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Abstract 
We present a comprehensive reference map of metabolic brain changes in Alzheimer’s disease 
(AD). In a multi-center study within the Accelerating Medicines Partnership in AD, we 
metabolically profiled 500 samples from the dorsolateral prefrontal cortex (DLPFC) and 83 
samples from the temporal cortex (TCX). In the DLPFC, 298 metabolites were correlated with AD-
related traits, including late-life cognitive performance and neuropathological b-amyloid and tau 
tangle burden. Out of these 298 metabolites, 35 replicated in TCX and a previous study. A 
conditional analysis suggests that metabolic associations with tangle burden were largely 
independent of b-amyloid load in the brain. Our results provide evidence of brain alterations in 
bioenergetic pathways, cholesterol metabolism, neuroinflammation, osmoregulation, and other 
pathways. In a detailed investigation of the glutamate/GABA neurotransmitter pathway, we 
demonstrate how integration of complementary omics data can provide a comprehensive view of 
dysregulated biochemical processes. All associations are available as an interactive network at 
https://omicscience.org/apps/brainmwas/. 
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1 Introduction 
Alzheimer’s disease (AD) is the most common cause of dementia, with prevalence rates expected 
to increase markedly over the next decades1. It is a neurodegenerative disorder defined by the 
deposition of b-amyloid and accumulation of neurofibrillary tangles of phosphorylated tau protein 
in the brain2. These proteinopathies are further accompanied by other pathogenic processes 
including neuroinflammation, oxidative stress, innate immune response, and neurotransmission1. 
In addition, a large body of evidence implicates metabolic pathways both in the periphery and in 
the central nervous system in AD3–8. Moreover, metabolic enzymes and transporters are among 
the most commonly targeted proteins in pharmaceutical interventions across all diseases9,10, 
emphasizing the translational potential of systematically identifying metabolic alterations. 
However, until now a comprehensive reference map of metabolic brain changes related to AD, 
AD-associated neuropathological manifestation, and cognitive decline has been missing. 

Here we present a large, multi-center study from the Accelerating Medicine Partnership in AD 
(AMP-AD) consortium, analyzing a total of 583 post-mortem brain tissue samples using broad, 
non-targeted metabolomics measurements. This dataset represents, to the best of our 
knowledge, the largest metabolomics study of aging brain tissue to date. In the first part of our 
study, we analyzed 667 metabolites in 500 brain tissue samples from the dorsolateral prefrontal 
cortex (DLPFC). This resulted in various metabolic associations with AD-related traits, including 
b-amyloid and tau tangles neuropathological burden, as well as late-life cognitive performance. 
We provide preliminary evidence that tau-related pathology is the main driver of metabolic 
alterations, while b-amyloid-related alterations are secondary effects. We confirmed a subset of 
associations in an independent set of 83 temporal cortex (TCX) brain tissue samples, profiled with 
the same metabolomics platform. In addition, part of our findings overlapped with previously 
reported AD-associated metabolic brain changes5. Moreover, we exemplify how the integration of 
metabolomics with complementary omics data can enable a comprehensive view of biochemical 
changes in AD. To this end, we investigated molecular changes downstream of the 
glutamate/GABA neurotransmitters by integrating proteomics measurements from 262 matching 
DLPFC samples. 

Our study provides strong evidence for the metabolic alteration of bioenergetic pathways, 
cholesterol metabolism, neuroinflammation, osmoregulation, neurotransmission, and other 
pathways in AD pathogenesis. Further, to maximize utilization of our study by the scientific 
community, we have made both our data and our findings available through the AD Knowledge 
Portal and an interactive web resource at https://omicscience.org/apps/brainmwas/. 
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2 Results 

2.1 Cohort description and characteristics of brain metabolomics 
data 

We analyzed brain samples of 500 participants from the Religious Order Study and the Rush 
Memory and Aging Project (ROS/MAP) cohorts11,12, including 352 females and 148 males, with a 
mean age at death of 91 (Table 1). Following enrollment in the study, participants were evaluated 
for physiological and cognitive function once per year (Figure 1). Neuropathology was assessed 
after autopsy. Out of the 500 participants, 220 were diagnosed with AD (with or without a 
secondary cause of dementia) at the time of death, 119 had mild cognitive impairment, 153 were 
without cognitive impairment, and 8 had other forms of dementia. Samples from the dorsolateral 
prefrontal cortex (DLPFC) brain region were used for untargeted metabolic profiling. 
Metabolomics measurements were analyzed in relation to eight AD-related traits covering late life 
cognitive assessments and postmortem pathology: Clinical diagnosis at the time of death, level 
of cognition proximate to death, cognitive decline during lifetime, b-amyloid load, tau tangle load, 
global burden of AD pathology (global NP), NIA-Reagan score, neuropathological diagnosis 
inferred based on combination of Braak stage and CERAD score (NP diagnosis, see methods for 
diagnostic criteria). A detailed description of these AD-related traits is provided in Supplementary 
Table 1.  

The metabolomics platform identified 667 metabolites from various chemical classes (super-
pathways) in the brain samples, including lipids (42.7%), amino acids (22.6%), nucleotides 
(6.7%), carbohydrates (6.3%), cofactor and vitamins (4.3%), xenobiotics (3.7%), peptides (2.1%), 
and energy-related metabolites (1.5%) (Figure 2a, Supplementary Table 2). Previous blood-
based metabolomics studies reported strong influences of medications and supplements (such 
as vitamins) on metabolic profiles4. To investigate such effects in brain tissue-based metabolic 
profiles, we examined influences of 103 grouped medication classes and supplements on 
metabolic abundances. 552 out of 667 (82.75%) of the metabolites correlated with one or more 
medications or supplements taken during lifetime. The group of medications to treat benign 
prostatic hypertrophy associated with the highest number of metabolites (81 metabolites), 
followed by diuretics (55 metabolites) and multivitamins (52 metabolites). A comprehensive list of 
medication classes and their effect on the metabolome is provided in Supplementary Table 3. 
Given these strong associations with the metabolome, medication effects excluding AD and 
neurologic drugs were regressed out from the metabolic profiles for all following analyses. 
Moreover, since the postmortem interval (PMI) before sample collection at autopsy may also 
impact analyte levels, we investigated its effects and found that 307 metabolites associated with 
PMI (Supplementary Table 4). PMI was therefore included as a covariate in all following 
analyses. 
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To obtain a baseline understanding of metabolism in brain, we used cognitively normal samples 
to compute associations between measured metabolites and demographic parameters 
independent of AD. This included metabolic associations with age, BMI, sex, and years of 
education (as a proxy for socioeconomic status). Two metabolites, 1-methyl-5-imidazoleacetate 
and N6-carboxymethyllysine, were significantly associated with age at 5% false discovery rate 
(FDR). Surprisingly, there were no significant associations with sex, BMI, or education, which is 
in stark contrast to findings in blood13–15. Details of this baseline analysis can be found in 
Supplementary Table 5.  

Total samples N = 500 
Sex 

Female 352 (70.4%) 
Male 148 (29.6%) 

Postmortem interval (hours) 6.6 (5.2, 8.7) 
BMI 25.2 (22.5, 28.2) 
Years of education 16.00 (13.00, 18.00) 
Age at death 91 (87, 95) 
APOE4 alleles 

0 374 (75%) 
1 121 (24%) 
2 5 (1%) 

Clinical diagnosis at death 
AD 220 (44%) 
Mild cognitive impairment (MCI) 119 (23.8%) 
No cognitive impairment (NCI) 153 (30.6%) 
Other 8 (1.6%) 

Format: N (%) or median (IQR) 

Table 1. ROS/MAP cohort overview. Postmortem interval refers to the time between death and sample preservation. 
BMI = body mass index. IQR = interquartile range, i.e., middle 50% of the data. 
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Figure 1: Study overview. 500 ROS/MAP participants were included in this analysis. For each participant, data was 
available on cognitive assessments during lifetime, postmortem AD brain pathology, and brain metabolic profiles from 
the dorsolateral prefrontal cortex (DLPFC) region. Metabolic profiles were investigated for associations with AD-related 
traits and a metabolite interaction network was inferred using a Gaussian graphical model (GGM). Associations were 
tested for replication in 83 temporal cortex samples from the Mayo Clinic brain bank cohort and compared to a 
previously published brain-based study. Finally, various pathways previously implicated in AD were metabolically 
characterized, and a detailed metabolomic/proteomic characterization of the glutamate/GABA neurotransmitter 
pathway was generated. 
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2.2 AD is associated with widespread metabolic alterations in brain 
To assess AD-related metabolic changes, we computed statistical associations between 
metabolic profiles and the 8 AD-related traits. All statistical models accounted for AD-related 
confounders (age, sex, years of education, BMI, and copies of APOE4) as well as postmortem 
interval. A total of 298 out of 667 metabolites (44.7%) were significantly associated with one or 
more AD traits at 5% false discovery rate (FDR). 80 out of the 298 metabolites showed unique 
associations with just one of the traits. A total of 218 metabolites associated with more than one 
trait, which is likely due to high correlations across traits (Figure 2b, Supplementary Figure 1). 
The majority of the 298 metabolites was associated with one of three AD traits: Cognitive decline 
(n = 201), tau tangles (n = 188), and global burden of pathology (n = 183) (Figure 2c). 
Interestingly, only 34 metabolites associated with b-amyloid, which was the lowest number of 
associations among the eight AD traits. Furthermore, we observed that 159 out of the 298 
metabolites (53.4%) were associated with both premortem parameters and postmortem 
pathological assessments. All statistical results are provided in Supplementary Table 6. Sex-
based stratified analysis revealed that 29 of the 298 metabolites (10%) showed associations with 
at least one trait that were significantly modulated by sex (Supplementary Table 7), and APOE4-
stratified analysis showed that associations of 77 metabolites (26%) were influenced by APOE4 
status (Supplementary Table 8).  

To illustrate the strength of the observed associations, we provide two of the most significant 
associations in the dataset as examples: Glycerophosphoethanolamine (GPE) levels positively 
associate with cognitive decline (FDR: 7.05e-13, Figure 2d, left) and N-acetylglutamate 
negatively associate with global AD pathology (FDR: 3.59e-08, Figure 2d, right). GPE levels 
were higher with lower cognitive abilities, which corroborates previously published findings16. N-
acetylglutamate levels showed lower levels with higher AD pathology load.  

The 298 metabolites that associated with AD-related traits were distributed across all super-
pathways, including 113 (37.92%) within the largest super-pathway of lipids, followed by amino 
acids with 78 (26.17%) associations, and the rest in remaining six super-pathways (Figure 2e). 
At the more fine-grained sub-pathway level, metabolic associations were distributed across 72 
out of the 101 sub-pathways covered in the data (Supplementary Figure 2).  

We statistically inferred a metabolic network and annotated it with effect directions and the lowest 
adjusted p-value across the eight AD traits (Figure 2f). The network is based on a Gaussian 
graphical model (GGM), which corresponds to a data-driven representation of biochemical 
pathways17,18. GGMs have previously been used to systematically investigate various trait effects 
on the metabolome13,19. To further explore our findings networks for each AD trait are available 
as a Cytoscape file (Supplementary File 1), as well as an interactive online version at 
https://omicscience.org/apps/brainmwas/. 
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Taken together, this analysis revealed global metabolic changes with respect to various AD-
related clinical and neuropathological traits. These alterations encompass all measured metabolic 
super-pathways, highlighting the massive impact of the disease on brain metabolism.  

 

Figure 2: Overview of metabolic associations with AD. a, Metabolites measured in brain samples are distributed 
across various metabolic classes, referred to as “super-pathways” throughout the manuscript. b, Kendall correlations 
across the eight AD-related traits. c, A total of 298 metabolites were associated with at least one of the eight AD-related 
traits. d, Examples of two metabolites with the lowest adjusted p-values. Note that the traits were discretized (median-
split) for visualization. e, Distribution of metabolic associations across super-pathways. f, Gaussian graphical model of 
metabolites. Metabolites are colored based on the negative log10 of the lowest adjusted p-value across AD-related traits 
multiplied with the direction of the respective effect estimate. Global NP = Global burden of AD neuropathology. NP 
Diagnosis = postmortem diagnosis based on Braak stage and CERAD score. 
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2.3 Conditional analysis suggests tau pathology as driver of 
metabolic changes in brain 

According to the b-amyloid hypothesis of AD, b-amyloid is key to AD pathogenesis20. It is 
considered to influence the accumulation of tangles of phosphorylated tau as well as tangle-driven 
pathogenesis21. As a result, b-amyloid has been the focus of most therapeutic approaches22–26. 
However, recent evidence suggests that tau tangles might be acting independent of b-amyloid27. 
To identify metabolic signatures specific to β-amyloid and tau tangles we performed conditional 
analyses by adjusting for the respective other neuropathology (Figure 3a). In our standard 
association analysis, i.e., without accounting for β-amyloid load, 188 metabolites were associated 
with tau tangle load. 119 out of these 188 associations were still significant after accounting for 
β-amyloid load in the statistical model. While 34 metabolites associated with β-amyloid load in the 
standard association analysis, only one remained significant after accounting for tau tangle load. 
Details of the standard and conditional analysis are available in Supplementary Table 6 and 
Supplementary Table 9, respectively. Taken together, this analysis suggests that metabolic 
associations of tau tangles are largely independent of β-amyloid load, while metabolic 
associations of β-amyloid load are confounded by tau tangle load. 

To corroborate this finding with another omics layer, we performed the same analysis on 
proteomics profiles. In the standard association analysis, 695 proteins associated with tau tangle 
load, i.e., without accounting for β-amyloid load. 252 out of these 695 were still associated with 
tau tangle load after accounting for β-amyloid load in our statistical model. While 265 proteins 
were associated with β-amyloid load in the standard association analysis, only 68 of these 
remained correlated after accounting for tau tangle load (Figure 3b). Details of the proteomics 
standard and conditional analysis are available in Supplementary Table 10. 

Taken together, metabolic associations were more widespread for tau tangles and less dependent 
on β-amyloid load, which was partially confirmed by a similar trend in the proteomics data.  
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Figure 3: Comparison of standard and conditional analyses of b-amyloid and tau tangles. Tangle-associated 
signals appeared largely independent of b-amyloid signals, while b-amyloid signals were more strongly dependent on 
tau tangle signals. a,b Overlap of tangle- and β-amyloid-associated metabolites and proteins, respectively, with and 
without adjusting for the respective other neuropathology. 
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2.4 AD-associated metabolic alterations overlap across 
independent brain studies 

To strengthen confidence in our findings, we performed replication analysis using a metabolomics 
dataset from a Mayo Clinic brain bank cohort. In addition, we compared our results to a previously 
published brain metabolomics study based on samples from the Baltimore Longitudinal Study of 
Aging (BLSA)5. Detailed replication results of Mayo can be found in Supplementary Table 11 
and published BLSA results used for comparison can be found in Supplementary Table 12. 

In the Mayo data, 83 temporal cortex brain samples were used for untargeted metabolic profiling, 
including 63 AD patients and 20 controls. Of the 8 AD-related traits used in the discovery phase 
with ROS/MAP cohort, neuropathology-based diagnosis was the only matching trait available in 
this cohort. Individual measures of neuropathology were not comparable between cohorts, and 
cognitive assessments were not available for the Mayo cohort. A total of 257 metabolites of the 
298 significant in ROS/MAP cohort were measured in the Mayo cohort. 30 of these 257 
metabolites were associated with AD in both datasets, i.e., with AD diagnosis in the Mayo cohort 
and with at least one of the eight AD-related traits in ROS/MAP (Figure 4a), all of which showed 
consistent effect directions.  

In the BLSA study5, 43 samples from the inferior temporal gyrus (ITG) and middle frontal gyrus 
(MFG) brain regions were used for targeted metabolic profiling. The study identified 130 
metabolites, of which the authors focused on 26, which were further categorized into different 
biochemical groups. In their analysis, 9 out of 26 metabolites associated with AD diagnosis. All 
26 metabolites were measured in our study, 17 of these 26 associated with AD-related traits, and 
6 of these 17 were among the 9 metabolites associated in their study (Figure 4b). Of those 6 
metabolites, 5 had the same effect directions, while cysteine was found to be upregulated in the 
BLSA study and downregulated in ROS/MAP.  

Overall, 35 of the 298 associations identified in ROS/MAP were confirmed with consistent effect 
directions in either the Mayo or the BLSA cohort. 
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Figure 4: Overlap across independent cohorts and brain-regions. a, The Mayo and ROS/MAP cohorts have 30 
metabolic associations with consistent effect directions in common. b, The BLSA and ROS/MAP cohorts have 5 
metabolic associations with consistent effect direction in common (green and brown). Cysteine showed inconclusive 
effect directions, with a positive association with AD in the BLSA cohort and a negative association with AD in the 
ROS/MAP cohort. 
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2.5 Metabolic alterations further characterize pathways previously 
implicated in AD 

To examine the contribution of metabolic alterations in previously reported AD-related pathogenic 
processes, we selected four pathway groups for further exploration (Figure 5). Comprehensive 
functional annotations based on Metabolon’s sub-pathways are available in Supplementary 
Figure 2. For each pathway group discussed below, we included metabolites associated with at 
least one of the eight AD-related traits. 

Bioenergetic pathways: Bioenergetic dysregulation is a hallmark of AD, which has been 
demonstrated using different technologies, from PET neuroimaging to deep molecular profiling 
such as metabolomics and proteomics studies28–31. In our analysis, key metabolites from 
bioenergetic pathways, including glycolysis, branched-chain amino acid (BCAA) metabolism, and 
mitochondrial b-oxidation, were found to be deregulated in AD. This included positive correlations 
of the glycolytic metabolites glucose, glycerate, glucose 6-phosphate, and 1,5-anhydroglucitol; 
the BCAAs valine, isoleucine, and leucine, as well as their 1-carboxyethyl conjugates and 
degradation products b-hydroxyisovalerate, and 3-hydroxyisobutyrate; and the acylcarnitines 
isobutyrylcarnitine (C4), tiglyl carnitine (C5), 2-methylbutyrylcarnitine (C5), glutarylcarnitine 
(C5-DC), and 5-dodecenoylcarnitine (C12:1). High abundances of these metabolites resemble 
observations in blood metabolic profiles of individuals with type 2 diabetes and stand in contrast 
to blood-based studies in AD, which reported negative associations of, e.g., BCAA levels with 
AD4,32. Together, these results are in line with the hypothesis that AD might represent a “type 3” 
diabetes that selectively affects the brain33.  

Cholesterol metabolism and sterol pathway: The strongest genetic risk for AD is exerted by 
variants of the APOE gene, a lipoprotein involved in cholesterol transport and metabolism34–36. 
Our findings provide further evidence for the AD-associated significance of this pathway, with 
degradation products of cholesterol showing positive correlations with AD-related traits. These 
degradation products include 7α-hydroxy-3-oxo-4-cholestenoic acid (7-HOCA), which has been 
described as a CSF-based marker for blood-brain-barrier integrity37; 4-cholesten-3-one, a product 
of cholesterol oxidation and isomerization through bacterial enzymes38; and 7-hydroxycholesterol, 
a precursor for bile acids. Notably, cholesterol itself did not show any significant associations, 
indicating potential dysfunctional cholesterol clearance rather than a direct role of cholesterol in 
AD. This hypothesis is further supported by previous studies where we observed a significant 
increase of secondary bile acids in AD7,33,39. 
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Neuroinflammation and oxidative stress: Neuroinflammation is a central pathogenic feature of 
AD and is accompanied by the production of reactive oxygen species leading to oxidative stress40. 
AD has been associated with both lipid mediators of inflammatory processes as well as immune 
response, including eicosanoids, and molecules involved in the antioxidant defense, such as 
glutathione41–43. In line with these findings, we observed significant positive correlations of 
metabolites in the glutathione pathway with AD, indicating an upregulated antioxidant response. 
Significant metabolites included 4-hydroxy-nonenal-glutathione, a marker for detoxification of lipid 
peroxidation through glutathione S-transferases (GSTs)44; cysteinylglycine disulfide, a 
degradation product of oxidized glutathione42; and ophthalmate, an endogenous analog of hepatic 
glutathione (GSH) and potential marker for GSH depletion45. Moreover, pro-inflammatory 
eicosanoids showed positive associations with AD, including 15-oxoeicosatetraenoic acid 
(15-KETE), which has been linked to GST inhibition46, and 12-hydroxy-heptadecatrienoic acid 
(12-HHTrE), overall providing further molecular evidence for active inflammatory processes in 
AD. In contrast, anti-inflammatory long-chain omega-3 polyunsaturated fatty acids (PUFAs), such 
as eicosapentaenoate (EPA) and docosahexaenoate (DHA)47,48, were negatively associated with 
AD.  

Osmoregulation. Osmolytes are a class of molecules that primarily sustain cell integrity49. They 
have been suggested to play a neuroprotective role in AD by activating mTOR-independent 
autophagy signaling to inhibit accumulation of b-amyloid plaques50. Osmolytes also affect protein 
folding51, and their therapeutic potential has been discussed in AD as well as other 
neurodegenerative proteinopathies52. Moreover, osmolyte imbalances can impact neuronal 
hyperexcitation by influencing neurotransmitter uptake49. In our analysis, we observed positive 
associations of several osmolytes with AD, including 2-aminoadipate, arginine, 
glycerophosphorylcholine (GPC), myo-inositol, serine, and urea, whereas betaine was negatively 
associated with the disease. As these observations are based on bulk tissue metabolomics, it 
remains unclear if these metabolites are deregulated within or outside of the cell. Nevertheless, 
the strong statistical significance underlying these associations suggest an important role of 
osmoregulation in AD which warrants further investigation. 
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Figure 5: Pathway-level metabolic associations with AD-related traits. The highlighted biological processes have 
previously been implicated in AD. Our data provides a metabolic characterization of the alterations of these pathways 
in the AD brain: Cholesterol metabolism has an established connection to late-onset AD through APOE4, the major 
genetic risk factor for the disease. Bioenergetic dysregulation is one of the earliest detectable changes in the central 
nervous system in AD and has also been described in the periphery. Inflammation and oxidative stress have been 
reported to synergistically affect AD pathogenesis. Osmoregulation affects various aspects of AD pathology, including 
protein folding, neural excitation, and autophagy.  
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2.6 Integration of complementary omics provides comprehensive 
view of biochemical cascade downstream of neurotransmitters 

As a detailed showcase of the complex, biochemical interconnections in brain omics data, we 
selected a biochemical cascade downstream of the neurotransmitters glutamate and gamma 
aminobutyric acid (GABA). An elevated synaptic excitatory/inhibitory (E/I) ratio of these 
neurotransmitters has been linked to hyperexcitability and cognitive impairment observed in 
AD53,54 . Furthermore, given GABA’s positive correlation with efficient working memory within the 
DLPFC region55, it is of high significance to investigate GABA-related deregulation in this region.  

We compiled biochemical steps of metabolites and enzymes downstream of glutamate using 
known reactions from the public database pathbank56 (Figure 6). Notably, the cascade does not 
contain the routes from GABA to glutamate or from putrescine to GABA due to a lack of coverage 
of metabolites along those pathways. 

Based on proteomics profiles available for 262 matching brain samples, we performed a targeted 
association analysis of AD-related traits and proteins that are enzymatically involved in this 
pathway cascade (Supplementary Table 13). Significant metabolic and proteomic associations 
with at least one of the eight AD-related traits were annotated on the respective molecules within 
the cascade.  

The pathway cascade starts with glutamate, which was positively associated with AD in our data. 
Excitatory glutamatergic synapses involving N-methyl D-aspartate receptors (NMDAR) have 
previously been targeted by memantine to treat severe AD57. Glutamate is the precursor of the 
inhibitory neurotransmitter GABA, which we found to be negatively associated with AD. 
Interestingly, protein abundance of glutamate decarboxylase (GAD2), which catalyzes the 
production of GABA from glutamate was also negatively associated with AD pathology in our data. 
This negative association provides a potential explanation for the imbalance between the two 
neurotransmitters. Glutamate metabolism is directly connected to the urea cycle, in which 
ornithine, arginine, and urea were positively associated with AD. Urea buildup to neurotoxic levels 
has been observed in postmortem brains of Huntington’s disease and has furthermore been 
linked to dementia58. Inhibition of arginase (ARG2) has been suggested to reduce the production 
of urea59. Arginase was positively associated with AD in our data; it catalyzes the conversion of 
arginine to ornithine, with urea as a byproduct. Urea cycle further feeds into the polyamine 
pathway, in which putrescine was negatively associated with AD, while spermidine and spermine 
were not significantly associated with AD. Putrescine promotes the clearance of apoptotic cells 
via efferocytosis60, a mechanism affected in AD and other neurodegenerative diseases61. The 
enzyme S-methyl-5'-thioadenosine phosphorylase (MTAP) links the polyamine pathway to 
methionine metabolism, in which methionine, methionine sulfoxide, s-adenosylmethionine, and 
s-adenosylhomocysteine were positively associated with AD, with concordant changes in protein 
levels of respective enzymes MTAP, mitochondrial peptide methionine sulfoxide reductase 
(MSRA) and methionine adenosyltransferase (MAT2A). In a previous study, we have shown that 
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higher levels of methionine in CSF were associated with AD8. Methionine acts as an antioxidant 
by forming methionine sulfoxide and is a precursor of s-adenosylmethionine, which is a key methyl 
donor in brain cells and involved in the synthesis of the neurotransmitters dopamine, epinephrin, 
and serotonin via the folate cycle62. 

Overall, our analysis provides an integrated, multi-omics view of neurotransmitter-related 
changes known to play a role in the pathogenesis of AD. 
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Figure 6: Metabolic changes downstream of the neurotransmitters glutamate/GABA. This multi-omics cascade 
starts with biochemical process involving conversion of glutamate into GABA within glutamate metabolism. Glutamate 
metabolism feeds into the urea cycle by conversion of glutamate to ornithine. Urea buildup to neurotoxic levels has 
been observed in postmortem brains of Huntington’s disease and has furthermore been linked to dementia. Urea cycle 
connects to polyamine metabolism via conversion of ornithine into putrescine. Putrescine promotes the clearance of 
apoptotic cells via efferocytosis, a mechanism affected in AD. Polyamine metabolism connects to methionine 
metabolism though methionine salvage pathway. Methionine acts as an antioxidant and is a precursor of s-
adenosylmethionine, which is a key methyl donor in brain cells and involved in the synthesis of neurotransmitters 
dopamine, epinephrin, and serotonin via folate cycle. 
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3 Discussion 
In this work, we provide a global view of metabolic changes in brain related to Alzheimer’s 
disease. Our study is based on broad untargeted metabolomics profiles of 500 brain tissue 
samples from the DLPFC, covering 667 metabolites from various biochemical classes. We 
demonstrated that in cognitively normal individuals, age, sex, education, and BMI did not show 
major effects on brain metabolites. These limited associations of brain metabolites with 
demographics and socioeconomic status stand in contrast to the strong associations seen with 
blood metabolic profiles13–15. Conversely, intake of medications had major effects on brain 
metabolome, as observed in blood metabolic profiles4, highlighting the importance to account for 
effects of pharmaceuticals.  

In the subsequent association analysis, we found that 298 out of the 667 metabolites correlated 
with at least one of the eight investigated AD-related traits, covering cognition and several 
neuropathological parameters. We confirmed 30 of our associations using independent samples 
from the Mayo Clinic brain bank cohort. Additionally, 5 associations were confirmed using a study 
on the BLSA cohort5. Two pathways, urea cycle and glutathione metabolism, were associated 
with AD in all three cohorts. This overlap was observed despite the substantial differences in 
sample sizes, profiled brain regions, study designs, and clinical parameters. We thus conclude 
that the 35 metabolites and two pathways are high confidence AD-related metabolic signals in 
brain tissue, and the metabolic associations unique to our ROS/MAP study need further 
validation. Of note, we observed significant modulation of metabolic associations through sex and 
APOE4 status, which is concordant with previous findings in blood-based metabolomics data3. 

We explored our findings in the context of various functional processes that have been previously 
implicated in AD, including bioenergetic pathways, cholesterol metabolism, neuroinflammation, 
and osmoregulation. Our study extends the view on these AD-related pathways through metabolic 
alterations in brain. Of these processes, metabolic alterations of osmoregulation within the central 
nervous system have, to the best of our knowledge, so far not been studied in detail. Osmolytes 
participate in multiple critical processes associated with neurogenerative diseases including 
protein folding63, autophagy50, and hyperexcitation of neurons49. While our observations might to 
some extent be confounded by, e.g., systematic differences in the hydration status of AD patients 
prior to death, the large number and strong significance of associations within this class suggests 
a potentially functional link to pathomechanisms in AD. 
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Moreover, we investigated detailed biochemical alterations downstream of glutamate and GABA. 
Imbalances of these neurotransmitters have previously been associated with hyperexcitability and 
cognitive impairment in AD53,54. In our study, the excitatory neurotransmitter glutamate was 
positively associated with AD, while the inhibitory neurotransmitter GABA was negatively 
associated with AD. To investigate the downstream effects of this excitatory/inhibitory imbalance, 
we explored the metabolic and enzymatic changes in the biochemical cascade starting from the 
conversion of glutamate to GABA, connecting glutamate to urea cycle, polyamine metabolism, 
and methionine metabolism. Our study shows how the integration of metabolomics with 
proteomics provides a comprehensive overview of biochemical changes downstream of these 
neurotransmitters. Moreover, to the best of our knowledge, this is the first reporting of low levels 
of GABA in AD within the DLPFC region. DLPFC is associated with working memory in 
individuals55, which becomes impaired during AD pathogenesis64. Thus, GABA levels within the 
DLPFC region have been of considerable interest to the AD community64, which is corroborated 
by our results.  

Addressing the complex interplay of β-amyloid deposition and tau tangles in AD, we performed a 
conditional statistical analysis. In our data, 97% of the β-amyloid-associated metabolites were 
dependent on tau tangle load, while only 36.7% of the tangle-associated metabolites were 
dependent on β-amyloid load. Our study thus provides preliminary evidence that the metabolic 
component of tangle-driven pathogenesis is independent of β-amyloid, which is in line with recent 
literature that suggests that tau accumulation might be independent of β-amyloid27. This finding 
may also suggest that metabolic changes in the brain are mostly later events in the pathologic 
cascade of AD65 and closer temporally to tau pathology, neurodegeneration and cognitive decline 
than to b-amyloid accumulation. Further supporting this, the largest number of associations in 
ROS/MAP were detected with cognitive decline, an event deemed to be at the later stages of the 
pathologic cascade of events in AD66. 

Despite the many novel insights into metabolic alterations in brain observed in AD, our study has 
some limitations. First, cross-sectional studies cannot assess the causal direction of the identified 
associations. That is, an observed metabolic change in AD could be a factor directly contributing 
to disease development, or it could be a downstream effect of the pathological changes in brain. 
The true effect direction can only be determined in mechanistic follow-up studies or by genetic 
causality analysis such as Mendelian randomization67, for which our study did not have the 
necessary statistical power. Second, postmortem tissue samples are prone to substantial 
biological and technical variation, as seen in the association of 307 out of 667 metabolites with 
postmortem interval (PMI), i.e., the time between death and sample preservation. Despite the 
statistical correction for PMI interval, degradation of certain metabolites until sample preservation 
is a factor that cannot be controlled in this type of study.  
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Follow-up studies will be needed to build upon our findings, to complete the picture of 
dysregulated metabolism and pathological pathways in the Alzheimer’s disease brain. In 
particular, the wide availability of multi-omics datasets will provide a more holistic picture of the 
molecular changes associated with the disease68–70. The integration of proteomics data into the 
glutamate/GABA pathway exploration in our study represents a pilot analysis in this direction; 
however, large-scale studies with an “ome-wide” integration of the (epi-)genome, transcriptome, 
proteome, and metabolome are required to further elucidate the mechanistic basis of AD 
pathogenesis and outline potential treatment options. To enable these efforts, we published raw 
and processed metabolomics data through the AD Knowledge Portal provide all analysis codes, 
as well as the interactive reference catalog of hundreds of associations reported in this study in 
an accompanying web portal to the research community. 
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4 Methods 

4.1 Cohorts, clinical data, and neuropathological data 
ROS/MAP cohort: The Religious Order Study (ROS) and Rush Memory and Aging Project (MAP) 
cohorts11,12 are two longitudinal, clinicopathologic studies conducted by the Rush Alzheimer’s 
Disease Center. ROS started in 1994 with the recruitment of individuals from religious 
communities across the United States. MAP started in 1997 with the recruitment of individuals 
from a wide range of backgrounds and socio-economic statuses from northeastern Illinois. Both 
cohorts were approved by an institutional review board of Rush University Medical Center. Both 
studies focus on older individuals who agreed to longitudinal clinical analysis and brain donation 
after death. All participants signed an informed consent, an Anatomic Gift Act, and a repository 
consent to allow their data and biospecimens to be shared. Following enrollment in the study, 
participants were evaluated for physical and cognitive function annually. After death, pathologic 
assessment was performed. 514 samples from DLPFC brain region were used for metabolomics 
profiling, along with associated metadata, including medications taken during lifetime, age at 
death, sex, BMI, postmortem interval, APOE genotype status, education history, cognitive scores 
during lifetime, cognitive decline (computed-based on longitudinal cognitive scores), clinical 
diagnosis at death, b-amyloid and tau protein load in brain tissue, global burden of AD 
neuropathology (mean of neuritic plaques, diffuse plaques, and neurofibrillary tangles), NIA-
Reagan score, Braak stage and CERAD score. Neuropathological diagnosis was derived using 
the following criteria: AD case status was assigned where Braak stage was ≥ 4 and CERAD score 
was ≤ 2; control case status was assigned where Braak stage was ≤ 3 and CERAD score was 
≥ 3. All clinical parameters have previously been described in detail71.  

Mayo Clinic cohort: 84 samples from the temporal cortex brain region were obtained from the 
Mayo Clinic Brain Bank. Details on this cohort have been provided in previous studies72,73. All 
samples received diagnoses at autopsy following neuropathologic evaluation. Briefly, 64 samples 
had neuropathologic diagnosis of AD with Braak ³4.0 and 20 control samples had Braak £3 and 
without any neurodegenerative diagnoses. All 84 samples were from North Americans of 
European descent with ages at death ³60 for AD and ³53 for controls. 
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Cohort differences: Three cohorts were used in this publication - ROS/MAP for discovery, Mayo 
brain clinical cohort for replication and a published Baltimore Longitudinal Study of Aging (BLSA) 
based study5 for comparison. These cohorts have fundamental differences: (a) Participant 
recruitment. BLSA is an aging study, Mayo Clinic samples are from an archival brain bank with 
neuropathologic diagnoses of AD and control, while ROS/MAP recruited older people. (b) AD-
related traits. Mayo has diagnosis determined by neuropathology and BLSA has diagnosis 
determined based on neuropathology and cognitive conditions. ROS/MAP records several 
neuropathological as well as cognitive scores. (c) Unlike the other two cohorts, ROS/MAP collects 
various lifetime variables longitudinally, including cognitive scores, lifestyle, medications taken by 
participants. (d) Sample sizes were lower in BLSA (43), and Mayo (84), compared to ROS/MAP 
(514). (e) Different brain regions were profiled. BLSA sampled frontal and temporal gyrus, Mayo 
the superior temporal gyrus of the temporal cortex, and ROS/MAP the dorsolateral prefrontal 
cortex (DLPFC). 

4.2 Metabolomics profiling 
Brain metabolic profiles were measured using the untargeted metabolomics platform from 
Metabolon Inc. Briefly, tissue samples were divided into four fractions; two for ultra-high 
performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS; positive 
ionization), one for UPLC-MS/MS (negative ionization), and one for a UPLC-MS/MS polar 
platform (negative ionization). Peaks were quantified using the area-under-the-curve in the 
spectra. To account for run-day variations, peak abundances were normalized by their respective 
run-day medians. Compounds were identified using an internal spectral database. A detailed 
description of all experimental procedures can be found in supplementary information. 

4.3 Data preprocessing 
ROS/MAP and Mayo metabolomics: Metabolites with over 25% missing values were filtered 
out, leaving 667 out of an original 1,055 metabolites for ROS/MAP and 664 out of 827 for Mayo. 
Probabilistic quotient normalization was applied to correct for sample-wise variation74, followed 
by log2 transformation. Remaining missing values were imputed using a k-nearest-neighbor-
based algorithm19. Outlier samples in the data were removed using the local outlier factor 
method75 implemented in the R package bigutilsr. To account for remaining irregularly high or low 
single concentrations, values with absolute abundance above q = abs(qnorm(0.0125/n)), with n 
representing the number of samples, were set to missing. This formula finds the cutoff for values 
with less than 2.5% two-tailed probability to originate from the same normal distribution as the 
rest of the measurement values, after applying a Bonferroni-inspired correction factor (division by 
sample size). These new missing values were then imputed by another round of the k-nearest-
neighbor algorithm.  
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ROS/MAP proteomics: Proteomics data was downloaded from the AMP-AD Knowledge Portal 
(https://adknowledgeportal.synapse.org), details of proteomic profiling and data processing can 
be found in the original publication76. Briefly, data were log2-transformed and corrected for batch 
effects using ‘median polish’ approach. In our analysis, proteins with over 25% missing values 
were filtered out and remaining missing values were imputed using a k-nearest-neighbor-based 
algorithm19. Outliers were treated with same approach as the metabolomics data (see above).  

Medication correction: For the ROS/MAP cohort, all prescription and over the counter 
medications were collected at each study visit. To account for influences of these medications on 
metabolomics and proteomics, a linear stepwise backward selection approach was used4. All 
preprocessing steps were performed using the maplet R package77.  

4.4 Differential analysis of metabolites and proteins 
ROS/MAP: Five outliers identified by the local outlier factor method, six samples with missing 
medication information, 1 sample with missing BMI and 2 samples with missing APOE genotype 
status were removed from further analysis. Therefore, after preprocessing, 500 samples were 
used for metabolic analysis and 262 matching samples were used for proteomic analysis. 
Metabolite and protein associations were computed using generalized linear models with the traits 
as response variables and molecule levels as predictors. For statistical analysis, the following 
transformations were made: Square root of b-amyloid load and binarized NIA-Reagan score (0 – 
low likelihood of AD, 1 – high likelihood of AD). For the association analysis with clinical diagnosis, 
8 non-AD related dementia samples were removed. Appropriate link functions were used 
according to the respective variable types, i.e., identity link function for continuous traits (regular 
linear regression for b-amyloid, tau tangles, global burden of pathology, cognition levels, cognitive 
decline), logit for binary traits (logistic regression for NIA-Reagan score and NP diagnosis), and 
probit for the ordinal trait (ordinal regression for clinical diagnosis after death). All models 
accounted for confounding effects of age, sex, BMI, postmortem interval, number of years of 
education, and number of APOE ε4 alleles. Notably, age, sex, years of education did not show 
much influence on metabolic profiles of cognitively normal samples, but are known confounders 
of AD3, justifying the correction in the models. To account for multiple hypothesis testing, p-values 
were corrected using the Benjamini-Hochberg (BH) method78. Cognitive decline and cognition 
levels are inversely related to AD, and thus the direction of association was reversed for those 
two traits after statistical analysis.   
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Mayo: One AD sample with missing APOE genotype status was removed from further analysis. 
Therefore, after preprocessing, 63 AD and 20 control samples with complete information on age 
at death, APOE ε4 allele status, and sex were used for our analysis. For replication, metabolites 
that associated with any of the eight AD-related traits in ROS/MAP cohort at 5% FDR were 
selected. The analysis was performed using two subsequent logistic regressions with diagnosis 
as outcome. The first model was built without any confounder correction. To account for multiple 
hypothesis testing, p-values were corrected using the Benjamini-Hochberg (BH) method78. 
Metabolites with adjusted p-values < 0.05 were selected for the second model. The second model 
was built with confounders sex, number of APOE ε4 alleles, and age at death. Metabolites with 
nominal p-values < 0.05 in the second model were considered replicated. All analyses were 
performed using the maplet R package77. 

4.5 Stratified analysis 
To determine the influence of sex and APOE ε4 status on metabolic associations, we performed 
a stratified analysis per factor (sex and APOE ε4 status) for each AD-related trait. Metabolites 
significant at 5% FDR were selected to compute within-group (male/female, APOE ε4+/ APOE ε4-) 
metabolic associations with AD-related traits. b estimates across groups per metabolite were 

compared using z-scores13, defined as  𝑧 = 	
b!"#$%&!	b!"#$%'

#$%!"#$%&'&$%!"#$%''
, where b'()*+, and b'()*+- are 

the b coefficients from the linear regressions performed in the two groups, and 𝑠𝑒'()*+, and 
𝑠𝑒'()*+- are the corresponding standard errors. Z-scores are approximately standard normally 
distributed and were thus used to compute p-values using a normal distribution. Any metabolite 
with a nominal p-value < 0.05 was considered significantly different within the respective group.  

4.6 Metabolic network inference 
To infer the metabolite-metabolite interaction network, a partial correlation-based Gaussian 
graphical model (GGM) was computed using the GeneNet R package79. P-values of partial 
correlations were corrected using the Bonferroni method. Partial correlations with adjusted 
p-values < 0.05 were used for network construction between metabolites. To annotate the 
metabolic network with AD associations, a score was computed for each metabolite/trait 
combination as follows: 𝑝$.)(% = 𝑑 ∗ (−1 ∗ log,/(𝑝. 𝑎𝑑𝑗)), where 𝑝. 𝑎𝑑𝑗 is the adjusted p-value of 
the model, and d is direction (-1/1) of metabolite association based on test statistic (positive or 
negative correlation with AD-related trait). To aggregate the signal across the traits, an overall 
score was defined as the pscore with maximum absolute value. This overall score was used to color 
the nodes in GGM in Figure 2f and the online supplement. 
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Data availability 
The data used in this paper can to be obtained from two sources: (1) Metabolomics data for the 
ROS/MAP and Mayo cohorts, clinical data for the Mayo cohort, and proteomics data for the 
ROS/MAP cohort are available via the AD Knowledge Portal (https://adknowledgeportal.org). The 
AD Knowledge Portal is a platform for accessing data, analyses, and tools generated by the 
Accelerating Medicines Partnership (AMP-AD) Target Discovery Program and other National 
Institute on Aging (NIA)-supported programs to enable open-science practices and accelerate 
translational learning. The data, analyses and tools are shared early in the research cycle without 
a publication embargo on secondary use. Data is available for general research use according to 
the following requirements for data access and data attribution 
(https://adknowledgeportal.org/DataAccess/Instructions). For access to content described in this 
manuscript see: http://doi.org/10.7303/syn26401311. (2) The full complement of clinical and 
demographic data for the ROS/MAP cohort are available via the Rush AD Center Resource 
Sharing Hub and can be requested at https://www.radc.rush.edu. 

An interactive network view of AD associations from this study can be found at 
https://omicscience.org/apps/brainmwas/. 

All R scripts to generate the tables and figures of this paper are available at 
https://github.com/krumsieklab/ad-brain-landscape. 
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