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2 

ABSTRACT 30 

Primatologists, psychologists and neuroscientists have long hypothesized that primate 31 

behavior is highly structured. However, fully delineating that structure has been impossible due 32 

to the difficulties of precision behavioral tracking. Here we analyzed a dataset consisting of 33 

continuous measures of the 3D position of fifteen body landmarks from two male rhesus 34 

macaques (Macaca mulatta) performing three different tasks in a large unrestrained environment 35 

over many hours. Using an unsupervised embedding approach on the tracked joints, we 36 

identified commonly repeated pose patterns, which we call postures. We found that macaques’ 37 

behavior is characterized by 49 distinct identifiable postures, lasting an average of 0.6 seconds 38 

each. We found evidence that behavior is hierarchically organized, in that transitions between 39 

poses tend to occur within larger modules, which correspond to intuitively identifiably actions; 40 

these actions are in turn organized hierarchically. Our behavioral decomposition allows us to 41 

identify universal (cross-individual and cross-task) and unique (specific to each individual and 42 

task) principles of behavior. These results demonstrate the hierarchical nature of primate 43 

behavior and provide a method for the automated “ethogramming” of primate behavior.  44 
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INTRODUCTION 45 

Understanding the principles behind the organization of behavior has long been an 46 

important problem to ethology, psychology, and neuroscience (Krakauer et al., 2017; Tinbergen, 47 

1951; Gallistel, 2013; Anderson and Perona, 2014; Calhoun and El Hady, 2021; Periera et al., 48 

2020). Macaques are especially important in this regard because of their pivotal role as a model 49 

organism for biomedical research (Rudebeck et al., 2019; Buffalo et al., 2019). Indeed, a great 50 

deal of research has benefited from the rudimentary tracking and identification of behavior in 51 

laboratory tasks in macaques. However, precise measurement of behavior has generally been 52 

limited to a single motor modality (typically the eyes or arm) under conditions of bodily 53 

constraint. As a result, we have an impoverished understanding of behavior in the natural 54 

context, involving the free movement of full bodies in three-dimensional space (Hayden et al., 55 

2021).  56 

Recent years have seen a great deal of success in the development of camera-based 57 

systems for tracking the behavior of small animals, including worms, flies, and mice (Mathis and 58 

Mathis, 2020; Periera et al., 2020; Calhoun et al., 2019; Sturman et al., 2020; Hsu and Yttri, 59 

2020; Bohnslav et al., 2021). There is now growing interest in larger species, including primates 60 

(Marks et al, 2021; Dunn et al., 2021; Bain et al., 2021). These tracking systems have allowed 61 

for the automated identification of specific meaningful behavioral units (“ethogramming”) in 62 

these species (Marshall et al., 2021; Berman et al., 2016; Wiltschko et al., 2015; Bain et al., 63 

2021). Results of these analyses have shown that behavior in these organisms consists of simple 64 

motifs that are repeated and are organized into a hierarchical structure (Berman et al., 2016; 65 

Marshall et al., 2020). These methods are important because they can provide quantitative 66 

answers to longstanding questions at the core of behavioral science. However, we do not know 67 

whether these principles hold true for larger animals with more complicated behavioral 68 

repertoires. In particular, macaque behaviors might not obey the same principles because their 69 

bodies have much higher degrees of freedom, and consequently their behavior has much higher 70 

dimensionality (Bala et al., 2020).  71 

Our laboratory has developed a system that can perform detailed three-dimensional 72 

behavioral tracking in rhesus macaques with high spatial and temporal precision (Bala et al., 73 

2020 and 2021). Our system uses 62 cameras positioned around a specially designed open field 74 

environment (2.45 x 2.45 x 2.75 m) in which macaque subjects can move freely in three 75 
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dimensions and interact with computerized feeders (haydenlab.com/tracking). We used this 76 

system to track the position of 15 joints at high temporal and spatial resolution as our subjects 77 

performed three different behavioral tasks. The data collected by this system open up the 78 

possibility of automated behavioral identification and analysis in macaques.  79 

Previous unsupervised approaches to quantifying behavior were centered on actions 80 

(Marshall et al., 2021; Berman et al., 2016). In contrast, our approach starts with the 81 

configuration of landmarks (“postures”) as the fundamental unit of behavior. Specifically, we 82 

generated 23 variables corresponding to the angles between all major joint pairs and the velocity 83 

of the subject in three dimensions. We then performed dimensionality reduction to identify 84 

postures, and graph theoretic methods to identify extended actions. We find that behavior 85 

naturally clusters into 49 distinct postures. Further graph-theoretic analyses show that postures 86 

are organized into specific actions. These actions correspond to nameable, intuitive behaviors, 87 

and are further organized into higher categories. Together, these results confirm that monkey 88 

behavior obeys the same hierarchical organizational principles that simpler organisms do. These 89 

results also indicate that our pipeline can overcome the daunting problems faced by the high 90 

dimensionality of movement in monkeys.  91 

We examined behavior of two macaque subjects performing one of two different tasks, 92 

or, in a third condition, no task. This design allowed us to examine the effect of task and of 93 

individual on the organization of behavior. We found prominent cross-individual differences and 94 

only modest cross-task differences. Moreover, we found that the composition of behavior (as 95 

inferred by adjusted mutual information) is more stable during task performance than during 96 

task-free behavior. This finding demonstrates changes in the way behavioral repertoires are 97 

selected on the basis of behavioral context. Overall, these findings demonstrate that it is possible 98 

to obtain automatic behavioral ethograms in macaque monkeys and delineate the organization of 99 

behavior across contexts in this important species.    100 
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RESULTS 101 

We studied the behavior of two rhesus macaques under three different experimental 102 

conditions (see Methods) in a large open cage that allowed for free unimpeded movement (a 103 

2.45 x 2.45 x 2.75 m cage with barrels, Figure 1A, Bala et al., 2020). Each subject performed 104 

under one of three possible task conditions per day (see below and Methods). Each daily session 105 

took about 2 hours. Each task condition was repeated three times over three different days (fully 106 

randomized and interleaved order). Our dataset therefore consists of 18 sessions (9 for each 107 

subject; divided into two different task conditions, 6 task-OFF, 12 task-ON) for a total of 31.4 108 

hours, or about 3.3 million frames. Behavior was tracked with 62 high-resolution machine vision 109 

video cameras, and pose (3D position of 15 cardinal landmarks, see Methods) of each macaque 110 

was determined using OpenMonkeyStudio (Bala et al., 2020, Figure 1B) with secondary 111 

landmark augmentation (Bala et al., 2021).  112 

 113 

Embedding of macaque posture results in semantically meaningful clusters 114 

We developed a novel pipeline to characterize behavioral states based on tracked poses. 115 

Our pipeline is a variation of one developed by Berman and colleagues to characterize the 116 

behavior of flies (Methods, Figure 1C, Berman et al., 2014 and 2016). The major difference is 117 

with the way that pose data were structured at the beginning of the pipeline. Briefly, poses were 118 

translated using the neck as the reference. Then, the pose of the subject in each individual frame 119 

was rotated to face a common direction (see Methods). This rotation was defined via two vectors 120 

corresponding to the spine and shoulders. Next, poses were size-scaled (with size defined as hip 121 

to neck distance) so that subjects matched. This process produced normalized postural 122 

orientations. Finally, to further reduce individual variation in poses, we aligned poses of 123 

individual subjects via a variation of the Mutual Nearest Neighbors approach (a local alignment 124 

procedure; see Methods and Haghverdi et al., 2018). 125 

After normalization, we embedded poses using all collected data to generate a single 126 

overall postural embedding. We used a dimensionality reduction technique known as uniform 127 

manifold approximation and projection (UMAP, McInnes et al., 2018). This process results in a 128 

reprojection onto two dimensions in which similar poses are adjacent in the resulting low-129 

dimensional space. We then performed a kernel density estimation to approximate the 130 
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probability density of embedded poses at equally interspersed points. The color in the resulting 131 

plot reflects the probability of each pose in our dataset (Figure 1C and D).  132 

Inspection of this postural embedding reveals a clear clustered organization. Each cluster 133 

reflects a set of similar poses that are relatively distinct from other sets of poses. To formally 134 

identify these clusters, we used the watershed algorithm on the inverse of the density map 135 

(Berman et al 2014). This algorithm treats each peak as a sink and draws boundaries along lines 136 

that separate distinct basins. We found that the resulting embedding space contains 49 distinct 137 

clusters. These clusters correspond to sets of closely related poses (Figure 1D). We verified that 138 

the embedding space captures differences in poses by correlating the euclidean distance of pose 139 

features with that of embedded points (bootstrap test, mean Pearson r = 0.45, p < 0.001). We 140 

refer to the clusters of poses as postures. Visual inspection reveals that these postural states are 141 

semantically meaningful in the sense that they correspond to recognizable postures such as left or 142 

right stride, sitting, hanging etc. Each posture lasted on average 0.612 ± 0.0015 (s.e.m) sec. The 143 

clustered nature of this embedding space confirms that macaque behavior is composed of 144 

stereotypical postures.  145 

 146 
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 147 
Figure 1. Identification of postures in an open-field environment (A) Depiction of 148 

the cage environment. 62 cameras were mounted on an exoskeleton, facing inwards. 149 

(B) Reconstructed pose was defined by 15 landmarks. (C) Outline of general 150 

methodological approach. See Methods for details. (D) The heatmap denotes the 151 

density of embedded samples. Select postures are visualized here, both as the mean 152 

posture within clusters (monkey stick figures) and example reprojections onto the raw 153 

data. 154 

 155 
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 156 

Directed graph analysis of posture transitions reveals behavioral modularity 157 

 We next sought to understand how postures combine to form recognizable behaviors. To 158 

do this, we sought to identify sets of postures with a high probability of occurring in sequence. 159 

We therefore computed transition probability matrices for the specific postures identified above. 160 

Any organization in sequences of postures will show up in the form of increased likelihood of 161 

specific transitions between the postures within the sequence. Our goal, then, is to discover sets 162 

of postures that have a high probability of transitioning between one another, but not other sets 163 

of postures.  164 

The transition probability matrix, in graph theoretic terms, is a directed graph. In this 165 

framework, nodes that form strong links between each other are referred to as modules or 166 

communities. Because of this, we refer to sets of postures that have a high probability of co-167 

transition as “behavioral modules”. These modules are roughly equivalent to what are sometimes 168 

called actions (Anderson and Perona, 2014). The identification of these modules allows us to re-169 

sort the transition probability matrix such that there are blocks on the diagonal; these blocks 170 

correspond to the behavioral modules.  171 

 To formally identify behavioral modules in the transition matrix, we used a recently-172 

developed algorithm named Paris (Bonald et al., 2018). This algorithm performs hierarchical 173 

clustering on the graph derived from the transition matrix and returns a tree describing the 174 

distance between poses and their composing modules (we will return to examine the hierarchical 175 

structure of behavior below). Next, to determine the optimal number of behavioral modules, we 176 

proceed to cut the tree at a series of hierarchical levels and compute a modularity score for each 177 

cut tree. We then choose the cut that corresponds to the tree with the maximal modularity score. 178 

The modules that result from this cut give the highest average within-module posture-transition 179 

probability and the lowest average across-module posture-transition probability. Formally 180 

speaking, they maximize the difference between these two measures. From this process we can 181 

identify the most likely behavioral modules. 182 

 A transition matrix from an example task-OFF session is depicted in Figure 2Ai. For this 183 

session, the number of modules that maximizes the modularity score is 5, indicating that the best 184 

fitting classification has 5 discrete behavioural modules (Figure 2Aii). As illustrated in the 185 

figure, these behavioral modules hew closely to nameable actions (FIgure 2B) such as walking 186 
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(Video 1), swaying (Video 2), climbing (Video 3), jumping (Video 4), and idling (Video 5). The 187 

modular nature of the behaviors in this session is clearly visible in the sorted transition matrix 188 

(Figure 2Aiii).  189 

We tested for modularity by computing the Modularity Score. All 18 of the individual 190 

datasets we collected individually showed statistically significant evidence of modularity 191 

(randomization test, p<0.001, Figure 3C). The average number of unique behavioral modules in 192 

each session was 3.8 ± 0.15 (sem), and each behavioral module lasted 2.73 ± 0.0327 sec. Across 193 

all sessions, the duration of modules ranged from 0.47 - 16.8 sec. Together, these results indicate 194 

that subjects’ behavior is organized into discrete behavioral actions that consist of stereotyped 195 

patterns of postures.  196 

 197 
Figure 2. Postures are organized into behavioral modules. (A) Example of 198 

modularity in one dataset. (i) The original transition probability matrix. (ii) The 199 

modularity score for multiple different cutoffs of the dendrogram (iii) Same as (i) but 200 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 19, 2021. ; https://doi.org/10.1101/2021.11.15.468721doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.15.468721
http://creativecommons.org/licenses/by-nc/4.0/


10 

sorted according to the results of (ii). Now, it is evident that transitions between poses 201 

occur within modules (highlighted with black squares). (B) All modules in this example. 202 

These correspond to semantically meaningful sequences of poses. (C) Histogram of the 203 

maximal modularity score, both for observed (dark) and randomized (light) transition 204 

matrices. Modularity is higher than expected by chance.  205 

 206 

Transitions are hierarchically organized 207 

Our next analysis investigated the hierarchical organization of behavior (Figure 3). 208 

Dendrograms in this figure show the hierarchical organization of postures according to their 209 

transition probabilities. Higher level connections in this dendrogram show how different sets of 210 

poses are related. Not only are different behavioral modules recognizable actions (see above), 211 

but their relationship in the tree reveals this subject’s idiosyncrasies; for example, idling before 212 

climbing (Figure 3A). Moreover, across sessions, similar behavioral modules were composed of 213 

similar postures, highlighting the stable behavioral repertoire of one subject (more on this 214 

below). To quantify the degree of hierarchical organization, we calculated the Dasgupta score on 215 

these dendrograms, which quantifies the quality of hierarchical clustering on a graph (Dasgupta, 216 

2016). A Dasgupta score above chance indicates that the observed tree indeed has connected 217 

components that are related to one another (Dasgupta, 2016). The Dasgupta score was 218 

significantly above chance for all 18 datasets (Figure 3B; randomization test, p<0.001).  219 

 220 
Figure 3. Pose transitions are hierarchically organized. (A) Dendrograms for two 221 

example sessions from the same individual, for a task OFF (left) and task ON (right) 222 

condition. (B) Dasgupta score, measuring hierarchical organization, from transition 223 

matrices derived from observed (dark) and randomized (light) transitions.  224 
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 225 

Behavioral organization is evident for lagged transitions   226 

 The previous sections indicate that at short timescales, behavior is modular and 227 

hierarchical. We next investigated the possibility of levels of organization defined by even longer 228 

timescales. To this end, we performed the same modularity analysis as above, but constructed the 229 

transition probability matrix with lags of up to 1000 transitions. Thus, if there are long timescale 230 

drivers of behavior, this should again be evident as above-chance behavioral modularity. 231 

For the same task OFF example dataset as above, the modularity score decreases as a 232 

function of transition lag, before plateauing close to (but greater than) zero around a lag of about 233 

100 transitions (Figure 4Ai). This result demonstrates that behavior is non-stochastic even on 234 

very long timescales, but that its organization decreases with timescale in a systematic and 235 

lawful way. This modularity is also reflected in the transition matrices for shorter, rather than 236 

longer, lags (Figure 4Aii). Across all 18 datasets, the average modularity shows steady decay up 237 

to ~100 transitions into the future (~60 sec), before plateauing close to chance levels (Figure 238 

4B). This pattern suggests that not only do poses tend to co-occur in distinct behavioral modules, 239 

but that this organization is evident even when considering longer timescales. 240 

Because modules are computed independently for each transition matrix of different lags, 241 

a critical question is whether the extracted behavioral modules are consistent across transition 242 

lags. We assessed this by comparing module assignments using the adjusted Mutual Information 243 

Score (AMI; Vinh et al 2010; see Methods) between modules derived from transition matrices 244 

of consecutive lags. We found that cluster assignment was stable across transition lags (Figure 245 

4C), up to ~100 transitions into the future (p<0.05, multiple comparison corrected). This finding 246 

is reassuring; it suggests that behavioral modules are composed of similar poses for as long as 247 

100 transitions into the future. Taken together, these results indicate that current states hold 248 

information about states up to at least 100 transitions into the future. 249 

 250 
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 251 
 252 

Figure 4. Modular and hierarchical organization of behaviour is evident for long 253 

timescales. (A) Example transition matrices and associated modularity (i) Transition 254 

matrices with lag 1, 10, 100, 1000. Note that states have been reordered according to 255 

module classification. (ii) Modularity as a function of transition lag. Black circles 256 

correspond to transition matrices in (i). (B) Mean modularity across all datasets, for 257 

observed (red) and randomized (grey) transition matrices. (C) Mean module stability 258 

(adjusted mutual information score) of module assignments between consecutive 259 

transition lags, for observed (red) and randomized (grey) transition matrices. 260 

 261 

Variability in behavioral repertoire is driven by individual and task differences 262 

Up to this point, we have considered the organization of behavior across all individuals 263 

and datasets, leaving open the question of how individual and task variability affects behavioral 264 

organization. To this end, we first determined if behavioral modularity - derived from transition 265 

probabilities with a lag of 1 - was affected by task and individual. We found that the modularity 266 

score varied as a function of individual (2-way ANOVA; F=8.08, p=0.013), but not task (F=0.14, 267 

p=0.87). Similarly, the Dasgupta score varied by individual (2-way ANOVA; F=5.2, p=0.0.39) 268 
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but not task (F=0.1, p=0.90). Taken together, these results suggest that the degree of behavioral 269 

organization at the shortest timescale is driven by individuals but not environmental constraints. 270 

While the degree of organization may not vary by task or individual, it is still possible 271 

that the composition of behavior differs. To this end, we compared module stability between 272 

individuals and tasks (Figure 5). We computed the AMI between all pairs of datasets and asked 273 

if stability between pairs differed as a function of subject or task. We found that both individual 274 

and task influenced the degree of stability between pairs of datasets (Figure 5A; 2-way 275 

ANOVA; F(individual)=43.7, p<0.0001; F(task)=7.14, p=0.001). All individual/task 276 

combinations were also more stable than chance level (Figure 5A; randomization test, p<0.001). 277 

We also found that within-subject stability was higher than between subject stability (Figure 5B; 278 

unpaired T-test, T=9.4, p<0.001), indicating that while there is a significant amount of overlap in 279 

behavioral modules, subjects still tend to perform specific actions in idiosyncratic ways.  280 

We next asked if module stability varied as a function of task (Figure 5C). We found that 281 

sessions with a task were more similar to one another, rather than sessions with no task (unpaired 282 

T-test, T=4.16, p<0.001). This suggests that task demands are a strong constraint on the 283 

expression of behavior.  284 

We further explored the effect of task on behavioral expression by quantifying stability 285 

for different cuts of the dendrograms associated with each dataset (Figure 5D). We found that 286 

task ON pairs showed more stable behavioral expression than task OFF pairs, and this was 287 

generally significant for lower and higher dendrogram cuts (unpaired T-test, multiple comparison 288 

corrected, p<0.05). Thus, environmental context constrains behavioral expressivity whether the 289 

span of individual behaviors is large or small. 290 

 291 

 292 
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 293 
Figure 5. Behavioral modularity is universal and unique. (A) Mean module similarity 294 

(quantified via the adjusted Mutual Information (AMI) score) across datasets with the 295 

same or different subjects, and same or different task demands. White dots denote 296 

significant cells (randomization test, p<0.05, multiple comparison corrected). There is 297 

significant module overlap both between datasets of the same subject, and that of 298 

different subjects. (B) Comparison of module stability either within the same individuals 299 

(green) or across different individuals (between), where the effect of task has been 300 

partialled out. (C) Same as (B) but comparing module stability across different tasks, 301 

either task OFF-OFF (orange) or task ON-ON (blue) comparisons. The effect of 302 

individuals has been partialled out. (D) Mean+ SEM of module stability comparing task 303 

ON-ON (blue) or task OFF-OFF (orange) pairs, after partialling out the effect of 304 

individual. Black lines and dots denote significant differences (multiple comparisons 305 

corrected). The mean cutoff that maximized modularity is depicted in red.  306 

 307 

Timescale of behavioral organization is driven by individual, but not task, variation 308 

We next asked if the timescales of behavioral organization differed by task and 309 

individual. We operationalized the notion of how many transitions into the future exhibited 310 

modular organization as the half-life of the function that relates modularity to transition lag (the 311 

modularity curve). Specifically, we fit an exponential model to the individual modularity curves, 312 

and determined the half-life associated with the exponent term (see Methods). We found that 313 

modularity curves are well fit by the model (Figure 6A inset; mean adjusted R2=0.95 + 0.005). 314 

Half-lives varied significantly as a function of individual but not task (Figure 6A; 2-way 315 
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ANOVA, F(individual)=26.8, p<0.001; F(task)=2.87, p=0.11). In other words, individuals varied 316 

in the extent of the temporal horizon of modular behavioral organization. 317 

As noted above, modularity at different lags does not guarantee similar module 318 

composition. Thus, we repeated the same analysis as above, but fitting module stability curves 319 

(AMI as a function of transition lag) and extracted their half-lives (instead of from the 320 

modularity curves as before). Stability curves were well-fitted by the exponential model (Figure 321 

6B inset; Mean adj. R2=0.68 + 0.02). Half-lives varied by individual, but not task (Figure 6B; 322 

ANOVA, F(individual)=18.3, p<0.001; F(task)=0.044, p=0.84) 323 

 324 

Figure 6. Timescale of behavioral organization varies as a function of individual, 325 

but not task. (A) Mean and standard error of half-life associated with fitted modularity 326 

curves. Fitted modularity curves are visualized in the inset, and plotted as a function of 327 

transition lags. Orange (blue) is for task OFF (ON) sessions, and solid (dotted) lines are 328 

for subject C (Y). The half-life of each curve is depicted as a solid circle (triangle), for 329 

subject C (Y). Mean half-life varies as a function of individual, but not task. (B) Same as 330 

(A) but calculated for AMI (i.e., module stability) curves. Mean half-life varies as a 331 

function of individual, but not task.   332 
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Discussion 333 

Here we provide the first analyses of macaque behavior derived from quantitative 3D 334 

pose data. Our ability to perform these analyses relies on our recently developed 335 

OpenMonkeyStudio system, which allows for the tracking of major body landmarks as macaques 336 

move freely in a large space in three dimensions (Bala et al., 2020 and 2021). We find that, 337 

within the context of three different task conditions (including a no task condition), macaque 338 

behavior can be classified into 49 different postures, such as left and right strides, sitting, and 339 

hanging. We find that these postures in turn can be clustered into behavioral modules, such as 340 

walking, climbing, and swaying; these can in turn be organized into even higher-level structures. 341 

Thus, our method provides a hierarchical description of behavior that spans low-level postures 342 

and higher-level extended action sequences.  343 

We find that these hierarchies vary both across individuals and task. Behavioral modules 344 

were more stable within the same individual than across the two individuals. In addition, the 345 

presence of a task resulted in more stable behavior composition as compared to when no task 346 

was present. Finally, we found that the timescale over which behavior was detectably organized 347 

varied strongly as a function of individual, but not task. Taken together, these results highlight 348 

the importance of both task demand and individual identity in determining the makeup of the 349 

hierarchy of actions, while also demonstrating that actions can have consistent cross-individual 350 

and cross-task properties. Our results also raise important lines of inquiry, including what factors 351 

may alter the timescale of structures behavior other than individual identity, identifying the 352 

extent to which the timescale of structured behavior depends on internally defined or externally 353 

imposed timescales, and identifying variation in individual actions that are relevant for task 354 

goals.  355 

Multiple approaches exist to identify relevant behaviors based on pose data. These can, 356 

like our methods, rely on embedding pose features to discover low-level behaviors (Berman et 357 

al., 2016, Marshall et al., 2020), on fitting pose time series using Hidden Markov Models 358 

(Wiltschko et al., 2015; Calhoun et al., 2019), or on pre-trained, supervised neural network 359 

architectures (Marks et al., 2020; Sturman et al., 2019). Regardless of the method used, there are 360 

three important principles to consider that determine what inferences can be made to determine 361 

the structure of behavior. First, the timescale over which features are calculated determines the 362 

nature of the lowest level of behavior identified. In our case, because our model inputs 363 
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correspond to instantaneous joint positions and speeds, our elementary unit of behavior is 364 

posture. Second, it is important to consider the way in which low-level behaviors are combined 365 

to form high-level actions. In our case, we do this solely on the basis of subsequent transitions, 366 

which allows for the discovery of actions with no strong a priori guess about their duration. 367 

Third, it can be constrained by previously identified behaviors, meaning that learning is semi-368 

supervised (e.g., Marshall et al., 2021) or fully supervised (e.g., Marks et al., 2020; Struman et al 369 

2019; Bain et al., 2021); we used an unsupervised method to identify behaviors. The 370 

unsupervised nature means our system can identify a much wider range of possible behaviors, 371 

including new ones not anticipated by existing theories. 372 

The repertoire of behavior was more stable with an externally imposed task, suggesting 373 

that environmental demands may provide a force for behavioral stabilization. Stabilization can 374 

occur in one of two (not mutually exclusive) ways; either the repertoire of actions significantly 375 

shrinks during task, or actions themselves become less variable during task performance. Our 376 

data suggest the latter, as modules were stable even when we considered relatively high cutoffs 377 

of the dendrogram (which is to say, for larger and more-encompassing behavioral modules, 378 

Figure 5D). This is reminiscent of hunting behavior observed in zebra-fish placed in a prey-rich 379 

or prey-poor environment (Marques et al., 2020). In that study, animals exhibited behavioral 380 

motifs associated with exploitation and exploration, regardless of the environment. An intriguing 381 

future possibility direction would be to dissociate the sources of variation underlying variation in 382 

actions themselves, or which actions are expressed, on the basis of task demands. 383 

One of the greatest potential benefits for statistical analysis of highly quantified behavior 384 

is in the prospect of automated ethogramming (Periera et al., 2020; Anderson and Perona, 2014; 385 

Hayden et al., 2021). By ethogramming, we mean the classification of pose sequences into 386 

specific behavior into ethologically meaningful categories such as walking, foraging, grooming, 387 

and sleeping (Hayden et al., 2021). Currently, constructing an ethogram requires the delineation 388 

of ethogrammatical category involves the time-consuming and careful annotation of behavior by 389 

highly trained human observers. Human-led ethogramming is slow, extremely costly, error-390 

prone, and susceptible to characteristic biases (Anderson and Perona, 2014; Kardish et al., 2014; 391 

Holman et al., 2015; Tuyttens et al., 2014). For these reasons, it is simply impractical for even 392 

moderately large datasets, collected either in an open environment or the home cage 393 

(Womelsdorf et al., 2021; Hjunag et al., 2010). These kinds of datasets require automated 394 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 19, 2021. ; https://doi.org/10.1101/2021.11.15.468721doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.15.468721
http://creativecommons.org/licenses/by-nc/4.0/


18 

alternatives. Automated ethogramming requires both high quality behavioral tracking and novel 395 

methods applied to tracked data that result in detection of meaningful categories. Such 396 

techniques have not, until recently, existed for primates. Our methods take the raw information 397 

needed for ethogramming - pose data - and infer posture and higher-level categories from it. As 398 

such, they provide the first step towards automated ethogramming in primates. We are 399 

particularly optimistic about the potential benefits of ethogramming for systems neuroscience. 400 

Relating behavior to neural circuits and networks is an important goal in the field, so being able 401 

to quantify behavior more rigorously – without sacrificing freedom of movement or naturalness 402 

– is likely to be invaluable for future studies.   403 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 19, 2021. ; https://doi.org/10.1101/2021.11.15.468721doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.15.468721
http://creativecommons.org/licenses/by-nc/4.0/


19 

METHODS 404 
 405 
Animal Care 406 

All research and animal care procedures were conducted in accordance with University of 407 
Minnesota Institutional Animal Care and Use Committee approval and in accord with National 408 
Institutes of Health standards for the care and use of non-human primates. Two male rhesus 409 
macaques served as subjects for the experiment. One of the subjects (C) had previously served as 410 
subjects on standard neuroeconomic tasks, including a set shifting task, a diet selection task, 411 
intertemporal choice tasks, and a gambling task (Ebitz et al., 2019; Farashahi et al., 2019; 412 
Blanchard et al., 2013 and 2014; Azab et al., 2018). This subject also participated in a study of 413 
foraging decision-making in the same environment as the current study (Eisenreich et al., 2019). 414 
The second subject (Y) was naïve to all laboratory tasks before training for this study. Both 415 
subjects were fed ad libitum and pair-housed with conspecifics within a light and temperature-416 
controlled colony room.  417 
 418 
Behavioral Training and Tasks 419 

Subjects were tested in a large cage (2.45 x 2.45 x 2.75 m) made from framed panels 420 
consisting of 5 cm wire mesh (Bala et al., 2020). Subjects were allowed to move freely within the 421 
cage in three dimensions. The wire mesh allowed them to climb the walls and ceiling, which they 422 
often did. Five 208 L drum barrels, weighted with sand, were placed within the cage to serve as 423 
perches for the subjects to climb and sit on. There was also a small, swinging tire hung from the 424 
centre of the ceiling of the cage. In sessions with a task, four juice feeders were placed on the 425 
wire mesh walls at each of the four corners of the cage. Feeders were placed at various heights, 426 
including atop barrels. The juice feeders consisted of a 16 × 16 LED screen, a lever, buzzer, a 427 
solenoid valve (Parker Instruments) and were controlled by an Arduino Uno microcontroller. 428 
Each feeder ran (the same) custom Arduino code.  429 

We first introduced subjects to the large cage environment and allowed them to become 430 
comfortable in it. This process consisted of placing them within the large cage for progressively 431 
longer periods of time over the course of about five weeks. We monitored their behavior for 432 
signs of stress or anxiety. Notably, we did not observe these symptoms; indeed, subjects 433 
appeared to be eager to begin their sessions in the large cage, and somewhat reluctant to 434 
terminate them. Nonetheless, to ensure that the cage environment had positive associations, we 435 
provisioned the subjects with copious food rewards (chopped fruit and vegetables) placed 436 
throughout the environment. We then trained subjects to use the specially designed juice 437 
dispenser. We defined acquisition of task understanding as obtaining juice rewards in excess of 438 
their daily water minimum. For both subjects, acquisition of reliable lever pressing took about 439 
three weeks. 440 

On any given day, animals performed one of three task conditions: (1) a controlled 441 
depletion task, (2) a random depletion task, and (3) no task (the same tasks were used in 442 
Eisenreich et al., 2019). In the no task condition, animals were free to explore the environment 443 
but no juice feeders were available. For both the controlled and random depletion tasks, each 444 
feeder was programmed to deliver a specific reward size on pressing of a lever; it started high 445 
and decreased by a specified amount. In the controlled condition each feeder delivered a base 446 
reward consisting of an initial 2 mL of juice that decreased by 0.125 mL with each subsequent 447 
delivery (turn). In the random condition, feeder depletion rates were the same as the controlled 448 
depletion condition. However, feeders randomly increased or decreased the juice delivery 449 
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amount by 1 mL in addition to the base reward schedule at a probability of 50%. Both feeder 450 
types delivered rewards following their respective schedules until reaching the base value of 0, at 451 
which point the patch was depleted and no more rewards were delivered. 452 
 453 
Data acquisition 454 

Images were captured with 62 cameras (Blackfly, FLIR), synchronized via a high-455 
precision pulse generator (Aligent 33120A) at a rate of 30 Hz. The cameras were positioned to 456 
ensure coverage of the entire arena, and specifically, so that at least 10 cameras captured the 457 
subject with high-enough resolution for subsequent pose reconstruction, regardless of the 458 
subject’s position and pose. Images were streamed to one of 6 dedicated Linux machines. The 459 
entire system produced about six TB of data for a two hour session. After data acquisition, the 460 
data were copied to an external drive for processing on a dedicated Linux server (Lambda Labs). 461 

To calibrate the camera’s geometries for pose reconstruction, a standard recording 462 
session began with a camera calibration procedure. A facade of complex and non-repeating 463 
visual patterns (mixed art works and comic strips) was wrapped around two columns of barrels 464 
placed at the centre of the room, and images of this calibration scene were taken from all 62 465 
cameras. These images were used to calibrate the camera geometry (see below). This setup was 466 
then taken down, and the experiment began.  467 

 468 
Pose reconstruction 469 

We first extracted parameters relating to the cameras’ geometry for the session. To this 470 
end, we used a standard structure-from-motion algorithm (colmap; Schonberg and Frahm, 2016) 471 
to reconstruct the space containing the 3D calibration object and 62 cameras from the calibration 472 
images, as well as determine intrinsic and extrinsic camera parameters. We first prepared images 473 
by subtracting the background from each image in order to isolate the subject’s body. Then, 3D 474 
center-of-mass trajectories were determined via random sample consensus (RANSAC). Finally, 475 
the 3D movement and subtracted images were used to select and generate a set of maximally 476 
informative cropped images, such that the subject’s entire body was encompassed. To reduce the 477 
chance that the tire swing would bias pose estimation, we defined a mask of pixels to ignore that 478 
encompassed the tire’s swinging radius. 479 

Next, we inferred 3D joint positions using a trained convolutional pose machine (CPM; 480 
Bala et al 2020). We used a loss function that incorporated physical constraints (such as 481 
preserving limb length, and temporal smoothness) to refine joint localization. We found residual 482 
variability in limb length across subjects after reconstruction, between subjects, particularly for 483 
the arm, resulting in poses that were highly specific to individual subjects. To prevent subject-484 
specific limb lengths from biasing subsequent behavior identification, we augmented the original 485 
13 inferred landmarks to include two new ones  (positions of left and right elbows) using a 486 
supplementary trained CPM model (method described in Bala et al., 2021). Thus, the augmented 487 
reconstruction resulted in 15 annotated landmarks for each image. 488 

 489 
Pose preprocessing 490 

To discover poses, we applied a number of smoothing and transformation steps to the 3D 491 
pose data. First, we transformed the reconstructed space to a reference space that was measured 492 
using the Optitrack system (Bala et al 2020). Then, we ignored any frame where a limb was 493 
outside the bounds of the cage due to poor reconstruction, or residual frames where subject poses 494 
were still subject to collapse (defined as where the mean limb length < 10 cm). Next, we 495 
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interpolated over any segments of missing data (lasting at most 10 frames, or 0.33 sec) using a 496 
piecewise cubic interpolation. Note that only a small number of frames were removed after this 497 
procedure; specifically, 0.64% of frames on average were ignored.  498 

We next normalized the orientation of poses on individual frames. To this end, we 499 
translated the 3D joints to a common reference point by subtracting the position of the neck 500 
landmark. Next, we scaled poses to all have the same size, so that the spine was of length 1.0 501 
(arbitrary units). Finally, we rotated poses to face a common direction. To do this rotation, we 502 
first defined two vectors, one corresponding to the spine (neck to hip landmarks), and the other 503 
to the expanse of the shoulders (left and right shoulder landmarks, which was then centered on 504 
the neck landmark). Poses were then rotated such that the plane defined by these vectors faced 505 
the same direction (in essence, so that the torso faced the same direction). 506 

We next aligned individual datasets, inspired by the mutual nearest neighbors procedure 507 
developed for correcting for batch effects in genomics data (Halgverdi et al., 2018). Broadly 508 
speaking, this algorithm first seeks similar poses between datasets, and then applies a locally 509 
linear correction to align similar poses . Specifically, for two datasets X1 and X2, we first 510 
performed two K-nearest neighbor (KNN) searches (for samples x2 in X1, and x1 in X2) using a 511 
euclidean distance and searching for K=100 samples. On the basis of this search, for each 512 
sample, we defined a mutual nearest neighbors set, namely, samples from each dataset that were 513 
within each other’s nearest neighbor set. We then computed a correction vector c for each sample 514 
in X2 as the mean of the difference between the sample and its mutual nearest neighbors, 515 
weighted by their distance. Samples that had no mutual nearest neighbors did not have a 516 
correction vector computed. As poses vary continuously in time, we then used a median filter 517 
(15th order) to smooth out the correction vectors in time, obtaining a correction matric C.The 518 
aligned dataset X2’ was defined: 519 

𝑿𝟐′ = 𝑿𝟐 − 𝑪 520 
 521 
Feature engineering 522 

To label pose samples, we first defined a set of 23 features derived from the preprocessed 523 
pose data. The first 19 features were the angles at each joint (i.e. the vertex of each triplet of 524 
adjacent landmarks). The other four features were (1) the overall speed of the subject (calculated 525 
from the centre-of-mass), and (2,3, and 4) the speed of the subject in the three canonical 526 
dimensions (X, Y, and Z). To prevent feature bias due to differences in scale during embedding, 527 
we normalized each set of features (joint angles, COM velocity, and planar velocities) to the 528 
range [0 1]. This was performed independently for each subject.  529 

We then concatenated data from all 18 datasets. To mitigate possible effects of noise, we 530 
applied a Principal Component Analysis (PCA), and extracted the first 16 PCs (which accounted 531 
for 95% of the explained variance). Projections onto these PCs served as the features that were 532 
then used in subsequent embedding and clustering. 533 
 534 
Posture identification via embedding and clustering 535 

We created behavioral maps by embedding the extracted pose features into two 536 
dimensions using Uniform Manifold Approximation and Projection (UMAP; McInnes et al., 537 
2014), using a euclidean distance metric. We set the parameters min_dist=0.001 and 538 
n_neighbors=20, which we found to be a good balance between separating dissimilar poses, 539 
while combining similar ones.   540 
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To define behavioral clusters, we first estimated the probability density at 200 equally 541 
interspersed points both in the first and second UMAP dimensions. This produced a smoothed 542 
map of the pose embeddings, with clearly visible peaks. We then employed the watershed 543 
algorithm on the inverse of this smoothed map (Berman et al., 2014). This algorithm defines 544 
borders between separate valleys in the (inverse of) the embedding space. Thus, the algorithm 545 
determines sections of the embedding space with clearly delineated boundaries (i.e. clusters). 546 
Samples were then assigned a posture label according to where they fell within these borders. 547 

 548 
Transition probabilities 549 

We defined transition matrices between postures. Specifically, the transition matrix M for 550 
a transition lag of T was defined as: 551 

[𝑀(𝑇)]!,# = 𝑃(𝑆(𝑡 + 𝑇) = 𝑖	|	𝑆(𝑡) = 𝑗) 552 
Which describes the probability that the subject would go to posture S=i given posture S=j at 553 
time t after T transitions. Note that we did this for transitions between different postures (thus, 554 
for a transition lag T=1, it is impossible for a posture to transition to itself). We performed this 555 
for each dataset individually. The resulting transition probability matrix is a directed graph, 556 
where nodes are the individual postures, and the probabilities are the weights on the edges 557 
between nodes. This formalization allows us to leverage tools from graph theoretic work. 558 

 559 
Measures of behavioral organization 560 

To discover how postures are organized, we employed a hierarchical clustering algorithm 561 
named Paris (Bonald et al., 2018), using the sknetwork library (https://scikit-562 
network.readthedocs.io/). This algorithm employs a distance metric based on the probability of 563 
sampling node pairs and performs agglomerative clustering. Paris requires no user-defined 564 
parameters (as opposed to another popular graph clustering algorithm, Louvain, which can 565 
perform hierarchical clustering according to a user-supplied resolution parameter). It is 566 
equivalent to a multi-resolution version of the Louvain algorithm (Bonald et al., 2018). The 567 
result of this algorithm is a dendrogram describing the relation between different posture 568 
transitions (which we will refer to as the behavioral dendrogram). To segment pose transitions 569 
into modules, we determined the modularity score (see below) for different cuts of each 570 
dendrogram (space equally from 0.4 to 1.4). We then determined module assignment by cutting 571 
the behavioral dendrogram where the modularity score was maximized.  572 

We leveraged three important graph-theoretic metrics to assess behavioral composition: 573 
● Modularity Score: The modularity score describes the degree to which postures transition 574 

within, rather than between, modules. Transition probability matrices with high 575 
modularity scores exhibit a high probability of transitions within modules, but not 576 
between modules. Modularity was calculated with the matlab function “modularity.m”. 577 

● Dasgputa Score: To assess whether the graph defined by posture transitions truly 578 
reflected hierarchical organization, we calculated the Dasgputa Score (Dasgupta, 2016). 579 
The Dasgupta Score is a normalized version of the Dasgupta Cost, which defines the cost 580 
of constructing a particular dendrogram, given distances between nodes. The Dasgupta 581 
Score thus provides quantification of the quality of the hierarchical clustering. We 582 
calculated this score using the function “dasgupta_score” in the sknetwork library. 583 

● Adjusted Mutual Information Score: We assessed whether modules were composed of 584 
similar poses using the Adjusted Mutual Information Score (AMI; Vinh et al 2010). This 585 
measure assesses the information (in bits) about one set of cluster assignments given 586 
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knowledge of another. It is adjusted because given two random clusterings, the Mutual 587 
Information score is biased by the number of clusters; the adjustment thus corrects for 588 
this bias. AMI was computed using the Matlab function “ami.m”. 589 

 590 
We further leveraged these measures to determine the timescale of behavioral 591 

organization, and make subsequent comparisons between datasets. Specifically, we extracted the 592 
half-life associated with the various measures as a function of transition lag. As a concrete 593 
example, we extracted the modularity score using transition matrices at different lags. We then 594 
fit an exponential model of the form: 595 

𝑀 = 𝑎𝑒$% + 𝑐 596 
Where M is the modularity score at transition lag T. From this, we can determine the half-life of 597 
the curve H as: 598 

𝐻 =
−𝑙𝑜𝑔(2)

𝑏  599 
We repeated this analysis using AMI scores between consecutive lags.  600 

 601 
Statistical testing 602 

For the present study, we sought to delineate how the structure of behavior changes with 603 
externally imposed task demands. Thus, we grouped sessions into task ON (controlled depletion 604 
task or random depletion task) or a task OFF (no task sessions). 605 

Hierarchical and Modular organization: To determine statistical significance of modular 606 
and hierarchical organization of behavior for any one dataset, we compared modularity and 607 
hierarchy to a transition matrix defined by random transitions. To this end, for each dataset, we 608 
(1) shuffled the pose labels across the whole session, (2) re-built the transition matrix, (3) applied 609 
hierarchical clustering, and then (4) recomputed the modularity and Dasgupta scores. This was 610 
performed 100 times. The p-value was computed by comparing the random distribution to that of 611 
the observed, for each dataset individually. We repeated this analysis for transition matrices 612 
defined by different lags. 613 

Module stability across transition lags: To determine if behavioral modules were similar 614 
across behavioral trees constructed from different transition lags, we compared module 615 
clusterings of consecutive lags (i.e. at lag t+T and t+T+1). To assess statistical significance, we 616 
again used a randomization approach. We randomized module labels, and then recomputed the 617 
AMI. This was performed 100 times, from which we determined the p-value. 618 

Comparison of Hierarchical and Modular organization as a function of task and 619 
individual: To compare modularity as a function of task and individual, we performed a 2-way 620 
ANOVA on modularity scores obtained from transition matrices of lag=1. We performed the 621 
same analysis for Dasgupta scores, in order to compare hierarchical organization. 622 

Module stability between datasets as a function of task and individual: We compared the 623 
composition of postures into modules across datasets, as a function of task and individual. To 624 
this end, we computed the AMI between module assignments (determined from a transition 625 
matrix of lag T=1) of all (unique) pairs of datasets.  626 

To determine if a particular combination of task/individual exhibited stable module 627 
assignments, we employed a randomization procedure. Namely, we randomized the module 628 
labels for any one dataset, recomputed the AMI, and repeated this 100 times in order to get a 629 
random distribution. P-values were determined by comparing the observed AMI to the random 630 
distribution.  631 
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To determine if task/individual affected stability between paired datasets, we used a 2-632 
way ANOVA. The first factor had 3 levels corresponding to individual pairings (subject C-Y, C-633 
C, and Y-Y). The second factor also had 3 levels (task OFF-OFF, ON-ON, and OFF-ON).  634 

 To determine if within-subject modules were more stable than between-subject modules, 635 
we first collapsed dataset pairs into within-subject (Subjects C-C and Y-Y) and across-subject 636 
(Subjects C-Y) groups. Then, because we found AMI varied by task and individual, we partialed 637 
out the effect of task by subtracting the mean AMI associated with each task pair. Significance 638 
was assessed with an unpaired T-test. 639 

We used a similar procedure to compare the effect of environmental demands. Namely, 640 
we considered two groups of dataset pairs, either task OFF-OFF or task ON-ON, and partialed 641 
out the effect of individuals by subtracting the mean AMI associated with individuals. 642 
Significance was assessed with an unpaired T-test. 643 
 644 

Comparison of behavioral organization timescales as a function of task and individual: 645 
To compare the timescale across which behavior is organized, we compared half-lives of 646 
modularity, and AMI curves (i.e. either of these measures as a function of transition lag). We 647 
then performed a 2-way ANOVA on half-lives, with individual and task as the factors.  648 
 649 
 650 
  651 
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