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ABSTRACT 

Objectives: Neutrophils are typically the most abundant leukocyte in arthritic synovial fluid. We 
sought to understand changes that occur in neutrophils as they migrate from blood to joint. 

Methods: We performed RNA sequencing of neutrophils from healthy human blood, arthritic 
blood, and arthritic synovial fluid, comparing transcriptional signatures with those from murine 
K/BxN serum transfer arthritis. We employed mass cytometry to quantify protein expression and 
sought to reproduce the synovial fluid phenotype ex vivo in cultured healthy blood neutrophils.  

Results: Blood neutrophils from healthy donors and patients with active arthritis exhibited largely 
similar transcriptional signatures. By contrast, synovial fluid neutrophils exhibited more than 1,600 
differentially expressed genes. Gene signatures identified a prominent response to interferon 
gamma (IFNγ), as well as to tumor necrosis factor, interleukin 6, and hypoxia, in both humans 
and mice. Mass cytometry also found healthy and arthritic donor blood neutrophils largely 
indistinguishable but revealed a range of neutrophil phenotypes in synovial fluid defined by 
downregulation of CXCR1 and upregulation of FcγRI, HLA-DR, PD-L1, ICAM-1 and CXCR4. 
Reproduction of key elements of this signature in cultured blood neutrophils required both IFNγ 
and prolonged culture. 

Conclusions: Circulating neutrophils from arthritis patients resemble those from healthy controls, 
but joint fluid cells exhibit a network of changes, conserved across species, that implicate IFNγ 
response and aging as complementary drivers of the synovial neutrophil phenotype. 
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KEY MESSAGES 

What is already known about this subject? 

• Neutrophils are central in the effector phase of inflammatory arthritis but their phenotypic 
heterogeneity in inflamed synovial fluid is poorly understood. 

What does this study add? 

• RNA-seq and mass cytometry identify a hallmark phenotype of neutrophils in synovial fluid 
consisting of upregulated ICAM-1, HLA-DR, PD-L1, Fc receptors and CXCR4. 

• Transcriptomics highlight an IFNγ response signature conserved across humans and mice. 
• In vitro experiments implicate aging and IFNγ as complementary factors orchestrating the 

synovial fluid neutrophil phenotype. 

How might this impact on clinical practice or future developments? 

• Understanding the specific features of neutrophils in the arthritic joint may disclose 
opportunities for safe therapeutic targeting of this lineage. 
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INTRODUCTION 

Inflammatory arthritis encompasses a broad spectrum of diseases affecting adults and children[1]. 
The pathogenesis of non-infectious arthritis is correspondingly varied, with upstream mechanisms 
that include autoantibodies, T cells, autoinflammatory mechanisms, and crystals[2]. Despite this 
remarkable pathogenic diversity, a ubiquitous feature of arthritic joint fluid is an abundance of 
neutrophils, a canonical innate immune effector cell required for immune defense but also for 
many forms of pathogenic inflammation. 

Compelling evidence confirms that neutrophils are key pathogenic contributors in arthritis. 
Neutrophils from human joints exhibit altered surface markers and function consistent with 
activation[3-7]. Synovial neutrophils elaborate pro-inflammatory factors such as interleukin (IL)-1, 
leukotriene B4, citrullinated peptides, and neutrophil extracellular traps[8-11]. Neutrophils 
activated by adherent immune complexes degrade articular cartilage[12]. Finally, mice with 
defects specific to the neutrophil compartment – for example, depleted of neutrophils, congenitally 
deficient in neutrophils, with neutrophils lacking key effector molecules, or subject to neutrophil 
migratory blockade – exhibit dense resistance to experimental arthritis[11, 13-17]. Therefore, 
understanding the phenotype of synovial fluid neutrophils is essential to understanding the biology 
of arthritis and may reveal novel opportunities for therapeutic intervention[18]. 

Advances in cellular characterization offer new ways to understand neutrophils. Transcriptomic 
analysis provides a hypothesis-independent examination of the activity of cells at the gene 
expression level, informing the relationships between populations of cells. For example, studies 
using single-cell RNA sequencing (scRNAseq) recently established that murine neutrophils 
represent a single lineage, differentiating along a developmental continuum termed ‘neutrotime’, 
rather than a branched network of committed subtypes[19]. Indeed, aging is well recognized as a 
modulator of neutrophil phenotype and function[20, 21]. Importantly, however, the relationship 
between a neutrophil’s transcriptome and its surface protein signature varies markedly with 
context[19]. For example, neutrophil activation is accompanied by rapid mobilization of the 
surface integrin CD11b from an intracellular pool and cleavage-mediated loss of the surface 
selectin CD62L[22]. Mass cytometry (cytometry by time of flight, CyTOF) allows simultaneous 
determination of dozens of surface and intracellular markers in each cell, albeit restricted by 
investigator choice as to the markers most likely to prove informative[23].  

To understand the changes that occur in neutrophils as they enter the inflamed joint, we applied 
low-input RNAseq to purified neutrophils, sorting cells by a known dichotomous surface marker 
of undetermined function, CD177, to eliminate potential confounding by variation in the CD177pos 
neutrophil fraction within the population[24]. We compared human neutrophils with scRNAseq 
transcriptome data from murine neutrophils, both circulating and from autoantibody-mediated 
neutrophil-driven K/BxN serum transfer arthritis[25]. We employed CyTOF to define markers of 
neutrophil differentiation and function, followed by confirmatory in vitro studies using flow 
cytometry. We establish that blood neutrophils from healthy and arthritic donors are largely similar 
but find that synovial fluid neutrophils differ markedly from blood neutrophils in a manner that 
implicates both interferon gamma (IFNγ) response and cell aging in the resulting phenotype. 
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METHODS 

Demographic characteristics and materials and methods are available in the supplementary 
materials. 

RESULTS 

Transcriptomic characterization of circulating neutrophils  

We performed low-input RNAseq on blood neutrophils from 15 healthy and 16 arthritic donors 
(Supplementary Table 1), calculating Pearson correlation coefficients between samples based 
on the expression of all genes. Hierarchical clustering of these correlation coefficients revealed 
no separation by disease state, suggesting little divergence of transcriptional phenotype (Figure 
1A). At an FDR of 0.05 (indicated by red line), blood neutrophils from healthy and arthritic donors 
differed in only three genes: DNAJB9 (DnaJ Heat Shock Protein Family (Hsp40) Member B9), 
DDIT4 (DNA damage inducible transcript 4) and SCO2 (Synthesis of Cytochrome C Oxidase 2), 
all modestly upregulated in arthritis (Figure 1B, C). 

Synovial fluid neutrophils display an IFNγ response  

We performed the same analysis in 16 paired contemporaneous peripheral blood and synovial 
fluid samples from patients with active arthritis requiring therapeutic joint aspiration. Hierarchical 
clustering revealed separation into two groups as a function of location (Figure 2A). At │log fold 
change│≥ 1 and FDR 0.05, 1,657 genes were differentially expressed, of which 939 were 
downregulated and 718 upregulated (Figure 2B).  

To understand these genes in terms of functional programs, we employed Gene Set Enrichment 
Analysis using the established 50 hallmark gene sets. Signatures of TNF and IL-6 response were 
easily detected, as was response to hypoxia (Figure 2C). However, the most prominent gene set 
in synovial fluid neutrophils was IFNγ response (Figure 2C, 2D). Analysis of genes up-regulated 
in response to IFNγ (HALLMARK_INTERFERON_GAMMA_RESPONSE) revealed that most 
(93/175) expressed IFNγ target genes were highly induced in synovial fluid neutrophils, including 
the class II molecules CD74, HLA-DMA, HLA-DRB1 and HLA-DQA1; CD274 (encoding PD-L1); 
and FCGR1A (encoding CD64, the high-affinity IgG receptor FcγRI) (Figure 2E). These 
observations show that phenotypic deviation of neutrophils in arthritis is primarily in the joints 
rather than in the circulation, at least at the transcriptional level, and suggest a prominent role for 
IFNγ in driving the phenotype of synovial fluid neutrophils. 

Conserved responses of human and murine neutrophils in inflammatory arthritis  

Neutrophils are indispensable for onset and perpetuation of joint inflammation in mice[8-11, 14-
16]. To test whether the transcriptional changes we observed in human synovial neutrophils are 
conserved across species, we compared our human dataset to a microarray-based transcriptional 
atlas of neutrophils from the blood of healthy mice and joints of mice undergoing K/BxN serum 
transfer arthritis[25]. We restricted the combined dataset to 5,520 one-to-one gene orthologs 
according to ENSEMBL version 100[26]. Of genes with orthologs significantly upregulated in 
human (578) and murine (226) synovial fluid neutrophils, 97 were shared across species, far more 
than expected by chance (95% confidence interval for chance overlap 16–34 genes as defined 
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by random resampling 20,000 times, P = 2.7 × 10−7, Figure 3A). Similarly, downregulated genes 
across human (774) and mouse (174) neutrophils in synovial fluid shared significant overlap with 
75 genes, compared to 23–41 expected by chance (P = 1.3 × 10−11, Figure 3A). In murine synovial 
fluid neutrophils, enhanced expression was observed in IFNγ target genes including CD274 
(encoding PD-L1) and the MHC class II gene HLADQB1; indeed an IFNγ signature was one of 
the key functional patterns observed, with highly skewed representation of IFNγ response genes 
(adjusted P < 0.001, Figure 3B,C). These findings establish that gene expression changes, 
including an IFNγ response signature, are shared by human and mice synovial fluid neutrophils. 

CyTOF confirms joint-specific activation of human neutrophils in inflammatory arthritis  

We created a custom CyTOF panel containing 39 human surface and intracellular markers related 
to neutrophil activation, chemokine receptors, antigen presentation, adhesion factors and co-
stimulatory molecules (Supplementary Methods). CyTOF studies were performed in 33 samples 
(9 healthy volunteer donors, 8 blood samples from patients with inflammatory arthritis, and 16 
synovial fluid samples, including 7 contemporaneous blood/synovial fluid pairs; Supplementary 

Table 1). 

To analyze global data structure, we extracted median expression values for each protein in each 
sample and calculated Spearman correlation coefficients between samples based on expression 
data. Hierarchical clustering revealed complete overlap in peripheral blood neutrophils between 
healthy donors and patients with inflammatory arthritis, indicating few systematic differences in 
global protein expression (Figure 4A). Correspondingly, we found differential expression only of 
a single marker, CD64, between healthy and arthritic donor peripheral blood neutrophils after 
correction for multiple comparisons (Figure 4C). These results mirror our transcriptomic findings 
and show similarity of blood neutrophils between healthy and arthritic donors. 

By contrast, comparison of blood and synovial fluid revealed a strong separation driven by tissue 
(Figure 4B). This separation was driven by multiple differentially expressed proteins in synovial 
fluid neutrophils including downregulation of CXCR1 and upregulation of the integrin CD11c, PD-
L1, ICAM-1, HLA-DR, the low-affinity Fc receptor CD32 (FcγRII) and CXCR4 (CD184), the 
receptor for CXCL12/SDF-1 that retains neutrophils in inflamed sites [27] (Figure 4D,E). CD64 
was also overexpressed but did not reach significance compared to arthritic donor blood due to 
already higher expression (Figure 4E). Compared to healthy blood neutrophils, synovial fluid 
neutrophils overexpressed CD64, the activation and lineage markers CD66b and CD15, the LPS 
co-receptor CD14, and the integrin CD49d (Figure 4E). 

PD-L1, HLA-DR and CD64 are upregulated in neutrophils exposed to IFNγ, consistent with our 
transcriptomic signature data[28-34]. The IL-8 receptor CXCR1 was downregulated, potentially 
reflecting agonist-mediated internalization of this G-protein-coupled receptor. No change was 
noted in granule proteins, including for primary (azurophilic) granules (including MPO, proteinase 
3 [PR3], arginase 1), secondary granules (including LL-37 / cathelicidin, CD177, OLFM4), and 
tertiary granules (arginase 1). Results for all markers are shown in Supplementary Figure 3. 

We investigated how well expression differences in RNA and protein match each other. We found 
that downregulation of CXCR1 and upregulation of CXCR4, ICAM1, HLA-DRA, HLA-DRB1, HLA-
DRB5 and CD274 (encoding PD-L1) were highly concordant between RNA and protein (Figure 
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4F).  Upregulation of FCGR1A (CD64) and FCGR2B (CD32) was also observed on both RNA 
and protein level but was significant only at either gene (FCGR1A) or protein (CD32) level. This 
set of genes and their protein products thus constitute hallmarks of the synovial fluid neutrophil 
phenotype. 

Continuous and discrete neutrophil phenotypes 

To define neutrophil heterogeneity at the single-cell level, we performed Uniform Manifold 
Approximation and Projection (UMAP) dimensionality reduction on our CyTOF data. Initial results 
were dominated by the two known dichotomously expressed neutrophil proteins, CD177 and 
OLFM4 (Supplementary Figure 4A). Cells from peripheral blood and synovial fluid were evenly 
distributed across CD177pos/neg and OLFM4pos/neg populations in the UMAP embedding, suggesting 
that the phenotypic changes distinguishing blood and synovial fluid neutrophils operate evenly 
across these markers (Supplementary Figure 4B). Accordingly, we did not detect any significant 
differences in frequency of neutrophil subsets defined by CD177 or OLFM4 between blood and 
synovial fluid (Supplementary Figure 4C). 

To neutralize this dominant impact, we excluded CD177, OLFM4, and the CD177-anchored 
enzyme PR3 from consideration and repeated dimensionality reduction. We observed a striking 
separation between resting blood neutrophils and synovial fluid cells, single-cell findings that 
mirrored our transcriptomic results (Figure 5A). Synovial fluid neutrophils concentrated in two 
primary clusters, termed here SFN1 and SFN2 and observed across individual donors (Figure 

5A and Supplemental Figure 5). For analysis purposes, we forced neutrophils into k = 20 
clusters, again excluding CD177, OLFM4, and PR3, with the goal of maximizing the opportunity 
to identify distinct phenotypic states (Figure 5B). Individual markers varied among the 20 clusters, 
confirming neutrophil heterogeneity at the single-cell level (Figure 5C). Examining the frequency 
of cells belonging to each cluster, we observed considerable divergence among donors, limiting 
statistical power in this relatively small sample size. Clusters 10–12 were particularly 
overrepresented in synovial fluid, representing the bulk of neutrophils in SFN2 (Figure 5D). 
Neutrophils in Clusters 10-11 expressed high levels of CXCR4 (CD184) and Cluster 12 cells 
additionally expressed the IFNγ markers HLA-DR, PD-L1 and CD64. The SFN1 population was 
contained within Cluster 2 and was driven primarily by a single donor, although it  trended higher 
across multiple samples in synovial fluid vs. blood. By contrast, blood neutrophils were enriched 
for Clusters 1, 8, 9, and 16, with only Cluster 9 (expressing high levels of granule proteins) and 
Cluster 16 (expressing granule proteins, OLFM4, and CD124, the alpha chain of the IL-4 and IL-
13 receptors) achieving statistical significance (Figure 5D).  

Expression of differentially expressed markers between blood and synovial fluid revealed that 
most markers follow expression gradients (Figure 5E). Broadly, two gradients could be observed: 
a gradient from top to bottom that included many granule proteins and likely reflecting maturation 
(CD10, Nrf2, arginase 1, CD11a, elastase, LL-37, CD31, MPO, OLFM4, CD177, CD184/CXCR4) 
and a gradient from left to right likely reflecting activation (CD66b, CD11b, CD15, CD16, CXCR1, 
CD45) (Supplementary Figure 5). Small populations of interest included Clusters 8 and 19 
(expressing TCRαβ, equally rare in blood and synovial fluid) and Cluster 6, expressing VEGFR1 
and therefore potentially representing pro-angiogenic neutrophils[35], significantly increased in 
synovial fluid compared to healthy blood. 
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Notably, not all upregulated markers were expressed on the same cells. For example, CXCR4-
high neutrophils expressed variable amounts of HLA-DR and PD-L1 (Figure 5E). Correlating 
expression intensity on a per-sample bulk level revealed a positive correlation between markers 
defining the core synovial fluid phenotype: HLA-DR, ICAM-1, CXCR4 and CD32 (Figure 5F). 
Analysis at the single-cell level confirmed a correlation between general activation markers 
CD11b, CD15 and CD66b and within a cluster of granule proteins (MPO, LL-37, Nrf2, Elastase) 
but not between CXCR4, HLA-DR and PD-L1 (Figure 5G). 

Together, these results show that CXCR4+, HLA-DR+ and PD-L1+ neutrophils are expanded in 
inflamed synovial fluid and that expression of these markers peaks in different cells, confirming 
that the inflamed environment features divergent neutrophil phenotypes.  

IFNγ and aging drive blood neutrophils toward a synovial fluid phenotype 

Since both transcriptomic and proteomic analysis revealed a strong IFNγ response signature in 
synovial fluid neutrophils, we hypothesized that stimulation with IFNγ could recapitulate the 
synovial fluid phenotype in healthy blood neutrophils. As expected, viability dropped from nearly 
100% at beginning of culture to 71% after 2 days of culture at 37°C. Stimulation with IFNγ 
significantly extended neutrophil survival to 87% (Figure 6A). 

IFNγ stimulation prevented downregulation of CD32 and significantly upregulated CD64, ICAM-
1, HLA-DR and PD-L1 (Figure 6B). CXCR4 expression was not detectable in freshly isolated 
neutrophils but increased with time in culture, consistent with its known role as a marker of 
neutrophil aging[21]. Interestingly, CXCR4 expression was reduced by cytokine stimulation, 
indicating either an impact on CXCR4 expression specifically or a broader effect on the neutrophil 
aging program (Figure 6B). 

Based on those findings, we hypothesized that cytokine stimulation and aging were 
complementary in establishing the synovial fluid neutrophil phenotype. We therefore analyzed 
unstimulated and stimulated neutrophils together in a single diffusion map. This analysis revealed 
a marked divergence in phenotypes between cells left unstimulated and those incubated with 
IFNγ (Figure 6C). CXCR4 expression was highest at the most distant pole of the unstimulated 
trajectory (Figure 6D). Conversely, IFNγ robustly upregulated HLA-DR, PD-L1 and ICAM-1 
(Figure 6D). Thus, the combination of aging and exposure to IFNγ, but not either alone, yielded 
a neutrophil phenotype resembling that of synovial fluid neutrophils. 

DISCUSSION 

Synovial fluid neutrophils are the hallmark of inflammatory arthritis[36]. We employed low-input 
RNA sequencing and CyTOF to characterize neutrophils from healthy donor blood and from blood 
and synovial fluid of patients with active arthritis. Whereas circulating neutrophils exhibited few 
changes with disease state, synovial fluid neutrophils displayed consistent phenotypic deviation 
implicating two conceptually orthogonal influences: response to local mediators, most prominently 
IFNγ, and cell aging.  

The marked alteration in mRNA expressed by synovial fluid neutrophils is consistent with the 
growing understanding of neutrophils as highly dynamic cells that remain transcriptionally active 
throughout their lifespan[19, 37, 38]. This adaptability may be of particular consequence in 
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neutrophils recruited to inflamed sites such as the arthritic joint, since cytokines can prolong 
neutrophil half-life from a baseline of 8-20 hours to several days[39]. 

Transcriptional signatures observed here included response to mediators of established 
importance in arthritis, including TNF and IL-6, as well as to hypoxia, a known feature of the 
synovial environment[40]. The role of IFNγ in arthritis is less well understood. Studies performed 
more than 20 years ago implicated IFNγ in expression of the high-affinity Fc receptor FcγRI 
(CD64) on synovial fluids neutrophils[6]. Potential IFNγ sources in arthritis suggested by human 
and/or murine studies include CD4 T cells (IFNγ is the hallmark Th1 cytokine), CD8 T cells, NK  
cells, and NKT cells[41-46]. Experimental overexpression of IFNγ in the joint accelerates cartilage 
injury through upregulation of IgG Fc receptors and therefore enhanced susceptibility to immune 
complex injury[47]. However, IFNγ-deficient mice exhibit normal susceptibility to IgG-mediated 
K/BxN serum transfer arthritis, while IFNγ blockade or IFNγ receptor deficiency accelerates the 
onset and severity of collagen-induced arthritis[44, 48, 49]. Trials of recombinant IFNγ in 
rheumatoid arthritis found at best modest disease amelioration[50, 51]. These findings reflect the 
net impact of IFNγ on multiple lineages and remain compatible with the possibility that neutrophil 
exposure to IFNγ in arthritis is pro-inflammatory (for example, through upregulation of surface Fc 
receptors and HLA-DR), anti-inflammatory (for example, through up-regulation of the T cell 
inhibitor PD-L1), or both.  

Comparing the transcriptional signature of human and murine neutrophils, we observed 
substantial overlap, including shared presence of an IFNγ signature in synovial fluid neutrophils, 
supporting the human relevance of extensive murine work defining the role of neutrophils in 
arthritis[11, 13-16]. This conclusion is important because performance of unambiguous human 
studies is complicated by the lack of neutrophil-specific therapeutics. Cross-species similarity is 
further echoed in murine neutrophil scRNAseq data, where differences between healthy and 
arthritic blood neutrophils were small whereas differences between arthritic blood and synovial 
neutrophils were large[19]. Whereas the neutrotime signature cannot be extrapolated directly to 
bulk RNAseq data, downregulation of early-neutrotime transcripts such as LCN2, CAMP, and 
CD177 further supports the suggestion that human synovial fluid neutrophils – like their murine 
counterparts – skew similarly skew toward an aged phenotype reflecting prolonged survival in the 
inflamed joint environment[19].  

Of particular interest is the marked cell-to-cell heterogeneity revealed by CyTOF. The clusters 
reported here reflect investigator-chosen analytical parameters and therefore are best regarded 
as one snapshot of this complex population rather than as discrete subsets. The data show that 
neutrophils within the inflamed joint differ phenotypically from each other as well as from those in 
blood. Dimensionality reduction by UMAP identified 2 broad populations: SFN1, resembling 
circulating neutrophils, and SFN2, a more abundant group often bearing markers associated with 
the IFNγ signature. We speculate that these populations reflect a chronological progression, with 
SFN1 representing recent arrivals that evolve in SFN2 cells with exposure to the inflamed synovial 
environment and time. This suggestion is consistent with greater expression within SFN2 of the 
maturity marker CD10 and the aging marker CXCR4, although SFN2 neutrophils remain internally 
diverse[52].  

We applied both inflammatory stimuli and time to cultured healthy donor blood neutrophils. 
Indeed, two orthogonal signals were noted: IFNγ exposure upregulated hallmark SFN2 proteins 
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such as HLA-DR, PD-L1, and CD64, while aging was required to yield the second key SFN2 
marker, CXCR4 (interestingly partially suppressed by IFNγ). Further study will be required to 
confirm the parallels between these findings and the arthritis context, but the data nevertheless 
support the conceptual model that the neutrophil phenotypes observed in human synovial fluid 
represent an integration of inflammatory stimuli and aging in cells recruited in an ongoing manner 
to the inflamed joint. 

Our work has several limitations. RNAseq studies employed bulk sorted neutrophils, enabling us 
to identify transcripts in depth but prohibiting us from calculating developmental trajectories. 
Future studies using scRNAseq will be important to define the ontological relationships among 
joint fluid neutrophils. CyTOF studies employed a set of antigens reflecting investigator choice; 
for technical reasons, not all antigens proved interpretable, and it is likely that many informative 
antigens were omitted. Our data do not detail epigenetic reprograming of neutrophils, and we did 
not characterize the function of the heterogeneous groups identified in arthritic synovial fluid. 
Despite these limitations, the results represent a uniquely granular examination of the 
transcriptional and surface/intracellular phenotype of human arthritic neutrophils, setting the stage 
for the next set of phenotypic and functional studies toward the ultimate goal of identifying 
targetable pathways for therapeutic neutrophil blockade in arthritis. 
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FIGURE LEGENDS 

Figure 1. Transcriptomic similarity of blood neutrophils from healthy controls and patients 
with inflammatory arthritis 

(A) Hierarchical clustering of Pearson correlation coefficients between individual blood samples 
based on the expression of all genes reveals complete overlap between the two groups. (B) 
Volcano plot of differentially expressed genes (at FDR 0.05) between blood neutrophils from 
healthy and arthritic donors. (C) DNAJB9, DDIT4 and SCO2 are overexpressed in blood of 
inflammatory arthritis patients compared to healthy controls. N = 15 healthy controls, N = 16 
arthritis patients. 

Figure 2. Synovial fluid neutrophils are enriched for IFNγ response genes  

(A) Hierarchical clustering of Pearson correlation coefficients between paired peripheral blood 
and synovial fluid samples based on the expression of all genes shows strong separation based 
on tissue. (B) 1,657/6,350 genes are differentially expressed at log2 fold change ≥ 1 and FDR of 
0.05 between peripheral blood and synovial fluid neutrophils. (C) Gene Set Enrichment Analysis 
of differentially expressed genes in synovial fluid vs. blood neutrophils. (D) Enrichment plot of the 
IFNγ response signature in synovial fluid neutrophils. (E) Expression heatmap of IFNγ response 
genes in synovial fluid neutrophils reveals strong separation between blood and synovial fluid. N 
= 16 paired blood and synovial fluid inflammatory arthritis samples. 

Figure 3. Cross species analysis of neutrophil gene expression in inflamed synovial fluid 

(A) Depicted is the log2 fold change of gene expression in human (x) vs. murine (y) synovial fluid 
neutrophils compared to blood neutrophils. Only genes with with one-to-one orthologs are shown 
and genes with adjusted P < 0.05 in both comparisons and | log2 fold change | ≥ 0.75 are 
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highlighted. Genes are conservatively colored by highest P value. (B) Significantly differentially 
expressed genes were ranked by log2 fold change and Gene Set Enrichment Analysis was 
performed on hallmark gene sets. (C) Enrichment plot of the hallmark gene set “Interferon gamma 
response”. Only genes with one-to-one orthologs between mice and humans are shown; for gene 
symbols, the human symbol is shown. 

Figure 4. Mass cytometry analysis of neutrophils 

(A) Hierarchical clustering of Spearman correlation coefficients between blood neutrophils from 
healthy donors and patients with inflammatory arthritis based on global neutrophil protein 
expression. (B) Differential expression analysis of global neutrophil marker expression in the 
peripheral blood. (C) Hierarchical clustering of Spearman correlation coefficients between 
peripheral blood and synovial fluid samples. (D) Differential expression analysis of global 
neutrophil marker expression between peripheral blood and synovial fluid. (E) Average 
expression of significantly differentially expressed markers per sample. (F) Comparison of gene- 
and protein expression differences between blood and synovial fluid neutrophils identifies a 
hallmark synovial fluid phenotype. HC = healthy control; IA = inflammatory arthritis; 
SF = synovial fluid 

Figure 5. Continuous and discrete neutrophil phenotypes 

(A) UMAP embedding of single-cell CyTOF data separates blood neutrophils and synovial fluid 
cells. (B) Overclustering of neutrophils into 20 groups captures neutrophil heterogeneity across 
blood and synovial fluid. (C) Heterogeneity in marker expression between the 20 clusters. (D) 
Change in frequency of different neutrophil phenotypes across conditions. (E) Gradients of marker 
expression characterize synovial fluid neutrophils. Correlation between markers on a per-sample 
(F) and single-cell (G) level identifies clusters of co-expressed markers. HC = healthy control; 
IA = inflammatory arthritis; SF = synovial fluid 

Figure 6. Progressive aging and response to interferon gamma recapitulate the synovial 
fluid phenotype in vitro 

(A) Stimulation with IFNγ extends the lifetime of neutrophils in vitro. (B) Effect of aging and IFNγ 
on the expression of key surface markers. (C) Diffusion map of unstimulated and IFNγ stimulated 
neutrophils cultured over 48 hours. (D) Expression of key surface markers on the diffusion map.  
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Figure 1. Transcriptomic similarity of blood neutrophils from healthy controls and patients with inflammatory arthritis
(A) Hierarchical clustering of Pearson correlation coefficients between individual blood samples based on the expression of all 
genes reveals complete overlap between the two groups. (B) Volcano plot of differentially expressed genes (at FDR 0.05) between 
blood neutrophils from healthy and arthritic donors. (C) DNAJB9, DDIT4 and SCO2 are overexpressed in blood of inflammatory 
arthritis patients compared to healthy controls. N = 15 healthy controls, N = 16 arthritis patients.
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Figure 2. Synovial fluid neutrophils are enriched for IFNγ response genes 
(A) Hierarchical clustering of Pearson correlation coefficients between paired peripheral blood and synovial fluid samples based on 
the expression of all genes shows strong separation based on tissue. (B) 1,657/6,350 genes are differentially expressed at log2 fold 
change ≥ 1 and FDR of 0.05 between peripheral blood and synovial fluid neutrophils. (C) Gene Set Enrichment Analysis of 
differentially expressed genes in synovial fluid vs. blood neutrophils. (D) Enrichment plot of the IFNγ response signature in synovial 
fluid neutrophils. (E) Expression heatmap of IFNγ response genes in synovial fluid neutrophils reveals strong separation between 
blood and synovial fluid. N = 16 paired blood and synovial fluid inflammatory arthritis samples.
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Figure 3. Cross species analysis of neutrophil gene expression in inflamed synovial fluid
(A) Depicted is the log2 fold change of gene expression in human (x) vs. murine (y) synovial fluid neutrophils compared to blood 
neutrophils. Only genes with with one-to-one orthologs are shown and genes with adjusted P < 0.05 in both comparisons and | log2 
fold change | ≥ 0.75 are highlighted. Genes are conservatively colored by highest P value. (B) Significantly differentially expressed 
genes were ranked by log2 fold change and Gene Set Enrichment Analysis was performed on hallmark gene sets. (C) Enrichment 
plot of the hallmark gene set “Interferon gamma response”. Only genes with one-to-one orthologs between mice and humans are 
shown; for gene symbols, the human symbol is shown.
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Figure 4. Mass cytometry analysis of neutrophils
(A) Hierarchical clustering of Spearman correlation coefficients between blood neutrophils from healthy donors and patients with 
inflammatory arthritis based on global neutrophil protein expression. (B) Differential expression analysis of global neutrophil marker 
expression in the peripheral blood. (C) Hierarchical clustering of Spearman correlation coefficients between peripheral blood and 
synovial fluid samples. (D) Differential expression analysis of global neutrophil marker expression between peripheral blood and 
synovial fluid. (E) Average expression of significantly differentially expressed markers per sample. (F) Comparison of gene- and 
protein expression differences between blood and synovial fluid neutrophils identifies a hallmark synovial fluid phenotype.
HC = healthy control; IA = inflammatory arthritis; SF = synovial fluid
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Figure 5. Continuous and discrete neutrophil phenotypes
(A) UMAP embedding of single-cell CyTOF data separates blood neutrophils and synovial fluid cells. (B) Overclustering of 
neutrophils into 20 groups captures neutrophil heterogeneity across blood and synovial fluid. (C) Heterogeneity in marker expression 
between the 20 clusters. (D) Change in frequency of different neutrophil phenotypes across conditions. (E) Gradients of marker 
expression characterize synovial fluid neutrophils. Correlation between markers on a per-sample (F) and single-cell (G) level 
identifies clusters of co-expressed markers. HC = healthy control; IA = inflammatory arthritis; SF = synovial fluid
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Figure 5 (Legend on previous page)
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Figure 6. Progressive aging and response to interferon gamma recapitulate the synovial fluid phenotype in vitro
(A) Stimulation with IFNγ extends the lifetime of neutrophils in vitro. (B) Effect of aging and IFNγ on the expression of key surface 
markers. (C) Diffusion map of unstimulated and IFNγ stimulated neutrophils cultured over 48 hours. (D) Expression of key surface 
markers on the diffusion map.
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