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ABSTRACT  14 

Due to the growing number of clinical antibiotic resistance cases in recent years, 15 

novel antimicrobial peptides (AMPs) can become ideal for next-generation antibiotics. 16 

This study trained a deep convolutional generative adversarial network (GAN) with known 17 

AMPs to generate novel AMP candidates. The quality of the GAN-designed peptides was 18 

evaluated in silico, and eight of them named GAN-pep 1~8 were chosen to be synthesized 19 

for further experiments. Disk diffusion testing and minimum inhibitory concentration 20 

(MIC) determination were used to determine the antibacterial effects of the synthesized 21 

GAN-designed peptides. Seven out of the eight synthesized GAN-designed peptides 22 

showed antibacterial activities. 23 

Additionally, GAN-pep 3 and GAN-pep 8 had a broad spectrum of antibacterial 24 

effects. Both of them were also effective against antibiotic-resistant bacteria strains such 25 

as methicillin-resistant Staphylococcus aureus (S. aureus) and carbapenem-resistant 26 

Pseudomonas aeruginosa (P. aeruginosa). GAN-pep 3, the most promising GAN-designed 27 

peptide candidate, had low MICs against all the tested bacteria. 28 
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INTRODUCTION 31 

The increasing number of clinical antibiotic resistance cases in the past decades 32 

raised the demand for new drug discovery of antibiotics (1, 2). AMPs are natural peptides 33 

that are less likely to cause drug resistance in bacteria (3, 4). However, it is usually time-34 

consuming and costly to discover new AMPs through the traditional approaches by 35 

collecting these peptides from various organisms. Therefore, a deep learning model was 36 

proposed approach in this study for in silico AMP design to accelerate the AMP discovery 37 

process. 38 

Artificial intelligence technologies and machine learning applications (AI/ML) are 39 

key to accelerating the drug development process (5, 6). For example, AI/ML can help 40 

initial drug selection for particular diseases. Zeng et al. used a knowledge graph embedding 41 

model to prioritize potential candidates for developing Coronavirus disease 2019 (COVID-42 

19) therapy (7). Jiang et al. utilized a convolutional graph network to predict synergistic 43 

drug combinations against cancers (8). Also, AI/ML can be applied to predict various 44 

biological and chemical properties such as protein structure, molecular property, aqueous 45 

solubility, and minimum inhibitory concentration (MIC) (9-12). Moreover, AI/ML can be 46 

used to construct biomolecule classifiers to identify protein family, surfaceome, protein-47 

protein interaction, human leukocyte antigen complex, and AMP (13-19). A deep neural 48 

network (DNN) named AI4AMP was recently proposed to predict the AMP activity (20). 49 

In recent years, several researchers adopted in silico methods to support and 50 

accelerate AMP candidates finding. Some of the methods were directly based on 51 

computational algorithms (21, 22), and more and more studies utilized DNNs to generate 52 

peptides for AMP design. For example,  Müller et al. trained a generative long short-term 53 

memory (LSTM) model to capture patterns of the AMP (23). Dean and Walper utilized 54 

variational autoencoder (VAE) to generate a latent space for creating new AMPs from 55 

known AMPs (24). Recently, the GAN, a neural network architecture composed of a 56 

generative model and a discriminative model, was used for DNA and protein design (25-57 

29). Specifically, the deep convolutional GAN (DCGAN) was applied in various tasks of 58 

images generation (30).  59 

The collected AMPS were first encoded by a protein-encoding method named PC6 60 

proposed in the previous study, which turned each peptide into a matrix that considered the 61 
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order of amino acids and the physicochemical properties of each amino acid (20). Then, a 62 

DCGAN-based model was proposed to generate AMPs (30). After training the model with 63 

these encoded AMPs, the generator could generate AMP candidates with random noise as 64 

its input. Then, these peptides were predicted through AI4AMP to evaluate the activity of 65 

the generated AMP candidates in silico before the experiment (20). Eight GAN-designed 66 

peptides named GAN-pep 1~8 and a known AMP with high antimicrobial activity (AMP-67 

pos) were used to test their activities against Escherichia coli (E. coli), Staphylococcus 68 

aureus (S. aureus), and Pseudomonas aeruginosa (P. aeruginosa) through the disk 69 

diffusion method and minimum inhibitory concentration (MIC) determination (31, 32). 70 

Moreover, to estimate the ability of the GAN-designed peptides against antibiotic-resistant 71 

bacteria, we further experimented with them on methicillin-resistant S. aureus and 72 

carbapenem-resistant P. aeruginosa. 73 

 74 

MATERIALS AND METHODS 75 

Collecting AMPs for training the model  76 

The anti-bacterial AMPs from four AMP databases were collected (33-36). The 77 

AMPs with lengths shorter than ten amino acids or having uncommon amino acids, such 78 

as B, J, O, U, Z, or X, were excluded. According to the difficulty and the cost of 79 

synthesizing long peptides, only the AMPs shorter than 30 amino acids were selected. The 80 

number of collected AMPs was 3195. 81 

 82 

The architecture of the proposed GAN 83 

The basic structure of GAN consists of a discriminator and a generator (25). The 84 

discriminator aims to discriminate between actual data and fake data generated by the 85 

generator. The generator, on the contrary, tries to generate fake data that can fool the 86 

discriminator. Meanwhile, the discriminator will be updated to maximize the discriminator 87 

score of the real data and minimize the score of the fake data. Oppositely, the generator is 88 

updated to maximize the discriminator score. The proposed GAN model for generating 89 

AMP was based on DCGAN, a convolutional network-based GAN (30). The kernel size, 90 
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stride, and padding parameters in convolution-transpose layers and convolution layers 91 

were adjusted to fit the size of the data. The method proposed in WGAN-GP was used to 92 

avoid mode collapse (37).  93 

The proposed generator consisted of five transposed convolution blocks. The first 94 

four building blocks were composed of a 2D-transposed convolution layer, a 2D-batch 95 

normalization layer, and an activation layer named Rectifier Linear Unit (ReLU).  The last 96 

two transposed convolution blocks were composed of a 2D-transposed convolution layer 97 

and a Tanh activation layer.  Five convolution blocks constructed the proposed 98 

discriminator by the first four building blocks of a 2D-convolutional layer and a leaky 99 

ReLU with a 2D-convolutional layer as the last block. The training data was first converted 100 

into vectors with shapes of (1, 30, 6), denoted as real PC6 matrix, by the method described 101 

in the next section. The generator took a noise vector with the shape of (100, 1, 1) and 102 

mapped it to the vector with the shape of (1, 30, 6), denoted as a fake PC6 matrix. The 103 

discriminator took in either the real PC6 matrix or the fake PC6 matrix and converted it 104 

into a vector with the shape of (1, 1, 1), which represented the discriminator score of the 105 

data. The proposed architectures of the generator and discriminator are shown in Figure 1. 106 

The K indicates the kernel size, and the S indicates the stride value. 107 

 108 

 109 

Figure 1. The proposed architecture of the generator and the discriminator. 110 

 111 

The mechanism of AMP production 112 

For transforming peptides into numeric matrices, the PC6 protein-encoding method 113 

in the previous research was used to encode the peptides (20). The PC6 protein-encoding 114 
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method required a PC6 table, where each amino acid corresponded to its six 115 

physicochemical properties values. This PC6 protein-encoding method transformed a 116 

peptide of length k into a matrix with the shape of (6, k). Six physicochemical property 117 

values in the PC6 table were scaled to a range of -1 to 1, respectively, to ensure every 118 

property had a balanced effect numerically in model training and to fit the tanh activation 119 

function in the last layer of the generator. For sequences shorter than 30 residues, they were 120 

padded with zero vector named “X” at the end to reach a consistent length of 30. Each 121 

AMP was then transformed into a real PC6 matrix with a shape of (1, 30, 6) by the scaled 122 

PC6 table. The real PC6 matrice was fed into the discriminator and produced discriminator 123 

scores. The fake PC6 matrices described in the previous paragraph were fed into the 124 

discriminator and produced the discriminator scores. The cosine similarity was used to 125 

convert the generated peptide from the fake PC6 matrix. The six generated 126 

physicochemical values of each row were converted into an amino acid with the highest 127 

similarity. If the six generated physicochemical values in the row were all zeros, the row 128 

would be converted into “X.” Any amino acid behind the first “X” and including itself 129 

would be discarded. Figure 2 shows the overall workflow of training GAN to generate 130 

AMP. 131 

 132 

 133 

Figure 2. The overall workflow of the training GAN to generate AMP. 134 

 135 
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The training process 136 

Following WGAN-GP, the ratio of training steps between generator and 137 

discriminator was set to 1:5 (37). The batch size was set to 128. The Adam algorithm was 138 

applied as the optimizer for both models, with the learning rate being 1e-4, β1 being 0, 139 

and β2 being 0.9 (38). For every 5000 epochs, the 128 generator-designed sequences were 140 

evaluated. A fixed noise vector was used as the input for these generators. The outputs of 141 

these generators were transformed into peptides as described previously. After that, the 142 

identity between the generated peptide to the real AMP was evaluated by comparing the 143 

ratio of the same amino acid among the overlapped part. Each generated peptide was 144 

compared with every AMP in the dataset, producing 3195 identity scores. The identity 145 

score for the generated AMP was defined as the maximum identity it scored within the real 146 

AMP dataset. The number of the training process was 60,000 epochs. As shown in Figure 147 

3, the identity score of the 128 test sequences produced by the current generators improved 148 

along with increased training steps, and it was stable around 50,000 epochs of training.  149 

 150 

 151 

Figure 3. The boxplot of the maximum identity score distribution of generated 152 

peptides and real AMPs throughout the training process. 153 

 154 

Evaluation of GAN-designed sequences 155 

To evaluate if the proposed GAN model had learned to generate peptides that had 156 

similar properties with real AMPs, the peptide properties of the GAN-designed peptides, 157 

the real AMPs, the randomly shuffled sequences, and the helical sequences were used to 158 
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compare with real AMPs. The randomly shuffled sequences were peptides generated 159 

randomly with equal probabilities of all residues to ensure the proposed model did not 160 

merely generate random sequences. Since a large proportion of AMPs were composed of 161 

alpha helices, it would be interesting to see whether the model only learned the patterns of 162 

helices instead of the patterns to have antimicrobial properties. The generated peptides 163 

were compared with helical sequences generated by placing lysine or arginine every three 164 

or four amino acids. Both randomly shuffled sequences and helical sequences were 165 

generated with lengths of 10 to 30 by the modlAMP package (39). To perform the 166 

comparison to 3195 real AMPs, 3195  randomly shuffled sequences, 3195 helical 167 

sequences, and 3195 GAN-designed peptides were generated. 168 

 169 

GAN-designed sequences selection for experimental validation 170 

By removing the duplicated peptides from 3195 GAN-designed peptides, 1970 171 

GAN-designed peptides were left. Eight out of 1970 GAN-designed peptides were selected 172 

to test whether the produced sequences had antimicrobial activities by the following criteria.  173 

The GAN-designed peptides were kept only if eight physicochemical properties all fell in 174 

the range of the mean value plus or minus one standard deviation of those of the real 175 

antimicrobial peptides. The eight physicochemical properties were charge, charge density, 176 

isoelectric point, instability index, aromaticity, aliphatic index, Boman index, and 177 

hydrophobic ratio (40). These physicochemical properties were calculated by the modlamp 178 

package (39). After that, the remaining produced sequences were fed into AI4AMP (20), a 179 

CNN model that predicts the probability of a peptide with antimicrobial activity. The GAN-180 

designed peptide was selected if its probability of having antimicrobial activities was 181 

greater than 0.98. Based on the identity scores of the 1970 GAN-designed peptides, they 182 

were classified into three categories. The very similar sequences were sequences with 183 

identity scores from 80% to 98%. The moderately similar sequences were sequences with 184 

identity scores from 40% to 60%. The dissimilar sequences were sequences with identity 185 

scores smaller than 20%. To test if sequences that were not so similar to the real AMPs 186 

were still able to possess antibacterial properties, 21 sequences from the very similar 187 

sequence category were selected, and 13 sequences from the moderately similar sequence 188 
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category were selected. No sequences were selected from the dissimilar sequence category. 189 

Then, four sequences from the very similar sequence category (GAN-pep 1~4) were chosen, 190 

and four sequences from the moderately similar sequence category (GAN-pep 5~8) were 191 

chosen. These eight peptides were chosen to be synthesized for further antimicrobial 192 

experiments. 193 

 194 

Strains and Reagents 195 

The bacterial strains used for antimicrobial activity assays include E. coli 196 

(SG13009), the clinical isolates of methicillin-susceptible S. aureus (S01-10-0202), 197 

methicillin-resistant S. aureus (N07-10-0043), carbapenem-susceptible P. aeruginosa 198 

(S07-10-0059), and carbapenem-resistant P. aeruginosa (M06-06-0213), obtained from Dr. 199 

Ying-Lien Chen, Department of Plant Pathology and Microbiology, National Taiwan 200 

University. All strains were grown aerobically on an orbital shaker (150 rpm) at 37 °C in 201 

Luria-Bertani (LB) broth (BD Difco, US) overnight. Different microbiological assays were 202 

performed to test their antimicrobial activity with the GAN-designed peptides (GAN-pep 203 

1~8) and the positive control peptide (AMP-pos). Experiments were performed in triplicate. 204 

 205 

Antimicrobial assays 206 

The antibacterial potential of the GAN-designed peptides was evaluated using disk 207 

diffusion assay. The bacteria were grown in LB broth at 37°C with agitation. The strain 208 

growth was measured turbid metrically at OD600, and at least three separate experiments 209 

were conducted for each test organism. Briefly, nutrient agar was prepared by mixing agar, 210 

sodium chloride, yeast extract, and peptone in distilled water (pH 7.2). Subsequently, 211 

bacterial suspension (100 μL, 1 × 108 CFU/mL) was added and spread on LB agar. Then, 212 

the sterilized filter disks (with diameter circles of 6 mm) were placed on the agar surface 213 

filled with 40 μL of peptide samples. The petri dish was incubated overnight at 37 °C to 214 

observe the inhibitory area. 215 

MIC assays were conducted to determine the antibacterial spectrum of these 216 

peptides. The MIC was determined as the lowest peptide concentration inhibited bacterial 217 
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growth after overnight incubation at 37 °C. Microbial strains were cultured in LB medium, 218 

and mid-logarithmic-phase organisms were used in antibacterial assays. All bacteria were 219 

inoculated in LB medium (approximately 105 CFU/mL), and MIC assays were performed 220 

with different concentrations of each peptide. All activity measurements were conducted 221 

at least three times. 222 

 223 

RESULTS AND DISCUSSION 224 

Evaluating GAN-designed peptides in silico 225 

Figure 4 shows the amino acid distribution of four groups of peptides. It showed 226 

that the amino acid composition of real AMPs and the GAN-designed peptides had a very 227 

similar pattern compared to the other two groups, which suggests that the GAN model can 228 

capture the pattern in terms of the sequence composition. This result indicates that the 229 

model is neither merely generating random sequences nor learning the patterns for alpha 230 

helix. Figure 5 shows the violin plots of eight physicochemical properties of the four 231 

groups of peptides. The “AMP” indicates the real AMPs, “GAN” indicates the GAN-232 

designed peptides, “Random” indicates the randomly shuffled sequences, and ”Helical” 233 

indicates the helical sequences. The eight physicochemical properties used to evaluate the 234 

peptides were aliphatic index, aromaticity, Boman index, charge density, charge, 235 

hydrophobic ratio, instability index, and isoelectric point (40). The distribution pattern of 236 

the GAN-designed peptides resembled that of the real AMPs. Such a pattern suggests that 237 

the GAN model is possible to produce peptides with physicochemical properties. The eight 238 

physicochemical features were then reduced into three dimensions by t-distributed 239 

stochastic neighbor embedding (t-SNE) and were visualized by Matplotlib (41, 42). Figure 240 

6 shows the t-SNE plot for the four groups of peptides. The “AMP” indicates real AMPs, 241 

“GAN” indicates GAN-designed peptides, “Random” indicates randomly shuffled 242 

sequences, and ”Helical” indicates helical sequences. It showed that the real AMPs and the 243 

GAN-designed peptides were clustered closely, distinct from the two other groups in 244 

embedded space, showing that the GAN-designed peptides possessed very similar 245 

properties with the real AMPs. 246 

 247 
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 248 

Figure 4. Bar plots of amino acid distribution in four groups of peptides. 249 

 250 

 251 

Figure 5. Violin plots of physicochemical properties in four groups of peptides. 252 

 253 
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 254 

Figure 6. The t-SNE plot of four groups of peptides. 255 

 256 

Evaluating GAN-designed peptides in vitro 257 

Various concentrations (7.8125 to 500 μg/mL) of GAN-designed peptides (GAN-258 

pep 1~8), a known AMP (AMP-pos) as the positive control, and bovine serum albumin 259 

(BSA) as negative control were prepared for disk diffusion assay. The results for the disk 260 

diffusion susceptibility test of GAN-designed peptides, and the positive control peptide, 261 

and the negative control peptide at different concentrations against several bacteria, 262 

including E. coli, the clinical isolates of methicillin-susceptible S. aureus, methicillin-263 

resistant S. aureus, carbapenem-susceptible P. aeruginosa, and carbapenem-resistant P. 264 

aeruginosa, are shown in Supplementary Figure 1 to 5. As presented in Supplementary 265 

Figure 1, for AMP-pos and some of the GAN-designed peptides, such as GAN-pep 2, 3, 266 

4, 5, 7, and 8, at least one concentration of the peptides inhibited the tested Gram-negative 267 

bacterium E. coli. As presented in Supplementary Figure 2, for AMP-pos and some of 268 

the GAN-designed peptides, such as GAN-pep 3, 4, 6, and 8, at least one concentration 269 

inhibited the tested Gram-positive bacterium methicillin-susceptible S. aureus. As 270 

presented in Supplementary Figure 3, for AMP-pos and some of the GAN-designed 271 

peptides, such as GAN-pep 3, 6, and 8, at least one concentration of the peptides inhibited 272 

the tested Gram-positive bacterium methicillin-resistant S. aureus. As presented in 273 
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Supplementary Figure 4, only the GAN-designed peptides, such as GAN-pep 2, 3, 4, and 274 

8, could inhibit the tested Gram-negative bacterium carbapenem-susceptible P. aeruginosa 275 

at one or more concentrations. As presented in Supplementary Figure 5, only the GAN-276 

designed peptides, such as GAN-pep 2, 3, and 8, could inhibit the tested Gram-negative 277 

bacterium carbapenem-resistant P. aeruginosa at one or more concentrations. Overall, 278 

GAN-pep 3 and GAN-pep 8 had the broadest antibacterial effects against all tested bacteria.  279 

The MIC of each peptide for a selection of microorganisms is shown in Table 1. 280 

The AMP-pos and GAN-designed peptides, such as GAN-pep 2, 3, 4, 5, 7, and 8, had MIC 281 

ranging from 0.7 to 22.5 μg/mL against the tested Gram-negative bacterium E. coli. AMP-282 

pos showed the highest antibacterial activity against E. coli. with MIC of 0.7 μg/mL. The 283 

GAN-designed peptides, GAN-pep 3 and 8, had MIC ranging from 6 to 15 μg/mL against 284 

the tested Gram-positive bacterium methicillin-susceptible S. aureus. The GAN-designed 285 

peptides, GAN-pep 3 and 8, had 45 μg/mL MIC against the tested Gram-positive bacterium 286 

methicillin-resistant S. aureus. The GAN-designed peptides, GAN-pep 2, 3, and 4, had 287 

MIC ranging from 3 to 50 μg/mL against the tested Gram-negative bacterium carbapenem-288 

susceptible P. aeruginosa. The GAN-designed peptides, GAN-pep 2, 3, and 4, had MIC 289 

ranging from 3 to 35 μg/mL against the tested Gram-negative bacterium carbapenem-290 

resistant P. aeruginosa.  291 

Overall, seven out of eight GAN-designed peptides showed antimicrobial activity 292 

against at least one strain of the bacteria. This strategy demonstrates that the GAN model 293 

can design novel sequence patterns with antimicrobial activity. Among the GAN-designed 294 

peptides, GAN-pep 3 and GAN-pep 8 showed broad and practical antibacterial activities. 295 

GAN-pep 3 and GAN-pep 8 had the inhibition effect against both gram-negative and gram-296 

positive bacteria. In addition to that, they were able to inhibit bacteria strains that have 297 

developed antibiotic resistance. 298 

 299 
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Table 1. Antibacterial activity of GAN-designed peptides and two positive peptides 300 

 301 

CONCLUSION AND FUTURE WORK 302 

 In this study, a new AMPs design method was proposed to support AMP discovery. 303 

The anti-bacterial AMPs were encoded through the PC6 protein-encoding method and then 304 

be used to train the proposed GAN model using a modified DCGAN architecture based on 305 

WGAN-GP (30, 37). The trained generator then generated the AMP candidates. These 306 

AMP candidates were evaluated by comparing peptide amino acid distribution and 307 

physicochemical property between four types of peptide groups. In addition, a deep 308 

learning model named AI4AMP was used to predict the AMP activity of the GAN-309 

designed peptides (20). The eight GAN-designed peptides (GAN-pep 1~8) predicted to 310 

have antimicrobial activities with probabilities greater than 0.98 were synthesized. Finally, 311 

the AMP activities of GAN-pep 1~8 were examined by using disk diffusion testing and 312 

MIC determination. Seven of the eight synthesized GAN-designed peptides showed 313 

antibacterial activities, which showed that the proposed GAN model could design AMPs 314 

with antibacterial effects. Among them, GAN-pep 3 and GAN-pep 8 possessed a broad 315 

 MIC (μg/mL) 

name 
E. coli 

(SG13009) 

methicillin-susceptible 
S. aureus 

(S01-10-0202)  

methicillin-resistant 
S. aureus 

(N07-10-0043)  

carbapenem-susceptible 
P. aeruginosa 
(S07-10-0059)  

carbapenem-
resistant 

P. aeruginosa 
(M06-06-0213)  

                  
AMP-pos 

0.7 >50 >50 >50 >50 

GAN-pep 1 >50 >50 >50 >50 >50 

GAN-pep 2 2 >50 >50 50 5 

GAN-pep 3 2 6 45 3 3 

GAN-pep 4 2 >50 >50 50 35 

GAN-pep 5 22.5 >50 >50 >50 >50 

GAN-pep 6 >50 >50 >50 >50 >50 

GAN-pep 7 >50 >50 >50 >50 >50 

GAN-pep 8 15 15 45 >50 >50 
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spectrum of antibacterial effects. They were also effective against antibiotic-resistant 316 

bacteria strains such as methicillin-resistant S. aureus and carbapenem-resistant P. 317 

aeruginosa. GAN-pep 3, the most promising AMP candidates, had even lower MICs 318 

against S. aureus and P. aeruginosa than the positive control AMP.  319 

In the hope of developing the GAN-designed peptides into potential drugs, further 320 

experiments should be done. Since hemolysis is one of the significant effects that cause 321 

safety concerns and hinders AMPs from processing through later phases of drug 322 

development, experiments for the hemolysis effect of those GAN-designed peptides should 323 

be tested. The proposed model could generate various kinds of short peptides. It might be 324 

used to design peptides with antiviral and antifungal effects. 325 
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