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Abstract

Estimating drug-target binding affinity (DTA) is crucial for various tasks, in-
cluding drug design, drug repurposing, and lead optimization. Advanced works
adopt machine learning techniques, especially deep learning, to DTA estima-
tion by utilizing the existing assay data. These powerful techniques make it
possible to screen a massive amount of potential drugs with limited computa-
tion cost. However, a typical DNN-based training paradigm directly minimizes
the distances between the estimated scores and the ground truths, suffering
from the issue of data inconsistency. The data inconsistency caused by various
measurements, e.g., KD, KI , and IC50, as well as experimental conditions, e.g.,
reactant concentration and temperature, severely hinders the effective utilization
of existing data, thus deteriorating the performance of DTA prediction. We
propose a novel paradigm for effective training on hybrid DTA data to alleviate
the data inconsistency issue. Since the ranking orders of the affinity scores
with respect to measurements and experimental batches are more consistent, we
adopt a pairwise paradigm to enable the DNNs to learn from ranking orders
instead. We expect this paradigm can effectively blend datasets with various
measurements and experimental batches to achieve better performances. For
the sake of verifying the proposed paradigm, we compare it with the previous
paradigm for various model backbones on multiple DTA datasets. The experi-
mental results demonstrate the superior performance of our proposed paradigm.
The ablation studies also show the effectiveness of the design of the proposed
training paradigm.
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Introduction

Drug-target binding affinity prediction is a fundamental task in the drug dis-
covery industry, which refers to estimating the binding affinity scores between
numerous candidate compounds and a designated target protein. The compounds
with the highest affinity scores are chosen to be the promising compounds for
further validation, e.g., in vitro and in vivo experiments. Traditional approaches
measure the binding affinity scores through simulation experiments or biological
experiments [25], which are laborious, high-cost, and time-consuming. Recently,
advanced studies apply machine learning methods [3–5,12,24], especially deep
neural networks (DNNs) [14,15,20,26–30,34,35] that have achieved great success
in various domains, to drug-target affinity (DTA) prediction. DNNs attract in-
creasing attention due to their low cost and high time efficiency. These powerful
techniques make it possible to screen a huge amount of potential drugs with
limited computation cost, significantly accelerating the drug discovery process.

A typical DNN-based training paradigm [14, 15, 20, 26, 29, 30] utilizes the
pointwise training method, which minimizes the distance between the estimated
score and the value of the actual affinity score for each protein-compound pair.
The pointwise training method suffers from data inconsistency. First, the affinity
assays may adopt different measurements, such as dissociation constant (KD),
inhibition constant (KI), half maximal inhibitory concentration (IC50), and
half maximal effective concentration (EC50), to evaluate the binding affinities.
However, conversion among those measurements is not straightforward. The
data inconsistency caused by various measurements is an obstacle to utilizing the
existing available data to train a DTA model. The existing works tend to take
each measurement independently to address this issue, and each DTA model is
trained on the dataset that only concerns a specific measurement. Nevertheless,
the data for a specific measurement may not be sufficient to train a DTA model,
limiting the model’s power. Second, even considering a specific measurement, the
assay results of multiple experimental batches for the same protein-compound
pair usually differ, as the assay results are affected by a variety of intractable
experimental conditions, e.g., reactant concentration and temperature. However,
the DTA model trained by the existing training paradigm can not distinguish
the assay results from different experimental batches, making it hard to provide
a consistent estimation.

Aiming to alleviate the issue of data inconsistency, we propose a novel training
paradigm for DTA, called HybridDTA. HybridDTA takes advantage of hybrid
data, including data with multiple measurements and experimental batches,
aiming to utilize the available data fully. Rather than directly approximate
the values of the affinity scores, we adopt a pairwise training paradigm to
learn from ranking orders of the affinity scores. For a given target protein, the
ranking orders of the candidate compounds are usually more consistent among
different measurements and experimental batches. More concretely, we construct
numerous fused affinity pairs regarding measurements and experimental batches,
and a DNN model is trained on these pairs by a pairwise ranking method.
This way can alleviate the negative impact caused by data inconsistency and

2

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 23, 2021. ; https://doi.org/10.1101/2021.11.23.469641doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.23.469641
http://creativecommons.org/licenses/by-nc-nd/4.0/


fully utilize the existing available data. Thus, our approach can achieve better
performance.

To demonstrate the superiority of HybridDTA, we compare it with the
previous pointwise training paradigm. We apply HybridDTA and the previous
paradigm to various widely used DTA backbone models, including DeepDTA,
GraphDTA, and MolTrans, and evaluate their performances on three DTA
datasets. HybirdDTA achieves better performance concerning different backbone
models on all the datasets. The experimental results also verify the positive
impact of blending hybrid data and the design of HybridDTA.

Our contributions can be summarized as follows:

• We propose a novel training paradigm for DTA by hybrid data fusion to
address the issue of data inconsistency.

• We adopt a pairwise training method to learn the ranking orders of nu-
merous fused affinity pairs with respect to various measurements and
experimental batches.

• Extensive experiments demonstrate the superiority of the proposed paradigm
with various backbone models on multiple DTA datasets.

Related Work

Drug-Target Affinity Prediction.

The task of DTA prediction estimates the binding affinity scores between target
proteins and candidate compounds. Advanced studies have made significant
progress in DTA prediction by applying machine learning methods to predict
the affinity scores. These studies can be categorized into traditional machine
learning methods and DNN-based methods.

Traditional machine learning methods can be further classified into feature-
based methods [8, 28] and similarity-based methods [12,31]. The feature-based
methods first extract the features from the proteins and compounds by feature
engineering. Then, the extracted features are used as inputs of the traditional
machine learning models, such as Random Forest (RF) and Support Vector
Machine (SVM), to estimate the affinity scores. On the other hand, the similarity-
based methods exploit the similarity matrix to estimate the affinity score of a
protein-compound pair in accordance with the similar proteins and compounds.
However, the traditional methods rely on feature engineering, requiring massive
expert knowledge to extract valuable features.

Since Deep Neural Networks (DNNs) have achieved considerable success
in numerous fields, many researchers employ DNNs for DTA prediction. A
typical DNN-based approach usually obtains the descriptors of the proteins and
compounds and then estimates their interactions. Existing studies exploit either
fingerprints, sequence-based representation, or graph-based representation to
encode a compound and utilize sequence-based representation to encode a protein
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described by an acid amino sequence. For example, DeepDTA [29] adopts the
sequence-based representation method for the SMILES strings of the compounds,
while GraphDTA [26] regards a compound as a graph and leverages GNNs [39]
to encode the compounds. Instead of using whole sequences of compounds
and proteins, MolTrans [14] leverages the Frequent Consecutive Sub-sequence
(FCS) mining method to obtain sub-structural information of the compounds
and proteins. However, these works utilize the pointwise training paradigm that
directly optimizes the distance between the estimated scores and the ground
truths, trapping in data inconsistency.

Learning to Rank.

The learning to rank (LTR) technique is widely used in information retrieval and
recommender systems [1, 23], which learns the ranking orders of the candidates.
The LTR methods can be divided into three categories: pointwise, pairwise, and
listwise.

The pointwise techniques optimize the models by directly approximating
the ground truths. Then, they rank the candidates according to the estimated
scores of the candidates. These approaches regard each candidate independently
without considering the relative order between any two candidates, which is
easily interrupted by the outliers. In contrast, the pairwise approaches [1, 9, 16]
and the listwise approaches [2] consider the order of the candidates. The
pairwise approaches optimize the orders of the candidate pairs, while the listwise
approaches [2] consider the order of all the candidates. The pairwise approaches
are more prevalent than the listwise approaches in the industry due to their
computational efficiency.

Recently, the LTR techniques have been applied to bioinformatics, such
as disease name normalization [18], protein remote homology detection [21].
In particular, the work [38] directly adopts a listwise ranking approach to
traditional machine learning methods for DTA. However, simply using LTR
techniques without designs fails to address data inconsistency and can not fully
utilize the available data.

Materials and Methods

Problem Formulation.

DTA prediction is regarded as a ranking problem, as shown in Fig 1(a). For a
ranking task, we apply a DTA backbone model to predict the affinity scores and
rank the candidate compounds within the ranking task.

First, a ranking task is defined as t = (b, C), containing an experimental batch
b and a set of the candidate compounds χ. An experimental batch b consists
of a pair (p, χ), where p denotes the protein and χ denotes the corresponding
experimental conditions, including pH degree, temperature, substrate concen-
tration, and so on. The set of candidate compounds is defined as C = {ci}|ni=1,
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Figure 1: The framework of HybridDTA.

where n represents the number of candidate compounds. We expect to screen
out the most promising compounds in C as the potential drugs for target protein
p within experimental batch b.

Then, a DTA backbone model is adopted to estimate the affinity score between
protein p and each compound c ∈ C. A typical DNN-based backbone model
for DTA prediction consists of three components: Protein Encoder, Compound
Encoder, and Interaction Estimator, as shown in Fig 1(a).

• Protein Encoder. The primary structure of a protein is described by an
amino acid sequence. A Protein Encoder applies various kinds of sequence-
based neural networks, e.g., CNNs [17,19] and Transformers [37], to produce
the representation vectors of the proteins. We formalize the Protein
Encoder as a function fprotein(p; Θp), taking a protein p as input, where
Θp represents the corresponding model parameters. The representation
vector of a protein p is defined as hp = fprotein(p; Θp).

• Compound Encoder. A Compound Encoder typically generates the
compounds’ representation vectors through molecular fingerprints (e.g.,
ECFP [33] and MACCS [7]), sequence-based representation methods
(e.g., LSTMs [13] and Transformers), or graph-based representation meth-
ods (e.g., GNNs). We describe the Compound Encoder as a function
fcompound(c; Θc), taking a compound c as input, where Θc represents the
model parameters needed to be optimized. Then, the representation vector
of a compound c can be written as hc = fcompound(c; Θc).

• Interaction Estimator. The Interaction Estimator estimates the in-
teraction score between a protein p and a compound c in accordance to
a function finteration(hp, hc; Θi), where Θi denotes the function’s learn-
able parameters. Function finteration(hp, hc; Θi) takes the representation
vectors hc and hp as inputs and outputs an estimated affinity score.
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The pipeline of backbone model f(p, c; Θ) can be formulated as Equation 1,
where Θ = {Θc,Θp,Θi},

f(p, c; Θ) = finteraction(fprotein(p; Θp), fcompound(c; Θc); Θi). (1)

With the affinity scores estimated by the backbone model, we can rank the
candidate compounds. The compounds with the highest estimated affinity scores
are selected as promising drugs for further validation.

The traditional pointwise training paradigm takes each measurement inde-
pendently. It optimizes the model parameters Θ by minimizing the distance
between the ground-truth yp,c and the estimated score f(p, c; Θ). Rather than
utilizing the traditional pointwise training paradigm, we design a novel training
paradigm that adopts pairwise training, which will be elaborated in the following
section.

HybridDTA.

Since the previous pointwise training paradigm falls into data inconsistency,
we propose a well-designed pairwise training paradigm called HybridDTA to
address this issue, taking advantage of hybrid DTA data. The framework of
the HybridDTA paradigm is shown in Fig 1(b), learning the parameters of the
DTA backbone model from compounds pairs within an experimental batch to
select the most promising candidates. The HybridDTA paradigm comprises
two main steps: hybrid data fusion and pairwise training. Firstly, numerous
hybrid affinity pairs are constructed concerning measurements and experimental
batches. The hybrid pairs are fused and taken as the input of the DTA backbone
model. Secondly, a pairwise training method is applied to optimize the model
parameters of the DTA backbond by learning the orders of pairs.

Hybrid Data Fusion.

Multiple datasets are publicly available for DTA prediction. We attempt to
fully explore the potential values of the available data, and hybrid data from
various sources (datasets) is used to train the DTA backbone model. Usually, a
DTA dataset may contain assay results of one or more measurements, e.g., KD,
KI , and IC50. As shown in Fig 1(b), rather than independently regarding each
measurement in each dataset, we fuse the data for multiple measurements from
various raw DTA datasets by generating numerous hybrid affinity pairs.

We denote a raw DTA dataset by D(k) with k as the index. A typical raw
dataset usually contains hundreds to thousands of ranking tasks. For a ranking
task t = (b, C) with b = (p,X ) in the raw dataset, we can generate many affinity
pairs from the candidates C. An affinity pair is defined as the (p, ci, cj), which
contains a protein and two compounds. Since it is valueless to identify the order
between any two compounds for different experimental batches, we concentrate
on learning the order of two candidate compounds ci and cj with respect to
a given batch b = (p,X ). The idea is inspired by the previous work Bayesian
Personalized Ranking (BPR) [32] for recommender systems. More concretely,
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the affinity pairs are generated based on the order of the candidate compounds
concerning a given experimental batch.

To formalize the order of the candidate compounds, we introduce a new
operator >b for comparison. If ci >b cj , the ground-truth affinity score of
compound ci is significantly larger than that of compound cj for experimental
batch b. Since the ground-truth affinity scores collected from the assays are
usually noisy, a hyper-parameter, i.e., deviation ϵ, is introduced to determine
whether the two affinity scores differ significantly. That means ci >b cj indicates
that yp,ci > yp,cj + ϵ, where yp,ci and yp,cj denotes the ground-truth affinity
scores of compound ci and compound cj for target protein p in batch b = (p,X ).
Then, for a ranking task t = (p, C), a generated binding pair (p, ci, cj) should
satisfy ci >b cj and ci, cj ∈ C.

Theoretically, we can produce O(|C|2) pairs for a ranking task t = (b, C). In
order to balance the effects of different ranking tasks for training and reduce
the computational cost for each iteration, we randomly sample N pairs for each
compound within a ranking task t for each iteration, where N is the sampling
times. By sampling, for each ranking task, we produce O(N |C|) pairs in each
iteration. The number of the samples, i.e., affinity pairs, used to train the DTA
model is linear to the number of protein-compound iterations in the raw datasets.
All the affinity pairs generated from the available raw datasets {D(k)} are fused
to train the DTA backbone model. The set of the fused affinity pairs is defined
as the training dataset Dtrain = {(p, ci, cj)}, used for pairwise training.

Pairwise Training.

Compared with the previous pointwise training paradigm focusing on evaluating
the values of the affinity scores, we exploit the pairwise training methods to
consider the ranking orders instead. The pairwise training approach takes an
affinity pair (p, ci, cj) as input. It optimizes the model parameters through
a weight sharing of a DTA backbone model to learn the order of compounds
ci and cj with respect to protein p. Following the classical pairwise ranking
method RankNet [1], we regard the pairwise order learning problem as a binary
classification task, where the cross-entropy is used as the loss function for an
affinity pair (p, ci, cj):

L(p, ci, cj ; Θ) =− P̂p,ci,cj lnPp,ci,cj

− (1− P̂p,ci,cj )ln(1− Pp,ci,cj ),

P̂p,ci,cj =δ(yp,ci , yp,cj ),

Pp,ci,cj =
exp(op,ci,cj )

1 + exp(op,ci,cj )
,

op,ci,cj =f(p, ci; Θ)− f(p, cj ; Θ).

(2)

P̂p,ci,cj indicates whether the ground-truth affinity score of compound ci,
i.e., yp,ci is larger than that of compound cj , i.e., yp,cj . δ(x, y) is an indicator
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function that δ(x, y) = 1 if x > y, and δ(x, y) = 0 if x ≤ y. Besides, Pp,ci,cj

represents the estimated probability whether the affinity score of compound ci
is larger than that of compound cj . Pp,ci,cj applies Sigmoid function [11] on
op,ci,cj , i.e., the difference between the estimated affinity scores f(p, ci; Θ) and

f(p, cj ; Θ). The cross-entropy between the ground-truth probability P̂p,ci,cj and
the estimated probability Pp,ci,cj is minimized to learn the model parameters of
the DTA backbone model.

As an affinity pair (p, ci, cj) ∈ Dtrain satisfies ci >b cj and yp,ci > yp,cj ,

P̂p,ci,cj = 1, the loss function for an affinity pair (p, ci, cj) in Equation 2 can be
simplified as

L(p, ci, cj ; Θ) = −log
exp(op,ci,cj )

1 + exp(op,ci,cj )
,

op,ci,cj = f(p, ci; Θ)− f(p, cj ; Θ).

(3)

Then, to utilize the fused data in Dtrain, we define the loss function of dataset
Dtrain as

L(Dtrain; Θ) =
1

|Dtrain|
∑

(p,ci,cj)∈Dtrain

L(p, ci, cj ; Θ). (4)

We minimize the loss function L(Dtrain; Θ) to optimize the model parameters of
the DTA backbone model f(p, c; Θ).

Experimental Results

Datasets.

Three DTA datasets are used to evaluate the various paradigms’ performance,
including two high-quality datasets Davis [6] and KIBA [36], and a web-accessible
dataset BindingDB [22]. Datasets Davis and KIBA are widely used in previous
studies, as their records are relatively clean. The Davis dataset contains binding
affinities measured by KD, while the KIBA dataset contains binding affinities
measured by KIBA scores, integrating multiple measurements (KD, KI , and
IC50). In this paper, these two datasets are utilized to verify that hybrid data
fusion from multiple datasets contributes to improving the accuracy of DTA.
On the other hand, the BindingDB dataset collected binding affinities with
various measurements (KD, KI , IC50, and EC50) as well as the corresponding
experimental conditions from multi-sources, containing more noise than datasets
Daivs and KIBA. Dataset BindingDB is used to demonstrate that hybrid data
fusion from multiple measurements and experimental batches also improves the
estimations’ accuracy. We pre-processed all these three datasets, the details of
which are described in the supplementary information.
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Splitting Method.

Most of the previous works [15, 26, 30] randomly split the protein-compound
pairs in a dataset into a training set and a test set. However, by using random
splitting, a target protein in the test set could have already been observed in
the training set. Besides, the assay results of the same protein-compound pair
may appear in the training set and test set simultaneously due to multiple
experimental batches. This paper splits the data based on the ranking tasks to
ensure that the proteins observed in the training set will not appear in the test
set, which is more in line with the real-world applications. We generate multiple
ranking tasks for each dataset. For the Davis and KIBA datasets, the ranking
tasks are generated according to the target proteins. For the BindingDB dataset,
the ranking tasks are generated in accordance with the proteins, experimental
conditions, e.g., pH degrees, temperatures, and data sources. The details of the
datasets are shown in Table 1.

Table 1: Details of the datasets.

Dataset Measurement Compounds Proteins Interactions Ranking tasks

Davis KD 68 442 30,056 442

KIBA KIBA score 2,111 229 118,254 229

BindingDB

KD 9,039 595 44,794 1,106
KI 164,730 1,244 323,972 11,730
IC50 537,019 2,635 851,140 21,000
EC50 97,346 707 134,889 3,255

Training and Evaluation Settings.

To compare the performance of Pointiwse training paradigm and the proposed
HybridDTA training paradigm, we train multiple DTA backbone models by these
two paradigms.

Training Settings.

For the Pointwise paradigm, we adopt the hyper-parameters reported in the
previous works to train the backbone models. The mean squared error (MSE)
between the models’ predicted values and the ground-truth affinity scores are
taken as the loss function to optimize the model parameters. For the HybridDTA
paradigm, we apply grid search to search appropriate hyper-parameters, including
sample times, learning rate, and batch size. The details of hyper-parameter
settings are described in the supplementary information. The loss function for
HybridDTA has been introduced in section Pairwise Training.
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Evaluation Settings.

Concordance Index (CI) [10] is used to evaluate the performance of various
paradigms in terms of ranking tasks. CI for a ranking task t = (b, C) with
b = (p,X ) is defined as:

CI(t) =
1

|C|2
∑

ci,cj∈C
I(yp,ci − yp,cj ) · I(f(p, ci; Θ)− f(p, cj ; Θ)), (5)

where I(.) is an indicator function. I(x) = 1 if x > 0, and I(x) = 0 otherwise.
Furthermore, we define the overall CI for all the test ranking tasks T =

{t1, t2, · · · , tT } by summarizing CI(t), where T is the number of test ranking
tasks. The overall CI is formalized as

CI =
1∑

t∈T w(t)

∑
t∈T

w(t)CI(t), (6)

where w(t) = |C| for task t = (b, C) is introduced to balance the impact of
different ranking tasks.

DTA Backbone Models.

We compare Pointwise paradigm and HybridDTA paradigm on three DTA
backbone models:

• DeepDTA [29] employs three-layers Convolutional Neural Networks
(CNNs) as Protein Encoder and Compound Encoder to encode the protein
sequences and the compound SMILES strings. Then, for the Interaction
Estimator, the encoded protein and compound are concatenated to predict
the affinity score.

• GraphDTA [26] regards each compound as a graph and attempts several
GNNs, such as GIN, GAT, GCN, and GAT-GCN, as the Compound
Encoders to represent the compounds. In the meantime, GraphDTA
regards each protein as a sequence and adopts CNNs as the Protein
Encoder to encode the proteins. The Interaction Estimator is the same as
DeepDTA’s.

• MolTrans [14] decomposes the compounds’ SMILES strings and the pro-
teins’ acid amino sequences into high-frequency sub-sequences. Then, it
applies Transformers as the Compound Encoder and Protein Encoder to ob-
tain the augmented representation with the chemical semantics. MolTrans
uses the outer-product operator and CNN blocks as Interaction Estimator
to capture the high-order interaction between the compounds and proteins.

For all the backbone models, we use the hyper-parameters suggested by the
corresponding papers.
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Table 2: Results of hybrid data fusion of multiple datasets for four DTA backbond
models.

Testing dataset Davis KIBA

Training paradigm Pointwise HybridDTA Pointwise HybridDTA

Training dataset Davis Davis Davis + KIBA KIBA KIBA Davis + KIBA

GraphDTA (GCN) 0.7906 (0.0057) 0.7995 (0.0044) 0.8037 (0.0016) 0.7210 (0.0343) 0.7519 (0.0052) 0.7529 (0.0054)
GraphDTA (GATGCN) 0.7917 (0.0034) 0.8023 (0.0009) 0.8049 (0.0018) 0.7140 (0.0210) 0.7520 (0.0059) 0.7575 (0.0025)

DeepDTA 0.7966 (0.0074) 0.8028 (0.0111) 0.8029 (0.0060) 0.7317 (0.0130) 0.7516 (0.0138) 0.7664 (0.0131)
MolTrans 0.8047 (0.0083) 0.8079 (0.0037) 0.8091 (0.0046) 0.7392 (0.0066) 0.7588 (0.0115) 0.7644 (0.0183)

Note: The standard deviations (std) are given in parenthesis.

Figure 2: Scatter plot and Pearson correlation between KI and other measure-
ments.

(a) KI & KD (Pearson cor-
relation: 0.83)

(b) KI & IC50 (Pearson cor-
relation: 0.74)

(c) KI & EC50 (Pearson cor-
relation: 0.64)

Results.

Hybrid Data Blending Multiple Datasets.

We compare the Pointwise paradigm and HybridDTA paradigm on the Davis
and KIBA datasets, using hybrid data fusion from multiple datasets. We first
reserve 1/6 of all the ranking tasks for testing. As Davis or KIBA contain only
hundreds of ranking tasks, we conduct 5-fold cross-validation (CV). Table 2
shows the average CI over 5-fold CV on datasets Davis and KIBA for four DTA
backbones, including GraphDTA (GCN), GraphDTA(GATGCN), DeepDTA, and
MolTrans. We can draw the following conclusions: First, HybridDTA always
achieves better performance than Pointwise for all the DTA backbone models
when training on only a single dataset, because the pairwise training paradigm
focuses on learning the ranking orders of the candidate compounds, and it is less
likely to be affected by the outliers. Second, HybridDTA that utilizes multiple
datasets for training works better than that only utilizes a single dataset. It
demonstrates that taking advantage of the available external data indeed boosts
the models’ performance.

Hybrid Data Blending Multiple Measurements.

Dataset BindingDB contains the assay results with various measurements and is
used to investigate the effect of data fusion regarding multiple measurements.
Besides, as the records in BindingDB are collected from multiple sources with
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diverse experimental conditions, the issue of data inconsistency is more prominent,
and we can better observe the impact of data inconsistency. Concerning the
quantity and quality of assay results for different measurements, we choose to
evaluate the paradigms’ performance on the assays for measurement KI . We
split the BindingDB dataset into a training set, a validation set, and a test set
with the ratio 8:1:1. We train each backbone model on the assays for multiple
measurements, e.g., KI , KI+KD, and KI+KD+IC50, by HybridDTA paradigm
respectively. Then, we select the model based on the validation set that only
contains the assays for KI and evaluate the performance of the trained models on
the test set that only contains the assays for KI . The settings of the used training
measurements are designed according to the Pearson correlations between KI

and other measurements KD, IC50, and EC50, as shown in Figure 2. We expect
the measurement with a higher correlation to KI will play a more important
role when incorporating the corresponding assays for training. Since the assay
results for measurement EC50 are noisy and the Pearson correlation between KI

and EC50 is low, we do not consider utilizing the assays for EC50 in this work.

Table 3: Results of hybrid data fusion of multiple measurements on KI of
BindingDB for four DTA backbone models.

Training paradigm Pointwise HybridDTA

Training measurements KI KI KI +KD KI +KD + IC50

GraphDTA (GCN) 0.6197 (0.0029) 0.6247 (0.0106) 0.6283 (0.0076) 0.6297 (0.0101)
GraphDTA (GATGCN) 0.6289 (0.0046) 0.6305 (0.0063) 0.6341 (0.0090) 0.6390 (0.0065)

DeepDTA 0.6176 (0.0036) 0.6244 (0.0008) 0.6322 (0.0057) 0.6347 (0.0060)
MolTrans 0.6210 (0.0048) 0.6573 (0.0021) 0.6595 (0.0004) 0.6564 (0.0026)

Note: The standard deviations (std) are given in parenthesis.

Table 3 shows the average CI over 5 runs of Pointwise and HybridDTA for
four DTA backbone models. The experimental results indicate that HybridDTA
surpasses Pointwise for all the backbone models. Moreover, blending the assays
of multiple measurements could enhance the performance of HybridDTA. When
adding KD to the training dataset, all the backbone models work better. If we
further add measurement IC50, most of the backbone models achieve further small
improvement. This phenomenon reveals that the data with higher correlation
contributes more to improving the performance, since the Pearson correlation
between KI and KD is much higher than that between KI and IC50.

Table 4: Impact of various designs for ranking tasks.

Design Batch Protein Random

GraphDTA (GCN) 0.6247 (0.0106) 0.6097 (0.0145) 0.6062 (0.0114)
GraphDTA (GATGCN) 0.6305 (0.0063) 0.6075 (0.0076) 0.5974 (0.0058)

DeepDTA 0.6244 (0.0008) 0.6015 (0.0067) 0.6166 (0.0049)
MolTrans 0.6573 (0.0021) 0.6389 (0.0094) 0.6420 (0.0020)
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Impact of the Design for the Ranking Tasks.

We also conducted ablation studies to analyze the impact of design of the ranking
tasks. We compare several ways to generate the ranking tasks for training a
DTA model on dataset BindingDB since it recorded the experimental conditions
and data sources. Three generation ways of the ranking tasks are designed:

• Batch considers both the proteins and the experimental conditions. It is
the baseline design of ranking tasks used in the previous experiments.

• Protein only considers proteins when constructing ranking tasks. The
protein-compound pairs with the same proteins but different experimental
conditions are gathered in the same ranking task.

• Random randomly generates the ranking tasks. That means a ranking
task could contain the protein-compound pairs with different proteins.

Table 4 shows the average CI over 5 runs, comparing the impact of various
designs for ranking tasks. We could observe the performance declines for all back-
bone models under the experimental setting of Protein and Random, compared
with Batch. The results suggest that a well-designed method to generate the
ranking tasks is one of the keys to accurately learn the order of the candidates.

Conclusions

The task of DTA prediction estimates the affinity scores between the target
proteins and candidate compounds. However, the previous pointwise training
paradigm suffers from data inconsistency caused by various measurements and
experimental batches. In this work, we address the DTA prediction as a ranking
problem and construct lots of ranking tasks regarding the measurements as well
as the experimental batches. We leverage a pairwise ranking method that blends
different kinds of data to take advantage of all the existing data to achieve better
performance. We evaluate our proposed paradigm on three DTA datasets. The
results from extensive experiments demonstrate that the paradigm based on
the data fusion could boost the performance of four backbone models. We also
analyze the impact of the design of the ranking tasks to verify the effectiveness
of our proposed training framework.

Data availability

The model scripts are available at https://github.com/PaddlePaddle/PaddleHelix/
tree/dev/apps/drug_target_interaction/hybriddta. All the datasets used
in the paper are public resources. Davis is available at http://staff.cs.utu.
fi/~aatapa/data/DrugTarget, KIBA is available at https://pubs.acs.org/
doi/suppl/10.1021/ci400709d/suppl_file/ci400709d_si_002.xlsx and Bind-
ingDB is available at https://www.bindingdb.org/bind/index.jsp. The pre-
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processed data can be downloaded from https://baidu-nlp.bj.bcebos.com/

PaddleHelix/datasets/dti_datasets/HybridDTA_data.zip.

Supporting Information

S1 Data pre-processing

Davis and KIBA.

We follow the previous work [29] to pre-process Davis and KIBA datasets. The
details can be found at https://github.com/hkmztrk/DeepDTA/tree/master/
data.

BindingDB.

The BindingDB dataset with the version of May 2021 contains 2,221,487 compound-
protein pairs, including 7,965 protein and 963,425 compounds.

We pre-process the raw BindingDB data following steps below: (1) We
keep compound-protein pairs with at least one of the measurements (KD, KI ,
IC50 and EC50). (2) We remove the affinity values with ’>’ or ’<’. (3) We
modify the extreme affinity values by replacing the values more than 10,000
with 10,000. (4) We drop the duplicates. (5) We define a ranking task by
considering the proteins, pH degrees (’pH’), temperatures (’Temp (C)’), and
data sources (’Curation/DataSource’, ’Article DOI’, ’PMID’, ’PubChem AID’,
’Patent Number’, ’Authors’, ’Institution). (6) For a protein-compound pair in a
ranking task, we keep the median affinity value of that pair. (7) We remove the
ranking tasks with no less than ten candidate compounds.

For the backbone model GraphDTA, we conduct additional data cleaning.
We remove the illegal SMILES sequence which can not be converted by the Chem-
informatics software RDKit (https://rdkit.org) and the single atom sequence (
[’F’, ’[SH-]’, ’[I-]’, ’S’, ’I’, ’[F-]’]) that can not be converted to a molecular graph.
We also remove the protein sequences which do not conform to FASTA format
(https://zhanggroup.org/FASTA/).

Besides, instead of using original KD score as the binding affinity value to
make the prediction, we normalize and transform it into pKD (shown in Equation
7), which is similar to the previous works [12,15,26,29]:

pKD = −log10(
KD

109
). (7)

Note that, KI , IC50 and EC50 are normalized by the same way.

S2 Hyper-parameters of HybridDTA

For Davis and KIBA datasets, we use grid search to search the best hyper-
parameters for each DTA backbone model on each dataset. The candidate
settings of the hyper-parameters for searching are shown in Table 5. We use
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Adam optimizer and train 100, 30, 50 epochs for GraphDTA, DeepDTA, and
MolTrans, respectively.

For BindingDB, the candidate settings of the hyper-parameters for searching
are shown in Table 6. We use Adam optimizer and train 200, 200, 50 epochs for
GraphDTA, DeepDTA, and MolTrans, respectively.

Table 5: Candidate settings of hyper-parameters for Davis and KIBA.

Hyper-parameter Candidate settings

deviation ϵ 0.2
sample times (original dataset) 10
sample times (fused dataset) {0.5,1,3,5}

learning rate {1× 10−3, 5× 10−4, 1× 10−5}
batch size {32, 256, 512}

Table 6: Candidate settings of hyper-parameters for BindingDB.

Hyper-parameter Candidate settings

deviation ϵ 0.2
sample times (KI) 10
sample times (KD) {1,3,5}
sample times (IC50) {0.2, 0.5, 1}

learning rate {1× 10−3, 5× 10−4, 1× 10−5}
batch size {32, 256, 512}
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