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Abstract 

Computational Deep Language Models (DLMs) have been shown to be effective in 

predicting neural responses during natural language processing. This study introduces a 

novel computational framework, based on the concept of fine-tuning (Hinton, 2007), for 

modeling differences in interpretation of narratives based on the listeners’ perspective (i.e. 

their prior knowledge, thoughts, and beliefs). We draw on an fMRI experiment conducted 

by Yeshurun et al. (2017), in which two groups of listeners were listening to the same 

narrative but with two different perspectives (cheating versus paranoia). We collected a 

dedicated dataset of ~3000 stories, and used it to create two modified (fine-tuned) versions 

of a pre-trained DLM, each representing the perspective of a different group of listeners. 

Information extracted from each of the two fine-tuned models was better fitted with neural 

responses of the corresponding group of listeners. Furthermore, we show that the degree of 

difference between the listeners’ interpretation of the story - as measured both neurally 

and behaviorally - can be approximated using the distances between the representations of 

the story extracted from these two fine-tuned models. These models-brain associations 

were expressed in many language-related brain areas, as well as in several higher-order 

areas related to the default-mode and the mentalizing networks, therefore implying that 

computational fine-tuning reliably captures relevant aspects of human language 

comprehension across different levels of cognitive processing. 
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Introduction 

The meaning of each word in natural language is defined by its use in context. For example, 

the meaning of the word “cold” varies in the context of cold weather, cold personality, and 

cold symptoms. Typically, context is detriment by the relation of each incoming word to the 

preceding words in the text, and such dependencies can span multiple timescales: from the 

relationship among adjacent words, up to long-range dependencies across paragraphs. In 

agreement with such behavioral observations, studies using naturalistic stimuli have 

identified a topographical hierarchy of processing timescales extending from the early 

sensory cortex to higher-order areas (Hasson et al., 2008; Van Berkum, 2008; Lerner et al., 

2011; Hasson et al., 2015). The responses in early sensory areas, such as auditory cortices, 

are influenced by the temporal structure over tens of milliseconds. These findings are 

consistent with research suggesting that early sensory areas process fast-changing, low-level 

stimulus features, such as phonological information. By contrast, neural responses in mid-

level areas, which include linguistic regions along the superior temporal gyrus, are affected 

by information integrated over a few seconds (for example, the preceding words in the 

sentence). At the apex of the processing hierarchy, the neural response of the Default Mode 

Network (DMN) to each sentence is influenced by prior information accumulated over many 

minutes (Yeshurun et al., 2021; Friederici, 2020). 

The realization that the meaning of each word in natural language is defined by its use in 

context was utilized recently to build deep language models (DLMs). DLMs (like BERT or 

GPT2) are trained to predict the appearance of words in text given the context (the other 

words in the text). In contrast to traditional symbolic psycholinguistic models, DLMs learn 

language from real-world textual examples “in the wild,” i.e., with minimal or no explicit 

prior knowledge about the structure or other linguistic properties of the input text. 

Furthermore, DLMs learn to encode a sequence of words into numerical vectors, termed 

contextualized embeddings, from which the model decodes the missing words. 

Interestingly, recent studies have demonstrated that contextual embeddings derived from 

DLMs (such as BERT or GPT2) can be used to predict neural responses in brain language 

areas during the processing of human language (Jain & Huth, 2018; Schwartz et al., 2019; 

Goldstein et al., 2021). Furthermore, a recent study used a DLM to model the topography of 

timescales of language processing, by varying the contextual window of the model, from a 
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short contextual window of a few words up to a large contextual window that aggregates 

information across many paragraphs (Caucheteux et al., 2021). The similarities between 

deep language models and the way the brain processes language provide a new unified 

modeling framework for the study of the neural basis of the human language faculty. 

Context, however, is not defined solely by the other words in the text, but also by the 

listeners’ perspective, as defined by their thoughts, beliefs, and knowledge. In such cases, 

the exact same words in a story, essay, or political speech, can have substantially different 

meanings across different readers with different backgrounds. An fMRI experiment that 

demonstrates this aspect of contextual information was conducted by Yeshurun et al. 

(2017). In their experiment, two groups of participants listened to the same audio recording 

of a short story by J.D. Salinger (‘Pretty Mouth and Green My Eyes’). In the story, a husband 

loses track of his wife at a party and returns alone to their apartment in the city. Worried 

and anxious he calls his best friend, in the middle of the night, about the whereabouts of his 

wife. Next to the best friend, in bed, lies a mysterious woman, whose identity is kept 

intentionally vague. Is she the wife, having an affair with the best friend (cheating context), 

or is she the friend’s girlfriend and the husband is unreasonably jealous as his friend implies 

(paranoia context)? Deciding among these two contexts will have great consequences for 

the interpretation of the conversation. Before listening to the story, each experimental 

group was primed to adopt only one of these interpretations. Listener's perspective 

(cheating vs. paranoia) affected the neural responses to the story in areas with a long 

processing timescale, including the default mode network (DMN; Mars et al., 2012, 

Yeshurun et al., 2021), and frontal areas related to high-level language processing (Adolphs, 

2009; Fletcher et al., 1995; Mar 2011). 

Can we use DLMs as a computational framework to model how context is shaped by the 

listeners’ perspective (state of mind)? In this paper, we propose to use the concept of “fine-

tuning” (Hinton, 2007) to model such an effect. DLMs are typically pre-trained on very large 

textual corpora (billions of words) sampled from a variety of textual domains and sources. 

This pre-training stage allows the model to learn how language is used across many natural 

contexts.  Adapting the pre-trained model to perform a specific ‘downstream’ task (e.g., 

sentiment analysis), however, requires a second stage of training, known as the “fine-

tuning” stage, in which the model’s parameters are subtly adjusted so that the language 
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representations will better fit to the narrow context. In other words, the fine-tuning 

procedure dynamically reweights the DLM parameters that produce the textual 

representations (embeddings) to better fit the semantic space of a specific domain.  

By this logic, we propose harnessing the fine-tuning technique in order to create different 

variants of a given DLM, each simulating human language processing through a lens of a 

different “state of mind”. To examine this idea, we fine-tuned the BERT language model 

(Devlin et al., 2018) to simulate two specific perspectives: paranoia and cheating. Our main 

aim is to test how fine-tuning the model’s context will improve our ability to model the 

listeners’ neural responses as they process Salinger’s story, using two very distinct states of 

mind. 
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Method 

fMRI data 

participants, stimuli, and experimental design. The current study reanalyzes a previously 

published fMRI dataset (Yeshurun et al., 2017). The dataset consists of fMRI scans of 40 

right-handed subjects assigned to one of the following experimental conditions: Cheating 

(10 females, 10 males, age: M=20.85, SD=3.73) or Paranoia (9 females, 11 males, age: 

M=21.45, SD=3.42).  

The stimulus was a 11 min and 32 seconds record of a professional actor reading a short 

story of J.D. Salinger: “Pretty Mouth and Green My Eyes.” The story describes a phone 

conversation between two friends, Arthur and Lee. Arthur has returned home after a party, 

and he lost track of his wife, Joanie. He is calling Lee to share his concerns over her 

whereabouts. Lee is at home, and a woman is lying on the bed next to him. The woman’s 

identity is ambiguous—she may or may not be Joanie, Arthur’s wife. Before listening to the 

story, participants were provided with a short introduction (~ 30 s) either specified that 

Arthur’s wife is cheating on him with Lee (for the cheating condition), or that Arthur is 

paranoid and that his wife is not cheating on him (for the paranoia condition; Figure 1). A 

story-comprehension questionnaire was administered immediately after the scan, and 

statistical analyses of the responses indicate that the context manipulation did affect the 

subject’s interpretation of the story (see Yeshurun et al., 2017 for more details). 

Preprocessing and voxel selection. The functional MRI (fMRI) data were preprocessed by 

Yeshurun et al. (2017) and included the following steps: Motion correction, slice-time 

correction, linear-trend removal, high-pass filtering (two cycles per condition), spatial 

smoothing (Gaussian filter of 6-mm FWHM), spatial transformation to 3-D Talairach space 

(Talairach & Tournoux, 1988), and hemodynamic delay correction (based on the correlation 

between the audio envelope and the BOLD signal recorded from the A1+).  

To filter out stimulus-irrelevant voxels, we executed a voxel-wise inter-subject correlation 

analysis (ISC, Hasson et al., 2004) across the whole gray matter: For each voxel, we isolated 

each subject’s time-course and correlated it with the averaged time-course of the remaining 

subjects. The voxel’s ISC-score is calculated by averaging the correlation scores (after 

Fisher’s Z transformation) obtained from repeating this process for all subjects. To assess 
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how significantly each ISC-score is different from zero, we conducted a non-parametric 

permutation test by randomizing the phase of the signal (Simony et al., 2016) 1000 times 

prior to ISC calculation and used the obtained null distribution to estimate the p-value. We 

ran this procedure separately for each experimental group (cheating/paranoia) and selected 

for subsequent analyses only voxels that achieved a significant ISC-score (p<0.01, corrected 

for multiple tests using FDR) in both groups. The process yielded a total of 11783 ‘stimulus-

locked’ voxels (Figure S2). 

Behavioral data 

Besides neuroimaging data, we also used behavioral data collected by Yeshurun et al. 

(2017), which quantifies the effect of context on participant’s interpretation across the 

story. The text was divided into 179 segments (Mean duration=3.77 s, SD= 2.39 s) by an 

independent expert annotator, and five independent raters were asked to rate how 

differently participants from different groups (cheating/paranoia) would interpret each 

segment. The raw scores (on a scale from 1 to 5) were first standardized to Z-scores for each 

rater, and then averaged across raters. The inter-rater reliability was high, as reflected by a 

Cronbach’s α coefficient of 0.84 (See Yeshurun et al. (2017) for more details). 
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Figure 1. An illustration of both the neural and the computational context-dependent 

representations of the same narrative. The left side represents the fMRI experiment by which the 

neural representations were acquired: 40 subjects were listening to an ambiguous short story which 

can be interpreted in two main contexts, cheating or paranoia. Half of the subjects were primed to 

the cheating context, and the other half were primed to the paranoia context. The right side 

illustrates the computational modeling of the experiment. Two context-dependent language models 

were created, each simulates a different context. We used each model to extract vector 

representations of the story (a.k.a. embedding vectors).  
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Computational modeling 

We propose a novel method for computational modeling of context modulation in story 

interpretation. The main idea is to take a pre-trained language model and modify (fine-tune) 

it toward either the cheating or the paranoia contexts. Specifically, we used a well-accepted 

language model – BERT (Devlin et al., 2019) - as our initial, context-independent language 

model, and designed a fine-tuning process that creates two new context-dependent variants 

of BERT – CheatBERT (for the cheating context) and ParaBERT (for the paranoia context). We 

administered the fine-tuning process using dedicated datasets and classification tasks as 

described below.  

Fine-tuning tasks and datasets. We defined two binary classification tasks: One to 

distinguish between cheating stories and no-cheating stories, and the other to distinguish 

between paranoia stories and no-paranoia stories. Our basic hypothesis is that fine-tuning 

BERT on these tasks (i.e., updating its parameters, which were set in the pre-training stage) 

would bias its internal representation of language toward the cheating (when using the first 

fine-tuning task) context or the paranoia context (when using the second fine-tuning task). 

For these tasks, we collected 2829 short stories (between 100 to 4096 words; average 

number of words= 757.27, SD=677.58) concerning matters of relationships and romance. 

The stories were written by users of the Medium.com of the Reddit.com websites. To locate 

relevant stories from Medium.com, the following website-tags were used: marriage, 

relationships, romance, affairs, jealousy, monogamy, polygamy, and dating. The stories 

from Reddit.com were extracted from the following subreddits: askwoman, relationships, 

relationship_advice, romancestories, retroactive_jealousy, short_stories, sex, and teenagers.  

Each of the stories was manually tagged with one of the following three classes: Cheating 

(N=843), Paranoia (N=1046), and Other (N=940). We used the stories labeled with Cheating 

and Other for the cheating vs. no-cheating classification (fine-tuning) task, and the stories 

labeled with Paranoia and Other for the paranoia  vs. no-paranoia classification (fine-tuning) 

task.    

The fine-tuning procedure. The purpose of fine-tuning is to update BERT’s parameters (i.e., 

the weights of the neural network), as set in the pre-training stage, to ‘point’ toward 
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cheating/paranoia contexts. We used a pre-trained, 12-layers version of BERT1 and added a 

classification head on top of it (the full architecture is detailed in the Supplementary 

Material and illustrated in Figure S1). For each classification task, we trained this BERT-

based classifier (i.e., BERT + classification head) using the backpropagation algorithm (Kelley, 

1960) which updates the parameters of both the classification-head and the original BERT 

model (Figure 2). Importantly, the classification head is removed after training, and the 

remaining BERT model – that has just been updated – is considered as CheatBERT (in case of 

fine-tuning with respect to the cheating classification task) or ParaBERT (in case of fine-

tuning with respect to the paranoia classification task, Figure 2). All other computational 

aspects of the entire process are described in detail in the Supplementary Material.  

 

 

Figure 2. The classifier-based fine-tuning process. We aim to create two new context-dependent 

language models by changing the parameters of an existing pre-trained model (BERT) to point toward 

the cheating or the paranoia context. First, we collected ~3000 short stories, tagged as cheating, 

paranoia, or neutral stories. Then, we trained (fine-tuned) a BERT-based classifier (the BERT model 

with a classification head) on either the cheating vs. no-cheating or the paranoia vs. no-paranoia 

classification task, updating the parameters of both the pre-trained BERT model and of its 

classification head. Finally, we removed the classifier head and were left with the new, cheating- (or 

paranoia-) induced variant of BERT: CheatBERT (or ParaBERT).  

 

 
1 https://github.com/google-research/bert 
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Control models. Besides CheatBERT and ParaBERT, we created four additional BERT variants 

using the same fine-tuning procedure, but with different datasets and classification tasks. 

These models serve as control (baseline) models in our analyses. These variants are divided 

into two model pairs, where the members of each pair differ from each other in the specific 

context they model, but their contexts still refer to the same general theme (just as 

CheatBERT and ParaBERT both refer to the relationships and romance theme). The pairs 

were SpaceBERT – MedBERT (Med stands for medicine) and GunsBERT – MideastBERT. The 

models in the first pair are generally related to science, while those of the second pair are 

related to politics. 

We used subsets of the publicly available 20Newsgroup dataset2 for training (fine-tuning) 

these BERT-based classifiers: SpaceBERT was trained to distinguish texts tagged with 

sci.space (N=987) from other- science relevant texts (tagged with sci; N=991); MedBERT was 

trained to distinguish texts tagged with sci.med (N=990) from other- science relevant texts 

(tagged with sci; N=991); GunsBERT was trained to distinguish texts tagged with 

politics.guns (N=780) from other- politics relevant texts (tagged with politics; N=685); 

Finally, MideastBERT was trained to distinguish texts tagged with politics.mideasst (N=795) 

from other- politics relevant texts (tagged with politics; N=685). Classification results of all 

models are provided in the Supplementary Material (Table S1).  

Extracting neural and computational representations  

The current research examines the relationships between neural and computational 

representations of the story. Representations were extracted segment-wise in accordance 

with the above mentioned (in the Behavioral Data section) textual segmentation of 

Salinger’s story (N=179 segments, Figure 1). The BOLD signals of each stimulus-locked voxel 

(N=11783, see in the fMRI Data section) were “down-sampled” from TR resolution (TR=1.5 

s) to a segment resolution by averaging all TRs within each segment (Mean number of TRs 

per segment= 2.51, SD=1.63).  

We extracted segment-wise computational representations from each of our seven BERT 

variants (CheatBERT, ParaBERT, the original (pre-trained but not fine-tuned) BERT, and the 

four control models). The extraction process was identical for all models since they all have 

 
2 http://qwone.com/jason/20Newsgroups/ 
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the same architecture (12 attention-blocks stacked on top of each other). Each segment was 

fed to the model, together with a context of additional four segments - the two that 

preceded and the two that succeeded the relevant segment (whenever possible), as well as 

with the special tokens: CLS and SEP. A vector representation of the segment was obtained 

by averaging only the embedding vectors (i.e., the output of layer 12 of the model) of the 

tokens which belongs to the relevant segment. This procedure yielded, for each model, a 

179 (segment) by 768 (the BERT dimensionality) matrix (Figure 1). 

Since the dimensionality of the segment embedding vectors (768) is much higher than the 

number of samples in the data (179), we reduced the dimension of the vectors into 32 using 

principal component analysis (PCA; see also Goldstein et al., 2021). PCA was calculated 

separately for each pair of models, and for the original BERT. Reducing to 32 dimensions 

provides a reasonable balance between the relatively low dimensionality and the relatively 

large fraction of the original variance preserved after the transformation (71% for 

CheatBERT-ParaBERT, 80% for SpaceBERT-MedBERT, 72% for GunsBERT-MideastBERT, and 

68% for BERT).3  

Encoder-based context classification 

We aim to show that our fine-tuned models (CheatBERT and ParaBERT) capture the 

information encoded in the brains of the participants which belong to the corresponding 

group (CheatBERT for the cheating group and ParaBERT for the paranoia group). In other 

words, we hypothesize that the neural signal of each of the subjects would be better 

correlated with the congruent model (e.g., the CheatBERT model with subjects from the 

cheating-condition group) than with the incongruent one (e.g., the ParaBERT model with 

subjects from the cheating-condition, and vice versa). Likewise, according to this hypothesis, 

we can use the models to predict the context in which a given subject listened to the story 

(cheating/paranoia), by correlating his/her neural signal with both CheatBERT and ParaBERT 

and checking which model is better correlated (Figure 3a). By this logic, we formulated a 

voxel-wise classification task through which we can quantify the ‘goodness of fit’ of our 

models. 

 
3 The results below were also replicated using other dimensionalities, ranging from 16 to 75 dimensions. 
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For each stimulus-locked voxel (11783 voxels with reliable inter-subject correlation, see in 

the fMRI Data section), the classifier iterates over all subjects’ brains (N=40) and predicts 

the context (cheating/paranoia) as follows: First, we fit two linear regression models to 

predict the neural time-course from the vector representations of the story (a.k.a “neural 

encoder”, see Huth et al., 2019; Goldstein et al., 2021). One model uses vectors extracted 

from CheatBERT, and the other uses the ParaBERT’s vectors. Then, we calculate the 𝑅𝑎𝑑𝑗
2  

score (adjusted coefficient of determination) from each model and classify the context in 

accordance with the best 𝑅𝑎𝑑𝑗
2  score. Namely, if the CheatBERT’s 𝑅𝑎𝑑𝑗

2  score is higher than 

the ParaBERT’s 𝑅𝑎𝑑𝑗
2  score, we will classify that brain as cheating, and vice versa (Figure 3a). 

We evaluate the classifier by calculating the accuracy rate of its prediction (the number of 

correct predictions divided by 40). This procedure provides a single accuracy score for each 

voxel, which quantifies the extent to which our models fit the neural signal in different brain 

areas.  

We repeated the same analysis using other pairs of control models, for the purpose of 

comparison. The alternative pairs were: CheatBERT vs. BERT, BERT vs. ParaBERT, GunsBERT 

vs. MideastBERT, and MedBERT vs. SpaceBERT. The significance testing of this analysis is 

described in the Statistical analyses section below.   

Distance analysis 

The neural modulation caused by the context is not uniform, but varies throughout the 

story: there are parts of the story that cause more substantial neural differences between 

brains compared to other parts of the story (Yeshurun et al., 2017). We wanted to test 

whether this dynamic is also encoded in our fine-tuned models. To test this, we calculated 

the distance between each pair of segment embedding vectors (extracted from CheatBERT 

and ParaBERT) using the cosine-distance (which is equal to 1 minus the cosine similarity of 

the vectors). This process yielded a 179-dimensional distance vector (corresponding to the 

179 segments of the story, Figure 3b). Likewise, we calculated the neural differences 

(distance) between the average brain activity of the cheating group and the average brain 

activity of the paranoia group. This is done by taking the absolute values of the differences 

between the averaged brain activities of each segment in every stimulus-locked voxel. This 

process yielded a single 11783 (voxels) by 179 (segments) matrix of neural distance scores. 
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Finally, we calculated the correlation between each voxel’s neural distance and the model's 

distance vector using Pearson’s r (Figure 3b).  

In addition, we analyzed the correlation between the models’ distance vector and the 

differences in human interpretation of the story (the behavioral measurement, see in the 

Behavioral data section). The analyses were repeated using other distance vectors extracted 

from the following pairs of control models: CheatBERT vs. BERT, BERT vs. ParaBERT, 

GunsBERT vs. MideastBERT, and MedBERT vs. SpaceBERT. The significance tests of these 

analyses are detailed below in the Statistical analyses section. 
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Figure 3. Illustrations of the two primary analyses applied in this paper. (A) The voxel-wise encoding-

based classifier. The classifier predicts the context in which subjects interpreted the story, by 

competing the models against each other in their ability to encode the voxel’s BOLD signal. The 

context would classify as cheating if the CheatBERT-based encoder is better than the ParaBERT-

based encoder, and vice versa (measured by comparing the encoders’ 𝑅𝑎𝑑𝑗
2  scores). (B) The distance 

analysis. The difference between the cheating-induced and the paranoia-induced interpretations 

was quantified for each segment, in all modalities: Language models, brains, and behavior. From the 

language models, we extracted a distance vector by calculating the cosine dissimilarity between 

models’ vector representations. From the neural data, we extracted a distance vector for each voxel 

by taking the absolute values of the differences between the averaged signal of the cheating group 

and the averaged signal of the paranoia group. The behavioral distances vector was collected by 

asking five independent raters to rate, for each segment, how differently subjects from different 

groups would interpret the segment. We analyzed the correlations between the models’ distance 

vector and the neural distance vectors, and between the models’ distance vector and the behavioral 

measurement. 
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Statistical analysis 

All analyses were tested for statistical significance using non-parametric permutation tests. 

In the classification analysis (the Encoder-based context classification section) we tested the 

significance of the accuracy scores by creating an estimated null distribution using 1000 

permutations of the data. In every permutation step we shuffled the labels (i.e., 

cheating/paranoia) of the participants, ran the classification analysis on that randomized 

data, and saved the accuracy scores. The procedure returns a different 1000-sized 

distribution for each voxel (for a total of 11783 voxels). To account for multiple hypothesis 

testing, we calculated the p-values of the observed (real) accuracy scores using family-wise 

error rate (FWER; Nichols & Hayasaka, 2003) estimation: We combined the 11783 

distributions into a single, 1000-sized distribution by taking only the maximum value (i.e., 

the best voxel’s accuracy score) from each permutation step. Next, we calculated the 

p(FWER) score from the obtained max-values null-distribution using the following formula:  

p(FWER) = (k + 1)/1000, 

where k is the number of max-values larger than the real value. We considered a voxel’s 

score as significant if its p(FWER) was smaller than 0.05. 

The same procedure was applied for the remaining analyses and the only difference was 

regarding the way we permuted the data. In the distance analysis (the Distance analysis 

section) we calculated the p(FWER) of each Pearson’s r score using the max-values null-

distribution obtained from 1000 permutations, as above, but the data was permuted using 

randomized phase-shuffling. This method randomizes the signal while maintaining the exact 

mean and autocorrelation as the original signal (Simony et al., 2016). We implemented this 

shuffling method by applying a fast-Fourier transformation (FFT) on the original signal, 

randomizing only the phase component of the signal, and then applying an inverse fast-

Fourier transformation (IFFT) using the original frequency magnitudes and the randomized 

phases. The shuffling was performed only on the neural signals. In the models-behavior 

correlation analysis we shuffled only the behavioral signal. 

 

 

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted November 23, 2021. ; https://doi.org/10.1101/2021.11.22.469596doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.22.469596


 

Results 

Fine-Tuned Language Models Fit Contextual Modulation in the Brain 

We proposed the concept of fine-tuning deep language models as a computational 

framework for modeling how the states of mind of the listeners modulate their neural 

responses to the same story. To that end, we fine-tuned (trained) pre-trained deep language 

models (BERT) to distinguish between cheating and no-cheating stories (CheatBERT) or 

between paranoia and no-paranoia stories (ParaBERT; Figure 2). Next, we used these 

models to encode the neural responses in two groups of subjects who listened to the same 

J.D Salinger story. Each group was primed with a different context (state of mind), of either 

cheating or paranoia, before listening to the story.    

Fine-tuning BERT improved our ability to model context-based unique neural responses of 

our listeners. First, we used the fine-tuned CheatBERT model to encode the averaged neural 

responses of listeners who were exposed to the cheating context, and we used the fine-

tuned ParaBERT model to encode the average neural responses of listeners who were 

exposed to the paranoia context. Both models were highly effective in predicting neural 

signals of the corresponding group of listeners. The CheatBERT model significantly predicted 

8226 voxels (69.8% of all stimulus-locked voxels, 0.26 < 𝑅𝑎𝑑𝑗
2 < 0.59, 𝑚𝑒𝑎𝑛 𝑅𝑎𝑑𝑗

2 = 0.37) 

and the ParaBERT model significantly predicted 6692 voxels (56.7%, 0.24 < 𝑅𝑎𝑑𝑗
2 < 0.59, 

𝑚𝑒𝑎𝑛 𝑅𝑎𝑑𝑗
2 = 0.35; Figure 4a). Next, we analyzed the sensitivity of these models in 

distinguishing between listeners using our novel encoder-based classification method 

(Figure 3a). We perform the analysis on a voxel-by-voxel level, among all the stimulus-

locked voxels (N=11783). The classifier accuracy rate was above the chance level in 921 

voxels, ranging from 62.5% to 85% (p<0.05, family-wise error corrected). These voxels 

encompass brain regions in the default mode network (Bilateral TPJ, MFG and Precuneus), 

as well as language-related areas in the right ventrolateral prefrontal cortex (vLPFC) and 

bilateral STG and MTG (Figure 4b and Table 1). Hence, neural responses in these brain areas 

which are unique to each group of listeners (cheating and paranoia group), are significantly 

associated with the unique information encoded in the corresponding fine-tuned model 

(CheatBERT and ParaBERT). 
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Using the original pre-trained BERT model or the BERT models that are fine-tuned on 

unrelated contexts did not improve our ability to classify the listener's state of mind. 

Running the same classification procedure but replacing ParaBERT with BERT yielded only 25 

significant voxels (17 voxels from the vLPFC and 8 voxels from the cuneus, max scores: 70% 

and 65%, respectively), and replacing CheatBERT with BERT yielded zero significant voxels. 

Likewise, we found no significant voxels when replacing the ParaBERT and CheatBERT 

models with the other control-models paires, MedBERT-SpaceBERT and GunsBERT-

MideastBERT. 
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Figure 4. (A) Cortical maps showing voxels that are significantly encoded (i.e., with a significant 𝑅𝑎𝑑𝑗
2  

score, p(FWER)<0.05, minimum cluster-size>20mm2) by the fine-tuned models. Averaged 𝑅𝑎𝑑𝑗
2 s are 

0.37 (min-max range: 0.26-0.59) for CheatBERT/cheating group, and 0.35 (min-max range: 0.24-0.59) 

for ParaBERT/paranoia group. (B) The accuracy scores map of the encoder-based classification 

analysis. The map contains only significant voxels (p(FWER)<0.05, minimum cluster-size>20mm2). 
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MFG = Middle Frontal Gyrus, TPJ = Temporoparietal Junction, STG = Superior Temporal Gyrus, MTG = 

Middle Temporal Gyrus, lPFC = Lateral Prefrontal Cortex. 

 

Table 1. Brain regions which showed significant classifier accuracy scores. 

    Coordinates 

Region Hem. 
No. of 

Voxels 

Peak 

Accuracy 

score 

X Y Z 

Precuneus Bilateral 243 0.85 -6 -60 39 

Middle Frontal Gyrus Right 120 0.725 35 -4 41 

Middle Frontal Gyrus Left 119 0.725 -31 15 43 

Temporoparietal Junction Right 69 0.725 39 -67 35 

Temporoparietal Junction Left 78 0.7 -42 -44 32 

Middle Temporal Gyrus Right 15 0.775 58 -47 10 

Middle Temporal Gyrus Left 67 0.7 -55 -52 3 

Superior Temporal Sulcus Right 78 0.7 53 -39 13 

Superior Temporal Gyrus Left 70 0.7 -53 -27 8 

Ventrolateral Prefrontal 

Cortex 
Right 62 0.65 37 19 11 

 

Models' distance analysis 

The effect of context on the narrative interpretations is not fixed, as some moments in the 

story are more ambiguous and malleable to shift in context, while others are less open to 

multiple interpretations. To assess whether our fine-tuned models capture the dynamic 

fluctuations in interpretability across subjects who listened to the same story while having 

two opposing perspectives (contexts) we performed two analyses.  

In the first analysis, we compared the magnitude of the change in the representation of 

each segment across the ParaBERT and CheatBERT (cosine similarity vector, Fig. 3B) to the 

magnitudes of changes in the neural activity, as induced by the paranoia and cheating 

contexts, in each of the brain areas. Our analysis revealed significant correlations (between 
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r=0.3 and r=0.43, p(FWER)<0.05) in extensive brain areas, including regions from the 

mentalizing network (bilateral TPJ and Precuneus), the mirror neuron system (bilateral 

premotor cortex), language-related areas (bilateral STG and right MTG), Bilateral Insula, 

Right Anterior Cingulate Cortex (ACC) and the left Hippocampus (a total of 1020 voxels, See 

Table S2 and Figure 5a). Importantly, running the same analysis with other combinations of 

models (i.e., the pairs: BERT-CheatBERT, BERT-ParaBERT, MedBERT-SpaceBERT, GunsBERT-

MideastBERT) did not reveal any significant correlation-maps.4 

In the next analysis, we compared the difference in the representation of each segment by  

ParaBERT and CheatBERT (cosine dissimilarity vector, Fig. 3B) to the estimated change in 

interpretation between listeners exposed to cheating or the paranoia contexts (behavioral 

dissimilarity). Behavioral dissimilarity was assessed using independent raters that assessed 

“how different subjects in the cheating condition and in the paranoia condition would 

interpret each segment” (see method and Figure 3b). The CheatBERT-ParaBERT distance 

scores were significantly correlated with the behavioral scores (r=0.31, p<0.001).In contrast, 

the correlations between the distances between control models (i.e. the MedBERT-

SpaceBERT distance and the GunsBERT-MideastBERT distance) and the behavioral scores 

were significantly lower (r=0.15 and r=0.08 for MedBERT-SpaceBERT and GunsBERT-

MideastBERT respectively) and not significantly different from zero (p>0.05 for both, Figure 

5b). 

 

 

 

 

 

 

 
4 For BERT-ParaBERT, MedBERT-SpaceBERT and GunsBERT-MideastBERT we found zero significant voxels after 

correcting for multiple comparisons. For BERT-CheatBERT we did find 30 significant voxels, but they did not 
reach the cluster-size threshold. 
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Figure 5. Results of the distance analysis. (A) A correlation map showing voxels whose neural 

distances were significantly correlated with model distance (p(FWER)<0.05, minimum cluster-

size>20mm2). For several brain regions we plot the neural distance fluctuations as measured across 

segments (maroon colored line), together with the models’ distances (gray colored line). A cross-

correlation plot is attached to the plot of each of the regions to visually indicate the signal-to-noise 

ratio. PMC = premotor cortex, TPJ = temporoparietal junction, STG = superior temporal gyrus, MTG = 

middle temporal gyrus, PCC = posterior cingulate cortex, ACC = anterior cingulate cortex, Hipp = 

Hippocampus. (B) A bar-plot showing the correlations (Pearson’s r) between model distances – as 

extracted from different pairs of models – and the behavioral scores. Below each bar is the 

corresponding cross-correlation plot. * = p<0.05, ** = p<0.01, *** = p<0.005, n.s. = non-significant 

(p>0.05).   
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Discussion 

We presented a computational framework for modeling the effect of listeners’ perspective 

(state of mind – as defined by their thoughts, beliefs, and prior knowledge) on the way they 

interpret the exact same textual stimulus. Recent papers found similarities between 

contextualized word embeddings derived from DLMs (such as BERT or GPT) and the human 

brain (Mitchell et al., 2008; Huth et al., 2016; Jain & Huth, 2018; Pereira et al., 2018; 

Gauthier & Levy, 2019; Schwartz et al., 2019; Goldstein et al., 2021, Caucheteux et al., 

2021). Building on these findings, we introduced a novel fine-tuning framework to model 

the effect of listeners’ perspectives on how they process a spoken narrative. Fine-tuning is a 

method to adjust a pre-trained language model to better fit a narrower linguistic domain. 

We collected a dedicated dataset (Cheating/Paranoia/Natural stories) which allowed us to 

fine-tune a well-established DLM, BERT (Davlin et al., 2018), to fit either cheating or 

paranoia contexts. The process yielded two variants of BERT: CheatBERT and ParaBERT, each 

induces a different word embedding space (or “semantic space”). Next, we used the two 

fine-tuned DLMs to model the neural responses of two groups of listeners who listened to 

the same story after being prompted to have two different perspectives (of cheating versus 

paranoia).  

We consistently showed that the fine-tuned DLMs (CheatBERT and ParaBERT) better fit the 

neural responses of the subjects with the corresponding perspective (Cheating versus 

Paranoia). First, we showed that we can use fine-tuned models’ word embeddings to 

successfully predict the context in which a subject interpreted the story (Figures 3a and 4); 

Second, we found that the magnitude of change in the representation of each segment 

between ParaBERT and CheatBERT (measured via cosine dissimilarity) is correlated with the 

magnitude of change in neural responses between the cheating and the paranoia groups 

(Figures 3b and 5a); Third, the magnitude of change between the models’ representations of 

each segment correlated with the perspective-induced difference in interpretation across 

the two groups (Figure 5b). Importantly, these results are exclusive to the specific pair of 

fine-tuned models, CheatBERT and ParaBERT, and both models are necessary for modeling 

the data from the Yeshurun et al. (2017) experiment. Our analyses show that replacing one 

of the fine-tuned models with the original, pre-trained but not fine-tuned, BERT, as well as 

using other control contexts to fine-tune the BERT model (as sport and science) yields a 
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substantial reduction in the ability to model listeners’ neural responses as they process the 

story. 

Fine-tuning reshapes (reweights) the relationship among contextual embeddings to better 

fit the geometrical space of a particular context. For example, the word “wife” might be 

closer to the word “mine” in the paranoia context, but closer to the word “unfaithful” in the 

cheating context. The rotation of the geometric space of the language model, as induced by 

its fine-tuning process, is solely dependent on the difference between the ways individuals 

use words in the context of cheating and in the context of paranoia, across many situations. 

Such a fine-tuning procedure is then used as a computational model to model the neural 

activity of subjects who listened to a new story that was not included in the fine-tuning 

process. Our results suggest that as subjects change perspectives, they also rotate their 

semantic space to better represent the relations among words in that particular context. As 

such, our results provide a new theoretical framework for modeling how subjects’ internal 

perspectives shape the way they encode incoming narratives to memory. 

Interestingly, the human brain has the ability to dynamically reshape its semantic space on 

the fly, i.e., as listeners process the narratives. In other words, listening to one sentence 

before the story begins, which provided subjects with either the paranoia or the cheating 

contexts, was sufficient to alter the geometry of the brain embeddings across subjects in 

each group. Currently fine-tuning in machine learning is an offline process that requires 

additional training of the language model. In contrast, fine-tuning of the semantic 

representations in humans can happen “on the fly” as people encounter everyday stories 

about cheating and paranoia. It is still not clear, however, how the human brain dynamically 

shifts among these contexts in real-time. Future work is needed in order to bridge this gap, 

possibly developing a single model (instead of multiple fine-tuned models) which has the 

capability of changing its own parameters dynamically when applied in different contexts. 

An anatomical investigation of our results implies that the fine-tuning methodology helped 

the models to encode not just semantic and other linguistic features, but also other high-

order characteristics associated with the listener’s state-of-minds, such as their attitudes 

and their feelings about the characters in the story. Besides several language-related areas 

(e.g., STG and lPFC), we found models-brain associations in brain areas related to the 

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted November 23, 2021. ; https://doi.org/10.1101/2021.11.22.469596doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.22.469596


 

default mode network (DMN; Mars et al., 2012, see also Yeshurun et al., 2021), such as the 

TPJ and the Precuneus. These areas were associated with the ability to integrate previous 

information with the incoming information across longer timescales (i.e., over many 

minutes; Yeshurun et al., 2020; Friederici, 2020). In addition, the DMN is also linked to the 

ability to think about other’s mental state, a.k.a. the mentalizing network (Mar, 2011; Saxe 

& Powell, 2006; Schurz et al., 2014; Spunt & Adolphs, 2014). Moreover, in our second 

analysis, we found a strong correlation between the distance between the textual 

representations of the models and the neural dissimilarities between the groups in the ACC 

and the Insular Cortex (Figure 5a and Table S2). Previous works associated activations in 

these areas with empathy (Cerniglia et al., 2019), and more specifically with the ability to 

experience others’ feelings (Novembre et al., 2015; Osaka et al., 2004) and emotions (Singer 

et al., 2004; Wicker et al., 2003). Therefore, the correlation between our models and neural 

activities across these functional areas indicates that fine-tuning can alter the geometry of 

the semantic models along many cognitive dimensions. 

From a computational point of view, the current study gives a new perspective on the 

concept of fine-tuning. Usually, fine-tuning is intended for improving the performance of 

DLM-based classifiers in downstream tasks. For example, fine-tuning can be used to further 

improve many downstream tasks such as text summarization, machine translation, 

sentiment analysis, and so on, by adding a few more training steps that optimize the 

model’s parameters for the specific task (Devlin et al., 2018). In other words, the fine-tuning 

stage creates a unique and dedicated variant of the DLM for each downstream task (or 

“stimulus”). Here, however, we used a different logic: instead of adopting a single model to 

a stimulus, we use fine-tuning to create multiple models that will later be applied to model 

the same stimulus (i.e., Salinger’s story) and examine differences in how listener’s with 

different perspective perceive them. This approach has a great advantage in cognitively 

motivated computational modeling, since in real life, we may process the same stimulus in 

different ways, depending on our given state of mind. The present study, therefore, 

provides the first evidence for the relationship between the way the deep language model 

of the human brain adapts to changes in perspectives and contexts in the natural world. 
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Supplementary Material 

1.     Model architecture and the fine-tuning process 

The same architecture was used for both the cheating- and the paranoia- classification 

models and is illustrated in figure S1. It consists of one classification head located on top of 

the original pre-trained version of the BERT encoder ('base' version, taken from the 

Huggingface repository5). Since BERT's input is limited to a maximum of 512 tokens, and 

most of our stories are longer, a sliding window method (Pappagari et al., 2019) has been 

adopted. For each story, a fixed size window was ‘moved’ across the text, with an overlap 

between the windows (the size of the overlap as well as the size of the windows are both 

hyper-parameters of the model). Each textual window was fed into BERT, together with the 

standard prefix and suffix tokens (CLS and SEP), and the output vectors of all its tokens 

(apart from the CLS and the SEP tokens) were then averaged together, yielding a single 

window-representation vector. 

Next, vectors from all the windows were fed into the classification head, which consists of 

one attention layer and one fully connected nonlinear layer (with sigmoid activation) on top 

of it. The final output is a scalar ranging from 0 to 1, which represents the certainty of 

whether the story is about cheating or paranoia (1) or about other relationships related 

content (0). 

The classifiers were trained to minimize the binary cross-entropy loss, using the batch 

gradient-descent algorithm (batch-size=4). 70% of the data was assigned for training, 15% 

for testing, and the remaining 15% for development and hyper-parameters calibration. The 

hyper-parameters included: window size {128,256,512}, overlap size {0,32,64,128}, the 

attention layer's dimension {64,256,512}, the number of neurons in the fully connected 

layer {32,64,128,256}, and the learning rate {1e-3,1e-4,1e-5}. The training procedure ran 

epoch by epoch until no improvement was obtained in the model's predictions on the 

development data. Model performance was evaluated using a standard accuracy metric on 

 
5 https://huggingface.co/bert-base-uncased 
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the predicted scores (scores higher than or equal to 0.5 have been considered as 1, and 

lower than 0.5 as 0), which returns the proportion of the correct predictions. 

Importantly, the original BERT's parameters from the top 3 (out of 12) layers were all 

updated during the training (the remaining parameters were maintained frozen due to a 

limited computational power). 

  

 Figure S1. An illustration of the BERT-base classifier. 

 

2.     Classifier evaluation 

We propose a novel classifier-based fine-tuning methodology to produce distinct variants of 

BERT. The first step in assessing the advantage of this procedure is to evaluate the 

performance of the difference classifiers. If this method is indeed effective, classifiers should 

achieve high accuracy scores when tested on the tasks they were trained on, but also, they 

should show a reduced accuracy in performance on tasks they were not trained on. All six 

classifiers resulted in a high accuracy score on the test data of their task, ranging from 0.80 

to 0.95 (see table S1, the main diagonal). Testing these classifiers on tasks that they were 
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not trained on (e.g. testing the CheatBERT model on the paranoia classification task), indeed 

leads to a substantial performance drop. This implies that the models are all selectively 

specialized to the task they were trained on, and each one indeed captures a different and 

unique context. 

Interestingly (and not surprisingly), as can be seen in table S1, the performance declines are 

not uniform across all novel tasks, but rather they are affected by the global context they 

are sharing with each model. The performance of the models on novel tasks that belong to 

their global context (for example, CheatBERT and the paranoia classification task are sharing 

the same global context, which is romance and relationships), are better than their 

performance on novel tasks that do not relate to the global context (e.g., CheatBERT and 

the space-classification task). 

Table S1: Classifier results by model (rows) and task (columns). 

 

 

 

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted November 23, 2021. ; https://doi.org/10.1101/2021.11.22.469596doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.22.469596


 

Figure S2. Cortical maps of the inter-subject correlation (ISC, Hasson et al., 2004) scores 

calculated between subjects within each experimental group. 

  

  

 Table S2. Brain regions whose voxels’ distances were significantly correlated with models’ 

distances. 

    Coordinates 

Region Hem. 
No. of 

Voxels 
Peak r X Y Z 

Insula left 125 0.43 -40 -7 13 

Superior temporal Gyrus Right 114 0.41 59 -28 12 

Temporoparietal Junction Left 112 0.39 -45 -56 34 

Temporoparietal Junction Right 32 0.39 56 -50 32 

Anterior Cingulate Gyrus Right 119 0.39 11 23 32 

Insula Right 32 0.39 40 -12 11 

Premotor Cortex Right 78 0.39 41 37 30 

Middle temporal Gyrus Right 29 0.38 51 -61 12 

Middle Frontal Gyrus Left 110 0.37 -26 33 40 
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Cingulate Gyrus left 35 0.36 -16 -34 37 

Precuneus Right 46 0.36 10 -54 38 

Precuneus left 50 0.35 -12 -50 37 

Superior temporal Gyrus Left 86 0.35 -56 -9 6 

Premotor Cortex Left 14 0.34 -32 53 20 

Posterior Cingulate Gyrus Right 17 0.34 16 -64 16 

Hippocampus Left 7 0.34 -27 -36 -3 

Temporal pole left 6 0.33 -38 -64 -11 

Middle Occipital Gyrus Left 8 0.32 -10 -84 18 

 

 

 

         

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted November 23, 2021. ; https://doi.org/10.1101/2021.11.22.469596doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.22.469596

