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Abstract 15 

The leaf economics spectrum (LES) is hypothesized to result from a trade-off between 16 

resource acquisition and conservation. Yet few studies have examined the evolutionary 17 

mechanisms behind the LES, perhaps because most species exhibit relatively specialized leaf 18 

economics strategies. In a genetic mapping population of the phenotypically diverse grass 19 

Panicum virgatum, we evaluate two interacting mechanisms that may drive LES evolution: 1) 20 

genetic architecture, where multiple traits are coded by the same gene (pleiotropy) or by genes in 21 

close physical proximity (linkage), and 2) correlational selection, where selection acts non-22 

additively on combinations of multiple traits. We found evidence suggesting that shared genetic 23 

architecture (pleiotropy) controls covariation between two pairs of leaf economics traits. 24 

Additionally, at five common gardens spanning 17 degrees of latitude, correlational selection 25 

favored particular combinations of leaf economics traits. Together, these results demonstrate 26 

how the LES can evolve within species.  27 

 28 

Introduction 29 

Globally, plants exhibit a correlated suite of functional traits known as the worldwide leaf 30 

economics spectrum (Wright et al. 2004, Shipley et al. 2006, Reich 2014). This spectrum is 31 

hypothesized to result from a trade-off between resource acquisition in high resource 32 

environments and resource conservation in low resource environments (Donovan et al. 2011). 33 

The acquisitive end of this spectrum is characterized by a quick-return on investment strategy of 34 

short-lived leaves with high nutrient content and metabolic requirements. The conservative end 35 

is characterized by a slow-return on investment strategy of long-lived leaves with low nutrient 36 

content and metabolic requirements. While evidence for the worldwide leaf economics spectrum 37 
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(LES) is highly consistent at the global scale (Wright et al. 2004, Díaz et al. 2016), results have 38 

been mixed at smaller spatial and taxonomic scales (e.g., Heberling and Fridley 2012, Edwards 39 

et al. 2014, Messier et al. 2017, Anderegg et al. 2018). These results have prompted several 40 

studies to examine how the LES originates, using either statistical (e.g., Shipley et al. 2006, 41 

Mason et al. 2016) or anatomical (e.g., Blonder et al. 2011, John et al. 2017, Onoda et al. 2017) 42 

perspectives. An important step toward resolving discrepancies among studies is to shift from 43 

describing the LES at different scales to examining the evolutionary forces that form the LES 44 

(Donovan et al. 2011). Two evolutionary mechanisms that can interact to promote or constraint 45 

LES evolution are correlational selection and genetic architecture.  46 

Selection for favored trait combinations, or against maladapative trait combinations (i.e., 47 

correlational selection), is likely an important driver shaping functional trait correlations 48 

(Donovan et al. 2011). But the evolutionary responses to selection are also shaped by underlying 49 

genetic variation and covariance among traits (i.e., genetic architecture). Patterns of genetic 50 

covariance determine the possible trajectories of evolution and can constrain or facilitate the 51 

evolution of trait combinations (Walsh and Blows 2009). Thus, studying how adaptive 52 

syndromes like the LES evolve, requires accounting for both genetic architecture and 53 

correlational selection. Genetic architecture can arise from pleiotropy, where the same gene 54 

codes for multiple traits; from linkage, where genes coding for different traits are in close 55 

physical proximity and thus, are usually inherited together; or through linkage disequilibrium 56 

(LD), where alleles at different loci, and impacting different traits, are in statistical association 57 

(Lynch and Walsh 1998, Mackay 2001). Correlational selection occurs where selection acts on 58 

the covariance between two or more traits and those trait combinations reduce or enhance fitness 59 

(Lande and Arnold 1983). By favoring traits in combination, rather than isolation, correlational 60 
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selection can promote phenotypic integration (Svensson et al. 2021), potentially explaining the 61 

presence of correlated leaf economics strategies. Moreover, the two mechanisms, correlational 62 

selection and genetic architecture (pleiotropy, linkage, LD), can interact to promote or constraint 63 

LES evolution (Sinervo and Svensson 2002). When selection favors certain trait combinations, 64 

but disadvantageous combinations are genetically linked, evolution of the LES will be 65 

constrained (Donovan et al. 2011). Over time though, selection can break down linkage and LD 66 

between these disadvantageous combinations (Guilherme Pereira and Des Marais 2020). 67 

Correlational selection can also promote the evolution of genetic linkage between traits 68 

(Svensson et al. 2021), generating and maintaining the genetic foundation for the leaf economics 69 

spectrum. When selection and genetic architecture simultaneously favor the same trait 70 

combinations, LES evolution can proceed more rapidly (Donovan et al. 2011).   71 

For the LES to evolve, leaf economics traits must exhibit genetic variation. But leaf 72 

economics traits and correlations between traits can also be driven by environmental factors, like 73 

fertilization and drought (Sherrard and Maherali 2006, Fajardo and Siefert 2018, Ji et al. 2020). 74 

Conventional approaches to studying the LES cannot separate these genetic and environmental 75 

components (Swenson et al. 2020, Ahrens et al. 2021). However, the potential for LES evolution 76 

can be assessed using quantitative genetics techniques (Donovan et al. 2011). Metrics like 77 

heritability and genetic correlations, which quantify the genetic component of individual traits 78 

and the shared genetic contribution to correlations between traits, can show whether leaf 79 

economics traits possess sufficient genetic variation to evolve. Going further, genetic constraints 80 

on the LES can be identified through genetic mapping and selection on the LES can be tested 81 

using a selection gradient analysis (Donovan et al. 2011). A well-established genetic mapping 82 

technique—quantitative trait locus (QTL) mapping—involves crossing individuals from opposite 83 
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ends of a phenotypic gradient, then testing for associations between the genome and phenotype 84 

(Mauricio 2001, Anderson and Mitchell-Olds 2011). Selection gradients can be estimated as the 85 

effect of a trait or trait combination on plant fitness and can be used to detect selection  (Brodie 86 

et al. 1995, Conner and Hartl 2004, Caruso et al. 2020)  87 

Recent efforts to quantify intraspecific variation in leaf economics traits has improved 88 

our understanding of the LES (Siefert et al. 2015, Messier et al. 2017, Anderegg et al. 2018). 89 

But, although intraspecific variation is required for evolution, these intraspecific studies rarely 90 

address how the LES evolves. To examine LES evolution, we leverage the strong ecotypic 91 

divergence in leaf economics strategies in Panicum virgatum L, a widespread C4 grass 92 

(Aspinwall et al. 2013). First, we examined the genetics of three leaf economics traits—leaf mass 93 

per area (LMA), leaf nitrogen content (NMASS), and photosynthetic rate (AMASS)—in a genetic 94 

mapping population of P. virgatum in a single common garden in central Texas. Then, to test for 95 

correlational selection on leaf economics traits, we examined the fitness of clones of these plants 96 

at five sites spanning 17 degrees of latitude in the central United States. Together, this allowed us 97 

to answer four questions: 1) are leaf economics traits under detectable genetic control? 2) do leaf 98 

economics traits covary? 3) is covariation amongst traits genetically driven? 4) do particular 99 

combinations of leaf economics traits increase fitness in the field? 100 

 101 

Methods 102 

Study system 103 

Panicum virgatum is an ecologically and economically important species possessing 104 

large phenotypic variation in leaf economics traits. Panicum virgatum is common throughout 105 

central North American grasslands, occupying habitats that vary considerably in season length 106 
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and mean annual temperature and precipitation (Lowry et al. 2014). To occupy these diverse 107 

habitats, P. virgatum has diverged into three ecotypes—upland, coastal, and lowland—with the 108 

coastal ecotype exhibiting characteristics intermediate between the other two (Casler 2012, 109 

Lovell et al. 2021). The upland ecotype typically occurs in northern regions with short growing 110 

seasons, and possesses an acquisitive strategy. The lowland ecotype, occurs in southern regions 111 

with long growing seasons, and possesses a conservative strategy (Aspinwall et al. 2013, 112 

Heckman et al. 2020).  113 

Experimental setup 114 

 This experimental design is described in detail by Milano et al. (2016) and (Lowry et al. 115 

2019). In summary, a genetic mapping population was developed by crossing the southern 116 

lowland genotype AP13 × the northern upland genotype DAC and the southern lowland 117 

genotype WBC × the northern upland genotype VS16. A single F1 offspring from each of these 118 

two crosses was then crossed to produce a four-way outbred mapping population, which 119 

contained 400 full sibling F2 offspring. By recombining upland and lowland alleles, this cross 120 

generated F2 individuals that carry either two lowland alleles, two upland alleles, or one lowland 121 

and one upland allele at each locus. The F2 offspring were then clonally propagated in 3.8L pots 122 

at Brackenridge Field Laboratory, Austin, TX.   123 

 In February 2014, individuals of each genotype were transplanted into a common garden 124 

at Brackenridge Field Lab, where the soil is Yazoo sandy loam (Milano et al. 2016). The field 125 

was first covered with weed cloth and each individual was planted into a hole in the weed cloth. 126 

Plants were randomly assigned to locations in the field in a honeycomb design, with each plant 127 

located 1.25 m from its four nearest neighbors. To prevent edge effects, the field was surrounded 128 

with a border row of plants of the lowland genotype AP13.  129 
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Leaf economics measurements 130 

 On 1-7 July 2014, we measured three leaf economics traits: mass-based photosynthetic 131 

capacity (AMASS), mass-based leaf nitrogen content (NMASS), and leaf mass per area (LMA). To 132 

calculate LMA, we measured the area of one penultimate fully expanded sun leaf per plant using 133 

a LI-3000C leaf area meter (LI-COR Biosciences, Lincoln, NE, USA), then dried leaves at 65°C 134 

to constant mass and weighed them. LMA is the ratio of leaf dry mass to leaf area. To calculate 135 

NMASS, these dried leaves were ground to a fine powder, then combusted in an elemental analyzer 136 

(Flash 2000 Organic Elemental NC Analyzer). To measure photosynthetic capacity, we enclosed 137 

two penultimate fully expanded sun leaves in the 2×3 cm cuvette of a LI-6400XT (LI-COR 138 

Biosciences, Lincoln, NE, USA) between 10:30 and 14:00. PAR was maintained within the 139 

cuvette at 1750 µmol m-2 s-1 using an actinic light source; chamber CO2 supply was set to 400 140 

ppm, and leaf temperature and water vapor were allowed to track ambient conditions. We 141 

converted from an area- (AAREA) to mass-basis (AMASS) by dividing AAREA by LMA. 142 

Fitness measurements 143 

 Clonally propagated individuals of each F2 line were planted in spring 2015 at five 144 

locations throughout central North America (Kingsville, TX – Brookings, SD) that spanned 17 145 

degrees of latitude (details in Lowry et al 2019). Plantings at these five sites were identical in 146 

layout to the Austin, TX planting described above (see Lowry et al. 2019 for details). In 2017 147 

and 2018, plants were harvested each fall ~ 15 cm above ground level and aboveground biomass 148 

was dried and weighed. Biomasses measured in 2017 also appear in Lowry et al. (2019). 149 

Previous work has found that aboveground biomass is highly correlated with seed production in 150 

P. virgatum (Palik et al. 2016), making it a useful proxy for fitness (Lowry et al. 2019).  151 

Quantitative genetic and other statistical analyses 152 
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To assess whether leaf traits in P. virgatum represent a leaf economics spectrum, we 153 

performed standardized major axis (SMA) regression on each pair of leaf traits using the `sma` 154 

function in smatr (Warton et al. 2012). SMA regression is commonly used in functional ecology 155 

because, unlike least squares regression, it assumes that both variables are measured with error 156 

(Warton et al. 2006). 157 

 To quantify the degree of genetic control of leaf economics traits, we calculated broad-158 

sense heritability (H2) of leaf economics traits using the `mmer` function in the sommer package 159 

(Covarrubias-Pazaran 2016). Heritability was the ratio of variance among lines (genetic variance, 160 

VG) to total variance (VG + environmental variance, VE) in each trait (VG / VG  + Ve), calculated 161 

from a model that accounted for the relatedness among individuals by incorporating an additive 162 

genetic relatedness matrix. Throughout, we refer to VG and H2 rather than additive genetic 163 

variance (VA) and narrow-sense heritability (h2) because additive and dominance genetic 164 

variance are confounded in this full-sib cross (Hill 2013).  165 

To estimate the proportion of variance shared among leaf traits due to genetic causes 166 

(genetic correlations, rg), we performed a multivariate analysis using `mmer`. The model 167 

included all three leaf economics traits as responses with an additive genetic relatedness matrix 168 

as a random effect. To estimate the significance of these genetic correlations, we compared a 169 

model in which the genetic covariance between a pair of traits was estimated freely to a model in 170 

which the genetic covariance between those traits was constrained to 0 (i.e., no genetic 171 

covariance between traits was allowed) using a likelihood ratio test. A significant likelihood ratio 172 

test indicates that genetic covariance differs from 0.   173 

QTL mapping 174 
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 We conducted QTL mapping on leaf economics traits using the qtl2 package (Broman et 175 

al. 2019). Methods for constructing the linkage map used in this analysis are described by Lovell 176 

et al. (2020). First, we assessed the likelihood that each genetic marker is associated with a 177 

phenotype of interest by using the `scan1` function with a leave-one-chromosome-out kinship 178 

matrix. This provided log-odds (LOD) profiles for every marker in the genome. From these LOD 179 

profiles, we identified putative QTL using the `find_peak` function with drop = 1.5 and peakdrop 180 

= 2.5 at a significance threshold of α =  0.15. We determined the LOD score corresponding to 181 

this significance threshold via permutation test with 1000 iterations using the `scan1perm` 182 

function. We chose a relaxed significance threshold because a stricter threshold could hinder a 183 

primary goal of this study—to detect and evaluate QTL overlap among leaf traits. To maintain 184 

statistical rigor when evaluating putative QTL, we further assessed the significance and 185 

explanatory power of all QTL by fitting a multiple-QTL model for each phenotype using the 186 

`makeqtl` and `fitqtl` functions in the qtl package (Broman et al. 2003).  187 

 When QTL confidence intervals for two traits overlapped, we tested whether this overlap 188 

was due to pleiotropy (one QTL) or separate QTL using a pipeline from the qtl2pleio package 189 

(Boehm et al. 2019). To do this, we first used the `scan_pvl` function to identify the region of 190 

QTL overlap, then used the `find_pleio_peak_tib` function to identify the marker corresponding 191 

to the peak of the pleiotropy trace, then used the `boot_pvl` function with 1000 iterations to 192 

perform a bootstrapped multivariate QTL scan that evaluates the evidence for separate QTL. In 193 

this analysis, the null hypothesis is one QTL (i.e., pleiotropy). Thus, P > 0.05 indicates a lack of 194 

evidence for separate QTL and is consistent with pleiotropy.  195 

Selection gradient analysis 196 
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 To assess linear and non-linear selection on leaf economics traits in the field, we 197 

performed a selection gradient analysis. Standard selection gradient analysis pairs a fitness 198 

component (or fitness proxy) with traits measured on the same individuals (Lande and Arnold 199 

1983). Here, however, we take a somewhat different approach: we measured leaf economics 200 

traits on plants at a single site, then pair these predictors with a fitness proxy measured on 201 

clonally propagated individuals at multiple sites. Because individuals grown at each site are 202 

genetic clones of the individuals measured for leaf economics traits, this is essentially a repeated-203 

measures design. Importantly, we assume that plasticity and genotype-by-environment effects on 204 

LES traits are low. For selection gradients, we first mean-standardized genotype-level 205 

aboveground biomass separately for each of our five sites and two years by dividing each 206 

genotype’s biomass by the site-level mean biomass that year (Franklin and Morrissey 2017). 207 

This results in a relativized proxy for fitness, such that average fitness at each site is equal to 1; 208 

above average fitness > 1; and below average fitness < 1. Plants that died during the study were 209 

retained for analysis with biomass = 0. At each of the three northern sites (Brookings, KBS, 210 

Columbia), only 0-4 plants were recorded as dead in any year. This corresponds with a mortality 211 

rate of 0-1.3%. At the two southern sites, mortality was higher: 5.7% and 16.2% in Kingsville in 212 

2017 and 2018, respectively, and 0.3% and 8.2% in Austin in 2017 and 2018, respectively. We 213 

then examined how three mean-centered and variance-standardized (mean = 0, sd = 1) leaf 214 

economics traits impacted relative biomass in a single linear mixed model using the `lme` 215 

function in nlme (Pinheiro et al. 2016). This model included main effects (i.e., linear directional 216 

selection), quadratic effects (i.e., non-linear stabilizing or disruptive selection), and all two-way 217 

interactions between these three traits (i.e., non-linear correlational selection) and interactions 218 

between all leaf economics predictors and site identity. Year of biomass measurement did not 219 
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significantly interact with any other model parameters and was removed from the final model. 220 

To account for heteroscedasticity, this model included an identity variance structure (varIdent), 221 

which allows residual variance to differ by site.  222 

 To complement phenotypic selection gradients and circumvent the issue of measuring 223 

LES traits and biomass on different clonal propagates, we also performed genetic selection 224 

gradient analysis (Rausher 1992). To do this, we first calculated genomic best linear unbiased 225 

predictors (GBLUPs) for LES traits and biomass using the `mmer` model described above for 226 

estimating heritability. GBLUPs represent the additive genetic contribution to a given phenotype. 227 

We then performed selection gradient analysis with GBLUPs instead of phenotypic values using 228 

the `gls` function. This approach assesses only the genetic relationship between traits, which 229 

more accurately describes the evolutionary pressure on LES traits.  230 

 231 

Results 232 

Are leaf economics traits under detectable genetic control?  233 

 All three traits exhibited moderate broad-sense heritability (H2; Table 1). Of the three, 234 

AMASS had the lowest heritability (H2 = 0.26), while LMA and NMASS had similar, and higher, 235 

heritability (H2 = 0.51 and 0.46, respectively). For each trait, we detected 4-5 significant QTL 236 

(Table 2), which combined to explain 19-33% of variation in leaf economics traits (Table 1). 237 

Together, these results confirm that the leaf economics traits evaluated here have a substantial 238 

genetic basis. 239 

Do leaf economics traits covary phenotypically?  240 

 In F2 individuals, there were significant bivariate relationships amongst all leaf 241 

economics traits. LMA covaried negatively with NMASS (R2 = 0.06, P < 0.001; Fig. 1a) and with 242 
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AMASS (R2 = 0.29, P < 0.001; Fig. 1b), which is consistent with global LES relationships. 243 

Similarly, NMASS and AMASS covaried positively (R2 = 0.06, P < 0.001; Fig. 1c). Thus, in this 244 

system, leaf economics traits significantly, although sometimes weakly, covary phenotypically. 245 

Is covariation amongst traits genetically driven?  246 

 We detected 13 QTL for leaf economics traits, all of which were highly significant 247 

predictors of LES traits in multiple-QTL models (P < 0.05; Table 2). These 13 QTL included 248 

three pairs of colocalized QTL (i.e., confidence intervals for the QTL overlapped; Fig. 2a): 249 

LMA-AMASS on Chr9K and AMASS-NMASS at two locations on Chr2K. For all three pairs of 250 

colocalized QTL, our results are consistent with pleiotropy (i.e., one QTL for both traits) because 251 

we did not find evidence that these colocalized QTL were produced by distinct loci (P = 0.14, P 252 

= 0.254, and P = 0.429, respectively; Fig. 2b). Further supporting pleiotropy, marker regression 253 

showed that genotype effects at colocalized QTL were in the same direction for both traits (i.e., 254 

both conservative or both acquisitive). For instance, individuals possessing two upland alleles on 255 

Chr2K@12 had lower AMASS and NMASS than other genotypes. Similarly, at the QTL on Chr9K, 256 

individuals with two upland alleles had significantly higher AMASS and significantly lower LMA 257 

than other genotypes. In total, these results show that leaf economics traits exhibit some degree 258 

of genetic coordination.  259 

Despite seeing colocalized QTL for LMA-AMASS and NMASS-AMASS, a significant genetic 260 

correlation existed only between LMA and AMASS (rg = -0.72, χ2 = 15.87, P < 0.001; Table 3). 261 

Neither LMA-NMASS (rg = -0.12, χ2 = 0.79, P = 0.37) nor AMASS-NMASS (rg = 0.26, χ2 = 1.11, P = 262 

0.29) had significant genetic correlations. These contrasting effects may be related to the 263 

directionality of QTL for the three LES traits. All five significant QTL for LMA were in the 264 

same direction and consistent with a conservative leaf economics strategy among the lowland 265 
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ecotype and an acquisitive strategy among the upland ecotype (i.e., individuals with both 266 

lowland alleles had high LMA and individuals with both upland alleles had low LMA; Figs. 2d, 267 

S2a-d). Conversely, three of the four NMASS QTL and two of the four AMASS QTL behaved 268 

opposite to LES predictions: individuals with both upland alleles had low NMASS and low AMASS, 269 

while individuals with both lowland alleles had high NMASS and high AMASS (Figs 2b-c, S2g). 270 

When QTL differ in directionality, as LMA and NMASS did, it may weaken the aggregate genetic 271 

correlations (Gromko 1995). Similarly, despite detecting two colocalized QTL for AMASS and 272 

NMASS, these pairs of colocalized QTL were all in the opposite direction of typical leaf 273 

economics strategies, which could also weaken genetic correlations.  274 

Do particular combinations of leaf economics traits increase fitness in the field? 275 

 There was a significant interactive effect of LMA and NMASS on relative biomass across 276 

all sites (γij = -0.05; P = 0.015; Table S2, S3; Fig. 3a). The relative biomass of individuals 277 

possessing conservative values of both traits (i.e., high LMA, low NMASS) was higher than that of 278 

individuals with acquisitive values of both traits (i.e., low LMA, high NMASS). Both conservative 279 

and acquisitive individuals had greater relative biomass than individuals with mismatched trait 280 

combinations (high LMA, high NMASS or low LMA, low NMASS). This correlational selection for 281 

particular combinations of LMA and NMASS could promote LES evolution. Additionally, when 282 

controlling for other trait values, LMA had a marginally significant direct positive effect on 283 

relative biomass across all sites (LMA: β = 0.03; P = 0.081; Table S2, S3).  284 

 Selection gradients differed among sites, but not systematically by latitude (Table S3, S4; 285 

Fig. 3b). Directional selection favored high LMA plants at four of five sites (Site × LMA: P = 286 

0.42; KBSM: β = 0.06, P = 0.014; CLMB: β = 0.04, P = 0.095; PKLE: β = 0.09, P = 0.046; 287 

KING: β = 0.12, P = 0.063; Table S3, S4), and high AMASS plants at two of five sites (Site × 288 
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AMASS: P = 0.008; KBSM: β = 0.06, P = 0.015; KING: β = 0.13, P = 0.053; Table S3, S4). 289 

Selection favoring higher values of both LMA and AMASS combined with a negative genetic 290 

correlation between the two traits would generate a genetic constraint on the evolution of the 291 

LES in P. virgatum. Finally, correlational selection favored matched phenotypic combinations of 292 

LMA and NMASS at two sites (Site × LMA × NMASS: P = 0.27; BRKG: P = 0.059; PKLE: P = 293 

0.045; Table S4; Fig. S2) and matched combinations of AMASS and NMASS at two other sites (Site 294 

× NMASS × AMASS: P = 0.009; KBSM: P = 0.007; CLMB: P = 0.018; Table S4; Fig. S3).  295 

 Genetic selection gradients largely supported these results: LMA × NMASS and NMASS × 296 

AMASS interacted to impact biomass among GBLUPs (P = 0.080 and P = 0.032, respectively; 297 

Table S5; Fig 4). Together, these results demonstrate that correlational selection on particular 298 

leaf economics trait combinations can occur in the field and is genetically based. 299 

 300 

Discussion 301 

 We found evidence that the LES exists in P. virgatum, and may be driven by a 302 

combination of genetic architecture and correlational selection. These results provide the 303 

strongest evidence to date for the evolution of the LES within a species. Overall, we found that 304 

correlational selection and genetic architecture generally promote the hypothesized leaf 305 

economics strategies, but that some genetic constraints may limit LES evolution in this system.   306 

 Few studies have explored the mechanisms driving the evolution of leaf economics 307 

strategies (Donovan et al. 2011). This results, in part, from the fact that most species, and even 308 

many genera, occupy a small portion of the LES (Edwards et al. 2014). Because most species 309 

possess relatively specialized leaf economics strategies, they typically lack sufficient variation 310 

for genetic constraints and correlational selection to promote LES evolution (Agrawal 2020). 311 
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But, when species exhibit distinct ecotypes or occupy a broad range of habitats, it is possible to 312 

evolve a clear LES at lower taxonomic levels, as we observe in P. virgatum. Thus, species like P. 313 

virgatum, that do possess distinct leaf economic strategies, offer a unique opportunity to evaluate 314 

microevolution of the LES. By crossing genotypes that exhibit divergent leaf economics 315 

strategies, we can break up these leaf economics strategies and examine how selection acts on 316 

combinations of traits that rarely occur naturally. This is especially valuable because it is 317 

impossible to independently manipulate two or more LES traits in a macroevolutionary context 318 

(Shipley et al. 2006). 319 

Our approach is not the only valuable way to study the evolution of the LES. One 320 

important method for understanding genetic correlations between traits is artificial selection on 321 

extreme trait combinations. Donovan et al. (2011) advocate for selection on high NMASS – low 322 

AMASS lines (and vice versa) for multiple generations to determine whether a positive correlation 323 

between NMASS and AMASS can be broken up. Another way to evaluate selection on leaf 324 

economics strategies is to grow plants under different resource conditions, then examine how 325 

fitness changes. For instance, to test the hypothesis that acquisitive strategies are favored under 326 

high resource conditions and conservative strategies are favored under low resource conditions, 327 

one could evaluate the fitness of conservative and acquisitive genotypes along an experimental 328 

nutrient gradient. This approach could show not only whether the LES is present within a 329 

species, but also, whether it should evolve through the hypothesized acquisition-conservation 330 

trade-off.  331 

The selective pressures acting upon individual species may differ from those that produce 332 

the LES among species, potentially limiting the evolution of the LES within species (Agrawal 333 

2020). For instance, when species specialize in particular habitats or evolve distinct ecotypes 334 
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adapted to habitats differing in water availability, these selective pressures may not align with 335 

the LES. Thus, LES evolution within species may be rare (Agrawal 2020). In P. virgatum, the 336 

evolution of distinct leaf economics strategies may be driven by large differences in growing 337 

season lengths across its range. The northern upland ecotype, which exhibits an acquisitive 338 

strategy (e.g., smaller, narrower leaves with higher NMASS and AMASS and lower LMA), may have 339 

evolved to take advantage of the relatively short growing season in the northern US and Canada. 340 

Short growing seasons may promote a quick return-on-investment strategy of low tissue 341 

construction costs and high photosynthetic capacity (Baird et al. 2021). In the southern habitat 342 

typical of the lowland ecotype, the long growing season may select for longer-lived leaves with 343 

higher LMA.  344 

 Season length as a driver of leaf economics strategies may be particularly important if 345 

divergent selection pressures in the northern and southern portions of P. virgatum’s range drive 346 

selection for different leaf economics strategies. All five putative QTL for LMA exhibited 347 

divergence in the same direction—plants with lowland alleles exhibited higher LMA than plants 348 

with upland alleles—suggesting that directional selection may have promoted divergence in 349 

LMA across the range of P. virgatum (Milano et al. 2016). Although all significant QTL for 350 

LMA had the same directionality, QTL for AMASS and NMASS did not. This suggests that selection 351 

on these two traits may depend on infrequent, severe abiotic or biotic stress, such as cold, 352 

drought, or high consumer pressure (e.g., some strategies may be advantageous only under 353 

severe stress), or stabilizing selection that maintains moderate values of the traits. This may slow 354 

the evolution of leaf economics strategies in P. virgatum. Evolution of leaf economics strategies 355 

may also be constrained by the LMA-AMASS relationship: high LMA and high AMASS were both 356 

favored in selection gradient analysis, but the strong negative genetic correlation between these 357 
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traits should limit the ability of this combination to evolve. On the other hand, constraints on the 358 

evolution of NMASS-LMA should be minimal. These traits exhibited a weak negative genetic 359 

correlation and correlational selection in the same direction (i.e., high LMA and low NMASS are 360 

favored). Together, these results suggest that the conservative strategy should be favored under 361 

most circumstances, but the acquisitive strategy (low LMA, high NMASS) could be favored under 362 

more extreme conditions that did not occur over the duration of this study. While it is impractical 363 

to follow these individuals over their entire lifetimes, future studies that incorporate climatic 364 

extremes, either naturally or experimentally, could better determine the conditions that favor the 365 

acquisitive strategy in P. virgatum.  366 

 Our results showed some similarities with the small number of previous studies on this 367 

topic. Like Donovan et al. (2011), we found that genetic correlations between leaf economics 368 

traits were variable and while directional selection occurred on many leaf economics traits in the 369 

studies they surveyed, selection differentials and gradients were not consistent between traits or 370 

across studies. However, due to limitations in the data available to Donovan et al. (2011), there 371 

were also some notable differences between our studies. For instance, we found evidence for 372 

pleiotropic loci controlling both NMASS-AMASS and AMASS-LMA and a potential genetic constraint 373 

on the correlated evolution of LMA and AMASS. Our results are also somewhat consistent with 374 

recent work on the LES in Arabidopsis thaliana, which showed that pleiotropic loci control some 375 

leaf economics correlations (Vasseur et al. 2012, Hanemian et al. 2020) and that leaf economics 376 

strategies differ across the geographic range of the species, possibly due to climate-driven 377 

selection (Sartori et al. 2019).  378 

Limitations 379 

105 and is also made available for use under a CC0 license. 
(which was not certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC 

The copyright holder for this preprintthis version posted November 15, 2021. ; https://doi.org/10.1101/2021.11.14.468541doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.14.468541


18 
 

 This study had several limitations. First, we did not measure leaf economics traits and 380 

fitness on the same plants. This would be important if plasticity in leaf economics traits is high, 381 

particularly if genotypes differ in plasticity (i.e., genotype-by-environment interactions). In a 382 

previous study using different genotypes of P. virgatum, we found significant genotype-by-383 

environment effects on NMASS, but not on leaf dry matter content, which is highly correlated with 384 

LMA (Heckman et al. 2020). Given the low heritability of AMASS, this trait is likely to exhibit 385 

higher plasticity, although it is unclear whether AMASS should exhibit strong GxE. Because 386 

genetic selection gradients were largely consistent with phenotypic selection gradients, plasticity 387 

or environmental correlations in traits should be a minor concern. However, genetic selection 388 

gradients could still be biased by large genotype-by-environment effects. Second, we use 389 

biomass as a proxy for fitness (Franklin and Morrissey 2017). While biomass production is 390 

highly correlated with seed set (Lowry et al. 2019), we cannot assess fitness over the entire 391 

lifespan of this relatively long-lived species. Third, because most ecologically important 392 

quantitative traits are polygenic (Barghi et al. 2020), we probably failed to detect many important 393 

QTL. This is made clear by the fact that significant QTL explained only ~50% of the genetic 394 

variation in these traits. Thus, these QTL results should be considered a hypothesis-generating 395 

tool. Future work could examine in new populations whether the same QTL are detected. 396 

Moreover, future studies could further explore candidate genes in the overlapping QTL regions 397 

that suggest pleiotropy.   398 

Conclusions 399 

 The worldwide LES is one of the most striking patterns in plant ecology, yet little work 400 

has been done to examine how it evolves. Here, we show that the LES can evolve within a 401 

widespread grass species through a combination of genetically linked traits and correlational 402 
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selection favoring individuals possessing particular LES combinations. While it is unclear 403 

whether evolution of the LES in P. virgatum is driven by the same resource conservation-404 

acquisition trade-off that is hypothesized to underlie the worldwide LES, this system provides a 405 

rare opportunity to address this longstanding hypothesis in a tractable system.  406 
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Table 1 Genetic basis of three leaf economics traits.  H2 is broad-sense heritability [VG / (VG + 

Ve)] ± standard error;  variance explained by QTL is calculated from a multiple-QTL model 

using all identified putative QTL as predictors of each trait; proportion of heritable variation 

explained by QTL is the ratio of variance explained by QTL to H2. LMA is leaf mass per area (g 

m-2); NMASS is mass-based leaf nitrogen content (%); AMASS is mass-based leaf photosynthetic 

rate (µmol C g-1 s-1).  

  H2 Variance explained  

by QTL 

Proportion of heritable  

variation explained by QTL 

LMA 0.51 ± 0.07 0.33 0.65 

NMASS 0.46 ± 0.08 0.24 0.52 

AMASS 0.26 ± 0.08 0.19 0.73 
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Table 2 Significant QTL markers for each leaf economics trait detected at a LOD threshold of α 

= 0.15. P values are based on F tests calculated by dropping one QTL at a time from a multiple-

QTL model that included all putative QTL for each trait. 

Trait Marker LOD P 

LMA Chr2N@56.080999 3.972  < 0.001 

 Chr5N@4.933063 7.814 < 0.001 

 Chr8N@13.652308 3.873 < 0.001 

 Chr9K@12.433663 10.359 < 0.001 

 Chr9N@79.37425 4.173 < 0.001 

AMASS Chr2K@11.849289 6.079 < 0.001 

 Chr2K@59.819311 4.58 0.017 

 Chr8K@11.338989 4.771 < 0.001 

 Chr9K@13.273228 3.896 0.002 

NMASS Chr2K@10.283923 4.164 < 0.001 

 Chr2K@61.75027 5.601 < 0.001 

 Chr3N@16.536961 8.592 < 0.001 

 Chr5K@21.5219 3.929 < 0.001 
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Table 3 Genetic correlations between leaf economics traits. LMA is leaf mass per area (g m-2); 

NMASS is mass-based leaf nitrogen content (%); AMASS is mass-based leaf photosynthetic rate 

(µmol C g-1 s-1).  

 
LMA AMASS NMASS 

LMA --- 
  

AMASS -0.76 (0.12) --- 
 

NMASS -0.16 (0.17) 0.26 (0.21) --- 
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Figure legends 558 

Fig 1 Relationship between A) leaf mass-based nitrogen (NMASS; %) and leaf mass per area 559 

(LMA; g m-2); B) leaf mass-based photosynthetic rate (AMASS; µmol C g-1 s-1) and LMA; C) 560 

AMASS and NMASS calculated using standardized major axis regression. Black dots are P. virgatum 561 

F2 individuals;  blue triangles are F0 line means (not included in SMA line fit). Inset plots show 562 

the location of P. virgatum F2 individuals (black dots) relative to the worldwide leaf economics 563 

spectrum (grey dots; from Wright et al. 2004) on a log10-log10 scale. 564 

Fig 2 A Location of QTL for three leaf economics traits, LMA, NMASS, and AMASS. Point 565 

estimates are the location of highest LOD score and confidence intervals are the region within a 566 

1.5 LOD drop. B Effects of genotype on leaf economics traits at three colocalized QTL markers 567 

(i.e., markers with overlapping confidence intervals) calculated using ordinary least squares 568 

regression. Genotypes at each QTL are a consequence of recombination in the experimental 569 

cross, resulting in four possible combinations of alleles. In each panel, lowland1 and lowland2 570 

denote alleles inherited from genotypes AP13 and WBC, respectively; upland1 and upland2 571 

denote alleles inherited from genotypes DAC and VS16, respectively. Error bars represent 95% 572 

confidence intervals; shared letters indicate no significant difference between genotypes. For all 573 

colocialized QTL pairs, genotype effects are in a consistent direction (i.e., each genotype 574 

exhibits conservative or acquisitive values of both traits) and are consistent with pleiotropy. See 575 

Fig. 1 legend for units and abbreviations.  576 

Fig 3 A Effects of standardized LMA and NMASS (transformed such that across all plants, mean = 577 

0 and sd = 1) on relative biomass while controlling for AMASS. Following (Stinchcombe et al. 578 
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2008), model-derived quadratic parameter estimates are doubled. B Selection gradients estimated 579 

at each site. Linear selection gradients (βi) are main effects; non-linear selection gradients (γii) 580 

are quadratic effects (model-derived estimates were doubled); non-linear correlational selection 581 

gradients (γij) are interactive effects between two leaf economics traits. Red points denote 582 

significant effect. See Fig. 1 legend for units and abbreviations.    583 

Fig 4 A Effects of LMA and NMASS genomic linear unbiased predictors (GBLUPs) on plant 584 

biomass GBLUPs B Effects of NMASS and AMASS GBLUPs on plant biomass GBLUPs. GBLUPs 585 

were calculated separately for each trait from a mixed model that accounted for the relatedness 586 

among individuals by incorporating an additive genetic relatedness matrix 587 

  588 
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Fig 1 
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Fig 2 
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Fig 3  
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Fig 4 
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