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Abstract 

Single cell RNA sequencing (scRNA-seq) is a powerful technology to investigate the 

transcriptional programs in stromal, immune and tumor cells or neuron cells within the 

tumor or Alzheimer’s Disease (AD) brain microenvironment (ME) or niche. Cell-cell 

communications within ME play important roles in disease progression and 

immunotherapy response, and are novel and critical therapeutic targets. Though many 

tools of scRNA-seq analysis have been developed to investigate the heterogeneity and 

sub-populations of cells, few were designed for uncovering cell-cell communications of 

ME and predict the potentially effective drugs to inhibit the communications. Moreover, the 

data analysis processes of discovering signaling communication networks and effective 

drugs using scRNA-seq data are complex and involving a set of critical analysis processes 

and external supportive data resources, which are difficult for researchers who have no 

strong computational background and training in scRNA-seq data analysis. To address 
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these challenges, in this study, we developed a novel computational tool, SC2MeNetDrug 

(https://fuhaililab.github.io/sc2MeNetDrug/). It was specifically designed using scRNA-seq 

data to identify cell types within MEs, uncover the dysfunctional signaling pathways within 

individual cell types, inter-cell signaling communications, and predict effective drugs that 

can potentially disrupt cell-cell signaling communications. SC2MeNetDrug provided a 

user-friendly graphical user interface to encapsulate the data analysis modules, which can 

facilitate the scRNA-seq data based-discovery of novel inter-cell signaling 

communications and novel therapeutic regimens. 

 

 

Introduction 

Tumor-stroma communication within the tumor microenvironment (TME) plays an 

important role in tumor development and responses to both conventional- and immune-

based therapies. For example, immunotherapy in pancreatic cancer treatment has not 

been successful1. One possible cause of immunotherapy resistance is the abundance of 

stromal cells and tumor signaling communications in Pancreatic ductal adenocarcinoma 

(PDAC) tumor microenvironments1. Such immunosuppressive cells include tumor 

associated macrophages (TAMs), myeloid-derived suppressor cells (MDSCs), regulatory 

T cells (Tregs), as well as cancer associated fibroblasts (CAFs)1,2,3,4,5,6. Moreover, CAFs 

were recently reported to be able to regulate the invasive epithelial-to-mesenchymal 

transition (EMT) and proliferative (PRO) phenotypes of PDAC7. This indicates that stroma-

tumor communication in PDAC tumor microenvironments play a critical role in 

immunotherapy resistance. Thus, stroma-tumor signaling communications are potential 

targets to improve drug or immunotherapy response in cancer treatment. The inhibition of 

signaling communication between TAMs and PDAC cells via the Colony Stimulating 

Factor 1 (CSF1) (ligand secreted by PDAC) and CSF1R (receptor on TAM) can reprogram 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 19, 2021. ; https://doi.org/10.1101/2021.11.15.468755doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.15.468755
http://creativecommons.org/licenses/by-nc-nd/4.0/


TAMs, and the synergistic combination of TAM-tumor signaling inhibition with the immune 

checkpoint blockade8 can improve the immunotherapy response. In another study, the 

inhibition of signaling communication between CAF and PDAC via CXCL12 (ligand 

secreted by CAF) and CXCR4 (receptor on PDAC) was shown to improve immunotherapy 

response5. 

Recent advances in single cell RNA sequencing (scRNA-seq) create a powerful 

technology to analyze the genetic and functional heterogeneity of stromal and tumor cells 

(e.g., TAM, CAF and T cells) within tumor microenvironments9,10,7. Though many tools and 

studies reported to have discovered the heterogeneity and sub-populations of cells, few 

studies11 have been designed to investigate the cell-cell communication using sc-RNAseq 

data. For example, the CCCExplorer12,13 was first developed for uncovering the potential 

tumor and stroma cell communication using microarray and bulk RNA data on a small set 

of curated ligand-receptor interactions. CellPhoneDB14 provided a repository of ligands, 

receptors and their interactions using the novel computational ligand-receptor interaction 

prediction approaches. NicheNet15 was the latest software tool that integrates the large 

set of ligand-receptor interactions from CellPhoneDB, and it accepted the pre-analyzed 

scRNA-seq data. However, the computational modules of inferring the dysfunctional 

signaling networks, and predict potentially effective drugs inhibiting the dysfunctional 

signaling networks and cell-cell communications are not available in these tools.   

Specifically, compared with the existing tools, novel computational models and tools 

that solve the following challenges are in high demand to 1) provide an end-to-end model 

that can take the raw scRNA-seq data as input, analyze, annotate and display the scRNA-

seq data, 2) uncover dysfunctional signaling network within individual cells, and uncover 

complex signaling communications among multiple stromal and tumor cells; 3) identify 

effective drugs and drug combinations that disrupt the cell-cell communications, like 

stroma-tumor, to improve the targeted and immunotherapy response. Moreover, 4) a user-
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friendly interactive graphical user interface (GUI) is helpful and critical for biomedical 

researchers because these analyses are highly composite complex and involve a set of 

computational analysis processes and integration of external supportive data resources 

that require visualization by non-bioinformatics experts to functionalize the complex data. 

To resolve the aforementioned challenges, in this study, we developed a novel 

computational tool: SC2MeNetDrug (scRNA-seq based modeling to discover disease 

microenvironment signaling communication networks and drugs targeting on the cell-cell 

signaling communications). SC2MeNetDrug provided a user-friendly graphical user 

interface to encapsulate the data analysis modules, which can facilitate the scRNA-seq 

data based-discovery of novel inter-cell signaling communications and novel therapeutic 

regimens. 

 

Results 

Overview of SC2MeNetDrug 

Fig. 1 summarizes the SC2MeNetDrug tool. The input of SC2MeNetDrug is the raw 

counts of genes from single cell RNA-seq (scRNA-seq) data of different experimental 

conditions or samples, e.g., normal tissues vs disease tissues. The output of the tool 

includes the annotation of cell types, dysfunctional signaling networks within individual 

cells, intercellular signaling communications, and drugs that can potentially inhibit 

dysfunctional signaling pathways and intercellular signaling communications. Specifically, 

there are 3 major modules: scRNA-seq pre-analysis module that consists of the quality 

control, normalization, imputation, dimension reduction, visualization, cell clustering and 

cell type annotation; and iCSC (inter-cell signaling communication discovery) module that 

uncovers the activated signaling pathways and gene ontology (GO) terms within individual 

cell types, and uncovers the cell-cell signaling communications within the disease ME; 

and dCSC (drug prediction for disrupting cell signaling communication) module that 
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identify and predict the potentially effective drugs, based on drug-target and revere gene 

signature, to disrupt the cell signaling communications. All the data analysis and modeling 

were designed in the modular format, which can be upgraded or replaced conveniently to 

select the best practice models. As an example, we applied the SC2MeNetDrug model to 

a cohort of pancreatic ductal adenocarcinoma (PDAC) scRNA-seq data, and demonstrate 

the functionality of the tool. The detailed introduction to the downloading, installation, 

analysis modules, and examples, as well as the video tutorials for each analysis module 

were provided at: https://fuhaililab.github.io/sc2MeNetDrug/  

 

 

 

 
 
Figure 1: Overview of SC2MeNetDrug. 
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The scRNA-seq data pre-analysis module 

There are many great scRNA-seq tools publicly available16 for a for different analyses, 

e.g., quality control, imputation, dimension reduction, clustering and cell type annotation. 

It is often confusing and hard to select the right tools or best practice pipelines for a given 

specific project16, especially for clinical and research investigators without bioinformatics 

expertise. Moreover, it is not trivial to use and integrate the results derived from these 

different computational tools. To address this challenge, we implemented the scRNA-seq 

pre-analysis module, which is a pipeline that includes quality control, normalization, 

imputation (using the methods in the Seurat package17), dimension reduction (using the 

auto-encoder), t-SNE visualization, clustering (using the OPTICS18 and gaussian mixture 

model (GMM) models) and cell type annotation (classification using the gene set 

enrichment analysis (GSEA) model19).  

 
Figure 2:  Marker gene sets to annotate diverse cell types. 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 19, 2021. ; https://doi.org/10.1101/2021.11.15.468755doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.15.468755
http://creativecommons.org/licenses/by-nc-nd/4.0/


Both mice and human scRNA-seq data can be analyzed. A large set of biomarker genes 

were collected10,20–22 to support different research projects, like cancer cell, immune cells, 

AD neuron cells (see Fig. 2). We will keep updating the marker genes sets. Moreover, we 

provided a function to enable users to upload new or user-defined marker gene sets. Then 

the annotation classifiers based on these selected cell types and corresponding marker 

genes sets will be built automatically for the cell type annotation analysis (see Fig. 3). Also, 

the distribution (percentage) of individual cell types in each sample will be displayed, and 

the Epithelial–mesenchymal transition (EMT) and PRO (proliferation) scores of each 

sample will be calculated (see Fig 4). 

  

 
 
Figure 3: Clustering section interface and result using the scRNA-seq data of PDAC cancer. 
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Figure 4: The distribution (percentage) of individual cell types in each sample, and the 
Epithelial–mesenchymal transition (EMT) and PRO (proliferation) scores of each 
sample. 
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Uncover the dysfunctional signaling pathways in individual cell types using the 

iCSC module 

Uncovering the dysfunctional signaling pathways within individual cell types, and cell-cell 

signaling communications, as novel therapeutic targets, are the highly needed functions. 

The SC2MeNetDrug provided functions to facilitate the network analysis. Specifically, after 

the cell type annotation, the differentially expressed genes in each cell type between two 

  
Figure 5: Gene ontology (GO) term analysis to identify the activated biological 
processes. 
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different experimental conditions, for example the immunotherapy responder vs non-

responder, male vs female, or tumor cells co-cultured with macrophage vs no 

macrophages, can be calculated. A function was developed to enable the selection of 

samples and conditions of interest for the differential gene expression analysis. Based on 

the differentially expressed genes within individual cell types, the gene ontology (GO) 

enrichment analysis can be identified (see Fig. 5). 

 

 
Figure 6: Up-regulated ligands and receptors (upper) and potential ligand-receptor 
mediated signaling communications among cells within PDAC ME (lower). 
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Then, the up-regulated ligands (fold change >= Ta) – expressed (fold change >= Tb), and 

 

 
Figure 7: Activated signaling network (upper) between macrophage (secreting ligands) 
and ductal tumor cells (with activated receptors), and whole activated signaling pathways 
within tumor cells in a PDAC patient. 
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expressed (fold change >= Tc) – up-regulated receptors (fold change >= Td) will be 

identified as the potential signaling communications inter-cell types within the tumor or 

other disease ME (see Fig. 6). To further investigate the signaling communications among 

two types of cells, (i.e. macrophage and tumor cells), the network analysis function can be 

applied to uncover the activated signaling pathways in individual cell types (see Fig. 7) 

 

 

Predict drugs inhibiting signaling communications using the dCSC model 

To identify drugs that can potentially inhibit the down-stream signaling pathways, the 

computational model, the dCSC model was developed, which is designed to integrate the 

down-stream signaling network, drug-target (derived from DrugBank23 database) and 

 
Figure 8: Top drugs that can potentially inhibit the activated signaling communication 
pathways within individual cell types based on the CMAP data. 
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reverse gene signature data available from connectivity map (CMAP) database24. It is 

relatively straight forward to identify drugs with targets on the down-stream signaling 

network based on the drug-target information. For the CMAP data24, the uncovered down-

stream signaling network will be used as a signature of the Gene set enrichment analysis 

(GSEA) to identify drugs that can potentially inhibit the expression of genes in the network 

(see Fig. 8). To further understand the relationship of the selected drugs, drug clustering 

based on chemical structures was conducted to identify therapeutics with similar targets 

or mechanism of action (see Fig. 9).  

 

 

In summary, the SC2MeNetDrug tool provides 1) graphical user interface (GUIs), 

enabling the interactive analysis of scRNA-seq data, 2) models to uncover complex 

signaling communications among multiple stromal, immune and tumor (or other disease) 

cells; and 3) models to predict drugs that can potentially disrupt the stroma-tumor 

 
Figure 9: Drug clusters of the top 50 FDA approved drugs based on their chemical structures. 
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communications to improve the immunotherapy response. It can facilitate the studies of 

uncovering novel mechanism of inter-cell communications, and identify novel therapies 

targeting signaling interactions in tumor and disease ME, improve drug and 

immunotherapy responses in tumor treatment or other complex diseases, like AD.  

Furthermore, the interface of the tool is designed for seamless use by physicians and 

translational investigators without formal bioinformatics training in order to functionalize 

the tool for integration into biomedical research. The tool was also packed the tool with all 

required dependent libraries in a Docker container, which can be directly used without 

installing any additional libraries. 

 

Discussion 

Single cell RNA sequencing (scRNA-seq) is a powerful technology to investigate the 

transcriptional programs in stromal, immune and tumor cells or neuron cells within tumor 

or brain microenvironment (ME) or niche. Cell-cell interactions and communications within 

ME play important roles in disease progression and immunotherapy response, and are 

novel and critical therapeutic targets. However, it is challenging, for many researchers 

without solid training in computational data analysis and scRNA-seq data analysis, 

because the data analysis pipelines usually consist of diverse and complex analysis 

modules, and the integrative analysis of diverse and heterogenous external data 

resources. There is a lack of easy-use tools with complete and integrative computational 

modules for uncovering cell-cell communications of ME and predict the potentially 

effective drugs to inhibit the communications, although many tools of scRNA-seq analysis 

have been developed to investigate the heterogeneity and sub-populations of cells. In this 

study, we developed a novel computational tool, SC2MeNetDrug 

(https://fuhaililab.github.io/sc2MeNetDrug/) to address these challenges. Specifically, the 

advantages of the tool are as follows. First, it is a tool specifically designed for scRNA-seq 
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data analysis to identify cell types within MEs, uncover the dysfunctional signaling 

pathways within individual cell types, inter-cell signaling communications, and predict 

effective drugs that can potentially disrupt cell-cell signaling communications. Second, the 

analysis modules in the analysis pipelines were separated with pre-designed interfaces. 

Users can develop and update novel data analysis modules, and easily replace the 

updated modules back to the data analysis pipeline. In another word, users or scientists 

with different expertise can conveniently replace user-specific data analysis modules just 

by following the input and output of individual modules, like network inference, cell type 

identification, cell clustering, drug prediction, in the data analysis pipeline. Third, it 

provides a user-friendly graphical user interface (GUI), encapsulating the data analysis 

modules, which requires no coding and programming and can facilitate the scRNA-seq 

data analysis in an interactive manner.  

 

Conclusion 

In this study, we developed a novel computational tool, SC2MeNetDrug 

(https://fuhaililab.github.io/sc2MeNetDrug/), which is specifically designed, with user-

friendly GUI  for interactive scRNA-seq data analysis for the purpose of uncovering cell-

cell communications of ME, and predicting the potentially effective drugs to perturb the 

cell-cell communications within disease ME.  

 

Methodology 

PDAC data resource 

The PDAC data was downloaded from Genome Sequence Archive under project 

PRJCA00106310. There was a total of 57530 cell samples and 24003 genes. The data 

was generated from 24 PDAC tumor samples and 11 control, untreated pancreas samples. 
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Quality control 

Quality control is done in several steps. First, cells with total counts less than the threshold 

will be removed. The threshold is computed by 0.012*(number of genes). Then, cells with 

expressed genes (at least 1 read) less than threshold will be removed. The threshold is 

computed by 0.012*(number of genes). Next, cells with an abnormally high ratio of counts 

mapping to 34 mitochondrial genes (relative to the total number of genes) will be removed. 

To be specific, we have soft and hard thresholds to discover abnormal cells. The total 

mitochondrial expression ratio is computed by: 

 

𝑇𝑜𝑡𝑎𝑙 𝑐𝑜𝑢𝑛𝑡𝑠 𝑖𝑛 𝑚𝑖𝑡𝑜𝑐ℎ𝑜𝑛𝑑𝑟𝑖𝑎𝑙𝑙𝑦 𝑒𝑛𝑐𝑜𝑑𝑒𝑑 𝑔𝑒𝑛𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝑐𝑜𝑢𝑛𝑡𝑠 𝑖𝑛 𝑎𝑙𝑙 𝑔𝑒𝑛𝑒𝑠
 

 

Then, a soft threshold is applied by using K-means clustering algorithm to cluster cells 

based on mitochondrial expression ratio, the number of clusters is set to k=2. If one cluster 

with a lower mean mitochondrial expression ratio has the number of cells larger than 5 

times the number of cells in another cluster, we keep the cells in this cluster and remove 

the others. If both clusters have a mean mitochondrial expression ratio less than 0.02, we 

will keep all the cells. Otherwise, we will apply a hard threshold. The 98% quantile of 

mitochondrial expression ratio of the whole dataset is obtained, and if the ratio is larger 

than 0.09, we set the threshold as 0.09, otherwise, we set the threshold as this ratio. 

Finally, we remove all the cells that have a mitochondrial expression ratio larger than the 

threshold. The fourth step of quality control is to remove all mitochondrial encoded genes. 

 

Normalization 

To normalize scRNA-seq read count data, the scaling read count value for gene X in one 

cell sample is calculated using the following formula: 
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𝑠𝑐𝑎𝑙𝑒𝑑 𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 𝑓𝑜𝑟 𝑔𝑒𝑛𝑒 𝑋 =
𝑅𝑒𝑎𝑑 𝑐𝑜𝑢𝑛𝑡 𝑓𝑜𝑟 𝑔𝑒𝑛𝑒 𝑋

𝑇𝑜𝑡𝑎𝑙 𝑐𝑜𝑢𝑛𝑡 𝑜𝑓 𝑐𝑒𝑙𝑙 𝑠𝑎𝑚𝑝𝑙𝑒
× 10000 

Then, the data is transformed to log space using the natural logarithm. This is done by the 

NormalizeData function in the Seurat package25. 

 

Imputation 

Imputation is done by the runALRA function in the Seurat package with default parameters. 

The method17 is to compute the K-rank approximation to A_norm and adjust it according 

to the error distribution learned from the negative values. 

 

Dimension reduction 

To reduce the data dimensions, we designed a two-step method to extract features from 

high dimensional gene space. In the first step, we select the top 2048 variable genes. 

Variable genes are selected using local polynomial regression to fits the relationship of 

log(variance) and log(mean). The gene expression values are then standardized using the 

observed mean and expected variance (given by the fitted line). Gene expression variance 

is then calculated on the standardized values after clipping. This is done using the 

FindVariableFeatures function with selection.method set as vst in the Seurat package. 

Next, auto encoder is used to reduce the dimensions from 2048 to 64. First, min-max 

normalization based on genes is used to normalize data in these 2048 genes. Then, the 

data is trained by an auto encoder model. The structure of auto encoder is described in 

the following: In the encoder part, we have four dense layers with output dimensions 1024, 

512, 128 and 64. After each dense layer we add a batch normalization layer to speed up 

convergence. After the second and third dense layer, we add a dropout layer with drop 

out percentage 0.2 and 0.3. In the decoder part, we have four dense layers with output 

dimensions 128,512,1024 and 2048. After each dense layer, we add a batch normalization 
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layer. The activation function of each layer is relu. In the training part, we set loss function 

to MSE, optimizer to “adam”, epoch to 15, and batch size to 128. This is done by the Keras 

package in R. In the second step, T-SNE26 were used to further reduce the 64-dimensional 

data to 2 dimensions. The iteration time and optimal number of neighbors (perplexity) can 

be chosen by the user. T-SNE is done using Rtsne R package. 

 

Cell clustering 

In the clustering part, we designed a two-step method to cluster single cells to different 

groups. The first step is the main clustering step. We use OPTICS18 algorithm in the R 

package dbscan to cluster data. The upper limit of the epsilon neighborhood size (eps), 

number of minimum points in the eps region (minPts), and threshold to identify clusters 

(eps_cl) is chosen by the user. The results of the main clustering may not be favorable if 

the cluster shape isn’t well-defined. Thus, it is hard to find sub-groups and sub-types based 

on main clustering results. To address this, we use Gaussian Mixture Model(GMM) in the 

R package Mclust27 to further cluster data in each main cluster after main clustering. Each 

main cluster group will be analyzed to see which ones have potential sub-clusters. If 

potential sub-clusters are identified, we will use GMM to find the sub-cluster in the group. 

The number of clusters in GMM is set based on the size of main cluster. 

 

Biomarker gene sets 

In total, we collected 56 cell type and biomarker genes from several sources10,20–22. In the 

marker gene table, a value of 1 indicates that the gene is a marker gene specific cell type, 

and a value of 0 indicates that it is not. We also specified classical cell type sets for 

Alzheimer’s disease and Pancreatic Cancer based on published articles10,21. The user 

could easily select these cell types by clicking the corresponding button. We also provide 
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the user with the ability to modify and add their own marker genes for better analysis; the 

user can add, delete and modify existing marker gene tables. 

 

Cell type annotation 

In the cell annotation part, we use Gene Set Enrichment Analysis (GSEA)28 to annotate 

cell types for every cluster. First, user should select candidate cell types and 

corresponding marker genes in the Biomarker gene section. Then, for every cluster, 

application computes log fold change for cluster N by: 

𝑙𝑜𝑔 𝑓𝑜𝑙𝑑 𝑐ℎ𝑎𝑛𝑔𝑒 𝑓𝑜𝑟 𝑐𝑙𝑢𝑠𝑡𝑒𝑟 𝑁

= 𝑚𝑒𝑎𝑛 𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 𝑓𝑜𝑟 𝑐𝑙𝑢𝑠𝑡𝑒𝑟 𝑁 − 𝑚𝑒𝑎𝑛 𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 𝑓𝑜𝑟 𝑜𝑡ℎ𝑒𝑟 𝑐𝑒𝑙𝑙𝑠 

Then we rank the genes based on fold change and calculate the enrichment score of 

marker gene sets for every cell type user selected. Finally, cell type with the largest 

enrichment score will be selected as the type of this group. However, if none of cell types 

have a positive enrichment score, the cluster will be annotated as unknown. user can 

choose between main clustering results and sub-clustering results for cell annotation. 

 

Cell distribution plots 

Once user gets classification results or uploads gene expression data, the application can 

calculate the percentage of each cell type in each sample group. If user doesn’t provide 

sample group information, the application will simply calculate the percentage of each cell 

type in the whole dataset. 

 

Epithelial-mesenchymal transition (EMT) and proliferation (PRO) analysis 

EMT-PRO analysis in SC2NetDrug was analyzed by computing mean expressions for the 

selected design and cell type of EMT and PRO-related genes. The 

HALLMARK_EPITHELIAL_MESENCHYMAL_TRANSITION database was chosen for 
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EMT related marker genes and the HALLMARK_E2F_TARGETS database was chosen 

for PRO-related marker genes. After user selects the design and cell type, min-max 

normalization is used to normalize the whole dataset based on the genes. Then the 

intersecting genes in the EMT and PRO-related marker gene sets are selected and a 

mean score of all EMT and PRO-related genes are calculated and labeled as the EMT 

and PRO scores, respectively. 

 

Ligands and receptors data resources 

We collected ligand-receptor data from several sources: (1) Database of Ligand-Receptor 

Partners(DLRP)29 with 175 unique ligands, 133 unique receptors and 470 unique 

interactions (2) Ligand-receptor interaction data sources in NicheNet15 with 1737 unique 

ligands, 1925 unique receptors and 12659 unique interactions (3) cell-cell interactions 

database in baderLab. We selected all the proteins to be annotated as ligands named 

“Ligand” or “ECM/Ligand” and all the proteins to be annotated as recepters named 

“Receptor” or “ECM/Receptor”. Then we selected all the interactions including the chosen 

ligands and receptors. There are 1104 unique ligands, 924 unique receptors and 16833 

unique interactions. In total, there are 1424 unique ligands, 1214 unique receptors and 

27291 unique interactions. 

 

Ligand-receptor mediated signaling interactions(Upstream Network).  

Upstream network analysis is used to discover up-regulated ligands, receptors and 

potential ligand-receptor signaling interactions. First, user need to specify the log fold 

change threshold, p value threshold, the group or design user want to analyze. The up-

regulated ligands and receptors are discovered using the following steps. First, the 

differential expression genes are calculated based on two tests, the first being the 

Wilcoxon rank sum test and the second being the Likelihood-ratio test30. The genes that 
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have log fold changes larger than the threshold and adjusted p-values (from the two tests) 

less than the threshold will be selected as differentially expressed genes. The test is done 

by the FindMarkers function in the Seurat package with parameters set as test.use=wilcox 

and test.use=bimod for the two tests respectively. After the differentially expressed genes 

for all cell types in the dataset designed by the user are identified, the ligands and 

receptors are found by searching for all differentially expressed genes in our ligands-

receptors database. Finally, up-stream interaction networks are generated by searching 

for all the discovered ligand-receptor interactions in our ligands-receptors database. To 

be specific, four networks will be generated: the up-regulated ligands to expressed 

receptors network, expressed ligands to up-regulated receptors network, up-regulated 

ligands to up-regulated receptors network, and combined network. Up-regulated ligands 

and receptors are ligands and receptors that have log fold changes and adjusted p-values 

for two tests that satisfy the user’s settings. Expressed ligands and receptors are ligands 

and receptors that have log fold changes larger than 0. The combined network is then 

combined with the up-regulated and the expressed ligands and receptors.  

 

Gene ontology (GO) term enrichment analysis 

To obtain the gene-gene ontology (GO)31 term information, the R libraries, org.Hs.eg.db 

and GO.db were used. The Fisher’s exact test was used to identify the statistically 

activated/enriched GOs based on the up-regulated genes and the genes in each GO term.  

 

Inter-Cell Communication (Downstream Network) Analysis 

The inter-cell communication analysis in SC2NetDrug is done by several steps. First, 

differential genes in each cell type are discovered using the Wilcoxon rank sum test and 

the Likelihood-ratio test30. The genes that have log fold changes larger than the threshold 

and adjusted p-values (for both tests) less than the threshold will be selected as 
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differentially expressed genes. The tests are done by the FindMarkers function in the 

Seurat package with parameters set as test.use=wilcox and test.use=bimod for the two 

tests, respectively. Next, ligands, receptors and transcript factors are discovered using the 

ligands-receptors interaction database and the transcript factor-target interaction 

database.  

To uncover the down-stream signaling of ligand-receptor of interest, a computational 

model, iCSC (inter-cell signaling communication discovery using scRNA-seq), was 

developed. Specifically, 2 background signaling resources were used: KEGG32 signaling 

pathways (curated) and STRING33 (general protein-protein interactions). For KEGG 

signaling pathways, the shortest paths starting from the given receptors to all the target 

genes (without out-signaling) were identified, denoted as pi,j = (gi, gk1, gk2, …, gj), where gi 

is the receptor, gj is the target gene, and gkm, m=1, 2, …, are the genes on the shortest 

paths between gi and gj on the KEGG signaling pathways. Then an activation score for 

each path, pi,j, was defined as: 𝑠௜௝ =
∑ 𝑓𝑐(𝑔௠)௚೘∈௣೔ೕ

𝑛ൗ , where fc(.) is the fold change 

calculator, and n is the number of genes on the signaling path. Then signaling paths with 

activation scores greater than a given threshold will be selected to generate the inter-cell 

communication network of the ligand-receptor of interest.  

For STRING background signaling network, there are much more genes (nodes) and 

interactions (edges) than KEGG signaling. Thus, the above model for KEGG does not 

work for STRING. Herein, we proposed a novel down-stream signaling network discovery 

model. Specifically, let 𝐺଴
௜ = 〈𝑅௜, ∅〉 denote the initialized down-stream signaling network 

of receptor 𝑅௜ .  The update of the down-stream signaling is defined as: 𝐺௧ାଵ
௜ =

𝑓൫𝐺௧
௜, 𝐺஻, 𝑉௞ଵ, 𝑘2൯, where 𝐺௧

௜ and 𝐺஻ is the current down-stream and background (STRING) 

signaling networks respectively. The edge, 𝑒௜௝ (protein interactions between 𝑔௜ and 𝑔௝) of 

background signaling network, 𝐺஻, is weighted as: 𝑤൫𝑒௜௝൯ =
ଵ

௔௕௦(௙௖(௚೔)
+

ଵ

௔௕௦൫௙௖(௚ೕ൯
.  𝑉௞ଵ is a 
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vector including k1 candidate genes (based on the absolute fold change in the decreasing 

order) to be investigated and added to the down-stream signaling network. For any gene, 

𝑔௞ ∈ 𝑛𝑜𝑑𝑒(𝐺௧
௜) , the shortest paths from 𝑔௞  to the k1 candidate genes in 𝑉௞ଵ , will be 

calculated. Then, an activation score for each path, pk,j, was defined as: 𝑠௞௝ =

∑ 𝑓𝑐(𝑔௠)௚೘∈௣೔ೕ
𝑛ൗ , where fc(.) is the fold change calculator and n is the number of genes 

on the signaling path. If 𝑛 > 𝑘2, the signaling paths will be discarded. In another word, the 

parameters k1 and k2 decide the search width and depth. Finally, the signaling path with 

highest activation score will be added to the down-stream signaling network. The process 

will be conducted iteratively until it reaches a network size limit, e.g., N nodes. The down-

stream signaling network is generated by combining the down-stream signaling networks 

of all receptors: 𝐺ଵ = ∪௜ 𝐺௧
௜. 

 

Drug-target information derived from DrugBank 

We collected 6650 drugs from the drug bank database and corresponding target genes. 

After the down-stream signaling network is generated, the drugs for genes in the network 

is discovered by looking through each gene in the network and searching for drugs that 

target this gene in drug bank database.  

 

Connectivity Map data 

Drug discovering based on signaling signatures using Connectivity Map data, which seeks 

to enable the discovery of functional connections between drugs, genes and diseases 

through analysis of patterns induced by common gene-expression changes. User can find 

CMAP data in National Center for Biotechnology Information database under dataset 

GSE92742. Before doing the analysis, user need to download corresponding data from 

website and we provide function to generate drug rank matrix based on data. 
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Drug discovering based on signaling signatures 

The procedure of drug discovering is following: After the up-regulated genes for each cell 

group in the cell-cell communication part are obtained, the application will use GSEA and 

the drug rank matrix to discover potential drugs for each group. First, the application will 

calculate the enrichment score of up-regulated gene sets for each drug in each group. 

Then, the top K drugs with the lowest enrichment scores will be selected as potential 

drugs, where K is the number of top drugs selected by user. 

 

Drug clustering based on GSEA scores in CMAP 

After the top drug is identified, Affinity Propagation Clustering34 will be used to cluster top 

drugs. First, a similarity matrix will be constructed for the top drugs. Given that the number 

of top drugs is K, the dimensions of the matrix will be K*K. The similarity score for drug 𝑖 

to drug 𝑗 will be computed by the following process: select the top 150 up-regulated genes 

and top 150 down-regulated genes for drug 𝑖 to use as the gene set. Then, compute the 

GSEA score for drug 𝑗 using the drug rank matrix and the gene set from drug 𝑖. The 

enrichment score will be used as the similarity score for drug 𝑖 to drug 𝑗. After the similarity 

matrix is constructed, it will be used to do AP clustering, which is done using the R package 

apcluster.  

 

Drug clustering based on chemical structures 

To clustering drugs discovered by targets, we use the chemical structure of each drugs35. 

First, the SMILES information of drugs is used to generate drug object for each drug, this 

is done by parse.smiles function in rcdk R package. Next, the fingerprint of drug is 

computed using get.fingerprint function in fingerprint R package. Based on fingerprint of 
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drugs, the similarity between drugs is computed using Tanimoto index. The formulation of 

Tanimoto index is follow: 

𝑆஺,஻ =
𝑐

𝑎 + 𝑏 − 𝑐
 

Where 𝑆஺,஻ is the similarity between drug A and drug B. a is number of bits in drug A and 

b is number of bits in drug B. c is number of bits in both two drugs. This is done by 

fp.sim.matrix function in R package fingerprint and set parameter method as tanimoto. 
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