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Abstract 

Objective. Persons with tetraplegia can use brain-machine interfaces to make visually guided reaches with 
robotic arms. Without somatosensory feedback, these movements will likely be slow and imprecise, like those 
of persons who retain movement but have lost proprioception. Intracortical microstimulation (ICMS) has promise 
for providing artificial somatosensory feedback. If ICMS can mimic naturally occurring neural activity, afferent 
interfaces may be more informative and easier to learn than interfaces that evoke unnaturalistic activity. To 
develop such biomimetic stimulation patterns, it is important to characterize the responses of neurons to ICMS. 
Approach. Using a Utah multi-electrode array, we recorded activity evoked by single pulses, and short (~0.2 s) 
and long (~4 s) trains of ICMS at a wide range of amplitudes and frequencies. As the electrical artifact caused 
by ICMS typically prevents recording for many milliseconds, we deployed a custom rapid-recovery amplifier with 
nonlinear gain to limit signal saturation on the stimulated electrode. Across all electrodes after stimulation, we 
removed the remaining slow return to baseline with acausal high-pass filtering of time-reversed recordings. With 
these techniques, we could record ~0.7 ms after stimulation offset even on the stimulated electrode. Main results.  
We recorded likely transsynaptically-evoked activity as early as ~0.7 ms after single pulses of stimulation that 
was immediately followed by suppressed neural activity lasting 10–150 ms. Instead of this long-lasting inhibition, 
neurons increased their firing rates for ~100 ms after trains. During long trains, the evoked response on the 
stimulated electrode decayed rapidly while the response was maintained on non-stimulated channels. 
Significance. The detailed description of the spatial and temporal response to ICMS can be used to better 
interpret results from experiments that probe circuit connectivity or function of cortical areas. These results can 
also contribute to the design of stimulation patterns to improve afferent interfaces for artificial sensory feedback. 
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Introduction 

Efferent brain-machine interfaces (BMIs) have advanced to the point where a spinal-cord injured patient can 
move a robotic arm using signals recorded from motor cortex (Collinger et al. 2013; Wodlinger et al. 2014; 
Hochberg et al. 2012). Without somatosensory feedback, the effectiveness of the movements generated through 
these interfaces will be limited, perhaps like those of people who have lost somatosensation (Ghez et al. 1990; 
Sainburg et al. 1995). Intracortical microstimulation (ICMS), which has been shown to elicit percepts in rats, 
monkeys, and humans (Devecioğlu and Güçlü 2017; Fridman et al. 2010; London et al. 2008; Romo et al. 2000), 
is a promising approach for providing artificial somatosensory feedback via an afferent interface (Tabot et al. 
2013; Flesher et al. 2016). In the first such bidirectional BMI, monkeys could move a virtual arm to explore the 
“texture” of different virtual objects, a property conveyed by two different temporal patterns of ICMS (O’Doherty 
et al. 2011). The monkeys moved the arm sequentially to the objects to find the one with the rewarded texture. 
More advanced methods have been used to supply a spinal-cord injured patient with information about object 
contact location and force (Flesher et al. 2016; Flesher et al. 2021). Using a robotic arm, the patient was able to 
pick up, move, and place objects faster using vision combined with ICMS feedback than with visual feedback 
alone, primarily because they spent less time attempting to grasp the object (Flesher et al. 2021). 

Restoring proprioception, the sense of position and movement of the body, has proven more difficult. In one 
approach, monkeys learned to reach to invisible targets using ICMS feedback through eight arbitrarily chosen 
electrodes which provided information about the error vector between hand and target position (Dadarlat, 
O'Doherty, and Sabes 2015). Monkeys only learned to use this feedback after a few months of training. To 
shorten this long learning period, it may be possible for ICMS to provide more naturalistic feedback (Bensmaia 
and Miller 2014). Our lab attempted to evoke perceptions of hand movement by stimulating on sets of four 
electrodes in somatosensory cortical area 2, that all had similar preferred directions (Tomlinson and Miller 2016). 
This biomimetic approach was successful for six of seven sets of electrodes in one monkey but failed in three 
other monkeys. The reason for the difference between monkeys remains unexplained, but had we been able to 
monitor evoked activity in each case, it may have been clearer. 

To better interpret experiments which use ICMS and to achieve more successful mimicry of naturally occurring 
activity, it will likely be important to quantify the evoked response of neurons to a range of stimulus parameters. 
However, recording at short latency after stimulation is difficult due to the large shock artifact it causes (Hao, 
Riehle, and Brochier 2016; Weiss et al. 2018). Many experiments have been limited to recordings made on 
electrodes hundreds of microns away or even on a separate array (Hao, Riehle, and Brochier 2016; Butovas 
and Schwarz 2003; Chen et al. 2020; Allison-Walker et al. 2021), thereby missing evoked activity near the 
stimulated electrode. Further, previous studies have typically characterized the evoked response to only single 
pulses of stimulation, whereas future afferent interfaces will need to employ trains of stimulation throughout a 
grasp and/or movement (Flesher et al. 2021). 

We developed novel hardware and software techniques allowing us to record ~0.7 ms after stimulation offset on 
every electrode in an implanted microelectrode array, including even the stimulated electrode. We characterized 
the neural responses to single pulses, short trains (~0.2 s), and long trains (~4 s) of stimulation at different 
amplitudes and frequencies. Consistent with other studies, we observed excitatory activity evoked in neurons 
immediately after stimulation with a single pulse followed by long periods of inhibition (Hao, Riehle, and Brochier 
2016; Butovas et al. 2006; Butovas and Schwarz 2003). In contrast, after short, high-frequency trains of 
stimulation, neurons greatly increased their firing rates for ~0.1 s. During long trains, the excitatory response 
recorded on the stimulated electrode decayed, while the response on non-stimulated electrodes was typically 
maintained throughout the train. The results in this paper can inform the interpretation and design of stimulation 
patterns for providing somatosensory feedback.  

Methods 

Animal Subjects 

We performed experiments using two male rhesus macaques. Monkey H was 12.0 kg and monkey D was 10.0 kg 
when we performed the experiments. We performed all procedures in this study in accordance with the Guide 
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for the Care and Use of Laboratory Animals. The institutional animal care and use committee of Northwestern 
University approved all procedures in this study under protocol #IS00000367. 

Implant and data collection 

Each monkey was implanted with a 96-electrode sputtered iridium-oxide multi-electrode array with 1.0 mm 
electrodes (Blackrock Microsystems, Salt Lake City, UT) in the proximal arm area of somatosensory cortical area 
2. In addition to surface landmarks, we recorded intraoperatively from the cortical surface while manipulating the 
arm and hand to find the arm representation (for more details, see Weber et al. 2011). We performed sensory 
mappings after implantation to confirm that recorded neurons had receptive fields corresponding to the proximal 
arm. 

We used the Blackrock Stim Headstage, Front-End amplifier, and Neural Signal Processor (Blackrock 
Neurotech, Salt Lake City, UT) to record signals at 30 kHz. We delivered ICMS from the Blackrock CereStim 
R96. Unless otherwise noted, electrodes were stimulated with biphasic pulses, each phase lasting 200 μs and 
separated by 53 μs. We used the sync line from the CereStim R96 to determine stimulation onset. 

During all experiments, monkeys performed a center-out reaching task while holding the handle of a robotic 
manipulandum (for more details, see (London and Miller 2012)) or sat idly in the chair. Stimulation was delivered 
independently of the monkey’s behavior.   

Pipeline to record at short latencies after ICMS 

Typically, ICMS causes large electrical artifacts which prevent neural recordings for an extended period after 
stimulation. When using the Blackrock Stim Headstage and Front-End amplifier to record on the stimulated 

Fig. 1. Overview of artifact reduction pipeline. (a) Example recordings from the stimulated channel are shown when recording with 
the Blackrock Stim Headstage and Front-end amplifier (dashed lines) and the rapid recovery amplifier (RRA; solid lines). We 
stimulated with anodic-first (blue) or cathodic-first (red) biphasic pulses with phase duration of 200 μs, phases separated by 53 μs, 
and with an amplitude of 50 µA. (b) Block diagram depicting the artifact reduction pipeline. The rapid-recovery amplifier receives 
signals and passes them to the Blackrock Neural Signal Processor. Signals from channels that were not stimulated were amplified 
by the Blackrock Stim Headstage and Front-End amplifier. All signals were sampled at 30 kHz and filtered offline. After filtering, we 
extracted spikes and then sorted the spike data. (c) Voltages recorded using the RRA after acausal time-reversed high-pass filtering. 
Traces in (c) correspond to those in (a).   
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electrode, the recorded signal saturated the amplifier for several milliseconds (Fig. 1a, dashed lines), after which 
the signal slowly recovered to baseline. To enable recording at shorter latencies, we developed a rapid-recovery 
amplifier (RRA, see Supplementary Materials) and used it instead of the Blackrock Stim Headstage and Front-
end Amplifier. The RRA has several features that allow it to operate on the same electrode as the stimulator, yet 
still recover rapidly after stimulation. The wide input range (± 15 V) of the first stage of the RRA prevents input 
voltage clamping and current shunting as well as output saturation during the stimulus pulse. To prevent 
saturation of subsequent stages, the gain of the RRA declines rapidly from a maximum of ~1000 to a minimum 
of 1 during large dynamic swings of the front-end voltage. The output of the RRA, which was limited to ± 5 V, 
was connected to an analog input on the Blackrock Neural Signal Processor (Fig. 1b).  

To measure the progressive gain recovery of the RRA after stimulation when stimulating and recording on the 
same electrode, we monitored the size of the artifact evoked by much lower current stimulation on a remote 
electrode. We tested gain recovery following alternating cathodic- and anodic-first biphasic pulses at 10 Hz, with 
amplitudes of 5–30 μA in 5 μA steps and 40–100 μA in 10 μA steps. We tested 25 stimulation electrodes across 
the two monkeys and delivered 32 ± 2 (mean ± sd) pulses per condition. The remote channel was stimulated at 
3000 Hz for 4.5 ms, with cathodic-first biphasic pulses (53 μs pulse length with 53 μs between phases). We used 
1 μA to monitor gain recovery on four stimulation electrodes in one session, and 5 μA on the remote channel in 
later sessions.   

Even with the RRA, full recovery to baseline took ~3 ms (Fig. 1a, solid lines). While a high-pass filter removed 
this drift, ringing caused by filtering the large artifact prevented neural recording for ~10 ms. Instead, we applied 
a 500 Hz high-pass Butterworth filter acausally, backwards in time, thereby preventing the introduction of a 
ringing artifact (Fig. 1c). We adjusted the timestamps of recorded spikes to account for the ~100 μs phase shift 
caused by filtering. Even with this acausal filtering we avoided filtering through the artifact, which would have 
obscured the pre-stimulus data (as seen in Fig. 1c). To account for the changing gain of the RRA, we divided 
the recorded signal by the measured gain recovery. After filtering, we extracted neural activity by finding 
threshold crossings and then sorting single units using OfflineSorter (Plexon Inc., Dallas, TX). 

Recordings on non-stimulated electrodes using the Stim Headstage and Front-end Amplifier were saturated for 
~0.7 ms after stimulation offset. In our testing, the RRA did not shorten the recording latency on non-stimulated 
electrodes. Because of this, we did not use the RRA when recording on non-stimulated channels. Nevertheless, 
we filtered acausally before extracting neural activity as we did for recordings made on the stimulated electrode.  

Evaluating the performance of the rapid-recovery amplifier and acausal, time-reversed filtering 

To evaluate the performance of our pipeline for recording neural activity on the stimulated electrode, we tested 
how well we could recover simulated activity at different latencies after stimulation. We recorded electrical 
artifacts on 10 different stimulated electrodes across two monkeys with the RRA or with the Stim Headstage and 
Front-End amplifier. To simulate neural activity, we recorded naturally occurring spike waveforms during a period 
without stimulation and then summed these waveforms with the recorded artifacts at random times after 
stimulation. We added spike waveforms at random latencies between 0.2–7 ms following 50% of the stimuli for 
each of the 10 electrodes. For each electrode, we generated 200,000 stimulation artifacts, half from recordings 
made with the RRA and half with the standard Blackrock hardware. We tested the same amplitudes described 
above for measuring RRA gain but used only cathodic-first pulses since our subsequent experiments used this 
polarity. We computed the percentage of spikes recovered by comparing the time stamps of recovered spikes 
to the artificial ones, tolerating ± 0.33 ms of error.  

Stimulation protocol for characterizing the evoked response 

After evaluating our recording capability, we characterized the response evoked on the stimulated channel by 
single pulses or pulse trains. Table 1 shows the numbers of sessions for each monkey, electrodes tested, 
neurons recorded, and trains per condition for all experiments. The final column (inter-train period) indicates the 
time between successive stimulation conditions. We slightly jittered the inter-train period for each condition to 
prevent synchronizing stimulation with any physiological process by adding 0–100 ms sampled from a uniform 
distribution.  
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In initial experiments we measured the response evoked by single pulses at a range of amplitudes. In four 
experiments, we tested 10–60 μA in 10 μA steps, 80 and 100 μA. Later, we probed the lower stimulation 
amplitudes more thoroughly using 10–30 μA in 5 μA steps and 40, 50, and 100 μA for another 4 electrodes, then 
added a 5 μA condition for the final 21 electrodes.  

We next characterized the response to short (~0.2 s) trains. We stimulated at 50 μA and at 20, 49, or 94 Hz for 
7 neurons. After noticing a modest decay in the response of neurons throughout the 0.2 s train at 94 Hz, we 
added a 179 Hz condition for the remaining 12 neurons. After short, high frequency trains, we observed rebound 
excitation, which we analyzed with this data.  

We then characterized the evoked response to longer (~4 s) trains of stimulation, a duration that approximates 
that required for a BCI user to grasp and move an object (Flesher et al. 2021). Because the recorded neural 
response decayed rapidly with 179 Hz stimulation, we used a maximum of 131 Hz when stimulating with 4-s 
long trains. We stimulated with all combinations of 20, 40, 60 μA and 51, 80, 104, 131 Hz. Data were collected 
simultaneously on the stimulated and non-stimulated channels during this experiment. The results for non-
stimulated channels may include a given neuron activated by different stimulation electrodes.  

Data analysis 

All data analysis was performed using MATLAB (MathWorks Inc., Natick, MA). To quantify the amount of activity 
evoked by each pulse, we counted spikes between 0.5 and 5.0 ms after the offset of each pulse and averaged 
across pulses. To account for different baseline firing rates across neurons, we subtracted the expected number 
of spontaneous spikes based on the baseline firing rate measured 10 ms to 80 ms before onset of single pulses 
or 0.2 to 2 s before train onset. 

We computed an activation threshold for each neuron in response to single pulses. To do so, we measured the 
proportion of stimulation pulses with at least one spike occurring 0.5–5 ms after stimulation offset for each 
condition and neuron. We defined the activation threshold as the smallest amplitude at which the proportion of 
trials with a spike was significantly larger than that expected based on the baseline firing rate (Chi-Square test, 
α < 0.05). We determined if a neuron was responsive to long trains of stimulation in a similar manner. Since the 
evoked response decayed throughout long trains, we considered only the first 20 pulses in each 8 trains. For 
each condition, neurons with significantly more spikes than chance (Chi-Square test, α < 0.05) were considered 
responsive.  

Multiple spikes were typically evoked at consistent latencies by single stimulus pulses. We grouped spikes based 
on their response latency across trials for each neuron and condition. To do so, we convolved the spike train 
after stimulation offset with a non-causal Gaussian kernel with width of 0.2 ms, then averaged across pulses. 
We found peaks in this average with MATLAB’s findpeaks algorithm. This algorithm uses “prominence”, the 
height of a peak and its location relative to other peaks, to measure how much a peak stands out (for more 
details, see Supplementary Materials for more details). We required peaks to have a minimum prominence of 
1.0 and to be separated by at least 0.7 ms. This algorithm also computes the width at half maximum of each 
peak. Spikes that occurred within the width of each peak were included in the corresponding group. We 

Table 1. Experimental parameters are shown for the single pulse and short train experiments, continuous (Cont.) long train experiments 
when recording on either the stimulated channel (stim) or non-stimulated channels (nonstim), and intermittent (Inter.) long train 
experiments when stimulating at 179 Hz or 131 Hz. The number of sessions for monkey H and monkey D are denoted with ‘H’ and ‘D’ 
respectively. 
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measured the latency of each peak and computed the standard deviation of the spike times within each group. 
Our results were only slightly affected by small changes to the smoothing kernel width, minimum peak spacing, 
and minimum prominence. 

After an evoked response, many neurons underwent either long-lasting inhibition or rebound excitation, which 
we quantified by computing the average firing rate across trials using a two-bin running average across 5 ms 
bins. We defined an inhibitory response as firing rates below three-quarters of the mean baseline firing rate for 
two consecutive bins (a similar threshold as (Butovas and Schwarz 2003)) and measured the time the firing rate 
remained below this threshold. We defined a rebound excitatory response if two consecutive bins exceeded 
twice the mean baseline firing rate and the corresponding duration.  

For many neurons, the evoked response decreased throughout long trains of stimulation. We measured the 
decay rate for each responsive neuron. To do so, we measured the mean firing rate in 50 ms bins from 0.0 to 
3.9 s after train onset, accounting for the stimulation artifact by removing 1 ms of time per stimulation pulse in 
each bin. We then fit the firing rate with an exponential decaying function, 

𝑎 ∗ 𝑒("#∗%), 

with 𝑎 as the intercept and 𝑏 as the decay rate. During intermittent stimulation, we only included bins which 
contained at least 2 stimulation pulses. 

Statistical Analysis 

Statistical analyses were performed using MATLAB (MathWorks Inc., Natick, MA). We used linear and logistic 
models to analyze many of our results. We included two interaction terms in the model when analyzing the effect 
of amplitude, time, and amplifier on the proportion of simulated spikes recovered: one between amplitude and 
amplifier, to test whether the effect of amplitude was reduced with the RRA, and a second between time and 
amplifier, to see if the rate of spike recovery increased with the RRA. When analyzing the effect of amplitude on 
the latency of evoked spikes, we included an interaction term between amplitude and spike group number. 
Finally, we included an interaction term between amplitude and frequency when analyzing the decay rate 
throughout long trains of stimulation. After fitting the models, we performed F-tests on the resulting parameters 
from the linear models and t-tests on the resulting parameters from the logistic models. 

We performed Wilcoxon rank-sum tests to compare the magnitude of evoked activity recorded on non-stimulated 
channels at 20 μA and 60 μA for each neuron and stimulation electrode pair. Here, we aggregated data across 
stimulation frequencies. We used this same test for differences between the decay rates for intermittent and 
continuous stimulation for each duty cycle. We aggregated data across durations, which did not have a large 
effect. 

Results 

Recording pipeline performance 

To evaluate the performance of the RRA, we first measured its dynamic gain recovery after stimulation at 
different amplitudes. We delivered a single biphasic pulse through the electrode to which the RRA was connected 
and simultaneously injected a known signal to a remote electrode (Fig. 2a). After acausal, time-reversed filtering, 
we determined the gain of the amplifier by dividing the amplitude of each pulse in the known signal by the mean 
amplitude of the final three pulses, which were well after full gain recovery. The mean gain recovery curves, 
aggregated for 25 stimulation electrodes across two monkeys, are shown for both cathodic- and anodic-first 
pulses at several stimulation amplitudes in Fig. 2b. We compared the gain of the amplifier at 1 ms across 
stimulation amplitudes and polarities using a repeated measures ANOVA (F(26,481) = 40.6, p = 6.58E-104). 
The gain of the amplifier recovered more slowly as amplitude increased (F(1,481) = 762.65, p = 2.8×10-101) and 
roughly 140 µs faster for cathodic-first pulses than for anodic-first pulses (F(1,481) = 142.2, p = 6.7×10-29). 
Subsequently, when measuring actual neural signals, we accounted for the changing gain by dividing the 
recorded signal by the gain function (Fig. 2a, bottom). 
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We tested the ability to recover spikes following stimulation by adding representative, naturally occurring spike 
waveforms to actual recordings of stimulation artifacts to establish a ground-truth reference. The proportion of 
these spikes that could be recovered with the Blackrock Headstage and with the RRA are shown in Fig. 2c. We 
used logistic regression to predict the proportion of spikes recovered based on the stimulation amplitude and 
time after stimulation, (overall model χ2 = 1.97×103, p ≅ 0). Not surprisingly, spike recovery worsened with 
increasing stimulation amplitude regardless of amplifier (p = 5.8×10-46, t-test), but spikes were recovered at much 
shorter latencies with the RRA than with the Blackrock Stim Headstage (p = 3.7×10-31, t-test). The RRA also 
reduced the effect of amplitude (p = 0.0015, t-test) and increased the recovery rate (p = 0.0090, t-test).  

Excitatory and inhibitory response to single pulses of ICMS 

After evaluating the performance of the RRA, we used it for a series of experiments to quantify the neural 
responses evoked on the stimulated electrode. We first characterized the excitatory and inhibitory responses 
following single pulses across a wide range of current amplitudes (5–100 µA). Responses for an example neuron 
are shown in Fig. 3a. While it was not possible to record throughout stimulation (red shading indicates region 
obscured by the artifact), using the RRA allowed us to record many spikes that we could not have seen if we 
had used the Blackrock Headstage (grey shading). The number of spikes evoked above baseline firing across 
amplitudes is shown in Fig. 3b. The number increased significantly as amplitude increased (overall model 
F(30,223) = 4.88, p =1.36×10-12; amplitude factor F(1,223) = 12.029, p = 6.3×10-4). Among the 29 out of 30 
neurons that were activated with the range of currents tested, the median activation threshold was 10 µA (Fig. 
3c).  

Sufficiently high stimulation amplitude evoked multiple spikes within 10 ms of stimulation offset. These spikes 
occurred at consistent latencies across trials, with later spikes having more varied timing than earlier ones. To 
quantify this, we grouped evoked spikes based on their latency (Fig. 3a and Supplementary Materials show 
example groups). Fig. 3d shows the standard deviation of spike times within a group compared to the latency of 
that group for multiple stimulation amplitudes. This standard deviation increased significantly as group latency 
increased (overall model F(32,302) = 103, p =1.0×10-142; latency factor F(1,302) = 574.13, p = 8.1×10-72). We 
also noticed that latencies decreased as stimulation amplitude increased, seen as a leftward shift in Fig 3a as 
current increased to 100 µA, at which point the artifact likely obscured the first recorded group of evoked spikes. 

Fig. 2. Evaluation of rapid-recovery amplifier (RRA). (a) Example recordings on the stimulated channel when evaluating the gain of 
the RRA are shown both before (top) and after (middle) acausal, time-reversed filtering, and after accounting for the changing gain 
(bottom). We stimulated with biphasic anodic-first (blue) or cathodic-first (red) pulses with phase duration of 200 μs, phases separated 
by 53 μs, and an amplitude of 50 µA. Pulses were simultaneously delivered on a remote channel to inject a ‘known’ signal. (b) The 
relative gain of the RRA for stimulation at different amplitudes. The gain was determined by measuring the peak-to-peak voltage of 
the injected signal. (c) Spikes were artificially added to artifact traces recorded on the stimulated channel. The proportion of simulated 
spikes recovered using our pipeline for both the RRA (solid lines) and the Blackrock Stim Headstage (dashed lines) across stimulation 
amplitudes. 
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Using a linear model across all neurons, we determined that the latency of groups decreased by 3.6 ± 0.7 µs/µA 
as amplitude increased (overall model F(31,303) = 55.1, p =7.3×10-106; amplitude factor F(1,303) = 25.497, p = 
7.7×10-7).  

The number of spike groups evoked across stimulation amplitudes is shown in Fig 3e with the color and text 
within each box representing the percentage of neurons. At 100 µA, the extended artifact and decreased latency 
likely obscured the entire initial group of spikes. When we determined that this occurred, we increased the 
number of groups by one. Even without this compensation, the number of groups increased significantly with 
stimulation amplitude (overall model F(20,223) = 5.65, p = 4.9×10-15;  amplitude factor F(1,223) = 85.5, p = 
1.9×10-17). 

After stimulation, neuronal activity was typically suppressed for ~10–150 ms depending on the stimulation 
amplitude (Fig. 4a). We fit a linear model to predict inhibition duration by amplitude across neurons (overall 
model F(30,180) = 1.9, p=0.0057) and found that increasing stimulation amplitude significantly increased the 

Fig. 3. Excitatory response on the stimulated channel after single pulses of stimulation. (a) Response of an example neuron recorded 
on the stimulated channel in response to single cathodic-first pulses at different amplitudes. Each row is a different stimulation trial, 
and each tick represents an action potential from this neuron. Blue, horizontal lines separate stimulation trials at different amplitudes. 
Red shading depicts the time interval while we were unable to record neural signal with the RRA. Grey shading depicts the 
corresponding time if we had used the Blackrock Stim Headstage and Front-End amplifier. (b) The number of evoked spikes above 
baseline is shown across neurons for each stimulation amplitude. X’s mark outliers. (c) Distribution of activation thresholds across 
neurons. (d) The standard deviation of spike times within an evoked spike group is shown against the latency of that group for different 
stimulation amplitudes. (e) The number of groups evoked for different stimulation amplitudes. The number within each box and the 
shading of each box indicates the percentage of neurons. When stimulating with 100 µA, the extended artifact likely obscured the 
entire initial group of spikes. When we determined that this occurred, we increased the number of groups by one. The adjusted 
numbers are displayed in grey (‘adj’).  
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inhibition duration (amplitude factor F(1,180) = 32.43, p = 5.0×10-8) and increased the fraction of cells undergoing 
inhibition (Fig. 4b). Stimulation amplitudes ≥ 40 µA caused inhibition in ~90% of neurons. 

Temporal response to trains of ICMS 

Fig. 4. Inhibitory response recorded on the stimulated channel after single pulses of stimulation. (a) The inhibition duration across 
neurons recorded on the stimulated channel after single cathodic-first pulses of stimulation across stimulation amplitudes. (b) The 
fraction of cells with an inhibitory response is shown for each stimulation amplitude.  

Fig. 5. Decay rate throughout 4-s long trains of stimulation. (a) The mean firing rate across stimulation trials for the same neuron 
when the channel it was recorded on was stimulated (grey) and when a different channel was stimulated (black) for different 
stimulation amplitudes (columns) and frequencies (rows). Amplitudes and frequencies are noted above and to the right of the panels, 
respectively. Vertical, red dashed lines indicate train onset and offset. (b) The decay rates across neurons recorded on the stimulated 
channel for each amplitude and frequency. Points indicate outliers. (c) The decay rates for each neuron recorded on non-stimulated 
channels for each amplitude and frequency. Note the smaller y-limits in (c) compared to (b). 
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We hypothesized that the activity evoked by ICMS would decrease throughout long stimulus trains as a 
consequence of the long-lasting inhibition on stimulated electrodes following single pulses (Fig 4). To test this, 
we stimulated on single electrodes with 4-s long trains at several amplitudes (20, 40, 60 µA) and frequencies 
(51, 80, 104, 131 Hz). The mean responses across eight trains for nine of the 12 stimulation conditions are 
shown as grey traces in Fig. 5a for an example neuron. For this neuron, the evoked response rapidly decayed 
throughout the train, particularly for the larger amplitudes and frequencies. For the 21.5 ± 2.0 neurons that were 
activated significantly for each condition (Chi-Square test, α < 0.05), we computed a decay rate by fitting the 
firing rate during stimulation with an exponential (Fig. 5b). Using a linear model (F(26,231) = 14.7, p = 8.6×10-

36), we determined that the evoked response decayed significantly faster with greater stimulation amplitude or 
frequency (amplitude: F(1,231) = 119, p = 9.4×10-23; frequency: F(1,231) = 134, p = 8.8×10-25). Increased 
frequency (amplitude) had a larger effect at higher amplitudes (frequencies) (interaction term: F(1,231) = 71.4, 
p = 3.3×10-15). 

Since the response on the stimulated channel decays rapidly, we wondered whether allowing recovery time 
during the stimulus train would reduce the decay rate. To test this, we turned stimulation on and off throughout 
the train (see Supplementary Materials for more information). However, intermittent stimulation did not 
significantly change the decay rate compared to continuous stimulation at frequencies chosen to match the 
number of pulses (Wilcoxon rank-sum test, p > 0.05 for all). This shows that the effect of intermittent stimulation 
is similar to simply reducing the mean stimulus frequency.  

If neurons recorded on non-stimulated electrodes were driven transsynaptically by neurons activated near the 
stimulated electrode, then we would expect to see a similar rapid decay in the evoked activity for neurons on 
non-stimulated electrodes. If, on the other hand, neurons even on distant electrodes are driven directly, their 
decay rate may differ from that of neurons recorded on the stimulated electrode. To determine this, we examined 
the neuronal activity evoked on non-stimulated electrodes. In contrast to the response on the stimulated 
electrode, this activity did not decay appreciably (Fig. 5a, black traces). The maintained response of all 437 
neuron/stimulation electrode combinations was shown here was essentially like this example (Fig. 5c). Using a 
linear model with data aggregated across amplitudes and frequencies (F(81,3269) = 51.6, p ≅ 0), we determined 
that the evoked response decayed significantly faster for neurons recorded on the stimulated channel than on 
non-stimulated channels (F(1,3269) = 980.3, p = 2.0×10-188). These results imply that the response on non-
stimulated electrodes is driven directly, or by evoked activity that occurs before we can record it.  

After the end of an ICMS train, we expected neurons on the stimulated electrode to be inhibited for many 
milliseconds, as we observed with single pulses (Fig. 4). Indeed, low-frequency, 50 µA trains delivered for ~0.2 s 

Fig. 6. Rebound excitation recorded on the stimulated electrode after short trains of stimulation. (a) The response of an example 
neuron recorded on the stimulated electrode during ~200 ms trains at different frequencies. Red lines indicate stimulation pulses. 
Stimulation frequencies are shown on the left of the figure for 50 µA stimulation. (b) The fraction of cells that displayed an inhibitory 
response after the end of the short trains (top) and the duration of the inhibitory responses (bottom) for each frequency. (c) The 
fraction of cells that displayed rebound excitation (top) and the duration of the rebound excitation (bottom) for each frequency. Lines 
connecting points represent data from the same neuron. 
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caused inhibition (see example in Fig. 6a) in about 50% of neurons, lasting from 10-250 ms (Fig. 6b). Faster 
stimulus frequency increased inhibition duration (Model: F(19,21) = 6.38, p = 5.9×10-5, frequency factor F(1,21) 
= 36.0, p=6.0×10-6) but this effect was not observed in all 16 tested neurons. At 179 Hz, the highest frequency 
we tested, the fraction of cells with an inhibitory response was only ~8%. Instead of inhibition in these cases, we 
observed a large burst of activity immediately after the stimulation train. This rebound excitation occurred for 
75% of cells following stimulation at 179 Hz and lasted from ~25-240 ms (Fig. 6c). If a neuron exhibited rebound 
excitation for multiple stimulation frequencies, higher frequencies almost always resulted in longer lasting 
rebound. During the longer 4-s trains, we observed rebound excitation very infrequently (2/25 cells) potentially 
because of the longer train duration. 

Spatial pattern of the response to ICMS trains 

Both increased amplitude and frequency typically increase ICMS detectability, perhaps because of increased 
charge delivery (Kim et al. 2015; Otto, Rousche, and Kipke 2005; Sombeck and Miller 2019). Increasing 
amplitude leads both to more activity near the stimulated electrode (Fig. 3) as well as a wider spread of activity 
recorded across a multi-electrode array (Hao, Riehle, and Brochier 2016; Stoney, Thompson, and Asanuma 
1968; Kumaravelu et al. 2021), likely because increased amplitude results in more charge delivered per pulse. 
Greater frequency, though, does not change the charge per pulse and thus may not lead to equivalent effects. 
To study these effects, we measured activity on non-stimulated electrodes throughout 4-s trains of continuous 
stimulation. Fig 7a shows the increase in firing rate above baseline of each neuron for each stimulation electrode 
aggregated across two monkeys against distance from the stimulated electrode. We computed the mean firing 
rate above baseline for each neuron and amplitude / frequency combination repeated across 8 trains (Fig. 7b). 
For each stimulation electrode, we only analyzed neurons that had activation thresholds at or below 20 µA when 
stimulating at 51 Hz. We normalized the responses by the number of pulses in the train and pooled them across 
stimulation frequencies. The evoked activity per pulse at 60 µA was significantly larger than that at 20 µA for 290 
out of 437 neurons (p<0.001, Wilcoxon rank-sum test). Using a linear model (F(125,1362) = 23.5, p = 8.9×10-

260), we determined that increasing amplitude increased the evoked firing rate per pulse (F(1,1362) = 1165.5, p 
= 4.4×10-185). Increasing frequency also significantly increased the evoked activity per pulse (F(1,1362) = 11.1, 
p = 0.00089), an effect that was, however, two orders of magnitude smaller than that of increasing amplitude. In 
addition to this small effect of each pulse, increased frequency increased overall evoked activity to a greater 
extent because of the greater number of pulses in four seconds.  

We also hypothesized that increased stimulation amplitude would increase the distance at which neurons are 
activated while increased frequency would not. Data for a subset of stimulation conditions are shown in Fig. 7c. 
We used logistic regression to determine the effect of amplitude, frequency, and distance on the proportion of 

Fig. 7. Evoked response on non-stimulated channels during 4-s long trains of ICMS. (a) The firing rate above baseline against 
distance from the stimulated electrode for different amplitudes (columns) and frequencies (rows). Each point represents a neuron 
and stimulated electrode pair. (b) The firing rate above baseline per pulse for each frequency and amplitude condition for 
responsive neurons. X’s mark outliers. (c) The proportion of neurons activated at different distances is shown for a subset of 
amplitudes (color) and frequencies (line-style). 
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activated neurons (overall model χ2(104) = 1.69×103, p ≅ 0). While increasing either amplitude or frequency 
increased the proportion of activated neurons (amplitude: p = 8.9×10-159; frequency: p = 1.6×10-9), the effect of 
frequency was an order of magnitude smaller.  

Discussion 

We developed hardware and software tools to enable recording at short latency after ICMS. With these tools, 
we were able to record roughly 0.7 ms after the end of stimulation, even from the stimulated channel. We 
investigated the evoked response to single pulses, short trains, and long trains of ICMS of varying amplitude and 
frequency to better understand the neural response to stimulation. Here, we compare our methods and results 
to those of previous studies, discuss the mode of activation for the spikes we recorded, and how our results may 
impact the sensations evoked by ICMS in afferent interfaces. 

Comparison of artifact suppression to previous techniques 

Recording neurophysiological potentials immediately after passing current through an electrode is difficult; the 
large shock artifact typically prevents recordings for many milliseconds. We developed and evaluated a rapid-
recovery amplifier (RRA) to enable short latency recordings, particularly on the stimulated electrode. The RRA 
clamps the voltage below that which would saturate downstream electronics by reducing gain as the magnitude 
of the input voltage increases (Fig. 2b). An alternative approach to shorten the duration of the artifact is to 
electrically disconnect the recording system during stimulation (Zhou, Johnson, and Muller 2018). While this 
approach is effective on non-stimulated electrodes (Hao, Riehle, and Brochier 2016), it cannot remove artifact 
on the stimulated electrode, which is caused by residual polarization of the electrode itself (Venkatraman et al. 
2008). Our approach is similar to clamping the slew rate (first derivative) of a signal, as has been done previously 
(Epstein 1995). By reducing the gain, we reduced the size of the artifact and prevented saturation, thereby 
allowing us to record at earlier latencies. Another important advantage of the RRA is the wide input voltage range 
(±15 V) that avoids input clamping and stimulus current shunting of the relatively high voltage (< 10 V) stimulus 
pulses. A benefit of our approach is that the RRA can be placed in front of pre-existing recording systems, in our 
case, the Cerebus system from Blackrock Neurotech. Saturation can also be prevented by using an amplifier 
with a lower gain and/or an amplifier with a higher maximum input voltage (Jung, Kim, and Nam 2018; Rolston, 
Gross, and Potter 2009).  

While the RRA prevents amplifier saturation that would otherwise be caused by the large shock artifact, the 
recorded signal still returns slowly to baseline after stimulation (Fig. 1a). This slow return is likely caused by slow 
dissipation of the residual charge on the electrode (Zhou, Johnson, and Muller 2018). To remove excess charge 
more quickly, custom electronics could be designed to actively discharge the electrode to a pre-stimulus voltage 
(Brown et al. 2008; DeMichele and Troyk 2003; Freeman 1971), although this may introduce switching artifacts 
that diminish the effectiveness of this approach.  

The slow return to baseline can also be removed offline. When done with a high-pass filter, it is important not to 
filter through the shock artifact, as this can cause ringing and obscure the neural signal. One solution is to filter 
data beginning a fixed time after the end of stimulation (Hao, Riehle, and Brochier 2016). Instead, we filtered 
acausally, backwards in time so that any ringing would be pushed before the stimulation, leaving the post-
stimulus data clean (such acausally displaced ringing can be seen before 0 ms in Fig. 1c). This approach does 
not require defining a time at which the shock artifact has ended, though it does push neural signal back in time 
~100 µs. We compensated for this time shift by adjusting the time stamps of recorded spikes by 100 µs. With 
the RRA and acausal, time-reversed filtering, we were able to record ~0.7 ms after stimulation offset, even on 
the stimulated electrode (Fig. 2c), revealing spikes that we could not have recorded with the Blackrock Stim 
Headstage (grey shading in Fig. 3a).  

Mode of activation of recorded spikes on stimulated and non-stimulated channels 

ICMS can evoke action potentials both directly and transsynaptically (Tehovnik et al. 2006). Directly evoked 
spikes occur because stimulation changes the membrane potential of cells near the electrode, causing them to 
fire. Action potentials are typically initiated in axons, which have a higher density of sodium channels than do 
somas, resulting in lower activation thresholds (Nowak and Bullier 1998a, 1998b; Tehovnik et al. 2006). Action 
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potentials then propagate antidromically to the cell bodies and orthodromically to presynaptic terminals, where 
they may elicit further activity transsynaptically.  

We wondered whether the spikes we recorded on the stimulated electrode were evoked directly, at either the 
axon or soma, or transsynaptically. Since we have no direct way of testing this, we inferred the mode of activation 
from the latency of evoked spikes. We expect directly evoked spikes to be generated within 0.3 ms of the end of 
the cathodic phase (Gustafsson and Jankowska 1976; Jankowska, Padel, and Tanaka 1975; Stoney, Thompson, 
and Asanuma 1968), though we may actually observe these spikes somewhat later since they need to propagate 
from the site of initiation back to the soma. We estimated this potential antidromic distance and latency by first 
estimating how far spike initiation could have occurred from the stimulated electrode. To do so, we used Stoney’s 
square-root relationship (Stoney, Thompson, and Asanuma 1968): 

𝐼 = 𝑘𝑟', 

With 𝑘 =1292 µA/mm2 and 𝐼 = 10 µA, the median activation threshold of neurons in our study (Fig. 3b) the 
maximum spike initiation distance is ~100 µm. Since somas can be recorded up to ~150 µm from the recording 
electrode (Maynard, Nordhausen, and Normann 1997), the maximum distance an action potential could travel 
before being recorded is ~250 µm. With a propagation speed of 1 µm/µs (Swadlow 1990), the maximum latency 
at which we expect to see a directly evoked spike is 0.55 ms after the end of the cathodic phase, (0.3 ms after 
the end of our biphasic pulses). Hence, the earliest spikes we were able to see on the stimulated electrode (0.7 
ms; Fig. 3c), were undoubtedly transsynaptic.  

We asked the same questions about the spikes recorded on non-stimulated electrodes. Due to the increased 
distance that evoked spikes could propagate, the latency at which we could record directly evoked spikes would 
also increase. For electrodes within 400 µm of the stimulated electrode, the maximum distance an action 
potential could travel is ~650 µm, making the longest directly evoked spike latency ~0.7 ms. This is very close 
to the earliest spikes we saw. For these immediately adjacent electrodes, it remains likely we are recording 
transsynaptic activation. For electrodes farther than 400 µm from the stimulated electrode, the maximum latency 
of direct activation overlaps with our recording latency, suggesting that some spikes may have been directly 
evoked.  

Knowing that we inevitably missed some early, directly evoked spikes, we estimated the proportion of spikes this 
represented. Since we can begin recording ~0.7 ms after stimulation offset, we might miss at most one spike per 
pulse. In the worst case, where the neuron is directly activated by each pulse, 1.2 – 1.4 spikes are evoked per 
neuron across amplitudes (Fig. 3b). The average of 0.2 – 0.4 transsynaptically evoked spikes we recorded 
account for 17 – 30% of evoked spikes. Even though distance and amplitude affect the proportion of pulses 
which directly evoke a spike (Stoney, Thompson, and Asanuma 1968), these likely still make up a large 
proportion of evoked spikes near the stimulated electrode. 

Optical recording to measure directly evoked activity 

While we were able to record on the stimulated electrode at a short latency after stimulation, we likely missed 
the earliest directly evoked activity occurring during the stimulus pulse. To record during the stimulus pulse, 
calcium imaging or voltage-sensitive dye imaging can be used, as these imaging methods are not affected by 
the shock artifact (Histed, Bonin, and Reid 2009).  With optical methods, researchers have measured the spatial 
and temporal response of neurons during stimulation at various amplitudes, frequencies, and with different pulse 
shapes (Histed, Bonin, and Reid 2009; Michelson et al. 2018; Stieger et al. 2020). While optical methods have 
many advantages, they do come with some limitations. Currently, they cannot be used in humans, limiting their 
usefulness for brain-machine interfaces. Optical recordings also have lower temporal resolution than electrical 
recordings, with frames recorded at about 30 Hz (Histed, Bonin, and Reid 2009; Michelson et al. 2018). While 
optical imaging can be used with awake, behaving animals (Dombeck et al. 2007; Greenberg, Houweling, and 
Kerr 2008; Andermann, Kerlin, and Reid 2010), studies recording the evoked response to stimulation have 
typically used anesthesia, which affects the response properties of neurons, including the balance of excitation 
and inhibition (Histed, Bonin, and Reid 2009; Stieger et al. 2020; Tehovnik and Slocum 2013; Michelson et al. 
2018; Tanaka et al. 2019).  
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Qualitatively similar evoked responses are observed across different experimental conditions 

Across many studies using different levels of anesthesia, animal models, and recording techniques, the evoked 
response to ICMS is qualitatively similar. After stimulation, neurons exhibit short-latency excitation due to direct 
or transsynaptic activation (Margalit and Slovin 2018; Tehovnik et al. 2006). We observed an increase in the 
amount of evoked activity from activated neurons and an increase in the spread of evoked activity with increasing 
amplitude (Fig. 3), consistent with previous observations (Hao, Riehle, and Brochier 2016; Butovas and Schwarz 
2003). With increased frequency, we observed a small increase in the amount of evoked activity per pulse, an 
effect that is further amplified by the increased number of pulses (Fig. 7). After short-latency excitation, neural 
activity is typically suppressed for long periods, an effect likely mediated by GABAB receptors (Butovas et al. 
2006). The duration of this long-lasting inhibition increased with amplitude in our study (Fig. 4), in contrast to 
previous observations of neurons recorded farther from the stimulated electrode (Butovas and Schwarz 2003). 
After inhibition, we often saw a large increase in firing rate (Fig. 6) (Butovas and Schwarz 2003). This rebound 
excitation may be due to recurrent excitation within cortical circuits, mediated by calcium channels (Molineux et 
al. 2006; McElvain et al. 2010). Throughout trains of stimulation, we observed a rapid decay of the evoked activity 
recorded near the stimulated electrode (Fig. 5), similar to previous observations (Michelson et al. 2018). This 
rapid decay could be caused by the local activation of inhibitory neurons (Overstreet, Klein, and Helms Tillery 
2013). 

Linking evoked activity to sensation 

In monkeys, stimulation in tactile cortices evokes sensations at locations corresponding to the receptive field of 
neurons recorded on the stimulated electrode (Tabot et al. 2013). Different temporal patterns of stimulation can 
be distinguished and used to convey useful information (Hughes et al. 2021; Callier et al. 2020; Berg et al. 2013; 
London et al. 2008; Romo et al. 1998; Dadarlat, O'Doherty, and Sabes 2015). Similar observations have been 
made in humans with tetraplegia and neuropathy (Salas et al. 2018; Chandrasekaran et al. 2021; Fifer et al. 
2020), including the ability of one person to identify which of multiple fingers of a robotic hand, linked to 
somatosensory cortex (S1) stimulation, were touched (Flesher et al. 2016). More recently, somatosensory ICMS 
was used to provide contact and pressure-related feedback, which improved their ability to control a robotic arm 
to reach and grasp (Flesher et al. 2021). The stimulus parameters in this most recent example were quite simple, 
a linear mapping from index and middle finger joint torques to appropriate electrodes. To improve the feedback 
provided by ICMS, it is important to understand the effect stimulation parameters, including amplitude, frequency, 
pulse width, and train length have on the quality and intensity of the evoked percept. Characterizing the 
sensations evoked by interacting electrodes would be very time consuming for patients (if even possible) given 
the very large stimulation parameter space. Instead, it may be possible to infer aspects of the evoked sensation 
indirectly, by recording evoked activity, an approach that may allow for more rapid testing of stimulation 
parameters for many electrodes. 

The intensity of an evoked sensation can be increased by increasing any of these parameters, within limits (Kim 
et al. 2015; Otto, Rousche, and Kipke 2005; Sombeck and Miller 2019). However, amplitude and frequency have 
different effects on the resulting sensation, as shown by the different effects these parameters had on monkeys’ 
perceptions of noisy moving dot fields. At small amplitudes, stimulation biased the monkeys’ perception of the 
dot motion, in a direction predicted by the preferred directions of recorded neurons and with an effect size 
dependent on stimulus current (Salzman et al. 1992). However, near 80 µA, the monkeys’ performance returned 
to chance level, perhaps because of the recruitment of more distant neurons with less homogenous properties 
(Murasugi, Salzman, and Newsome 1993). In contrast, increasing frequencies as high as 500 Hz increasingly 
biased the monkeys’ perception. In our data, increasing amplitude greatly increased the spread of activation 
(Fig. 7). While increasing frequency also increased the spread of activation, this effect was much smaller than 
the increase in firing rate of those activated neurons. Our results are quite consistent with these behavioral 
observations.  

Modulating frequency affects the nature of the evoked sensation. Monkeys can discriminate different frequencies 
of ICMS due to changes in either the intensity or quality of sensation (Romo et al. 1998; Berg et al. 2013; London 
et al. 2008). To distinguish between these possibilities, monkeys were trained to discriminate ICMS frequency 
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when the amplitude of the stimulus train varied independently (Callier et al. 2020). Their ability to discriminate 
ICMS frequency independently of intensity differed greatly from electrode to electrode, implying that modulating 
frequency changed the quality of sensation for some (but not all) electrodes. Similar results were obtained with 
human patients, where modulating frequency sometimes changed the reported sensation (Hughes et al. 2021). 
In our data, the evoked response for some neurons decayed rapidly throughout trains of stimulation, while the 
response for others was maintained (Fig. 5). As frequency increases, some neurons will stop responding to 
stimulation throughout the train, changing the activated population of neurons and potentially changing the nature 
of the evoked sensation. To relate the temporal response of neurons to the quality of sensation, researchers 
would need to record both the evoked response and the reported quality of sensation evoked by stimulation 
through the same electrodes. 

Surprisingly, human patients reported a decrease in sensation intensity with increasing frequency for some 
electrodes (Hughes et al. 2021), in contrast to the experiments in monkeys where increasing frequency increased 
the  detectability of stimulation (Kim et al. 2015) and shortened the reaction time to stimulation (Sombeck and 
Miller 2019). We and others recorded a rapid decay in the amount of evoked activity on the stimulated electrode 
with time (Fig. 5 and Fig. 6a) (Michelson et al. 2018). Assuming these neurons contribute to the overall sensation 
intensity, intensity would be largest near the beginning and decrease throughout the train. As frequency 
increases, the intensity at the onset of the train likely increases due to the increased number of pulses, resulting 
in a more detectable signal and shorter reaction times. At high frequencies, though, the amount of evoked activity 
decays more rapidly, possibly leading to fewer total evoked spikes and a lower overall sensation intensity 
compared to stimulation at lower frequencies. 

After the end of a reach or when an object is no longer grasped, the feedback provided by ICMS should end. We 
observed a large burst of activity after the end of high frequency trains (Fig. 6). This rebound excitation could 
potentially lead to sensations that persist beyond the end of the train, presumably extending the sensation. Since 
rebound excitation primarily occurred at high stimulation frequencies, it may be that there is a maximum 
frequency that future afferent interfaces can use to avoid this effect. 

Online recording in the presence of stimulation artifact 

For most applications, afferent interfaces would only be useful when combined with an efferent interface, thereby 
providing both restored somatosensation and movement (Collinger et al. 2013; Flesher et al. 2016; O’Doherty et 
al. 2011). However, stimulation in S1 produces large artifacts in recordings from motor cortex (M1). With causal 
filters, neural signals can be recorded from M1 in a human ~0.7 ms after offset of stimulation applied in S1. At 
low stimulation frequencies, losing the ability to record from M1 for short periods after each pulse will not have 
much of an impact on decoding performance. When intended cursor velocity was decoded from M1, artificially 
dropping a random 20% of M1 signals caused only a 10% decrease in decoder performance (Fig. 8 in (Young 
et al. 2018)). While acausal, time-reversed filtering may allow for slightly earlier recordings, the increased amount 
of data would likely have a negligible impact on decoding performance.  

However, as stimulation protocols become more complicated, with stimulation at high rates and on many 
electrodes (Bensmaia and Miller 2014; Sombeck and Miller 2019), the percentage of time in which signals can 
be recorded from M1 will decrease, further decreasing decoder performance. Stimulation at 333 Hz, either on a 
single electrode or across electrodes, would result in 50% loss of signal, assuming a total blanking duration of 
1.5 ms per pulse (Weiss et al. 2018). With some non-trivial amplifier modifications to increase somewhat, the 
gain during the stimulus artifact, the RRA could potentially enable neural recordings even during the stimulus 
pulse, albeit at a significantly reduced gain. Although we did not explore them here, there are numerous 
approaches that could be used to extract neural signal from the artifact if the recorded signal is not saturated: 
adaptive filtering (Mendrela et al. 2016; Nag et al. 2015), template subtraction (Montgomery Jr, Gale, and Huang 
2005; Hashimoto, Elder, and Vitek 2002), independent component analysis (Hyvärinen and Oja 2000; Lemm et 
al. 2006), linear regression reference (Young et al. 2018), and deep neural networks (Tamada et al. 2020; Zhang 
and Yu 2018). Of particular note is ERAASR, a technique which uses principal component analysis to exploit the 
similar structure of the shock artifact sequentially across electrodes, pulses, and then trials (O'Shea and Shenoy 
2017). With these approaches, it may be possible to recover neural signal throughout multi-channel stimulation, 
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thereby enabling full band-width recordings in M1 while providing somatosensory feedback via ICMS in S1. Such 
technology will likely be necessary to accurately decode motor intent as ICMS feedback becomes more 
complicated. 
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