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Abstract

Understanding the brain changes occurring during aging can provide new insights for de-

veloping treatments that alleviate or reverse cognitive decline. Neurostimulation techniques

have emerged as potential treatments for brain disorders and to improve cognitive functions.

Nevertheless, given the ethical restrictions of neurostimulation approaches, in silico perturba-

tion protocols based on causal whole-brain models are fundamental to gaining a mechanistic

understanding of brain dynamics. Furthermore, this strategy could serve as a more specific

biomarker relating local activity with global brain dynamics. Here, we used a large resting-

state fMRI dataset divided into middle-aged (N=310, aged < 65 years) and older adults

(N=310, aged ≥ 65) to characterize brain states in each group as a probabilistic metastable

substate (PMS) space, each with a probabilistic occurrence and frequency. Then, we fitted

the PMS to a whole-brain model and applied in silico stimulations with different intensities

in each node to force transitions from the brain states of the older group to the middle-age

group. We found that the precuneus, a brain area belonging to the default mode network and

the rich club, was the best stimulation target. These findings might have important implica-

tions for designing neurostimulation interventions to revert the effects of aging on whole-brain

dynamics.

Keywords: aging, computational modeling, resting-state fMRI, brain states, in silico pertur-

bations
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Introduction

Normal aging causes changes in the brain that can lead to cognitive decline, thereby affecting the

quality of life and autonomy of the elderly and their caregivers (Barnes, 2011; Li et al., 2015).

Longitudinal studies in healthy older adults have shown an association between altered functional

connectivity in resting-state and decreased cognitive functions (Fjell et al., 2017; Persson et al.,

2014), thus suggesting that the resting-state could be an indicator of age-related cognitive decline.

In addition, various neuroimaging studies have described that aging affects several resting-state

networks (Betzel et al., 2014; Ferreira and Busatto, 2013; Grady et al., 2016; Spreng et al., 2016;

Wang et al., 2010), and the rich-club organization of the human brain (Cao et al., 2014; Damoi-

seaux, 2017; Escrichs et al., 2021a; Zhao et al., 2015). However, a question that remains to be

addressed is whether these effects could be reversed or alleviated with external stimulation proto-

cols that promote transitions from the brain states of the older towards those observed in younger

adults.

The study of causal structure-function inferences has enhanced the understanding of the mecha-

nisms underlying human brain dynamics, both through direct neurostimulation techniques (Casali

et al., 2013; Ozdemir et al., 2020) and by in silico stimulation protocols (Bolton et al., 2020;

Deco et al., 2018, 2019; Kringelbach and Deco, 2020; Muldoon et al., 2016). Non-invasive neu-

rostimulation techniques such as transcranial electrical stimulation (tES) and transcranial magnetic

stimulation (TMS) combined with neuroimaging have provided novel insights into the underlying

mechanisms of stimulation-induced effects along with its impact on large-scale functional brain

networks (Bestmann and Feredoes, 2013). These approaches have emerged as potential treatments

for neurological and neurodegenerative disorders (Fox et al., 2014; Kunze et al., 2016) as well as

for improving cognitive function in healthy individuals (Clark and Parasuraman, 2014). Neverthe-

less, experimental and ethical constraints limit the exploration of efficient practices that could be

improved by the inclusion of whole-brain computational approaches along with in silico perturba-

tions. In particular, dynamical models of brain activity have been fitted to different brain states

to systematically apply in silico perturbations that promote transitions between brain states, and

consequently, predict optimal neurostimulation targets (Deco et al., 2019; Ipiña et al., 2020; Mul-

doon et al., 2016). This strategy allows exploring dynamical brain responses elicited by controlled

perturbative protocols, which are not constrained by ethical limitations (Deco et al., 2017).

In this context, we postulate that causal whole-brain modeling along with in silico stimulations

can promote the transition between brain states of different age groups characterized by their

dynamical behavior where the external stimulation represents the perturbation needed to induce

that transition. The first step to finding support for this interpretation is to define the brain states

associated with aging through their underlying dynamical behavior, thus providing a quantitative

characterization. The probability metastable substates (PMS) space emerges as an optimal space

to describe this dynamical behavior as the time evolution of a set of metastable states obtained

within the Leading Eigenvector Dynamical Analysis (LEiDA) (Cabral et al., 2017; Deco et al.,

2019; Kringelbach and Deco, 2020). The LEiDA framework has allowed discerning brain states in

depression (Figueroa et al., 2019), different states of consciousness (Deco et al., 2019; Kringelbach
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et al., 2020; Kringelbach and Deco, 2020; Lord et al., 2019) and healthy aging (Cabral et al., 2017).

Notably, in our previous work Escrichs et al. (2021a), we found significant differences in the PMS

space between old and middle-aged healthy participants groups. The second step to support our

hypothesis involves the transition from the older subjects’ PMS representation to the youngest one

induced by in silico perturbations. This can be done through whole-brain models, which link the

underlying anatomical connectivity with functional dynamics obtained from neuroimaging data,

in which the external stimulation of all brain areas can be systematically explored via in silico

perturbations by adjusting the parameters of the model (Deco et al., 2018, 2019; Kringelbach and

Deco, 2020). In other words, the empirical LEiDA approach obtains the PMS of each group, while

the model-based in silico approach allows us to simulate the PMS space of the older group and

artificially perturb each brain area to induce transitions towards the PMS of the middle-age group.

This mechanistic approach allows for an effective way of perturbing the model by simply changing

the bifurcation parameter in a given brain area.

Here, we extended our previous publication (Escrichs et al., 2021a) for applying a causal mech-

anistic approach which forces transitions between brain states promoted by in silico perturbations

(Deco et al., 2019; Kringelbach and Deco, 2020). We used a large resting-state neuroimaging

dataset of healthy human adults divided into two groups: middle-age group (N=310, aged<65

years) and older group (N=310, aged≥65). First, we obtained the dynamical description by com-

puting the probabilistic metastable substates (PMS) space over the empirical fMRI data of each

group through the LEiDA framework. Second, we implemented a Hopf whole-brain model and

optimized the model’s parameters to simulate the PMS space of the older group. Finally, we ap-

plied in silico perturbations to the optimized model of the older group to rebalance it toward the

empirical PMS of the middle-age group as a reference of a healthy regime state.

Materials and Methods

Participants

Neuroimaging data were obtained from the Aging Imageomics Study (Puig et al., 2020) and com-

prised 620 healthy adults divided into two groups. The middle-aged group comprised 310 subjects

aged < 65 years (mean age, 60.2±3.7 y), and the older group comprised 310 subjects aged >= 65

years (mean age, 71.8±4.5 y). The experimental protocol was approved by the Ethics Committee

of the Dr. Josep Trueta University Hospital. Written informed consent was obtained from all

participants. A complete description of the neuroimaging data can be consulted in Puig et al.

(2020) and Escrichs et al. (2021a).

Resting-state acquisition and preprocessing

Imaging was performed on a mobile 1.5T scanner (Vantage Elan, Toshiba Medical Systems) with

an 8-channel phased-array head coil with foam padding and headphones to restrict head motion

and scanner noise. The high-resolution T1-weighted images were acquired with 112 slices in the

axial plane (repetition time (TR) = 8 ms; echo time (TE) = 4.5 ms; flip angle = 15°; field of view

4

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 20, 2021. ; https://doi.org/10.1101/2021.11.19.469206doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.19.469206
http://creativecommons.org/licenses/by-nc-nd/4.0/


(FOV) = 235 mm; and voxel size = 1.3×1.3×2.5 mm). Rs-fMRI scans were acquired axially for 5

minutes using a gradient echoplanar imaging sequence (122 volumes; TR = 2500 ms; TE = 40 ms;

flip angle = 83°; FOV = 230 mm; voxel size = 3.5×3.5×5 mm; no gap). Participants were asked

to remain motionless as possible and close their eyes.

T1 and EPI images were automatically oriented using Conn (Whitfield-Gabrieli and Nieto-

Castanon, 2012). Processing Assistant for Resting-State fMRI (DPARSF) [ (Chao-Gan and Yu-

Feng, 2010), www.rfmri.org/DPARSF], which is based on Statistical Parametric Mapping (SPM12)

(http://www.fil.ion.ucl.ac.uk/spm) was used to preprocess the MRI data. Preprocessing steps

included: discarding the first 5 volumes from each scan to allow for signal stabilization; slice-timing

correction; realignment for head motion correction across different volumes; T1 co-registration to

the functional image; European regularisation segmentation; removal of spurious variance through

linear regression: six parameters from the head motion correction, the white matter (WM) signal,

and the cerebrospinal fluid signal (CSF) using CompCor (Behzadi et al., 2007); removal of the

linear trend; spatial normalization to the Montreal Neurological Institute (MNI) standard space;

spatial smoothing with 6 mm FWHM Gaussian Kernel; and band-pass temporal filtering (0.01-

0.020 Hz). Finally, the time series for each subject were extracted using a resting-state atlas of

214 nodes (Shen et al., 2013).

Difussion Tensor Imaging (DTI) acquisition and preprocessing

For the whole-brain model, we used an average structural connectivity matrix (SC) from a sample

of 38 unrelated healthy subjects previously described in De Filippi et al. (2021). MRI images were

acquired on a 3T whole-body Siemens TRIO scanner (Hospital Cĺınic, Barcelona) using a dual

spin-echo DTI sequence (TR = 680ms; TE = 92ms; FOV = 236mm; 60 contiguous axial slices;

isotropic voxel size 2x2x2 mm; no gap, and 118 x118 matrix sizes). Diffusion was obtained with

64 optimal noncollinear diffusion directions using a single b value = 1,500s/mm2 interleaved with

9 non-diffusion b0 images. A frequency-selective fat saturation pulse was used to avoid chemical

shift misregistration artifacts.

The whole-brain structural connectivity matrix (SC) was computed following the procedure

applied in previous studies (Cao et al., 2013; Gong et al., 2009; López-González et al., 2021; Muthu-

raman et al., 2016). For each subject, a 214x214 SC was computed using the processing pipeline of

the FMRIB’s Diffusion Toolbox (FDT) in FMRIB’s Software Library www.fmrib.ox.ac.uk/fsl.

Non-brain tissues were extracted with Brain Extraction Tool (BET) (Smith, 2002), eddy current

distortions and head motion were corrected using eddy correct (Andersson and Sotiropoulos, 2016),

and the gradient matrix was reoriented to correct for subject motion (Leemans and Jones, 2009).

Crossing fibres were modeled using BEDPOSTX, and the probability of multi-fibre orientations

was computed to improve the sensitivity of non-dominant fibre populations (Behrens et al., 2003,

2007). The probabilistic tractography analysis was performed for each participant in native diffu-

sion space using PROBTRACKX. The connectivity probability SCnp between brain areas n and

p was calculated as the total proportion of sampled fibres in all voxels in brain area n that reach

any voxel in brain area p. The SCnp matrix was then symmetrized by computing their trans-
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pose matrix SCpn and averaging both matrices. Finally, averaging the resulting matrices across

all participants, a whole-brain SC DTI matrix was obtained, representing a template of healthy

adults.

LEiDA

We characterized the empirical brain states by applying the Leading Eigenvector Dynamics Analy-

sis (LEiDA) (Cabral et al., 2017; Deco et al., 2019; Kringelbach and Deco, 2020). This analysis was

described in our previous study using the same fMRI dataset (Escrichs et al., 2021a). In particular,

we extracted the time series for each participant using a resting-state atlas of 214 brain areas and

computed the Hilbert transform to obtain the phase of the BOLD signals in every time-point for

all brain areas of the parcellation (Figure 1.A). Then, we computed a dynamic phase coherence

connectivity matrix with size NxNxT, where N=214 is the total brain areas, and T=117 the total

time-points. The BOLD phase coherence matrix (Figure 1.B) in each time t between each pair

of brain areas n and p was estimated by computing the cosine of the phase difference as:

dFC(n, p, t) = cos (θ(n, t) − θ(p, t)) (1)

Given that the Hilbert Transform expresses any signal in the polar coordinate system (i.e.,

xa(t) = A(t) · cos (ϕ(t))), applying the cosine function to brain areas n and p with similar angles

at a given time t will show a phase coherence close to 1 (i.e., cos(0°)=1), whereas brain areas

showing orthogonality will show a phase coherence near zero (i.e., cos(90°) = 0) (Deco et al., 2019).

Second, to characterize the dFC patterns across all subjects and time-points, we obtained a leading

eigenvector V1(t) for each dFC(t) at time t by capturing the dominant functional connectivity

pattern rather than the whole matrices. This approach allows to reduce dimensionality on the

data considerably given that only considers a V1(t) for each dynamic FC matrix. The V1(t) is a

Nx1 vector capturing the principal orientation of the BOLD phase (showing positive or negative

values) for each of the 214 brain areas (Figure 1.B lower panel). Next, we applied a k-means

clustering algorithm ranged from k = 2 to k = 7 clusters to detect metastable substates or dynamic

FC states from all the leading eigenvectors V1(t) across time-points, number of subjects, and groups

to identify recurrent dynamic FC patterns across subjects. The total of leading eigenvectors were

117 time-points x 310 subjects x 2 groups = 72,540 V1(t). We obtained k cluster centroids, each

one as an Nx1 vector representing recurrent metastable substates across all participants. The

resulting k-cluster centroids define the metastable substates among which the brain dynamics are

switching across time, and the probability of occurrence of each substate determines the PMS of

the brain. As a proof-of-concept, we display the minimum number of clusters that statistically

differed between groups. The clustering configuration that best represented the resting-state data

across all participants and distinguished between both groups was detected at k=3. Figure 1.B

right panel shows the cluster centroid vectors onto the surface cortex using Surf Ice (https:

//www.nitrc.org/projects/surfice/).
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Whole-Brain Computational Model

The whole-brain BOLD activity was simulated using the so-called Hopf computational model,

linking the anatomy and function. The model consisted of 214 dynamical cortical and subcortical

brain areas coupled with the SC matrix. The local dynamics of each brain area was described by

the normal form of a supercritical Hopf bifurcation, which emulates the dynamics for each brain

area from noisy to oscillatory dynamics as follows:

dxn
dt

= [an − x2n − y2n]xn − ωnyn +G
N∑
p=1

Cnp(xp − xn) + βηn(t)

dyn
dt

= [an − x2n − y2n]yn + ωnxn +G
N∑
p=1

Cnp(yp − yn) + βηn(t)

(2)

where ηn(t) is additive Gaussian noise with standard deviation β = 0.02, and Cnp is the SC that

couples the local dynamics of brain area n with p and was normalized to a maximum value of

C = 0.2. This normal form has a supercritical bifurcation at an = 0, such that for an > 0 the

system is in a stable limit cycle oscillation with frequency fn = ωn/2π, whereas for an < 0 the

local dynamics are in a stable point (i.e., noisy state). The frequency ωn of each brain area was

estimated from the data which was given by the applied narrowband (i.e., 0.04 − 0.07Hz). The

variables xn emulate the BOLD signal of each node j. The global coupling factor G (scaled equally

for each brain area) is the control parameter which allows adjusting the model to obtain the optimal

dynamical working point where the simulations maximally fit the empirical data. We simulated

the PMS as a function of the global coupling parameter G through the underlying structural

connectivity matrix. We improved the fitting of the whole-brain model through the inclusion of

the effective connectivity (EC) (Figure 1.C), where the anatomical connectivity was updated by

the synaptic weights that take into account the empirical functional connectivity. The effective

connections were computed by measuring the distance between the empirical FCphases emp
ij and

the model FCphases mod
ij grand-averaged phase coherence matrices, and adjusted each structural

connection ij separately using a gradient-descent approach. The model initially started computing

with the SC matrix obtained from DTI and was run repeatedly with the updated EC matrix until

the fit converged toward a stable value using the following procedure:

Cij = Cij + ε
(
FCphases emp

ij − FCphases mod
ij

)
(3)

where ε = 0.01, and the grand average phase coherence matrices were defined as:

FCij =
〈

cos
(
ϕj(t) − ϕi(t)

)〉
(4)

where ϕ(t) corresponds to the BOLD signal phase (obtained by the Hilbert transform) of the

brain areas j and i at time t, and the brackets correspond to the average across time.

Finally, we systematically perturbed the 214 brain areas of the whole-brain model through two

different protocols (noise and synchronization), which were based on shifting the local bifurcation

parameter (a) of the optimized model (Figure 1.D). The noise protocol applies negative (positive)

intensities to the local parameter from 0 to −0.3 (0.1).
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Comparing empirical and simulated probability metastable space states

The empirical and simulated brain states were compared by using a symmetrized KL distance

between the simulated and empirical probabilities as:

KL (Pemp, Psim) = 0.5

(∑
i

Pemp (i) ln

(
Pemp (i)

Psim (i)

)
+
∑
i

Psim (i) ln

(
Psim (i)

Pemp (i)

))
(5)

where Pemp(i) are the empirical and Psim(i) the simulated probabilities on the same empirical

extracted brain states i. The optimal simulated PMS is defined by the minimum KL distance

between the empirical and simulated PMS.

Results

Leading Eigenvector Dynamics Analysis (LEiDA)

Figure 2 left panel shows the probability of occurrence for the PMS of each group. The probability

of the first metastable substate occurrence was higher in the older group than in the middle-age

group [0.476 ± 0.008 (mean ± SE) vs. 0.453 ± 0.008 FDR-corrected p=0.03]. By contrast, the

second metastable substate’s probability was higher in the middle-age group [0.288 ± 0.007 vs.

0.269 ± 0.006 in the older group, FDR-corrected = 0.026]. This state overlaps with the brain’s rich-

club organization (i.e., the superior frontal cortex, precuneus, insula, and subcortical areas, such

as the caudate, putamen, hippocampus, and thalamus), and its lower probability of occurrence in

the older group can be interpreted as an alteration in the intrinsic dynamics within the rich-club

or damage in any of their brain areas involved (Escrichs et al., 2021a). Consequently, we aimed

to rebalance the PMS of the older group toward a younger regime (middle-aged group) through in

silico stimulations.

Fit whole-brain computational model to the brain states of the older

group

For the older group, we constructed a dynamical model of 214 non-linear oscillators representing

the macroscopic dynamical behavior of each brain area of interest (Figure 2 middle panel). These

oscillators are coupled by a structural connectivity matrix (SC) among brain areas giving rise to

collective dynamics. The local dynamics of each brain area was described by the normal form of a

supercritical Hopf bifurcation, and the bifurcation parameters of each oscillator (a) were set in the

edge of the bifurcation point, that is, the optimal point to represent the metastability of brain states

(Deco et al., 2017). The coupling strength parameter (G) was optimized to fit the whole-brain

model to the PMS of the older group. We used the centroids of the empirical PMS and built the

model based on the probability of the empirical centers. Then, we estimated the distance between

the model and the empirical phase coherence matrices and adjusted each structural connection

separately using a gradient-descent algorithm. The model was run repeatedly with the updated

EC until convergence to a stable point. We tested the differences between the empirical and

the simulated probabilities by computing the symmetrized Kullback–Leibler (KL) distance. The

8

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 20, 2021. ; https://doi.org/10.1101/2021.11.19.469206doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.19.469206
http://creativecommons.org/licenses/by-nc-nd/4.0/


optimal working point of the model was found at G=0.02, i.e., where the model fits the empirical

PMS data of the older group. Figure 2 right panel shows the generated model that reached an

excellent fit between the empirical and the simulated probabilities (electric blue).

In silico stimulations to force transitions between brain states

Figure 3.A shows the procedure to force transitions between brain states. We started from the

simulated PMS that presented higher similarity to the empirical PMS of the older group (left panel,

electric blue) and perturbed the model to force the transition to the empirical PMS of the middle-

age group. To do so, we applied two different stimulation protocols: noise and synchronization,

based on systematically shifting the local bifurcation parameter (a) of the optimized whole-brain

model (middle panel). The noise protocol applies negative intensities to the local parameter,

whereas the synchronization applies positive intensities. The strength of the perturbation is linked

to the shifting of the local bifurcation parameter. We systematically perturbed each of the 214

brain areas of the whole-brain model and compared the distributions with the empirical PMS of

the middle-age group. The optimal perturbation is that yields that the first brain state decreases,

the second increases, and the third brain state remains similar (right panel).

Figure 3.B shows the obtained matrices for each protocol, i.e., noise (left panel) and syn-

chronization (right panel). The color scale represents the KL distance between the PMS of the

middle-age group and the perturbed model. For the noise protocol, the KL distances were minimal

in some brain areas, and thus a good transition between brain states was obtained. In contrast,

the KL distances were higher in the synchronization protocol for all perturbation strengths and

perturbed brain areas. This result indicates the unsuitability of the synchronization protocol to

force the transition. The rendered brain shows that the precuneus, bilateral middle temporal

gyrus, bilateral calcarine sulcus, bilateral inferior gyrus orbitofrontal part, left superior temporal

gyrus, left insula, bilateral putamen, bilateral thalamus, and right caudate stand for those regions

suitable to induce the transitions (middle panel).

Figure 4 displays the comparison between the empirical PMS of each group, the optimized

model of the older group, the model after perturbing the right precuneus with the best perturbation

strength (a = −0.2250), and the model with the highest KL distance (the worst target). It is

noticeable that for the right precuneus, the empirical and perturbed probability is almost the same

for the three metastable substates considered. These results suggest that the right precuneus is

the brain area that induces the best effective transition between brain states.

Discussion

In this work, we used empirical and computational approaches to study the causal dynamical

mechanisms allowing the transition between brain states of different age groups. The empirical

approach identified that older subjects have a lower probability of accessing a metastable substate

that overlaps with the rich club. Such a state plays an essential role in integrating information

across the whole-brain network and could explain brain dynamics alterations in the aging process.
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Then, we investigated the effect of perturbing all brain areas to induce optimal transitions from the

states of the older aged group to the states of the middle-aged group by using causal whole-brain

modeling and in silico perturbations. These results illustrated that forcing a shift in the intrinsic

local dynamics of the right precuneus and other brain areas belonging to the rich club (insula,

putamen, caudate, and thalamus) is suitable for inducing those transitions. Crucially, our model-

based in silico approach provides causal evidence that external stimulations in specific local brain

areas can reshape whole-brain dynamics in the aging brain. Importantly, this could provide new

insights into the differential sensitivity of each brain area to in silico perturbations as a specific

model-based biomarker relating local activity with global brain dynamics.

Understanding the underlying brain changes occurring during normal aging can contribute to

developing treatments to reverse cognitive impairment. In this regard, non-invasive neurostimu-

lation therapies stand as a promising intervention for brain disorders (Clark and Parasuraman,

2014; Kunze et al., 2016). Nevertheless, there are two different but related limitations for the

application of such treatments. The first refers to the lack of a consensual definition of a brain

state capable of being quantitatively characterized that differentiates the activity of an older from

a younger brain. The second issue concerns the limitations to exploring the vast space of possible

interventions due to experimental and ethical constraints (Deco et al., 2017). We addressed these

two issues by applying whole-brain computational models, which allowed us to systematically ex-

plore brain responses elicited by in silico perturbations of fMRI empirical data of healthy older

and middle-aged subjects.

Several attempts have been made to define and characterize the underlying dynamics of a

given brain state (Escrichs et al., 2021b; Goldman et al., 2019; Kringelbach and Deco, 2020).

Neuroimaging fMRI studies have motivated definitions related to static observables such as the

functional connectivity (FC) or changes in the brain activity of RSNs associated with specific

brain states (Alkire et al., 2008; Boly et al., 2012; Brodbeck et al., 2012; Tagliazucchi et al.,

2013a,b; Vanhaudenhuyse et al., 2010). However, the dynamical behavior of brain activity, which is

reflected in neuroimaging data, is often underlooked in these definitions. Recent works successfully

defined the brain states through the probability of occurrence of metastable substates (PMS) space

extracted from empirical fMRI data (Cabral et al., 2017; Deco et al., 2019). This definition captures

the dynamical behavior of the states and presents high spatial overlap with RSNs (Deco et al.,

2019; Figueroa et al., 2019; Kringelbach et al., 2020; Kringelbach and Deco, 2020; Lord et al.,

2019). In particular, as shown here and in our previous work (Escrichs et al., 2021a), the empirical

PMS analysis identified differences between older and middle-age groups in a metastable substate

that closely overlaps with the so-called rich club (Hagmann et al., 2008; Sporns, 2013; van den

Heuvel and Sporns, 2011), that in turn, the rich club overlaps with the DMN (Damoiseaux, 2017;

van den Heuvel and Sporns, 2011). Our results reveal that, compared to middle-aged subjects,

older subjects showed a lower probability of occurrence of this state, and when it occurred, it did

so for shorter periods of time. In line with this finding, recent studies have suggested that the

alterations in brain dynamics observed in the elderly could be due to a deficiency in the rich-club

organization (Cao et al., 2014; Damoiseaux, 2017; Zhao et al., 2015).

We tested the hypothesis that causal modeling could predict optimal stimulation targets to
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rebalance the underlying brain dynamics in the elderly. Previous experimental studies investi-

gated the effects of localized external perturbations during states of reduced awareness in humans

(Angelakis et al., 2014; Thibaut et al., 2014; Zhang et al., 2019) and mild cognitive impairment

(Hampstead et al., 2017). However, the systematic exploration via perturbations of all brain areas

of the human brain can only be performed through computational models (Spiegler et al., 2016)

that simulate the underlying brain activity. In this direction, recent works have implemented

whole-brain models and in silico perturbations to explore the elicited responses from external

stimulations in different brain states such as sleep, anesthesia, disorders of consciousness, and even

in altered states such as meditation or the psychedelic state (Deco et al., 2019; Escrichs et al.,

2021b; Ipiña et al., 2020; Kringelbach et al., 2020; Perl et al., 2020). In addition, perturbative

models have been applied for individualized treatment in depressive (Ho et al., 2014) and epilepsy

patients (Huang et al., 2017). Here, we modeled the PMS of the older group using a whole-brain

computational model and applied artificial stimulations to force transitions between brain states

of different ages. Interestingly, we show that this approach can be used to predict optimal targets

to force transitions between brain states of different ages.

Specifically, our model-based in silico approach allowed us to test the effectiveness of two differ-

ent stimulation protocols named noise and synchronization. The first protocol consists of reducing

the value of the bifurcation parameter of the stimulated node resulting in noise outweighing oscilla-

tory behavior, while the synchronization protocol yields the opposite effect. The fact that the noise

protocol leads to better results means that the local bifurcation parameters must be mostly below

or at the edge of bifurcation, thus favoring the local dynamics in the most susceptible regime. The

results show that the brain area that promoted the best transition between brain states was the

precuneus. The precuneus plays a central functional role in the DMN (Utevsky et al., 2014) and

is involved in complex functions like memory, perception, mental imagery, and responses to pain

(Cavanna and Trimble, 2006).

Furthermore, we found that the other brain areas that promoted an excellent transition are part

of the so-called rich club (i.e., the precuneus, insula, putamen, caudate, and thalamus) (van den

Heuvel et al., 2012; van den Heuvel and Sporns, 2011). Evidence suggests that a disruption in

one of these regions can affect network efficiency and global brain function (van den Heuvel and

Sporns, 2011). Rich-club regions are densely structurally interconnected, acting as a link for

different functional modules in the brain, contributing to efficient communication and integration

across the whole-brain network (van den Heuvel and Sporns, 2011). Additionally, considering

that the protocol that achieved the best transition was the noise protocol, it might be related to

brain overactivation that has been largely documented in the elderly. Particularly, older adults

show overactivation in frontal brain areas (Cabeza et al., 2018; Davis et al., 2008; Reuter-Lorenz

and Cappell, 2008; Yao and Hsieh, 2021), and among resting-state networks (Betzel et al., 2014;

Escrichs et al., 2021a; Geerligs et al., 2015; Spreng et al., 2016). Thus, one possibility could be

that noise stimulation decreases these functional overactivations.

Lastly, we would like to acknowledge some limitations in the study. One inherent limitation is

related to using a cross-sectional approach that, by definition, cannot measure individual changes

in brain dynamics. The image acquisition protocol with TR also limits this work = 2.5s in a 1.5T

11

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 20, 2021. ; https://doi.org/10.1101/2021.11.19.469206doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.19.469206
http://creativecommons.org/licenses/by-nc-nd/4.0/


scanner. A protocol with increased spatial and temporal resolution could allow a more accurate

representation of the underlying brain dynamics. Another limitation concerns the parcellation

used, which was based on an atlas of 214 nodes. Using brain atlases with a large number of nodes

could produce results with better local sensitivity.

Overall, the model-based in silico approach provides causal evidence that external stimulations

in specific local brain areas can reshape whole-brain dynamics in aging. From a clinical standpoint,

the methods and results presented here suggest optimal targets for neurostimulation techniques

to induce transitions towards a healthy regime. This framework could improve the diagnosis,

prognosis, and therapeutic responsiveness of aging effects in healthy adults and other conditions

such as neuropsychiatry diseases and disorders of consciousness.
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Figure 1: Probabilistic metastable substate (PMS) space, optimizing the model for whole-brain activ-

ity and in silico stimulations. (A) Time series extraction for each subject, brain area, and time point using the

Hilbert transform. The panel shows a complex plane representing the BOLD phases for a given brain area across

time. (B) Leading Eigenvector Dynamic Analysis (LEiDA) to identify dynamic functional connectivity patterns

across all subjects [i.e., probabilistic metastable substates (PMS)]. The left panel shows the BOLD phases in all 214

brain areas described in the complex plane. The right panel shows the phase coherence matrix between each pair of

brain areas in all time points. The vector shows the leading eigenvector V1(t), capturing the principal orientation of

the BOLD phase (showing positive or negative values) for each of the 214 brain areas. The clustering configuration

that best represented our resting-state fMRI data was found for 3 states. Rendered brains show the brain states

rendered onto the cortex. (C) Whole-brain PMS model. A whole-brain dynamical model was fitted for the PMS of

the older group based on the effective connectivity. (D) Stimulations in silico. Each brain area of the whole-brain

model was systematically perturbed via in silico stimulations through two different protocols (noise and synchro-

nization). The noise protocol shifts the local bifurcation parameter of each brain area to negative values, whereas

the synchronization protocol shifts it to positive.
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Figure 2: Empirical PMS and whole-brain model fitting. The left panel shows the empirical PMS of each

group obtained by LEiDA. In red the middle-aged group and blue the older group. The probability of occurrence

in the first state was higher in the older group. By contrast, the probability of occurrence in the second state was

higher in the middle-age group. The whole-brain brain model of the older group was fitted to the empirical PMS

of the older group. The right panel shows the resulting model (electric blue), remarkably similar to their empirical

version (blue).

Figure 3: Noise and synchronization stimulation protocols. (A) Forcing transitions from the model of the

older group (electric blue) to the empirical PMS of the middle-age group (red). The whole-brain model was perturbed

at the optimal working point using two different protocols (noise and synchronization), which shifted the local

bifurcation parameter to negative and positive values, respectively (middle panel). The optimal perturbation is that

which achieves that the first brain state decreases, the second increases, and the third brain state remains similar

(right panel). (B) The left matrix shows the KL-distance value after applying the noise protocol’s perturbation

intensity (from softer to stronger) in each brain area. The brain rendered onto the cortex represents the KL-distance

for the noise protocol between the PMS of the middle-age group and the perturbed model. In blue, potential brain

areas to perturb to achieve a good transition between brain states. The right matrix shows that the synchronization

protocol presented poor effectiveness given that KL distances were longer than in the noise protocol.
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Figure 4: PMS comparison between empirical, modeled, and perturbed conditions. The plot shows the

probability of occurrence of the empirical PMS of the middle-age group (in red) and the older group (in light blue).

Electric blue represents the optimal fit for the PMS model of the older group. In brown, the model after changing

the bifurcation parameter of the right precuneus using the noise protocol. This result indicates an optimal transition

to the empirical PMS of the middle-age group (in red). This perturbation decreased the probability of occurrence

of the first state, increased the probability of the second, and kept the probability of the third similar. The light

green bars represent a non-optimal transition when the postcentral gyrus is stimulated.
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