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Abstract 

Background: Machine learning (ML) approaches show increasing promise to identify vocal 

markers of Autism Spectrum Disorder (ASD). Nonetheless, it is unclear to what extent such 

markers generalize to new speech samples collected in diverse settings such as using a different 

speech task or a different language.  

Aim: In this paper, we systematically assess the generalizability of ML findings across a variety 

of contexts. 

Methods: We re-train a promising published ML model of vocal markers of ASD on novel 

cross-linguistic datasets following a rigorous pipeline to minimize overfitting, including cross-

validated training and ensemble models. We test the generalizability of the models by testing 

them on i) different participants from the same study, performing the same task; ii) the same 

participants, performing a different (but similar) task; iii) a different study with participants 

speaking a different language, performing the same type of task. 

Results: While model performance is similar to previously published findings when trained and 

tested on data from the same study (out-of-sample performance), there is considerable variance 

between studies. Crucially, the models do not generalize well to new similar tasks and not at 

all to new languages. The ML pipeline is openly shared. 

Conclusion: Generalizability of ML models of vocal markers - and more generally 

biobehavioral markers - of ASD is an issue. We outline three recommendations researchers 

could take in order to be more explicit about generalizability and improve it in future studies. 

 

Keywords: Autism Spectrum Disorder, voice, biobehavioral markers, machine learning, 

generalizability 
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Introduction  

 Voice atypicalities are argued to be markers of Autism Spectrum Disorder (ASD) 

(McCann & Peppe, 2003; Fusaroli et al., 2017). Several machine learning (ML) studies have 

accordingly attempted to identify a clear acoustic profile of ASD, with promising results for 

supporting assessment processes  (Hegde et al., 2019; Mohanta et al., 2020; Verde et al., 2018). 

However, any potential clinical application requires a careful assessment of how well the ML 

algorithms generalize not only to new participants from the same study sample, but also to new 

contexts, subpopulations and languages (Chekroud, 2018; Fusaroli et al., 2017; Low et al., 

2020; Rocca & Yarkoni, 2020; Vandenbroucke et al., 2007; Yarkoni, 2020). The assessment 

of generalizability of ML models of vocal markers of ASD is still largely missing, and it is the 

focus of this study. 

  Currently, clinical features of ASD are predominantly assessed using the standardized 

protocols in Autism Diagnostic Interview-Revised (ADI-R) and Autism Diagnostic 

Observation Schedule-Generic (ADOS-G), see (Lord et al., 2008). The process is time-

consuming and resource-intensive, as it relies heavily on high quality training to ensure the 

validity of the examiners’ ratings (Drimalla et al., 2020). Finding more automatically 

measurable markers could support, simplify and increase the reliability of the assessment 

process. 

 Vocalization patterns are associated with diverse cognitive, and motor abilities, as well 

as emotional states and levels of stress (Talkar et al., 2020; Williamson et al., 2017). Clinical 

features of ASD include repetitive behaviors, socialization and communication atypicalities, 

cognitive deficits, anxiety and sensory overload (Benson & Fletcher-Watson, 2011; Scheerer 

et al., 2020; Vargason et al., 2020), which are consequently likely to be reflected in autistic 

voice patterns (e.g., cognitive deficits resulting in increased pause behaviors; or anxiety 

resulting in increased jitter). Therefore, atypical vocalization patterns could serve as markers 

for these characteristics (Vargason et al., 2020; Yankowitz et al., 2019). While it is well 

accepted that autistic individuals often have atypical voices - e.g., sing-songy or monotone 

intonation and what has been referred to as inappropriate prosody (Baltaxe & Simmons, 1985; 

McCann & Peppé, 2003; Patel et al., 2019) -, acoustic investigations of the physical properties 

of voice underlying such perceptions often present weak or inconsistent findings. A recent 

meta-analysis identified increased and more variable fundamental frequency, as well as more 

and longer pauses as common characteristics (Fusaroli et al., 2017), these differences were, 

however, small and could only be partially replicated on new samples, across biological sexes, 
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and languages (Fusaroli et al., 2018, 2021). Several ML studies have tried complementary 

approaches to these piecewise, highly top-down approaches. ML approaches can explore large 

numbers of features at once, and can therefore more fully rely on modern speech processing 

techniques and use low-level features that would be too numerous to deal with in traditional 

statistical frameworks. Further, more recent developments in neural networks can 

automatically construct the most relevant features to the task at hand from the raw speech signal 

(Badshah et al., 2017; Schneider et al., 2019; Sechidis et al., 2021). Capitalizing on this, ML 

models have been shown to be able to accurately differentiate previously unheard voice 

samples from new autistic and neurotypical (NT) individuals relying on vocal characteristics 

alone, with correct classifications ranging between 57 % and 96 % of the samples (Fusaroli et 

al., 2017).  

However, ML algorithms are so apt at finding patterns that they often overfit to the data 

and learn distinctive patterns that are not present in datasets from other studies (Chekroud, 

2018; Kuhn et al., 2013). For instance, one study (Bone et al., 2013) showed that algorithms 

with high performance in identifying autistic children in The Interspeech 2013 Autism 

SubChallenge dataset were relying on the different background noise and reverberation present 

in those specific recordings, more than on the actual voices. In other words, were the recording 

contexts to be switched between autistic and neurotypical children, or new recording contexts 

being used (e.g., the test being performed in a different school), the algorithms would likely 

perform at chance level. This example stresses the importance of ensuring the generalizability 

of machine learning models: in this context, the ability of the algorithms to perform accurately 

across different datasets. Generalizability has an impact on the inferences one can draw from a 

study: for instance, it can indicate whether the patterns found are related to an underlying 

biological atypicality in ASD (such as to motor control of the vocal cords) across all contexts 

and languages, or whether they are more specific to e.g., situations of high social pressure such 

as a conversation with a stranger. Generalizability has also an obvious impact on clinical 

applications, which require a clear delineation of how well algorithms might generalize to 

different recording contexts, subpopulations, and tasks before one can even consider real-world 

use. One should not only know whether an algorithm can be used as-is in a new context or with 

a new microphone, but also be aware of biases in assessments, e.g., of specific socio-

demographic groups, which might have strong ethical and practical implications (Rocca & 

Yarkoni, 2021; Varoquaux & Cheplygina, 2021). 

Little work has been done to examine the generalizability of the performance of ML 

models on vocal markers of neuropsychiatric conditions, including ASD (Fusaroli et al., 2017; 
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Low et al., 2020; Parola, Simonsen, Bliksted, Zhou, et al., 2020). Algorithms might provide a 

reliable performance (i.e., sensitivity and specificity in classifying data) only if the data keep 

certain properties constant: e.g., it is always recorded with a given type of microphones, or 

following specific procedures to minimize movement in the speaker, or using a certain task, or 

within a given language and no other. That is not in itself an issue, and can still lead to useful 

insights and applications. However, it is important to acknowledge such potential model 

limitations to avoid inappropriate interpretation of the results or overselling of practical 

applications. 

This study specifically aimed to investigate the generalizability of ML models of vocal 

markers of ASD. We searched the literature to identify a promising ML model and replicated 

its training - within a highly conservative pipeline - on a 3-study cross-linguistic dataset. This 

allowed us to investigate the following three questions:  

● Q1: How well do models generalize to different participants from the same study, 

performing the same task and speaking the same language? 

● Q2: How well do models generalize to the same participants performing a different task 

(describing videos vs. repeating a story) in the same language? 

● Q3: How well do models generalize to participants from a different study, performing 

the same kind of task (repeating a story) but speaking a different native language? 

 

 The scope of this paper is to test generalizability of ML models of vocal markers of ASD and 

hence, we identify three essential proposals for future research. 

Methods 

Model identification 
 
To identify promising algorithms, we updated the literature search for ML studies of vocal 

markers of ASD reported in Fusaroli et al (2017), identifying 23 studies (for a more elaborate 

description of the procedure and a table summarizing the studies, see appendix A.1). We then 

selected one of the several algorithms that could be applied on relatively small samples with 

standard computational setups (e.g., trained Support Vector Machine (SVM) or random forest 

algorithms as opposed to deep neural networks), and transparently reported the methodological 

choices. We focused on relatively simple models as they tend to be less prone to overfitting, 

therefore if we were to find generalizability concerns (i.e., inability to accurately identify 

autistic participants in new samples), such concerns would be even more relevant for models 
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like neural networks, more complex and more likely to overfit. We selected Shahin et al. 

(2019), a study based on SVM and rigorous cross-validation (CV), reaching high performance 

in predicting ASD from voice. It reported an accuracy of 0.88, that is, 88% of the samples were 

correctly classified; and a F1 score of 0.90. F1 scores are used to calculate performance when 

e.g., the groups to separate have a different number of cases, and is defined as the harmonic 

mean of precision (fraction of true positive examples among the examples that the model 

classified as positive) and recall (fraction of true positive examples among the examples that 

the model classified as positive). SVM is often used for binary classification problems, and it 

has been shown to perform better than e.g. neural networks and Naive Bayes when there is a 

limited amount of training data and a high number of features (Kirk, 2017), which is the case 

in the current study. 

 

Pipeline 
 
This study sets the methodological choices from Shahin et al. (2019) in a highly conservative 

and fully reported pipeline, which relies on cross-validated training procedures and held-out 

testing sets, that is, it ensures the model is trained (fitted) on a subset of the data (training 

dataset), but its performance is assessed on a subset of the data on which it has not been fitted 

(held-out dataset). Figure 1 provides an overview of the pipeline, which is discussed in detail 

below. 

 

 
Figure 1. Overview of the machine learning pipeline. Purple refers to the general steps whereas green refers to specifics. 

“US” indicates the US English study, “DK” the two Danish studies. eGeMAPS indicates the Extended Geneva Minimalistic 

Acoustic Parameter Set (Eyben et al xxx). Train and holdout indicate respectively the portions of the dataset on which the 

model is fitted (trained) and tested. Elastic net indicates a regularization procedure used to reduce the number of features 
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included in the model. SVM RBF indicates the model fitted: Support Vector Machine with a Radial Basis Function. C and 

gamma parameter indicates respectively how much error is tolerated on the margin and how curved the margin is expected 

to be. 
 

Data sources 

 
The dataset used in this study consists of voice recordings collected in previous studies for 

other purposes and their content has been analyzed in other published research (Cantio et al., 

2016; Fusaroli et al., 2021; Grossman et al., 2013). For demographic, clinical and cognitive 

information about the participants, see Table 11. 

 
Table 1. Demographic and clinical features of the participants. DK stands for Danish samples, while US for US English 

samples. ADOS subscores are abbreviated: “Com.” stands for Communication, “SI” for reciprocal Social Interaction, 

“Crea.” for Creativity and “Stereo” for Stereotyped Repetitive Behaviors. IQ stands for intellectual quotient. 
 

 Participants 

(recordings) 

Age in 

months: 

mean (sd) 

Mean (sd) ADOS scores  mean (sd) IQ scores 

Com. SI Crea. Stereo Verbal Nonverbal 

DK 51 (610) 133 (15.2) -- -- -- -- 105 (19.4) 102 (15.9) 

ASD 24 (288) 133 (16.5) 2.71 

(1.52) 

6.95 

(1.80) 

1.29 

(0.56) 

0.19 

(0.51) 

99.2 (19.2) 101 (18.1) 

NT 27 (322) 133 (14.3) -- -- -- -- 110 (18.5) 102 (13.8) 

   

US 81 (309) 157 (36.8) -- -- -- -- 109 (18.9) 109 (14.1) 

ASD 50 (187) 153 (36.3) 3.46 

(1.73) 

8.9 

(2.65) 

1.06 

(0.85) 

1.73 

(2.12) 

105 (19) 106 (15.9) 

NT 31 (122) 163 (37.4) -- -- -- -- 115 (17.8) 114 (9) 

 

 
1 Note that female participants' data in our original datasets were very sparse: e.g. the US dataset contains only 5 autistic 
girls (3.8%). Since exploratory analyses showed little ability of the models to generalize to female voices, but female 
participants were too few and unbalanced across datasets to be able to draw any conclusion, we excluded them from the 
current study, and therefore the table. For a more detailed analysis of differences in vocal markers of ASD depending on 
biological gender see Fusaroli et al. (2021). 
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We collected two Danish and US English datasets involving 74 autistic participants and 58 

neurotypical (NT) participants, all with verbal and non-verbal cognitive function within a 

typical range. Each participant recorded several audios, for a total of 919 unique recordings. 

The Danish dataset included 24 autistic participants (288 recordings) and 27 NT participants 

(322 recordings), retelling stories (Memory for stories, Reynolds & Voress, 2007) and freely 

describing short videos (Abell et al., 2000). The US English dataset included 50 autistic (187 

recordings) and 31 NT (122 recordings) participants, retelling stories (Grossman et al., 2013). 

The recordings had been collected for other purposes and analyzed with different purpose in 

previous studies (Cantio et al., 2016; Fusaroli et al., 2021; Grossman et al., 2013). 

Note that the two samples are only roughly matched. While cognitive function and clinical 

features as measured by ADOS are largely overlapping, US participants are a bit older than 

Danish ones, and present a larger variability in age. Further, the language spoken, while always 

a Germanic one, is obviously different. In particular, Danish is often characterized as an 

atypical language with strong reduction in consonant pronunciation (Trecca et al., 2021), albeit 

no systematic comparison with US English has been performed to our knowledge. These 

differences are not a conceptual issue for the following analyses: it is crucial to assess whether 

so called vocal markers of ASD can generalize across corpora with different characteristics and 

explore how these differences might matter for the generalizability of the findings.  

 

Preprocessing 

The recording equipment and procedure were consistent within language, but not further 

specified in the original studies. Experimenter voice, background room noise, reverberation, 

and hum were removed from the audio recordings using iZotope RX 6 Elements (Izotope, 

2017). Long-term average spectra for each recording were inspected for possible noise artefacts 

and further cleaned if any were found (Olsen, 2018). Following Shahin et al. (2019), we 

extracted the standardized voice feature set eGeMAPS with the open-source software 

OpenSmile (Eyben, 2015, p. 201; Eyben et al., 2010, 2016). The feature set contains 87 

features, which are described in appendix A.2. All features in the training data were scaled 

using min-max normalization to achieve a dataset with a common scale without losing 

information or distorting differences in the range of values (Singh & Singh, 2020). The values 
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used to normalize the training set were saved and used to normalize the test set, thus avoiding 

potential information leakage between the two sets. 

 

Model training procedure 

To investigate Q1, Q2 and Q3, three models were trained. The first model was trained on the 

Danish Animated Triangle data, the second on the Danish storytelling data, and the third on the 

US storytelling data. After training, the models were tested on different test sets. The 

combinations of training and test sets can be seen in figure 2.  

 

 

Figure 2. Overview of model training and testing. Each purple square indicates a 5-model voting 

ensemble trained on one dataset. Each beige circle indicates a held-out testing dataset. The arrows 

show which models are tested on which held-out dataset and their color-codes for the question that is 

being asked: Red for Q1 (new participants from the same sample), green for Q2 (same participants, 

different task), and blue for Q3 (same task, different language). 
 

Each dataset was partitioned into a training set and a test set with an 80/20 split, 

stratified by participant ID; all data points for a given participant ended up in the same partition. 

We also ensured the test set included an equal number of participants from each diagnostic 
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group (total number of voice recordings differed in some cases - see appendix A.5) to support 

more robust out-of-sample performance. This test set was used to answer questions about the 

generalizability to different participants from the same sample, performing the same task (Q1). 

When testing Q2 and Q3, the test dataset consists of either the same participants performing a 

different task (Q2) or participants with a different native language performing the same kind 

of task (Q3). 

To prevent overfitting as much as possible, we relied on a strict five-fold cross-

validation of the training process. In other words, the training dataset was split into five folds 

(roughly equally sized subsets) balanced by participant ID, so that recordings from the same 

participant only appeared in one fold and the testing fold only contained never seen before 

participants. Each of these five folds was then used as a validation set for a training set 

composed of the other four folds (see figure 1). Within each of these five CV training sets, we 

performed feature selection, and tune 𝛾 (gamma, or the curvature of the margin between 

classes) - and C (or the error tolerated at the margin) -hyperparameters using a grid search (see 

appendix A.3 for details), feature selection using elastic net and SVM classifiers with radial 

basis function (RBF) kernels using the Scikit-learn module in Python (Pedregosa et al., 2011; 

Van Rossum & Drake, 2009). Due to the cross-validation process, this yielded five trained 

SVM models for each of the three datasets used. 
 

Majority voting 

The 5 SVM models were used to assess the test sets, and their predictions were 

combined into a single voting ensemble (Brownlee, 2020; Hansen et al., 2021; Sechidis et al., 

2021). Each model made a prediction for each voice recording in the test set, and the ensemble 

model gave a final predicted class based on the majority of these model votes. Note that other 

systems beyond majority rules have been developed, e.g., Mixture of Experts with weights 

based on similarity between test and training data (Hansen et al., 2021; Sechidis et al., 2021). 

Combining or utilizing multiple models within a single model – such as an ensemble model – 

benefits performance and generalizability, since no two models are likely to overfit in the same 

way and different models can compensate for each other’s biases (Buracas & Albright, 1993; 

Hong & Page, 2004; Tang et al., 2005).  

 

Software implementation and open science 
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All steps in the analysis – except for the de-noising – are implemented using open software. 

The feature extraction software toolkit openSMILE 3.0 was used to extract the feature sets 

GeMAPS, eGeMAPS and ComParE from the speech signals (Eyben et al., 2010). Data 

cleaning, including removal of outliers and normalization, and feature reduction using 

ElasticNet was implemented using R (RStudio Team, 2020). Model training for all kernels and 

SVMs as well as validation and testing was carried out using the Scikit-learn module in Python 

(Pedregosa et al., 2011; Van Rossum & Drake, 2009). The source code for the analysis can be 

found at: https://osf.io/9mtpk/ 

 

Results 

This section presents the performance of the ML models when using various training and 

testing sets. A crude overview of the performance of the seven models (three testing on the 

same task in the same language, two testing on a different task in the same language, two testing 

on the same task in a different language) is given in Table 2. We include plots of precision 

(fraction of true positive examples among the examples that the model classified as positive) 

and recall (fraction of true positive examples among the examples that the model classified as 

positive) (Figure 3) on test sets to enable a more precise error analysis of the results. Model 

performance is evaluated using F1-score, the harmonic mean of precision and recall. Confusion 

matrices displaying the raw performance can be seen in Appendix A.4. 

 

          Tested on → 

Trained on 

↓ 

DK triangles data DK storytelling data US storytelling data 

 

DK triangles data 

 

M1a - Q1 

0.59 

M2a - Q2 

0.60 

-- 

 

 

DK storytelling data 

 

M2b - Q2 

0.66 

M1b - Q1 

0.89 

M3a - Q3 

0.45 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 24, 2021. ; https://doi.org/10.1101/2021.11.22.469538doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.22.469538
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

US storytelling data 

 

--  

 

M3b - Q3 

0.40 

M1c - Q1 

0.64 

 
Table 2 Overview of model performance on different test sets, F1-scores. The colors code the question tackled by 

the specific test set: M1 (red) answers question 1; M2 (green) answers question 2; M3 (blue) answers question 3. 

 

 
Figure 3: Precision (fraction of true positive examples among the examples that the model classified as positive) 

and recall (fraction of true positive examples among the examples that the model classified as positive) for ASD 

and NT, respectively, for all models. Compare with table 2 (overview of models) 

Discussion 

In this work we aimed at systematically assessing the generalizability of ML results on vocal 

markers of autism. We relied on cross-linguistic data to assess whether the results would 

generalize: (Q1) to different participants from the same study, performing the same task; (Q2) 

to a different task performed by the same participants; and (Q3) to participants from a different 

study, with a different native language performing the same type of task. We briefly discuss 

our specific findings in relation to these three questions. We then advance more general 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 24, 2021. ; https://doi.org/10.1101/2021.11.22.469538doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.22.469538
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

recommendations for how future ML studies could take generalizability concerns more 

seriously. 

 

 When assessing Q1, we found that all models, independently of the dataset they were 

trained on, were above chance at identifying autistic participants amongst new participants 

from the same study, with performance within the range of previously published articles: 

accuracies between 62% and 87% (Fusaroli et al., 2017). However, the very same training 

procedure yielded highly variable results on the three datasets (F1-scores between 0.59 and 

0.89). Previous studies suggest that different demands of diverse tasks, used to collect speech 

recordings, do impact how clearly vocal atypicalities are expressed by participants (Fusaroli et 

al., 2017; Parola, Simonsen, Bliksted, & Fusaroli, 2020). In particular, more cognitively and 

socially demanding tasks tend to show bigger vocal differences between neurodiverse and 

neurotypical populations. However, we doubt that this is the explanation of our findings, since 

we do not see any reason to suggest that retelling stories in Danish is inherently more 

challenging than describing previously watched videos in Danish, or retelling stories in US 

English. Additionally, exploratory analyses on the very few female participants suggested little 

ability to generalize to new participants of another biological sex. These findings are worrying, 

since they indicate that even re-training ML models on one’s own dataset is not guaranteed to 

yield the same performance as published findings.  

 When assessing Q2, we found again that the models were able to assess the same 

participants performing a new task with an accuracy above chance, but generally lower than 

on the original task (F1 scores of 0.60 and 0.66). The participants are the same, the tasks are 

relatively similar, and the conditions (and date) of recording are exactly the same, so we 

speculate that some overfitting to the specific task is at stake. 

 When assessing Q3, we found that the models were not able to assess other languages 

with the same type of task, with performance dropping below chance (F1 scores of 0.4 and 

0.45). Relatedly, one previous study relied on a cross-linguistic corpus (English, Hebrew, 

Swedish and French, with no reported background noise removal procedure). They reported 

inconsistent results as to whether new participants speaking a different language could be 

identified above chance, and low performance even in that case (Schmitt et al., 2016). 

Transferring a ML model of autistic voice across languages is thus non-trivial, and we should 

not expect findings to generalize, without re-training of the model. 
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These findings raise strong concerns as to the generalizability of ML models of voice 

in autism. First, performance of the same model trained on relatively similar datasets changed 

quite drastically, indicating that evaluations of ML models on one dataset might not be 

representative of the results that could be achieved on a different dataset. Second, 

generalizability across relatively similar tasks (the description of a narrative video vs. the 

retelling of a story) is low, even when keeping the participants and native language constant. 

Third, even when testing phylogenetically close languages (US English and Danish being both 

Germanic languages), the acoustic patterns found by our models could not generalize. One 

could speculate that testing on a Romance language (e.g., Italian), or a non-Indo-European 

language (e.g., Mandarin Chinese) would compromise generalizability even further. 

In summary, while models can be trained on novel datasets to reach roughly comparable 

performance to original reports, there is considerable variance, and these levels of performance 

do not generalize beyond the specific task and language. Since these issues emerge already 

with relatively simple SVM classifiers, with a limited amount of hyperparameters to set, we 

expect them to be more prominent in more complex model architectures such as convolutional 

neural networks or other deep learning methods, as these models are known to be more prone 

to overfitting (Kuhn & Johnson, 2019). Since the study of autistic voice is generally constrained 

by limited data availability (Fusaroli et al., 2017), the issue is even more prominent. We 

therefore argue that it is crucial to explicitly tackle the issue of generalizability in order to 

advance the field. 

 

Moving beyond the specific case of our own datasets and ML procedures, we want to 

make a more general perspective for taking generalizability concerns more seriously in ML 

research, and provide the following three key guidelines that we elaborate on below: 

1. Explicitly discuss generalizability concerns (as related to the question at hand) 

2. Explicitly assess relevant generalizability of performance 

3. Consider the use of multi-datasets ML techniques 

 

Explicitly consider generalizability concerns as related to the question at hand 

In a recent review, Low et al. (2020) emphasize that many studies of voice in psychiatric 

conditions do not measure out-of-sample performance, e.g., via cross-validation or testing on 

hold-out subsets of the datasets. Our findings indicate that even when correctly applied these 

forms of out-of-sample validation of ML models might not provide reliable measures of 

generalizable performance, depending on the research goals and application needs. For 
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instance, a study trying to identify whether there is an acoustic profile of autism in general 

should explicitly discuss that this means the findings should generalize across biological sex, 

language, socio-demographic and ethnic groups, but also that it does not need to generalize 

across recording settings, given the research question at stake. On the contrary, a study trying 

to provide tools for the assessment of autism via voice markers across a variety of clinics and 

contexts should also consider varying recording setups (e.g., microphones, background noise, 

reverberation differences), but might have lower cross-linguistic generalizability needs 

(depending on the context of use). Needless to say, requirements will often be domain-specific, 

but explicitly stating them is a prerequisite for proper usage and cumulative knowledge 

building within the field, and there has been at least one attempt at establishing such a practice 

for more traditional statistical approaches (Simons et al., 2017). 

 

Explicitly assess relevant generalizability of performance 

Additionally, we argue that generalizability of the algorithm must not only be discussed, but 

also thoroughly tested and documented. An explicit assessment of generalizability eases the 

understanding of a model’s capabilities as well as its limitations within the intended use. A first 

step could be an error analysis, as assessing which errors are made by the model might highlight 

specific biases, e.g. poor ability to identify autistic women, or participants from specific social 

and ethnic groups (Achenie et al., 2019). However, that is not enough. As we have shown, 

relying on data from one study and within-study out-of-sample validation is not a reliable way 

of ensuring generalizable findings, or even documenting limits of the algorithms and data. This, 

of course, requires the construction or availability of multiple datasets. The increase in 

collaboration across labs, construction of consortia such as EU-AIMS, ManyBabies, and 

Psychological Science Accelerator and the increased spread of responsible open science 

practices might help with this (Bergmann et al., 2016; Murphy & Spooren, 2012). 

 

Consider the use of multi-dataset ML techniques 

Finally, as data from multiple studies become available, new techniques become possible, 

moving from single study training to multi-study approaches, where models are trained on data 

collected under diverse settings. A basic approach is simply to train the models on multiple 

datasets, to better account for the heterogeneity between individuals, contexts, tasks and 

languages. However, more nuanced approaches have been produced providing modular and 

more flexible ways of taking advantage of multiple datasets. One such approach is the use of 

mixture-of-experts (MoE) models. In a MoE-model, separate models are trained, each on a 
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different dataset. When evaluating test cases, each model provides both a prediction, and an 

evaluation of how similar the single case is to the training set (similarity score). The predictions 

of each expert are then combined into a final prediction, i.e. by weighting the predictions of the 

experts proportionally to their similarity score (Sechidis et al., 2021). Thus, if one seeks to 

construct a model that generalizes to three languages, one could train a model on each language 

separately and combine their predictions in a MoE-model. If a new language were to become 

available, a new model could be trained only on the new data and added to the mixture. This 

approach has already shown promising results in related fields, predicting the emotional 

content of Parkinson's and depressive speech in languages on which the models had not been 

trained (Hansen et al., 2021; Sechidis et al., 2021). Analogously modular approaches have been 

developed for language models, including novel techniques to mix, re-weight, add or entirely 

remove “experts” according to the task at hand (Gururangan et al., 2021). These models can 

indeed generalize and adapt to new domains and achieve high performance scores when taking 

advantage of domain-specific expertise. Another promising line of research is transfer learning, 

where complex models can be trained on large and more easily accessible datasets of non-

clinical speech, and then only re-trained on the smaller clinical datasets; or across clinical 

datasets (Vásquez-Correa et al., 2019). Developing such techniques within the field of voice-

based classification of ASD is a highly promising venue to foster higher generalizability.  

 

 Finally, we emphasize the importance of sharing openly and fully the modeling process 

- e.g., strategies to choose hyperparameters, and actual parameter values - to better enable 

collective investigation of generalizability issues. Accordingly, our choices are fully described 

in the manuscript and appendices and the code is available on the OSF repository connected to 

this paper. 

 

Conclusion  

This work investigated the generalizability of ML approaches to autistic voices. While 

promising algorithms could be retrained on new datasets with performance above chance, 

variability in performance across algorithms trained on different studies was substantial. 

Further, the models did not generalize well to new similar tasks and not at all to new languages. 

We argue that greater emphasis must be placed on the generalizability of machine learning 

models of autistic voices. We recommend to 1) explicitly discuss generalizability concerns (as 
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related to the question at hand), 2) explicitly assess relevant generalizability of performance 

and 3) consider the use of multi-study ML techniques. 
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