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Abstract10

Isolated spikes and bursts of spikes are thought to provide the two major modes of information11

coding by neurons. Bursts are known to be crucial for fundamental processes between neuron12

pairs, such as neuronal communications and synaptic plasticity. Deficits in neuronal bursting can13

also impair higher cognitive functions and cause mental disorders. Despite these findings on the14

roles of bursts, whether and how bursts have an advantage over isolated spikes in the network-level15

computation remains elusive. Here, we demonstrate in a computational model that not isolated16

spikes but intrinsic bursts can greatly facilitate learning of Lévy flight random walk trajectories by17

synchronizing burst onsets across neural population. Lévy flight is a hallmark of optimal search18

strategies and appears in cognitive behaviors such as saccadic eye movements and memory retrieval.19

Our results suggest that bursting is a crucial component of sequence learning by recurrent neural20

networks in the brain.21
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INTRODUCTION24

Neurons in the brain display variety of temporal discharging patterns, among which bursting rep-25

resents the generation of multiple spikes with brief inter-spike intervals (typically, several mil-26

liseconds) in a short period of time (typically, several tens to hundreds of milliseconds). Bursting27

neurons are found ubiquitously in the brain and are thought to play active roles in transferring28

and routing information [1–5], inducing synaptic plasticity [6, 7], and supporting and/or altering29

cognitive functions [2, 7–14]. Deficits in burst generation can cause mental disorders [15, 16].30

While our understanding of the roles of bursting has been advanced, the computational advantages31

of spike bursts over isolated spikes remain elusive.32

Here, we show the benefits of bursting activity in learning sequences generated by a special33

class of random walks observed in various animal behaviors. We investigate whether and how34

bursting neurons improve the ability of neural network models to learn the dynamical trajectories35

of Lévy flight, which is a random walk with step sizes obeying a heavy-tailed distribution [17–36

19]. As a consequence, Lévy flight consists of many short steps and rare long-distance jumps.37

A well-known characteristic of Lévy flight is that it makes search more efficient than Brownian38

walks which only consist of relatively short steps [20, 21]. Many processes observed in biology39

[22–24] and physics [25, 26] can be described as Lévy flight. In neuroscience, an interesting40

example of Lévy flight is the stochastic trajectories of saccadic eye movement [27] on which the41

visual exploration of the objects of interest significantly relies. Several cortical and subcortical42

regions including the frontal eye field, superior colliculus, and cerebellar cortex participate in43

controlling and executing saccades [28] and various neurons show spike bursts in these regions44

[8, 9, 29, 30]. Other examples of Lévy flight are found in memory processing of animals. In45

the spatial exploration of rodents, the animal spends the majority of time for exploring small46

local areas but occasionally travels to distant places at greater speeds [31]. Hippocampal [10]47

and subicular [32] neurons can learn spatial receptive fields and are known to exhibit burst firing.48

In human subjects, memory recall can be viewed as foraging behavior obeying Lévy flight [33–49

35]. The appearance of Lévy flight in various types of foraging behavior and the participation50

of bursting neurons in the relevant brain regions motivate us to explore what benefits neuronal51

bursting brings to the learning and execution of such behavior.52

For this purpose, we employ reservoir computing (RC) that uses a recurrent network model and53

FORCE learning of information-readout neurons for efficient learning of time-varying external54
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signals (i.e., teaching signals) [36]. Originally, RC and FORCE learning were formulated for55

rate-coding neurons, and FORCE learning of continuous dynamical trajectories is generally fast.56

The RC system was also quite successful in modeling neural activities recorded from various57

cortical areas [37–40]. Later, RC was extended to networks of spiking neurons [41, 42], and58

variants of FORCE learning or some other learning method [43] for spiking neurons have also59

been proposed [44–46]. Results of the previous studies have indicated that isolated spikes are60

sufficient for learning smooth trajectories. However, whether and how isolated spikes and bursts61

contribute differently to learning a more general class of sequences has not been explored. In this62

study, we clarify this by using a spiking-neuron version of FORCE learning for training an RC63

system of bursting neurons.64

RESULTS65

Network model66

Our model follows the conventional framework of reservoir computing except that neurons con-67

stituting a recurrent network called reservoir have regular-spiking (RS) and bursting modes (Fig.68

1a). In the RS mode, the neurons tend to generate isolates spikes (Fig. 1b) whereas they are69

strongly bursty in the bursting mode (Fig. 1c). Neurons in the reservoir project to two readout70

neurons to describe the two-dimensional coordinates (x1, x2) of Lévy flight, and the outputs of71

these neurons are fed back to all neurons in the reservoir. We describe neurons in the reservoir72

with the Izhikevich model, which is able to mimic the temporal discharging patterns of various73

neurons [47]:74

dvi
dt

=0.04v2i + 5ui + 140− ui + Ii,

dui

dt
=a(bvi − ui), (1)

where a = 0.02 and b = 0.2, and i is a neuron index. We set as c = −65 mV and d = 8 in the75

RS mode and c = −50 mV and d = 2 in the bursting mode. The values of vi and ui are reset to c76

and ui + d when vi reaches the threshold of 30 mV. We use this model for simplicity of numerical77

simulations although the Izhikevich model does not take refractory periods into account and may78

exhibit unrealistically high frequency bursting.79

Synaptic current is given as Ii = si(t) + Ib, where Ib is a constant bias and recurrent synaptic80
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inputs are81

si(t) =
N∑
j=1

wijrj(t), (2)

wij =Gw0
ij +Q

∑
k=1,2

η
(k)
i ϕ

(k)
j , (3)

in terms of the instantaneous firing rate ri(t) of neuron i at time t. The synaptic weight matrix wij82

has non-modifiable components w0
ij and modifiable components ϕ(k)

j , with G and Q being constant83

parameters. While Q = 100 throughout this paper, the value of G is mode-dependent, as shown84

later. The encoding parameter η(k)i is randomly drawn from the uniform distribution [−1,+1]k,85

where k = 2 for the target trajectories representing a two-dimensional Lévy flight. The linear86

decoder ϕ(k)
i (t) determines activities of the readout units x(k)(t):87

x(k)(t) =
N∑
j=1

ϕ
(k)
j (t)rj(t), (k = 1, 2) (4)

which should approximate a given target trajectory. See Methods for the details of construction of88

Lévy flight and FORCE learning.89

Advantages of bursts over isolated spikes in sequence learning90

During learning, the model was repeatedly exposed to a periodic target signal representing the91

repetition of a finite portion of Lévy flight trajectories (Methods). The model can learn these92

trajectories in either RS or bursting mode. Large jumps in the trajectory are thought to be difficult93

for the model to accurately learn. As we will show later, the accuracy and speed of learning94

significantly depend on the mode of firing. Figure 1d displays an example of the time-varying95

output of the two readout neurons after the model learned a target signal in the bursting mode.96

As expected, the output of the model tends to deviate largely from the target trajectory when it97

shows relatively large jumps. Nonetheless, overall the model well replicates the target trajectory98

in the burst mode even after the learning process is turned off. The agreement between the target99

trajectory and the model’s output is more clearly visible in the time evolution of the variables x1100

and x2 (Fig. 1e).101

We quantitatively compare the performance of the model in learning between the bursting and102

RS modes. The strength of synaptic connections that gives an optimal performance may differ in103

the individual modes. To make a fair comparison, we first search an optimal coupling strength that104
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Fig. 1. The architecture and basic performance of the model. (a) The present RC system consists of a

reservoir and two readout neurons. (b, c) Before learning, neurons in the reservoir tend to show isolated

spikes in the RS mode (b) or intrinsic bursts in the bursting mode (c). Here, the firing patterns were simulated

at G = 50. (d) A typical example of the target trajectories representing a finite portion of two-dimensional

Lévy flight (orange) and the learned responses of the readout neurons (blue). (e) The time evolution of the

two readout neurons are shown as functions of time. Large discontinuous jumps in (d) and (e) indicate the

onset and end point of the repeated target signal.

minimizes the error in each mode. We calculate the average errors between a target trajectory and105

an actual output in the bursting mode and the RS mode as a function of the connection strength106

G. Figure 2a and 2b show the errors obtained after 25 and 50 trials of learning, respectively,107

when the target length is 400 ms. For each value of G, the standard deviations of the error are108

calculated over simulations with 20 different initial conditions. As we can see from these figures,109

the error is minimized for relatively weak connections (G ∼ 50) in the bursting mode. In contrast,110

the model achieves the least error at much stronger connections (G ∼ 170) in the RS mode. The111
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Fig. 2. Learning in the burst vs. RS modes. (a) Errors in the bursting and RS modes are plotted against

the strength of recurrent connections after 25 learning trials. Error bars show the standard deviations. (b)

Similar errors are plotted after 50 learning trials. (c) The time courses of errors during learning are shown

for the optimal coupling strengths of the individual modes. (d, e) Similar time courses are shown in the

bursting (d) and RS (e) modes for target signals of lengths 400, 800, and 1200 ms. The plots for 400 ms are

copied from (c). (f) Error time courses are shown in the bursting mode when the target length is 1200 ms

and the reservoir size is 1000 or 2000.

minimum average error is slightly smaller in the bursting mode than in the RS mode although the112

error sizes are not greatly different between the two modes after 50 cycles of training (Fig. 2b).113

Given these results, one might conclude that spike bursts have little advantage over isolated spikes114

in the present sequence learning task.115
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However, the results presented in Fig. 2a and 2b reveal two intriguing differences in learning116

between the RS mode and the bursting mode. First, while the two modes yield approximately the117

same minimum values of average errors, the bursting mode yields a much smaller variance at the118

minimum error than the RS mode. In particular, Figure 2a demonstrates that the variance almost119

vanishes for the optimal range of G values after 25 training cycles in the bursting mode. This is not120

the case for the optimal range of G values in the RS mode. Second and more importantly, the aver-121

age error decreases much faster during learning in the bursting mode than in the RS mode, showing122

impressively different learning speeds between the two modes (Fig. 2c). Generally, the FORCE123

learning enables rapid learning of a smooth target trajectory even if the trajectory is chaotic [36].124

However, our results show that the FORCE learning with isolated spikes requires several tens of125

trials for learning a target trajectory representing random walks of Lévy flight. In strong contrast,126

spike bursts enable the same rule to learn such a target trajectory at a similar accuracy within only127

ten trials. The merits of bursting are also suggested by the common observation that the individual128

neurons tend to generate spike bursts after learning at the corresponding optimal coupling strength129

irrespective of the mode (Supplementary Fig. 1).130

As the length of target trajectories is increased, performance in sequence learning is degraded131

in both modes. However, the superiority of the bursting mode over the RS mode in rapid sequence132

learning remains hold (Fig. 2d, e). We note that the absolute values of errors are not really133

meaningful. These values become smaller as we include more neurons in the reservoir (Fig. 2f).134

135

Learning through burst synchronization136

Now, we investigate why and how spike bursts improve the performance of the network model in137

learning trajectories of Lévy flight. We show that synchronized bursting of neurons plays an active138

role in the present sequence learning. Figure 3a shows the time evolution of a portion of the learned139

trajectory x1(t) and x2(t) with vertical dashed lines indicating the times of long-distance flights.140

Here, a long-distance flight refers to a step (∆x1,∆x2) of which the length
√

∆x1(t)2 +∆x2(t)2141

is greater than 0.16, which approximately corresponds to the top 5% of long-distance jumps. In142

Fig. 3b and 3c, we show spike raster of 100 bursting neurons chosen randomly from the reservoir143

during the corresponding period of time before and after learning, respectively. While there are144

many neurons that rarely fire, some neurons intermittently generate brief (∼ 30 ms) to prolonged145

(∼ 150 ms) high-frequency bursts. The individual neurons change their firing patterns before and146
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Fig. 3. Temporal coordination of bursts by learning. (a) A two-dimensional target trajectory shows big

jumps at the times indicated by vertical dashed lines. (b) Spike raster of 100 neurons sampled randomly

from the reservoir before learning. (c) Spike raster is shown for the same neurons after learning. (d, e)

Distributions of the onset and end times of bursts around the times of big jumps are calculated before (d)

and after (e) learning.

after learning, but the distributions of inter-spike intervals at the population level remain almost147

unchanged during learning (Supplementary Fig. 2a, b).148

However, visual inspection of the spike raster suggests that many neurons start or stop gen-149

erating spike bursts around the times of large flights after learning and that such a tendency is150
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weak before learning. Therefore, regarding that spikes with their inter-spike intervals shorter than151

3 ms belonged to a burst, we identified the onsets and end times of bursts of individual neurons152

and calculated the distributions of the onset/end times of bursts relative to the times of the near-153

est large jumps (i.e., the times of burst onsets/ends minus the times of the nearest neighbor large154

flights) before (Fig. 3d) and after learning (Fig. 3e). Intriguingly, the post-learning distributions155

exhibited sharp peaks around the origin of the axis for the relative time. The relative times of burst156

onsets show a particularly prominent peak. These results reveal that the RC system operating in157

the bursting mode learns the target trajectory of Lévy flight by shifting the times of bursts close158

to the occurrence times of large jumps. In other words, the RC system synchronizes bursting of159

the individual neurons around the times of large jumps. This synchronization of bursts is thought160

to advantage recurrent networks of bursting neurons in learning of sequences that involve abrupt161

changes in the trajectories.162

163

DISCUSSION164

We have trained an RC system of spiking neurons on a difficult sequence learning task where the165

target sequence represents random walks. FORCE learning can project the neural population ac-166

tivity of the reservoir quickly onto a target trajectory for a wide range of continuous trajectories167

including chaotic ones. This fast convergence of learning is a merit of RC, making RC useful for168

various practical applications. However, when a target trajectory consists of abrupt steps including169

long-distance jumps, as was the case in Lévy flight, FORCE learning with isolated spikes requires170

a large number of trials for minimizing the error signal. In contrast, the same learning rule can171

rapidly minimize the error by aligning the onsets as well as the end times of bursts in the neigh-172

borhoods of the times of long-distance jumps. This implies that the system synchronizes bursts of173

the individual neurons around these times. Thus, the RC system can learn the Lévy flight trajec-174

tories much faster with bursts than with isolated spikes. Our model suggests that bursts contribute175

crucially to learning foraging-like cognitive behaviors.176

Our results show an interesting qualitative agreement with some experimental observations. It177

has been known that the onsets of bursts in the saccade-related burst neurons are tightly linked178

to saccade onsets in the superior colliculus [8, 9]. These neurons tend to discharge prior to a179

saccade if the movement is in their preferred direction, and their discharges follow rather than180

precede saccades for movements deviating from their preferred directions. Altough our model181
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is far simpler compared to the actual neural circuits that control saccadic eye movements [48],182

the sharp peak of burst onsets around the times of long-distance steps in Fig. 3e seems to be183

consistent with the characteristic behavioral correlates of the saccade-related burst neurons in the184

superior colliculus.185

During spatial navigation, hippocampal place cells exhibit both bursts and isolated spikes [3],186

and the different discharging patterns are thought to play distinct functional roles in the hippocam-187

pal memory processing [3, 11, 49]. The hippocampal area CA3, which has prominent recurrent188

excitatory connections, resembles a reservoir in this model. Furthermore, an abstract model of the189

entorhinal-hippocampal memory system accounted for the different statistical structures of hip-190

pocampal sequence generation, such as diffusive vs. Lévy flight-like random walks [31]. There-191

fore, the hippocampal circuits are of potential relevance to this study. However, the relationships192

between spatial information coding and the cells’ discharging patterns are not simple, depending193

on specific cell types and brain regions [32, 49]. To our knowledge, whether CA3 neural popu-194

lation synchronizes their burst discharges around the times of long-distance runs of animals has195

not been known. On the other hand, it is known that bursts of CA3 neurons mostly occur in an196

inbound travel towards their receptive field centers [10]. Clarifying the distinct computational197

roles of isolated spikes and bursts to the hippocampal memory processing is an intriguing open198

question.199

In summary, this study showed the advantages of bursting neuronal activity in rapid learning of200

dynamical trajectories obeying Lévy flight. Bursting is ubiquitously found in various regions of201

the brain, and previous studies suggest the active roles of bursts in robust spike propagation and202

induction of synaptic plasticity. Our results give a further insight into the unique role of bursts at203

the network-level learning and computation.204

METHODS205

Lévy flight206

Trajectories obeying Lévy flight were generated by using the function, scipy.stats.levy_stable.rvs(),207

in the Scipy library of Python for scientific calculations. This function generates a series of ran-208

dom numbers that obey the Lévy distribution [17, 18]. In short, a Lévy stable distribution has the209
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characteristic function of the form,210

φ(t;α, β, c, µ) = eitµ−|ct|α(1−iβ sign(t)Φ(α,t)) (5)

where α, β, c, and µ are the characteristic exponent, skewness parameter, scale parameter, and211

location parameter, respectively, and212

Φ =


tan(

πα

2
) α ̸= 1

− 2

π
log |t| α = 1.

(6)

The probability density function for Lévy stable distributions is given as213

f(x;α, β, c, µ) =
1

2π

∫ ∞

−∞
φ(t;α, β, c, µ)e−ixtdt (7)

where −∞ < x < ∞. Throughout this study, we set as α = 1.5, β = 0, c = 1 and µ = 0.214

Now, step sizes of a two-dimensional Lévy walk can be written as215

∆x1(t) = R(t) cos θ(t), (8)

∆x2(t) = R(t) sin θ(t), (9)

where the angle of each step θ(t) is drawn randomly from the uniform distribution 0 ≤ θ ≤ 2π,216

and the step amplitude R(t) was determined as R = F−1(r), where217

F (x;α, β, c, µ) =

∫ ∞

x

f(t;α, β, c, µ)dt (10)

is the cumulative distribution function of f(x;α, β, c, µ) and 0 < r ≤ 1 is a uniform random218

number.219

We limited the target trajectories with in a square area |x1| ≤ 2, |x2| ≤ 2 by normalizing the220

coordinates of Lévy walk as221

x1(t) = 4
∆x1(t)−∆x1,min

∆x1,max −∆x1,min
− 2, (11)

x2(t) = 4
∆x2(t)−∆x2,min

∆x2,max −∆x2,min
− 2, (12)

where ∆xk,min and ∆xk,max (k = 1, 2) stand for the minimum and maximum values of the previous222

and current step sizes ∆xk(t
′) (t′ ≤ t), respectively.223
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FORCE learning224

We used a straight-forward extension of the FORCE learning to spiking neurons [46]. A double225

exponential filter was used to low-pass filter the individual spikes of the i-th neuron in the reservoir:226

ṙi = − ri
τd

+ hi, (13)

τrḣi = −hi +
1

τd

∑
tik<t

δ(t− tik), (14)

where τr and τd are the synaptic rise time and synaptic decay time, respectively. Values of these227

parameters were set as τr = 2 ms and τd = 20 ms.228

Using the error signals e(k)(t) = f (k)(t)− x(k)(t), we update the decoders as follows:229

ϕ(k)(t) =ϕ(k)(t−∆t)− e(k)(t)P(t)r(t), (15)

P(t) =P(t−∆t)− P(t−∆t)r(t)r(t)TP(t−∆t)

1 + r(t)TP(t−∆t)r(t)
. (16)

The initial conditions are given as ϕ(k)
j (0) = 0 and P(0) = IN/λ, where IN is an N -dimensional230

identity matrix and λ = 10 for both regular and bursting modes.231
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Supplementary Figure 1. Post-learning firing patterns. (a, b) Temporal 

spiking patterns after learning in the RS mode (a) or bursting mode (b) are 

plotted for five neurons. These patterns were obtained at the optimal cou-

pling strengths of the individual modes.
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Supplementary Figure 2. The post-learning inter-spike-interval distributions. 
(a, b) The inter-spike-interval distributions are calculated over all neurons in the 
reservoir after learning in the RS mode (a) and bursting mode (b). The Izhikevich 
model used in this study does not take refractory periods into account and 
occasionally generates unrealistically short ISIs. Sharp upper bounds at 400 ms 
represent the length of the target signals used in the simulations.
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