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 2 

Abstract: 1 

 2 

Edited MRS sequences are widely used for studying GABA in the human brain. 3 

Several algorithms are available for modelling these data, deriving metabolite concentration 4 

estimates through peak fitting or a linear combination of basis spectra. The present study 5 

compares seven such algorithms, using data obtained in a large multi-site study. 6 

GABA-edited (GABA+, TE = 68 ms MEGA-PRESS) data from 222 subjects at 20 sites 7 

were processed via a standardised pipeline, before modelling with FSL-MRS, Gannet, 8 

AMARES, QUEST, LCModel, Osprey and Tarquin, using standardised vendor-specific basis 9 

sets (for GE, Philips and Siemens) where appropriate. 10 

After referencing metabolite estimates (to water or creatine), systematic differences 11 

in scale were observed between datasets acquired on different vendors’ hardware, 12 

presenting across algorithms. Scale differences across algorithms were also observed. 13 

Using the correlation between metabolite estimates and voxel tissue fraction as a 14 

benchmark, most algorithms were found to be similarly effective in detecting differences in 15 

GABA+. An inter-class correlation across all algorithms showed single-rater consistency for 16 

GABA+ estimates of around 0.38, indicating moderate agreement. Upon inclusion of a basis 17 

set component explicitly modelling the macromolecule signal underlying the observed 3.0 18 

ppm GABA peaks, single-rater consistency improved to 0.44. Correlation between discrete 19 

pairs of algorithms varied, and was concerningly weak in some cases. 20 

Our findings highlight the need for consensus on appropriate modelling parameters 21 

across different algorithms, and for detailed reporting of the parameters adopted in 22 

individual studies to ensure reproducibility and meaningful comparison of outcomes 23 

between different studies. 24 

  25 
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 3 

Keywords: 1 

 2 

MRS; GABA; spectral editing; MEGA-PRESS; quantification; macromolecule 3 

 4 

 5 

 6 

Highlights: 7 

 8 

• GABA-edited MRS data from 222 healthy adults across 20 research sites were 9 

analyzed 10 

• Data were modelled using seven different algorithms, yielding GABA+ and Glx 11 

estimates 12 

• Moderate agreement was seen across all the tested algorithms 13 

• Adding a component to represent co-edited macromolecule signals improved 14 

concordance 15 

• Baseline modelling emerged as major factor differentiating outcomes  16 

  17 
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 4 

List of Abbreviations 1 

 2 

3 
Cho choline 4 
CI confidence interval 5 
Cr creatine 6 
CRLB Cramér-Rao lower bound for uncertainty 7 
diff difference (edited) spectrum 8 
ECC eddy-current correction 9 
FD frequency domain 10 
FID free induction decay (observed time-domain signal) 11 
FWHM linewidth: full width at half maximum 12 
GABA γ-aminobutyric acid 13 
GABA+ total edited signal at 3 ppm; GABA with underlying coedited signals 14 
Gln glutamine 15 
Glu glutamate 16 
Glx combined signal of glutamate + glutamine 17 
GSH glutathione 18 
H2O (noTC) water (noTC: referenced without tissue class correction) 19 
HSVD Hankel singular value decomposition 20 
i.u. institutional units 21 
ICC intra-class correlation coefficient 22 
LCM linear combination modelling 23 
MAD median absolute deviation 24 
MEGA-PRESS Mescher–Garwood point-resolved spectroscopy 25 
MMx(y) macromolecule signal around x(.y) ppm 26 
NAA N-acetylaspartate 27 
NAAG N-acetylaspartylglutamate 28 
pholm Holm-Bonferroni adjusted p-value 29 
ppm parts per million 30 
Q-Q quantile-quantile 31 
R1-4 adopted rejection criteria; see methods section 32 
SD standard deviation 33 
SNR signal-to-noise ratio 34 
tCr total creatine (creatine+phosphocreatine) 35 
TD time domain 36 
VPC variance partition coefficients 37 

 38 

  39 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 19, 2021. ; https://doi.org/10.1101/2021.11.15.468534doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.15.468534
http://creativecommons.org/licenses/by-nc-nd/4.0/


 5 

 1 

1  Introduction 2 

 3 

Several software packages and modelling algorithms are available for processing and 4 

quantifying MR spectroscopy (MRS) data. While they are all designed to extract quantitative 5 

estimates of metabolite levels from spectra, the packages differ significantly in their 6 

approach to processing and modelling the underlying data, and isolating the components of 7 

interest from any artefactual signals therein. This may give rise to systematic differences in 8 

metabolite estimates between different software packages. While an effect of “choice of 9 

software” has been documented for short-echo-time data 1–4, similar studies for GABA-10 

edited MRS quantification are lacking. 11 

Spectral editing experiments 5,6, such as the widely used MEGA-PRESS for the 12 

selective detection of GABA, present a special case for quantification. In a typical MEGA-13 

PRESS editing sequence, two interleaved sub-spectra are acquired: the edit-ON sub-14 

spectrum in which coupling to GABA spins at 3 ppm is refocused, and the edit-OFF sub-15 

spectrum in which it is not. Subtracting the edit-ON and edit-OFF sub-spectra yields a 16 

relatively sparse difference spectrum, featuring prominent broad signal for GABA (with 17 

underlying macromolecule contributions) at 3 ppm and co-edited signals including glutamate 18 

(Glu) and glutamine (Gln) peaks (usually reported collectively as Glx) around 3.75 ppm, and 19 

strong negative peaks close to the editing frequency (primarily N-acetylaspartate (NAA) and 20 

N-acetylaspartylglutamate (NAAG)). 21 

Most notable among the challenges for modelling edited spectra are co-edited 22 

macromolecular signals coupled to spins near the editing frequency 6, some of which appear 23 

in the same frequency range as the GABA and Glx signals and therefore interfere with their 24 

unambiguous modelling. As they are broad and poorly characterized, no consensus currently 25 

exists on how they should be accounted for in the modelling stage. Constrained by the 26 

inability to reliably separate GABA and macromolecules, their composite (GABA+) is 27 

commonly reported. 28 

A rigorous assessment of the comparability of GABA+ estimates obtained across a 29 

range of different analysis software packages is currently lacking. Several prior studies, 30 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 19, 2021. ; https://doi.org/10.1101/2021.11.15.468534doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.15.468534
http://creativecommons.org/licenses/by-nc-nd/4.0/


 6 

including 7–10, have investigated test-retest reproducibility of GABA+ estimates using a small 1 

selection of available software packages, but without detailed examination of the 2 

differences in estimates arising between software packages. Each considered data from a 3 

single site only. Another study 11 has investigated GABA+ estimates from Gannet and Tarquin 4 

compared to a simulated “ground truth”, specifically with respect to the influence of signal-5 

to-noise ratio (SNR) and linewidth on estimates, showing that the two algorithms agreed 6 

under favourable conditions of linewidth and signal-to-noise ratio but diverged under poorer 7 

conditions – however, only two algorithms were included in this analysis. A recent 8 

conference paper 12 has reported early findings from GABA-edited MEGA-PRESS data 9 

showing moderate associations between five different algorithms, with data from four sites 10 

(representing two scanner vendors), albeit with divergent processing. A more thorough 11 

examination, covering a broader range of sites and an extended selection of contemporary 12 

algorithms is required to better characterise the noted discrepancies. 13 

Therefore, to establish the degree to which different software packages agree in 14 

estimating GABA+ from MEGA-PRESS data, this study compares GABA+ estimates from 15 

seven modelling algorithms: FSL-MRS 13, Gannet 14, LCModel 15, Osprey 16, Tarquin 17,18, 16 

AMARES 19, and QUEST 20,21, with the last two implemented in the jMRUI software package 17 

22,23. Estimates of Glx from the difference spectra are also considered. Detailed 18 

characterisation of differences observable across algorithms is essential for meaningful 19 

comparison of findings reported from different tools, and particularly in reconciling any 20 

discrepancies therein. 21 

2 Methods 22 

2.1 Data 23 

Data from twenty 3T MRI scanners from the three major manufacturers (GE, Philips, 24 

Siemens), each at a different site, were obtained from the Big GABA 24,25 repository on 25 

NITRC, https://www.nitrc.org/projects/biggaba. GABA-edited spectra (TR/TE = 2000/68 ms, 26 

320 averages, editing at 1.9/7.46 ppm for edit-ON/-OFF, respectively) and corresponding 27 

water-unsuppressed reference data (8 or 16 averages) were obtained from a 3 x 3 x 3 cm3 28 

voxel in the posterior cingulate region, from 222 consenting adult volunteers (18-36 years of 29 

age, approximately even female/male split, having no known neurological or psychiatric 30 
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 7 

illness), in accordance with ethical standards of their respective local institutional review 1 

boards (IRB). Subjects consented to the sharing of anonymized data, with allowance for 2 

further study. Datasets also included T1-weighted structural MR images, which were used for 3 

tissue segmentation. 4 

This extensive collection of datasets was acquired in an international collaborative 5 

study; several aspects have been previously reported 24–26, with a focus on comparability 6 

across sites and vendors. Full details on the acquisition protocol, software and hardware 7 

configurations and sample composition may be found in these papers, and are summarised 8 

in Supplementary Table 1. Detailed vendor-specific parameters have been reported 9 

previously 25,27. 10 

2.2 Processing 11 

To the maximum extent practical, data were prepared for each algorithm using a 12 

common pipeline, to avoid variations in processing that might otherwise confound 13 

observations regarding the model fit. Original data in vendor-specific format were imported 14 

using the GannetLoad function from Gannet (v3.1). The GannetLoad function was chosen 15 

due to it having the broadest support for the diverse file formats and sequence 16 

implementations present in these datasets. This function applies coil combination where 17 

necessary, and initial categorisation of individual FIDs into edit-ON/OFF sub-spectra and 18 

water reference spectra. Although GannetLoad also incorporates a full processing pipeline, 19 

we did not make use of this, instead electing to implement a generalised pipeline in 20 

accordance with current consensus recommendations 28, using the processing tools from 21 

FID-A 29. The rationale for this was to provide a common, neutral starting point for 22 

quantification across all the algorithms to be assessed, rather than one which may have 23 

been tuned for a particular quantification algorithm. Additionally, the standard Gannet 24 

pipeline performs line-broadening and zero-filling, which invalidates assumptions for error 25 

calculations in linear-combination modelling algorithms such as LCModel. 26 

Initially, motion-corrupted transients were removed by comparing the root mean 27 

square of the difference between each transient and the median of transients in the time 28 

domain, rejecting those which differed from the mean by more than four standard 29 

deviations. This unlikeness metric was calculated independently within the edit-ON and edit-30 
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 8 

OFF sub-spectra but applied pairwise. To correct for frequency and phase drift, the 1 

remaining FIDs were then aligned in the frequency domain using the spectral registration 2 

method 30, iteratively on a variable, restricted frequency range (~1.6-5.5 ppm in the first 3 

iteration, reducing to ~1.8-4.0 ppm in subsequent iterations), before averaging within the 4 

edit-ON and edit-OFF sub-spectra. Eddy-current correction (ECC) was applied 31, before zero-5 

order phase adjustment of each sub-spectrum according to a dual-Lorentzian model for 6 

creatine and choline defined in Gannet 14 and implemented in Osprey. Thereafter, edit-ON 7 

and edit-OFF sub-spectra were aligned by spectral registration 30, and sum and difference 8 

spectra were calculated arithmetically on the time domain data, dividing by the number of 9 

sub-spectra. All resultant spectra and sub-spectra were frequency-shifted such that the main 10 

creatine peak (from the dual-Lorentzian model for creatine and choline) in the sum spectrum 11 

appeared at 3.027 ppm. After calculation of the difference spectrum, residual water was 12 

filtered from edit-ON and edit-OFF data separately with the HSVD method 32. A final 13 

automated check was performed to ensure correct ON/OFF ordering and orientation of all 14 

resultant spectra, flipping where necessary. Processed data were exported with the same 15 

resolution (number of samples and sweep width/dwell time) as the incoming data, without 16 

line-broadening or zero-filling. Processing and modelling workflow are summarised in Figure 17 

1. 18 
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 9 

 1 

Figure 1: Processing (b) and modelling (c) workflow, summarising key differences between the algorithms assessed.  2 

2.2.1 Quality Control: Processing 3 

Processed spectra were tested against two rejection criteria, designated R1 and R2 in 4 

subsequent usage: 5 

• R1 captures spectra having strongly aberrant features in the fit range: 6 

processing was deemed to have failed if the 0-lag cross-correlation of the 7 

normalized, reconstructed frequency domain difference spectrum in the 8 

metabolite range (2.6-4.2 ppm) with the normalized mean of all other 9 

difference spectra was below 0.5 or differed from the group mean by more 10 

than three standard deviations.  11 

• R2 establishes thresholds on basic signal quality metrics: SNR (< 80, defined 12 

by maximum peak height around NAAdiff in the [1.8, 2.2] ppm interval, over 13 

standard deviation over the [-2, 0] ppm range) and linewidth (FWHM > 10 Hz, 14 

33) measured from NAAdiff.  15 
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 10 

Data deemed to have failed at the processing stage were still passed to the fit 1 

algorithms but flagged as having failed and excluded from evaluation of groupwise statistics 2 

(such as median estimates) in further analysis.  3 

2.3 Initial Fit and Quantification 4 

Identically processed data were fed into each algorithm. To the maximum extent 5 

practical, data were modelled using the developer-supplied default or recommended 6 

configuration parameters for GABA-edited MEGA-PRESS data, to yield outcomes 7 

representative of those which researchers could expect without extensive local optimisation.  8 

Batch processing for all algorithms was automated in Matlab (v2019a), with the 9 

exception of the jMRUI-based algorithms for which processed data were exported then 10 

processed as batches (grouped by manufacturer and spectral resolution) in a standardised 11 

but manual procedure through the jMRUI user interface. As the commonly used default 12 

processing pipeline for Gannet incorporates zero-fill and line-broadening factors not present 13 

in the standardised pipeline adopted here, we report outcomes both from the standardised 14 

processing pipeline (hereafter denoted “Gannet”), and from data processed with Gannet’s 15 

own default pipeline, denoted “Gannet (native)”. Tarquin fitting is often performed with an 16 

internally simulated basis set; we also assess outcomes from this mode of operation, 17 

hereafter denoted “Tarquin (internal)”. 18 

Full details on the operation of each method are supplied in the Supplementary 19 

Material, section C for quantification of the edited difference spectra. To facilitate 20 

concentration scaling to an internal creatine reference, corresponding edit-OFF sub-spectra 21 

are also modelled; this is described in the Supplementary Material, section E. Concentration 22 

estimates are reported both relative to total creatine (tCr), and with respect to an internal 23 

water reference; the complexities and relative merits of each approach are described in 28.  24 

As specifics of each algorithm’s water referencing procedure varied considerably, 25 

scaling as documented for the respective algorithms was first reversed to yield a raw ratio of 26 

signal intensities, before applying tissue-class correction 34 using previously derived tissue 27 

fractions 24. Full details on the adjustment for each algorithm are provided in the 28 

Supplementary Material, section D. Water-scaled, tissue-class corrected molar concentration 29 
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estimates are hereafter denoted “/H2O”; concentration estimates scaled to water with no 1 

adjustment for tissue class (assuming pure water concentration per eq(3) of 35) are also 2 

calculated, denoted “/H2OnoTC”. 3 

2.3.1 Basis Set Preparation and Prior Knowledge 4 

All the algorithms examined require some degree of prior knowledge to describe 5 

expected spectral features, either in the form of parameter constraints or simulated basis 6 

sets. In the present study, prior knowledge was standardised as far as possible: all algorithms 7 

requiring a basis set were supplied with the same simulated basis set appropriate to the 8 

dataset, whilst both algorithms parameterising individual peaks (Gannet and AMARES) were 9 

supplied with similar model parameters. 10 

For comparison of the basis set algorithms (FSL-MRS, LCModel, Osprey, QUEST and 11 

Tarquin), a standard simulated basis set specific to each hardware vendor was adopted. As a 12 

starting point, vendor-specific basis sets for GABA-edited MEGA-PRESS (TE = 68 ms) that are 13 

distributed with Osprey were used; these are derived from fast spatially resolved 2D density-14 

matrix simulations 36 implemented in FID-A using ideal excitation pulses and vendor-specific 15 

refocusing pulses and timings, and using chemical shifts and J-coupling coefficients from 16 

Kaiser et al. 37. These incorporated metabolite basis functions for GABA, Glu, Gln, glutathione 17 

(GSH), NAA, NAAG and a Gaussian component (FWHM = 10.9 Hz) representing co-edited 18 

macromolecules around 0.91 ppm (MM09ex). 19 

A variation of this basis set was created, incorporating an additional Gaussian 20 

component at 3.0 ppm (simulated with FWHM = 14 Hz and scaled intensity equivalent to 21 

two protons) to represent co-edited macromolecule signal underlying the GABA peak around 22 

3.0 ppm. This component, denoted MM3co, allowed the influence of macromolecule 23 

modelling on the various algorithms to be examined; subsequent use of this basis set is 24 

annotated with “+MM3”. The interaction of this component with baseline stiffness and soft 25 

constraint models similar to those of 38–40 is explored for Osprey and LCModel in a 26 

supplementary analysis, section B. All basis set algorithms were run both with and without 27 

the MM3 component; in all cases, the reported “GABA+” values include contributions from 28 

the underlying macromolecule signal, either explicitly in cases where the MM3 component 29 

was modelled (i.e., GABA + MM3co), or implicitly in cases where it was not. 30 
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2.3.2 Quality Control: Modelling 1 

The available quality metrics vary between algorithms; all except Osprey report some 2 

form of modelling uncertainty (%SD, %CRLB of metabolite estimates, or % Fit Error for the 3 

model), and most report SNR and linewidth of water and/or some metabolite components. 4 

As specifics of each algorithm’s SNR and linewidth calculation vary, independently derived 5 

values are assessed at the processing stage (R2, section 2.2.1). Adopting rather liberal 6 

criteria, individual fits were flagged as having failed if either of the following additional 7 

criteria were met; in cases where a given metric was not available, the condition is ignored. 8 

Criteria below are designated R3 and R4 for subsequent usage. 9 

• R3: %SD, CRLB or FitError for GABA+, Glxdiff or tCredit_off estimate exceeded 10 

50% (per 33,41, acknowledging that this strategy must be used with caution 42) 11 

• R4: Final, scaled estimate for any target metabolite (GABA+/H2O, Glxdiff/H2O, 12 

GABA+/tCredit_off , Glxdiff/tCredit_off) differing from the median value by more 13 

than 5 times the median absolute deviation (MAD) 43 for that algorithm; this 14 

was intended to capture any poor fits not flagged by any other criteria. 15 

Visual inspection of data, fit outcomes and residuals was also performed, to confirm 16 

that no grossly aberrant outcomes eluded the defined rejection criteria. All subsequent 17 

analyses are performed after exclusion of individual algorithms’ fits (not entire subject 18 

datasets) per these criteria. 19 

2.4 Statistical Analysis of Modelling Outcomes 20 

After batch modelling, statistical analysis was performed using locally implemented 21 

scripts written in Python (v3.7.3), using the pandas 44 (v0.23.3) data analysis framework, with 22 

numeric methods from NumPy 45, and statistical methods from the SciPy 46 (v1.1.0), pingouin 23 

47 and statsmodels 48 (v0.12.1) libraries. 24 

Scaled estimates for target metabolite, grouped by algorithm, were tested for 25 

normality using the Shapiro-Wilk method 49, and for comparable distribution of variance 26 

between algorithms by the Fligner-Killeen’s test 50, both implemented in SciPy. Limits of 27 

agreement between pairs of algorithms were derived, along with their 95% confidence 28 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 19, 2021. ; https://doi.org/10.1101/2021.11.15.468534doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.15.468534
http://creativecommons.org/licenses/by-nc-nd/4.0/


 13 

intervals, in accordance with the Bland-Altman method 51. Estimates grouped by algorithm 1 

and manufacturer were compared using Welch’s t-test 52, with Holm-Bonferroni correction 2 

53,54 for multiple comparisons. An adjusted p-value less than 0.05 was considered significant. 3 

An unconditional linear mixed-effects model was fit to water-referenced GABA+ 4 

estimates, using R version 3.5.3 55 with the lme4 package 56 and an implementation derived 5 

from 25. Vendor, site, algorithm and subject factors were incorporated into the fit, to 6 

calculate variance partition coefficients (VPCs) estimating the proportion of total variance 7 

attributable to each factor. Significance testing was performed using chi-square likelihood 8 

ratio tests, against a null hypothesis simulated by parametric bootstrapping (2000 9 

simulations) 57. The Big GABA dataset described herein has previously been assessed with 10 

respect to demographics and signal quality 24. 11 

For each metabolite of interest, a global median was calculated across all subjects 12 

and all algorithms. Subsequently, estimates grouped by site and algorithm were linearly 13 

scaled to match the global median, thereby removing broad scaling differences observed 14 

between certain sites, vendors and algorithms which would otherwise bias inter-algorithm 15 

correlations. 16 

The degree of correlation between MRS-detected GABA estimates and voxel tissue 17 

fraction has been shown to be an effective index of GABA estimation accuracy 35, given the 18 

differing GABA concentrations between grey and white matter 58–60. Building on this 19 

approach, robust Spearman correlation coefficients between voxel grey matter fraction and 20 

GABA+/H2OnoTCestimates were calculated using the ‘skipped’ method 61,62, implemented in 21 

pingouin, to exclude bivariate outliers. To determine whether correlation coefficients 22 

obtained for any one of the algorithms differed significantly from the correlation obtained 23 

across all algorithms, z-scored coefficients were compared (two-tailed), with a significance 24 

level of pholm < 0.05; similarly, z-scored coefficients were compared between variants without 25 

and with the MM3 macromolecule component in the basis set.  26 

Finally, intraclass correlation coefficients (ICCs) were calculated between all 27 

algorithms, separately without and with the MM3 component for basis set algorithms, and 28 

between pairs of algorithms, using a two-way mixed-effects model for single-rater 29 

consistency (ICC(3,1) implemented in pingouin). 30 
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3 Results 1 

3.1 Fit and Residuals 2 

Mean fit outcomes for each algorithm are presented in Figure 2. Note that all basis 3 

set algorithms without MM3, except QUEST, show strong residuals in the 3 ppm range; in 4 

the case of Osprey (Figure 2f), this appears to have a strong influence on baseline in the 5 

vicinity. Variants with MM3 show generally reduced residuals in that range, indicating that 6 

the inclusion of a dedicated MM3 basis function leads to more appropriate modelling of the 7 

data. 8 

A characteristic hump around 3.2 ppm is handled differently by the various 9 

algorithms: peak fitting algorithms Gannet and AMARES, (Figure 2b,c) are largely 10 

unperturbed, QUEST (Figure 2d) envelopes the entire signal with  broader 3.0 ppm peak, 11 

while other algorithms fall somewhere in between. 12 

A notable difference between algorithms arises from the differences in baseline 13 

estimation practices. While AMARES, QUEST, and LCModel do not include a baseline term in 14 

their default settings for MEGA-PRESS and Gannet and FSL-MRS adopt relatively stiff, low-15 

order models, both Tarquin and Osprey attribute a considerable fraction of the edited 3-ppm 16 

signal to the baseline. This tendency is mitigated upon the inclusion of the MM3 model. 17 

Finally, there is a distinct pattern to the residuals around the Glx peaks from all basis 18 

set algorithms, not present in the fits applying simple peak fitting on a restricted frequency 19 

range (Gannet, AMARES).  20 

A summary of basic quality metrics from the fit spectra is presented in 21 

Supplementary Figure 6, along with the number of spectra rejected according to the defined 22 

criteria (per sections 2.2.1 and 2.3.2). 23 

 24 
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 1 

Figure 2 Average metabolite and baseline (where applicable) models with corresponding residuals for the GABA+ edited 2 
spectra, for each algorithm. Vertical scaling is normalised; outcomes over the full fit range are presented in Supplementary 3 
Figure 8; outcomes split by vendor are presented in Supplementary Figure 9.  4 

 5 

3.2 Statistical Analysis 6 

Shapiro-Wilk testing and subsequent inspection of quantile-quantile (Q-Q) plots 7 

indicated that while concentration estimates from most algorithms satisfied the assumption 8 

of a normal distribution, several (predominantly Glxdiff/tCr estimates) deviated slightly from 9 

this. Fligner-Killeen tests revealed mismatched variances between several sets of estimates 10 

(predominantly relating to QUEST and LCModel +MM3), which motivated the subsequent 11 

adoption of Welch’s t-test for groupwise comparisons. 12 
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3.2.1 Water-referenced concentration estimates 1 

Comparisons between algorithms for GABA+/H2O are summarised in Figure 3, with 2 

full details in Supplementary Table 6, and Bland-Altman plots describing limits of agreement 3 

in Supplementary Figure 10. The global median estimate for GABA+/H2O across all 4 

algorithms and subjects was found to be 3.2 ± 0.4 i.u.. 5 

For several quantification algorithms, water-referenced estimates for GABA+/H2O 6 

were found to be significantly higher from Siemens datasets than from other manufacturers, 7 

by a factor of 9-17% (pholm<0.001, depending on the algorithm) for FSL-MRS (+MM3), 8 

Gannet, Gannet (native), AMARES and LCModel, increased to 41% (pholm<0.001) for QUEST. 9 

Osprey gave significantly lower estimates for Siemens datasets (-28.0%, pholm<0.001). QUEST 10 

(and the +MM3 variant) gave significantly lower estimates for Philips datasets (-16.1% and -11 

7.7% respectively, pholm<0.001), and AMARES and Gannet (native) gave lower estimates for 12 

GE datasets (-9.5%, pholm<0.01 and -8.5%, pholm<0.05 respectively). Median GABA+ estimate 13 

across all algorithms was 5.8% higher for Siemens sites (pholm<0.01). All differences are 14 

expressed relative to the mean across all subjects for the respective algorithm. No other 15 

variants showed significant effects. 16 

Water-referenced Glxdiff estimates from all algorithms were significantly higher for 17 

Siemens sites: median Glxdiff/H2O across algorithms +15.7%, pholm<0.001 relative to group 18 

mean. Estimates from Philips sites were somewhat lower (-10.1%, pholm<0.01). 19 

 20 

Figure 3: Distribution of GABA+/H2O estimates from each algorithm, grouped by manufacturer. Global median is shown in 21 
dashed black. 22 
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For data fit without the explicit MM3 component, the unconditional linear mixed-1 

effects model yielded VPCs of [33.8, 16.4, 6.4, 4.0%] for algorithm, site, subject and vendor 2 

factors respectively. In this context, the “subject” factor reflects systematic within-subject 3 

variation in estimates, while the residual 39.4% accounts for inherent, systematic between-4 

subject variation, as well as any other variance which could not be accounted for in the 5 

model. Parametric bootstrap testing showed all factors to be significant (pholm<0.001). 6 

3.2.2 Metabolite-referenced concentration estimates 7 

Estimates for GABA+/tCredit_off were consistently higher for GE datasets (+17.3% 8 

across algorithms, pholm<0.001) and lower for Siemens datasets (-14.3%, pholm<0.001). 9 

Glxdiff/tCredit_off  ratios were higher in GE datasets (21.9%, pholm<0.001) and slightly lower in 10 

Philips (-5.0%, pholm<0.05) and Siemens (-6.7%, pholm<0.05) datasets. As in section 3.2.1, 11 

differences are quoted relative to the mean estimate across all subjects for the respective 12 

algorithm. All these trends presented similarly across all modelling algorithms, albeit with 13 

varying magnitudes and significance levels. 14 

3.2.3 Grey matter volume fraction correlation 15 

The relationship between estimated GABA+ and grey matter volume fraction is 16 

reported in Figure 4, as an index of estimation accuracy. The accuracy of QUEST (without 17 

MM3) was found to be significantly below that of other algorithms (pholm<0.01), while the 18 

QUEST +MM3 variant performed comparably with other algorithms. Otherwise, slight 19 

differences observable between algorithms were not statistically significant, and no 20 

particular trend is evident between algorithm variants without and with MM3 components. 21 
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 1 

Figure 4 Relationship between GABA+ and grey matter, with different modelling strategies for GABA+. Robust (skipped) 2 
correlation coefficients are reported, with line-of-best-fit in dashed black. 3 

3.2.4 Correlational analysis 4 

ICC (single-rater consistency) for GABA+ across all algorithms was 0.38 (95% CI 0.32-5 

0.44) without the MM3 component for basis set algorithms, and increased to 0.44 (95% CI 6 

0.39-0.5) with MM3 included, supporting that the inclusion of this dedicated component is 7 

warranted. ICCs between all pairs of algorithms are presented in Figure 5. For fits performed 8 

without the MM3 component, GABA+/H2O estimates showed moderate correlation between 9 

most algorithms (typically on the range r=0.4-0.6; slightly lower when referenced to 10 

tCredit_off). Correlations for AMARES, LCModel and Tarquin were significantly stronger 11 

(pholm<0.01) than the group mean, those for QUEST and Osprey somewhat lower. Inclusion 12 

of an MM3 basis set component generally improved concordance with other algorithms for 13 

FSL-MRS (pholm<0.001) and Osprey, the latter at trend level. However, both time domain 14 
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basis set algorithms (QUEST and Tarquin) showed reduced concordance (at trend level) upon 1 

inclusion of the MM3 component. 2 

ICCs for additional metabolites and ratios are presented in Supplementary Figure 12; 3 

Glxdiff/H2O estimates from the edited spectrum correlated more strongly between 4 

algorithms (typically on the range r=0.6-0.8, slightly lower when referenced to tCredit_off). 5 

6 
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 1 

Figure 5 Intraclass correlation coefficients between algorithms, scaled to water (upper left triangle) and tCredit_off (lower right 2 
triangle), with basis set algorithms excluding (a) and including (b) a component representing co-edited macromolecule 3 
contribution. “Median” data denotes correlation with the median estimate across all algorithms.  4 

  5 

a)

b)
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4 Discussion and Conclusions 1 

 2 

4.1 Quality Control 3 

Basic signal quality metrics (such as SNR and linewidth) and reliability-of-fit estimates 4 

(%CRLB, %Fit Error) are often used as the basis for rejecting poor fits. However, as seen in 5 

Supplementary Figure 6, these are often not sufficient. Whilst four datasets were deemed to 6 

have failed at the processing stage (R1), yielding output barely recognisable as GABA-edited 7 

difference spectra, all algorithms “successfully” fit some of these (Supplementary Figure 7), 8 

with quality metrics that satisfied all other criteria. We therefore repeat the observation that 9 

simply filtering results based on these basic signal metrics is inadequate as a means of 10 

quality control; the metrics themselves may have limited reliability, particularly in cases 11 

where the model does not accurately reflect the experimental data 63. Consideration must 12 

also be given to the shape of the data, fit and residuals themselves – either by algorithmic 13 

assessment or, if feasible, visual inspection. 14 

4.2 Scale Differences between Manufacturers 15 

Previous studies, including 64, have explored systematic differences in reported 16 

GABA+ estimates between different manufacturers, and their relation to GABA editing 17 

efficiency and the contribution of co-edited macromolecules to the measured signal. 18 

Furthermore, a previous examination of water-scaled GABA+ estimates on a superset of data 19 

also incorporating the present study’s subjects 24 identified systematically higher GABA+ 20 

estimates from datasets acquired on the Siemens platform, by approximately 29%, which 21 

could not be explained in terms of editing efficiency or macromolecule contribution. 22 

Observations in the present analysis corroborate this, with most algorithms yielding higher 23 

GABA+/H2O estimates from Siemens datasets, and all algorithms yielding higher estimates 24 

for both Glxdiff/H2O and tCredit_off/H2O for Siemens datasets. The fact that this trend is seen 25 

across different metabolites and within the edit-OFF sub-spectra gives support to the notion 26 

that water reference data from the Siemens implementation may not be optimal for scaling 27 

purposes, although it cannot be ruled out that both GE and Philips share a similar mis-28 

scaling. 29 

 30 
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4.3 Macromolecule Fitting 1 

The observed signal around 3 ppm includes substantial contamination (around 50% 2 

65) from co-edited signals, including homocarnosine 66 with coupling between 1.89 and 3.00 3 

ppm spins, and poorly-characterised components tentatively attributed to lysine-containing 4 

macromolecules 6,67,68, with coupling between 1.71 and 3.01 ppm spins . This may give rise 5 

to large residuals or biased baseline estimates if not considered in the model. Although their 6 

impact has been studied by some 38–40,69,70, there is currently no consensus on how these 7 

should be handled. 8 

The default LCModel configuration (flat baseline) performs surprisingly well by simply 9 

ignoring such signals, giving rise to characteristic peaks in the residuals. Meanwhile, the case 10 

of Osprey (without MM3co component, Figure 2f) exemplifies the potential baseline 11 

distortions and correspondingly reduced GABA+ estimates resulting from these residuals. 12 

The result of our ICC analysis across all algorithms suggests that more consistent GABA+ 13 

estimates may be obtained by explicitly parametrizing the MM3 contribution in the model. 14 

However, using correlation between GABA+ estimates and grey matter fraction as a 15 

benchmark, incorporation of the MM3 component did not significantly impact the 16 

effectiveness of individual algorithms in measuring differences in GABA+ levels. Moreover, 17 

while the supplementary analysis (supplementary section B) suggested improved 18 

effectiveness for LCModel after incorporation of soft constraints on MM3 amplitude 19 

(whether to GABA or MM0.9), similar performance for this algorithm was obtained by simply 20 

modelling a stiff but non-zero baseline, allowing this to absorb some of the MM3 signal. This 21 

configuration was also found to be effective for modelling GABA alone, consistent with 22 

previously reported findings 69 wherein modelling a more flexible baseline in LCModel to 23 

selectively remove a portion of the MM3 contribution allowed for closer measurement of 24 

GABA rather than GABA+. Estimates from Osprey in similar configurations were comparable, 25 

and it has been shown that higher degrees of baseline flexibility cause greater fractions of 26 

the 3-ppm signal to be absorbed into the baseline 40. 27 

Peak-fitting algorithms (such as Gannet and AMARES) may circumvent this issue 28 

somewhat by considering the entire 3.0 ppm GABA+MM signal with a single broad Gaussian 29 

model as examined herein; this approach performed comparably with more elaborate 30 
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models. Furthermore, Tarquin with its internally simulated basis set has two separate 1 

Gaussian components representing the GABA+ signal, which are seen to shift and broaden to 2 

conform to the shape of the observed GABA+MM signal (Figure 2h). QUEST, similarly, 3 

broadened the GABA basis function substantially to more closely envelop the entire 4 

GABA+MM signal and (unfortunately) adjacent artefacts (Figure 2d), perhaps accounting for 5 

its somewhat lower correlation with grey matter fraction and agreement with other 6 

algorithms. 7 

4.4 Artefact Rejection around 3.2 ppm 8 

MEGA-edited GABA spectra often exhibit a slight artefactual feature around 3.2 ppm, 9 

which can be problematic for fitting algorithms. The origin is uncertain, but potentially 10 

related to incomplete subtraction of choline 71 or contribution from undetermined other co-11 

edited signals (such as, perhaps, valine-containing macromolecules 67 or arginine 72). In the 12 

present study, the baseline for the Osprey fit (without MM3co) tends to respond to this 13 

artefact, inducing a bend in the baseline which appears to cut out a significant part of the 14 

real GABA peak (Figure 2f), leading to a likely underestimation of GABA+ area. QUEST 15 

appears to broaden the GABA and/or MM3co basis components, incorporating the artefact 16 

into the GABA+ estimate and most likely over-estimating the GABA+ signal area (Figure 2d); 17 

this effect was most pronounced for Siemens datasets (see Supplementary Figure 9d), where 18 

the feature manifests more prominently. FSL-MRS and LCModel both handle the artefact 19 

well in the general case, largely rejecting it from both the baseline and metabolite models 20 

(Figure 2a,e); this is likely owed to the fact that their default MEGA-PRESS settings prescribe 21 

a low-order polynomial baseline (FSL-MRS) or no baseline at all (LCModel). Whilst other 22 

basis set algorithms end up somewhere in between (with a degree of contamination from 23 

the artefact), peak-fitting algorithms AMARES and Gannet both perform well in this area. 24 

Indeed, Gannet (Figure 2b) is the only algorithm to explicitly deal with this artefact, down-25 

weighting some residuals in this region. We suggest that comparably rigid baseline 26 

estimation as well as incorporating a Gaussian basis component around 3.2 ppm, with tight 27 

constraints on linewidth, shift and amplitude to avoid inadvertently fitting part of the GABA 28 

peak, may yield some benefits in this area for other algorithms. Ultimately, further 29 

investigation into the underlying signal, and more complete profiling of the co-edited 30 

metabolite and macromolecule signals in the region would be preferable. 31 
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4.5 Glx 1 

Although quantification of Glx from the difference spectrum has been demonstrated 2 

to be reliable given suitable quality constraints 73, several researchers have highlighted the 3 

relatively low concordance between estimates from short-TE PRESS spectra and GABA-4 

edited difference spectra, with estimates from the edit-OFF sub-spectra often found to 5 

agree better with the short-TE PRESS 74–76; this is unsurprising given that the Glx signal in the 6 

short-TE and edit-OFF sub-spectra are subject to similar underlying uncertainties, including 7 

MM background and overlapping GSH and aspartyl signals. In comparing Glx quantification 8 

between MEGA-PRESS difference and edit-OFF sub-spectra, recent studies 76,77 report a 9 

correlation around r=0.8; results in the present study show a more moderate correlation, 10 

between r=0.34 and 0.69 depending on algorithm: see Supplementary Figure 13; a linear 11 

scaling factor is also observed, consistent with recent findings 78. It is notable that agreement 12 

between algorithms is higher for co-edited Glx than for GABA+, reflecting the better-defined 13 

signal seen in the difference spectrum (Figure 2). 14 

With reference to Supplementary Figure 8, all basis set algorithms showed a distinct 15 

structure in the residuals around 3.7 ppm, with the model peaks appearing a little to the 16 

right of the peaks observed in the data. This is most likely due to the complicated signal 17 

patterns around 2.3 ppm in the edited spectrum (resulting from overlapping signals of GABA 18 

and co-edited Glu, Gln and GSH), which interact critically with the 3.75 ppm modelling. It is 19 

likely that there is a poorly understood baseline fluctuation arising from co-edited 20 

macromolecular signals appearing between 1.5 and 2.5 ppm 39, which will bias the correct 21 

phase estimation of the 2.25 ppm signals, at the expense of getting the phase of the related 22 

3.75 ppm signals right. The peak-fitting algorithms tested, where modelling around 3.7 ppm 23 

is not bound to features in other parts of the spectrum (such as around 2.3 ppm), show 24 

much lower residuals in the region. It is possible that basis set fitting on a constrained range 25 

would mitigate this effect, at the expense of throwing away useful spectral information and 26 

hence detracting from the utility of the basis set approach in general. A model which shares 27 

lineshape information between the 2.3 and 3.7 ppm Glx peaks but allows a tightly-28 

constrained frequency shift between them may present a reasonable alternative. 29 
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4.6 Limitations 1 

The basis set adopted in the present study was simulated with ideal excitation pulses, 2 

and therefore may not fully model subtle variations in spectral structure between 3 

manufacturers. However, the impact of excitation is likely negligible compared to the impact 4 

of refocusing, which is appropriately accounted for in the 2D simulations. Vendor-specific 5 

excitation pulses may also contribute to subtly different shape and asymmetry of the 3.0 6 

ppm peak and varying manifestation of the 3.2 ppm feature, which may be observed in 7 

Supplementary Figure 9. 8 

Whilst the present analysis examines a variety of commonly used implementations 9 

representing a range of modelling strategies for GABA-edited spectroscopy data, we note 10 

that several other algorithms and implementations are also available to the MRS 11 

community, including AQSES 79, INSPECTOR 80, KALPANA 81, OXSA 82, spant 83 and Vespa 84. 12 

Furthermore, many of the packages examined offer extended functionality which 13 

may well lead to improved performance in certain circumstances, but this did not align with 14 

our approach of adopting recommended/default configurations for all algorithms. Most 15 

significantly, many software packages offer the fine-tuning of several aspects of the 16 

modelling process, for instance the baseline parametrization. As further examples, jMRUI 17 

QUEST offers flexible baseline modelling strategies; FSL-MRS offers independent shift groups 18 

which were not assessed; Osprey can additionally simultaneously optimise difference and 19 

sum spectra, potentially benefiting from additional spectral information and improved SNR. 20 

Both peak-fitting algorithms examined are flexible in their choice of model, with (for 21 

example) dual-Gaussian models for the GABA+ signal readily available. An inevitable 22 

consequence of adopting default settings in this analysis is that these might not be optimal 23 

for data processed with the standard pipeline adopted herein. All the tools tested are highly 24 

configurable and offer expert users many possibilities to tune performance optimally for 25 

particular datasets, offering the potential for further invention and protection against 26 

establishing a possibly incorrect orthodoxy. Nonetheless, this flexibility comes with the 27 

caveat that it may also lead to misuse, selective reporting and inappropriate modelling. 28 

Moreover, such variability runs counter to efforts to standardize analysis methodology 1. 29 

While more research into optimized modelling strategies is needed to improve the 30 
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comparability and robustness of MEGA-PRESS fitting, this work highlights that the complete 1 

and accurate reporting of all decisions made during analysis and modelling is immensely 2 

important, going even beyond the recently published minimum reporting standards for MRS 3 

85. 4 

The present study examines metabolite estimates for each algorithm, relative to 5 

water and creatine references obtained using that same algorithm – this reflects typical 6 

usage, but means that variations discussed herein are not necessarily driven purely by the 7 

metabolite modelling. 8 

Finally, since the findings documented herein are substantiated entirely by in-vivo 9 

data, there is no “ground truth” available by which to directly assess the algorithms’ 10 

accuracy. Whilst this limitation has been partially addressed by considering the strength of 11 

correlation between GABA+ estimates and grey matter fraction as an index of relative 12 

accuracy 35, a more direct assessment of accuracy could be achieved in further studies 13 

involving carefully prepared phantom or synthetic data 86, each approach having its own 14 

inherent limitations. In either case, meticulous attention to macromolecule baseline, SNR 15 

and line shape would be required to ensure transferability of findings to in-vivo applications. 16 

4.7 Key Recommendations 17 

Based on these findings, we recommend the following for future studies: 18 

• When applying basis set modelling approaches, special consideration must be 19 

given to the co-edited macromolecular signal underlying the 3.0 ppm GABA 20 

peak. While appropriate modelling outcomes may be obtained in some cases 21 

by entrusting a carefully tuned baseline to capture the entirety of the signal 40, 22 

a more generalisable approach is simply to routinely incorporate a simulated 23 

basis component to represent this signal. 24 

• Care must be taken to ensure consistent behaviour in the presence of 25 

commonly observed artefacts, such as the signal around 3.2 ppm. This 26 

artefact could be explicitly incorporated into the model, or mitigated with a 27 

rigid baseline model, which is less likely to follow the local signal curvature. 28 
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• More generally, when inspecting fit outcomes the behaviour of the baseline 1 

(where modelled) demands close attention, to ensure that it does not unduly 2 

bias modelling of the GABA peak. 3 

• When assessing data acquired at different sites, systematic differences in 4 

scale are to be expected and must be considered, regardless of the algorithm 5 

applied. 6 

Additionally, we propose four key areas for further systematic investigation in future 7 

studies: 8 

1. Robust methods for the generation of large synthetic datasets for validation 9 

are necessary to facilitate direct assessment of modelling accuracy. These 10 

synthetic data need to be truly representative of in-vivo data, hence the 11 

design of their underlying physical signal models will require great attention 12 

to detail. Subsequent interpretation must bear in mind that the outcome is 13 

likely to be determined by the degree of similarity between the physical 14 

model used to generate the data and the model used to decompose it during 15 

linear-combination fitting. 16 

2. Detailed exploration of the co-edited macromolecule profile which underlies 17 

typical GABA-edited data is required. Metabolite-nulled edited spectra 18 

obtained on different hardware platforms could provide the basis for a more 19 

informed parametrization of these signals during modelling, and also 20 

contribute to accurate and in-vivo-like representation of synthetic data. 21 

3. The origin of the spectral feature around 3.2 ppm requires further 22 

investigation: it needs to be determined whether this is a subtraction artefact 23 

or an actual real signal (for example from valine-containing macromolecules 24 

or other signals hitherto not routinely included in modelling, such as arginine 25 

which has a compatible spin system). Clarification of this feature would allow 26 

for more appropriate modelling and parametrization of synthetic data. 27 
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4. When considering Glx estimates from the difference spectrum, further 1 

investigation into the complex interactions of co-edited Glu, Gln, GSH and 2 

possibly other signals around 2.3 ppm, and their impact on the 3.75 ppm Glx 3 

modelling, would be beneficial. This focus area will benefit from increased 4 

insight into the macromolecular background of the GABA-edited spectrum. 5 

4.8 Conclusions 6 

Although the observed consistency across algorithms was generally moderate, with 7 

pairwise correlation in some cases concerningly weak, we emphasize that more consistent 8 

estimates are not necessarily more accurate estimates: all the algorithms tested (except for 9 

QUEST without MM3) were shown to be comparable in their effectiveness in detecting 10 

differences in GABA+ concentration. This does however raise some concerns regarding the 11 

comparability of findings between different studies, each of which will typically employ a 12 

single modelling algorithm, often with divergent processing and prior knowledge and with 13 

significantly smaller sample sizes than tested here. This means that the choice of analysis 14 

already adds considerable uncertainty and variability. 15 

Improved standardisation of sequence implementation 27,87, and adoption of 16 

standardised processing pipelines and prior knowledge (e.g. in the form of publicly available 17 

basis set libraries) may reduce sources of variation between studies. However, the 18 

interaction of baseline, co-edited macromolecule and metabolite signals, and other 19 

artefactual signals remains a critical source of variation between algorithms, and within 20 

different configurations of the same algorithm. Better characterisation of these signals 21 

would allow for more complete modelling (at the risk of over-fitting). Consensus on optimal 22 

(or at least, appropriate) control parameters for the respective algorithms would also be 23 

beneficial. It may further be of benefit to conceive a “consensus algorithm” to be 24 

implemented across software environments, and used as a shared starting point to refine 25 

the algorithmic decision making in future iterations of the algorithm. Meanwhile, careful 26 

attention to the behaviour of the model with regards to such signals, and rigorous reporting 27 

of the configuration employed, are necessary to facilitate meaningful comparisons between 28 

studies. 29 
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