak enhancers. 270

Visualization of attention weights on sequences 271

In this work, the self-attention layer is able to learn the features of each sequence and 272

generate the self-attention weights of the sequence. With the weights, we can find the 273

differences in base combinations between different kinds of sequences. First, sequences 274

were randomly selected among three different sequences, and the attention weights were 275

visualized separately as shown in Fig 5. Then 10 sequence weights in each sequence are 276

selected separately and averaged as shown in Figure 5D. 277

The base sequences that reached the largest area of the peak region were extracted 278

from the randomly selected sequences to determine what combination of bases could 279
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Fig 5. The visualization of attention weights for non-enhancer and
enhancers. (A) Random three non-enhancers sequences. (B) Random three strong
enhancers sequencers. (C) Random three weak enhancers sequences. (D) Average of 10
sequences of three enhancers.

give the sequences higher weights. In Figure 5A, the base sequences of the three 280

non-enhancer highest peaks were extracted as follows:(chrX 6179400)at 140 to 160nt, 281

the base sequence was (TGCAACAACCTGGCTAAGCT); (chrX 31634879) at 180 to 282

200nt, the base sequence was (AAAAGATGGTACCGGGATGA); and (chr7 122823564) 283

at 70 to 81nt, the base sequence was (TTTGGACTTCT). The results showed that the 284

sequences with consecutive bases of AA or TT or a combination of A and T could reach 285

a peak of attention weight, proving that bases A and T played a key role in 286

non-enhancers. Similarly, the base sequences with the highest peak values of the three 287

enhancer sequences in Figure 5B were extracted. (chr17 27135674) at 90 to 100nt, the 288

base sequence was (CATCACCCAC). (chr15 90944196) at 6 to 12nt, the base sequence 289

was (ACCCCCT). (chr19 39157160) at 66 to 77nt, the base sequence was 290

(CCCGCTCGGAG). The sequences with consecutive C or base combinations of C and 291

G could reach the peak of attention weight, proving that C and G played a key role in 292

the strong enhancer. The highest peak base sequences of the three sequences in the 293

weak enhancer are as follows: (chr14 74881447) at 118 to 127 nt, with the base sequence 294

(GTGGTGTGTGT); (chr12 117539417) at 10 to 20 nt, with the base sequence 295

(GGGGATAGG); and (chr10 35814794) at 80 to 90 nt, with the base sequence 296

(TGCATTCTAT). From the base combinations of the three sequences at the highest 297

peak, consecutive G combinations of base sequences that could reach the higher peak 298

were found. The combination of A and T was still present, but G appeared more 299

frequently among them, thus proving that G plays a key role in the weak enhancer. The 300

above results demonstrated that the combination of the content of A and T bases 301

played a dominant role in non-enhancers, while the content and combination of G bases 302

played a dominant role in enhancers. 303

The average values of the weights for the three kinds of sequences are shown in 304

Figure 5D. Although the general trends are the same, some differences exist between 305

each kind of sequence. When the sequence position is at 1 to 30nt, the weight of weak 306

enhancer is significantly higher than the others. At 60 to 80nt, the weight of 307

non-enhancers is higher than that of enhancer sequences. At 120 to 140nt, the weight of 308

the strong enhancer is higher than the other kinds of sequences, and the weight has an 309

obvious upward trend, while the weak enhancer has an obvious downward trend in this 310
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segment. This result shows that the main differences between strong enhancer, weak 311

enhancer, and non-enhancer sequence features are concentrated in three positions 312

(1-30nt,60-80nt,120-140nt). This finding also serves as a guide for our subsequent 313

analysis and prediction of enhancer sequences. 314

The PWMs extracted in the CNN layer and the sequence self-attention weights 315

generated in the self-attention layer to see the model can learn the sequence features of 316

different sequences to contribute to the prediction. We can also clearly understand what 317

sequence features are learned in the first layer of the model and what sequence features 318

are learned in the last layer of the model, thus achieving interpretability of the model. 319

Also, the base sequence corresponding to the highest value of self-attention weight 320

for each sequence combined with the results of the previous three methods were able to 321

demonstrate the differences in base combination and base content of the three different 322

sequences. 323

Comparison between iEnhancer-CLA and existing methods and 324

tools 325

Given that the proposed model is a first single-layer multiclassification enhancer 326

prediction model, comparing it with other existing two-layer models was difficult. Thus, 327

several classical enhancer two-layer models were selected for comparison. 328

The proposed method was compared with the classical method on the same 329

independent-test dataset to objectively evaluate the prediction performance. The 330

following four evaluation metrics were also selected for evaluation: ACC, AUC, SP, and 331

MCC. 332

As shown from the results in Table 1, although the work was multi-classified, the 333

prediction results were still higher than those of classical model methods under the 334

chosen evaluation metrics. In particular, for the prediction of strong and weak 335

enhancers, the ACC values were significantly higher than those of the previous classical 336

models. The established model was able to perform multi-classification prediction in a 337

single layer, and it showed better accuracy than the previous classical models. 338

Table 1. Comparison of the proposed predictor with the state-of-the-art predictors in identifying enhancers
(the first layer) and their strength (the second layer) on the independent dataset.

Method ACC% AUC% SP% MCC Source
First layer EnhancerPred 74.00 80.10 74.50 0.480 Jia and He, 2016

iEnhancer-2L 73.00 80.60 75.00 0.460 Liu et al., 2016
iEnhancer-EL 74.75 81.70 78.50 0.496 Liu et al., 2018

iEnhancer-ECNN 76.90 83.20 75.20 0.537 Nguyen et a., 2019
iEnhancer-CLA Non-enhancer 77.00 83.62 79.00 0.540 This study
Second layer EnhancerPred 55.00 57.90 65.00 0.102 Jia and He, 2016

iEnhancer-2L 60.50 66.80 74.00 0.218 Liu et al., 2016
iEnhancer-EL 61.00 68.00 68.00 0.222 Liu et al., 2018

iEnhancer-ECNN 67.80 74.80 68.00 0.368 Nguyen et a., 2019
iEnhancer-CLA Strong enhancer 78.50 84.69 91.33 0.365 This study

Weak enhancer 74.25 63.16 96.66 0.078 This study

Effectiveness of iEnhancer-CLA 339

Due to the previous two-layer model, one layer was used to distinguish whether it is an 340

enhancer, and one layer was used to distinguish the strength of the enhancers. This 341

computational method, after years of research and development, was able to distinguish 342
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enhancers more accurately than before. However, the two-layer model also limits the 343

identification of enhancers. Many subtypes of enhancers exist, not only strong and weak 344

enhancers. In future research, the role of more subtypes of enhancers and the use of 345

computational methods to distinguish and predict must be developed and studied. The 346

importance of the proposed multi-labeled single-layer multiclassification prediction 347

model was remarkably demonstrated in the present work, of which the results in Table 2 348

were obtained using five-fold cross-validation. Table 2 shows the results for the training 349

set. We put the results of the independent test set and the results of the non-enhancer 350

sequences and enhancer sequences balanced data set in the (supplementary file, sec.3). 351

Table 2. The performances of model on train dataset.

ACC% AUC% SP% MCC
Non-enhancer 79.85 88.57 0.8793 0.5972
Strong enhancer 82.21 87.71 0.6793 0.4902
Weak enhancer 76.11 72.64 0.4712 0.2019

Discussion and conclusion 352

With the rapid development of computer methods, this work focused on how to use 353

efficient methods to identify enhancer sequences and enhancer the strength. Previous 354

works had many kinds of methods to identify enhancers. For the prediction model of 355

single-layer multiclassification with multiple labels proposed here, the same previous 356

dataset was used, but each kind of sample in the dataset with labels was annotated. In 357

the experiments, a five-fold cross-validation dataset was built from the benchmark 358

dataset. A BLSTM layer and a novel multi-head self-attention mechanism were added 359

in the proposed model on the basis of the CNN model. The proposed model could 360

identify enhancers more accurately than others, as indicated by the results of the 361

independent-test set. 362

The model was able to generate sequence-related attention weights and visualize the 363

sequences by using sequence analysis software with ”ggseqlogo”, ”GLAM2” and 364

”STREME”. The differences between the two kinds of enhancers and non-enhancers 365

were identified, which could be useful for future research on enhancers. The 366

combination of the PWMs extracted in the CNN layer and the self-attention weights in 367

the self-attention layer provides interpretability for the model. The results changed the 368

previous black box experiment and improved the credibility of the experiment. 369
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