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Abstract: Microfluidic liquid biopsies using affinity-based capture of extracellular vesicles (EVs) have
demonstrated great potential for providing rapid disease diagnosis and monitoring. However, little
effort has been devoted to optimising the geometry of the microfluidic channels for maximum EV
capture due to the inherent challenges of physically testing many geometric designs. To address
this, we developed an automated parallel pattern search (PPS) optimiser by combining a Python
optimiser, COMSOL Multiphysics, and high performance computing. This unique approach was ap-
plied to a triangular micropillar array geometry by parameterising repeating unit cells, making several
assumptions, and optimising for maximum particle capture efficiency. We successfully optimised the
triangular pillar arrays and surprisingly found that simply maximising the total number of pillars and
effective surface area did not result in maximum EV capture, as devices with slightly larger pillars
and more spacing between pillars allowed contact with slower moving EVs that followed the pillar
contours more closely. We then experimentally validated this finding using bioreactor-produced EVs
in the best and worst channel designs that were functionalised with an antibody against CD63. Cap-
tured EVs were quantified using a fluorescent plate reader, followed by an established elution method
and nanoparticle tracking analysis. These results demonstrate the power of automated microfluidic
geometry optimisations for EV liquid biopsies and will support further development of this rapidly
growing field.

1 Introduction
Extracellular vesicles (EVs) are membrane-bound micro and
nanoparticles that are extruded by all cells and circulate in all
bodily fluids. Due to their immense potential as liquid biopsy
targets, many affinity-based microfluidic technologies have been
developed to isolate EVs of certain subtypes from patient or cell
culture samples1–3. As with circulating tumour cell (CTC) chips,
microfluidic capture of EVs often involves the functionalisation of
antibodies or other capture ligands on the inner surfaces of mi-
crochannels. Upon contact, depending on binding affinity, shear
forces, and other factors, there is a probability that EVs will be
captured for either on-chip analysis, lysis, or elution4–7.

This probability of surface capture is highly dependent on the
internal geometric structures, and existing microfluidic liquid
biopsy devices vary significantly, from simpler designs like the mi-
cropost arrays8–11, alternating shrinking and expansion of chan-
nel widths5, and staggered herringbone grooves4,6,7, to more
complex devices utilising multiple elements, such as "NanoVel-
cro"12. These geometries are required because the highly lami-
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nar nature (low Reynolds number) of the fluid flow within the
channels limits any mixing to diffusion, which is ineffective if
maximum surface interactions are desired. Thus, the established
geometries increase the surface interaction probability by either
greatly increasing the total surface area or disrupting the highly
linear flow profiles present in straight channels.

Pillar arrays were first used to increase the total area of
antibody-functionalised surfaces. Their geometry has been some-
what optimised for capturing circulating tumour cells (CTCs),
which are two orders of magnitude larger than small EVs. How-
ever, micropillar designs have been shown to have a limiting
capture efficiency of 65 percent for CTCs due to their inherent
laminar flow9. For EV capture, ciliated micropillar arrays have
been used in a sieve-based filtration device11, and only one study
has demonstrated EV immunocapture using Y-shaped microposts
and a unique nanostructured graphene surface13. More complex
structures, including staggered herringbone grooves, have been
used to induce microvortices within the flow, effectively increas-
ing interactions between the particles and the surface of the chan-
nel4,14,15. These geometries were initially designed within the
context of microfluidic mixing16, but have more recently been op-
timised for particle-surface interactions for immunoaffinity cap-
ture systems14,17. Another approach, named "ExoChip", involves
rapid shrinking and expansion of channel diameters to enhance
fluid mixing in thinner channel sections and slowing the flow rate
of EVs in the larger regions5.
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To assess the performance of microfluidic devices, numerical
models are often used in favour of laboratory testing due to their
adaptability, ease of construction, and low cost. These models
solve the Navier-Stokes equations, which govern flow of a New-
tonian fluid, and usually make several simplifying assumptions.
Although simple micropillar channels have analytical solutions
for the average longitudinal velocity18, numerical simulations are
advantageous, despite their larger computational complexity, due
to their ability to describe the full velocity field. This enables the
prediction of the advection of suspended particles in flow, which
is necessary to accurately quantify the particle capture. Both mi-
cropillar and staggered herringbone designs have been optimised
to some degree using computational fluid dynamics (CFD) sim-
ulations using commercially available software. CFD solves the
Navier-Stokes equations in a top-down manner by discretising
the continuum equations using a finite-element method19. How-
ever, to the best of our knowledge, no microfluidic geometries
have been computationally optimised in the context of EV im-
munoaffinity isolation.

In one study, a CTC-capture micropillar geometry optimisation
study was conducted for several parameters including a qualita-
tive array type of either square, diagonal or triangular pillars9.
In another study, grid-search optimisation was conducted for a
staggered herringbone groove design for CTC-capture using both
channel and groove depth, width and height, number of grooves
per half cycle, groove angle, groove pitch and an asymmetry fac-
tor14. To quantify the frequency of particle/surface interactions
this study employed point particles with specified virtual radius,
that were tracked and said to have a chance of capture if the dis-
tance between the particle and the surface became less than the
radius. This virtual radius was initially developed in 2012 for
micromixing applications17, and it was later used in conjunction
with lattice Boltzmann methods, which is a bottom-up approach
to solving the Navier-Stokes equations20. This approach is in con-
trast to the usual top-down process of discretising the equations.
Due to its natural divisibility, the bottom-up approach is better
suited to computational parallelisation21. In another study, stag-
gered herringbone grooves were used in a surface-particle optimi-
sation using a modified Arrhenius model to describe the particle
binding reaction, which better describes the chemistry between
the suspended particles and the capture ligands on the surface of
the channel22.

We report the development of an automated parallel pattern
search optimiser for improving the design and effectiveness of mi-
crofluidic EV capture devices. We outline the justification of sev-
eral assumptions, the unexpected results for maximum particle
capture efficiency, and experimental validation of the findings by
fabricating channels and testing them using bioreactor-produced
breast cancer cell line-derived EVs. As the field of microfluidic EV
liquid biopsies continues to grow, this type of automated geom-
etry optimisation could be invaluable in enabling researchers to
more efficiently capture EVs of interest without spending exten-
sive amounts of time physically optimising their device designs.

2 Results and Discussion

2.1 Optimised Designs

The optimisation workflow was initialised using a microchan-
nel geometry consisting of a triangular arrangement of circu-
lar pillars of radius r = 30µm and separation parameter a = 3.5
(where centre-to-centre pillar separations distances d are given
by d = ar). After 25 objective evaluations the solution converged
to an optimal design with r = 20µm and a = 3.56. The objective
function (capture rate) under this design was evaluated as 391, a
140% increase in performance compared to the starting geomet-
ric design. The optimisation was repeated for three different sets
of initialisations of r and a. The resulting objective functions can
be found in Figure 1 and Table 1.

Fig. 1 Predicted EV capture rate plotted as a contour map against
geometric design parameters r and a, for four instances of the PPS op-
timisation solver. The dots represent all solutions evaluated with their
different colours indicating different solver initialisations, while the con-
tour gradient of black to burgandy indicate the particle capture efficiency
from highest to lowest, respectively.

It can be seen that the initial starting point affects the perfor-
mance of the optimisation, with two of the four initialisations con-
verging to a geometry with lower EV capture rate. This is to be
expected, since the nonlinearity of the problem necessitates the
use of a heuristic optimisation routine (like the Parallel Pattern
Search algorithm used here), which only guarantees convergence
to a local optimum. Hence the need for a number of initialisations
for a good survey of geometry design space.

Table 1 Comparison of initial and optimised geometries, as computed
by the PPS algorithm. Subscripts I and O denote initial and optimised
values.

rI aI EVI rO aO EVO % change
3×10−5 3.50 163 2×10−5 3.5625 391 139.88%

4.75×10−5 3.20 264 4.73×10−5 3.125 301 14.02%
4.5×10−5 3.75 164 3.08×10−5 4 224 36.59%
3.66×10−5 3.4 184 2.00×10−5 3.55 405 120.11%

In order to highlight the difference between the geometry de-
sign with the highest and lowest EV capture rates, Figure 2 shows
plotted flow streamlines in those microchannels. The best design
had a capture rate of 405, whereas the worst design (found at
any point during the optimisation routine) had a capture rate of
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Fig. 2 Streamlines for (left) best design (r = 20 : 0µm, a = 3.55) and (right) worst design (r = 16.7µm, a = 3.00) (right) Red streamlines correspond
to higher velocities

69. The better design had a less dense packing of pillars, as evi-
denced by both fewer pillars across the width of the microchannel
and a shorter length of the periodic unit (although the total area
of the microchannels in both cases is the same). This was a some-
what surprising finding, since a denser packing leads to a greater
overall functionalised surface area. However, we see in the higher
performing, lower density pillar arrangement that the streamlines
follow the contours of the pillars more closely, providing greater
opportunity for EV capture.

2.2 Experimental Validation

To experimentally validate the designs shown in Figure 2, de-
vices were fabricated using standard photolithography and soft
lithography methods. Given the relatively high aspect ratio fea-
tures, scanning electron microscopy (SEM) and optical profilom-
etry were used to ensure that the pillars were not destroyed dur-
ing the demoulding process. As shown in Figure 3, SEM images
and optical profilometry demonstrate that the desired geometries
were successfully produced in the final microchannel structural
features (r = 20µm, a = 3.55 and r = 16.7µm, a = 3.00) through-
out the entire length of the channels.

Two complimentary approaches were then tested for their abil-
ity to quantify the relative EV capture efficiencies between the
two designs. In the first, fluorescently labeled EVs that were col-
lected from BT-20 cells cultured in a bioreactor were quantified
on-chip by placing the chips with captured EVs into a custom 3D
printed plate reader frame. After correcting for the autofluores-
cence resulting from the chip structure and antibody functional-
isation surface chemistry, the worst design from the simulations
produced an average fluorescence signal of 301012 ± 37925 a.u.,
while the best design produced a fluorescence signal of 607795
± 96760 a.u. as shown in Figure 4A. This represents an increase
in capture efficiency of 102%, which is much less than the 6-fold
increase expected based on the simulation results, but does val-
idate there is an increase in EV capture efficiency between the
worst and best designs.

Assuming all the normalised fluorescence signal was from EVs,

Fig. 3 SEM and profilometry of the worst (A-C) and best (D-F) mi-
crofluidic channel designs as determined by the PPS optimiser. (A,D
scale bar = 40 µm, B,E scale bars = 150 µm)

the plate reader approach agreed, to some degree, with the sim-
ulation. However, it is not a well-established technique, so it was
compared to a single particle counting NTA method by using an
affinity chromatography system where the EVs are released from
the channel surfaces using acidic buffer and immediately neu-
tralised downstream. This process was performed using the ex-
act same devices that were quantified using the plate reader, and
NTA results again demonstrated an increase in EV capture be-
tween the worst and best designs, from 5.14 x 108 ± 9.07 x 106

EVs/ml in the worst design to 8.34 x 108 ± 7.19 EVs/ml in the
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best as shown in Figure 4B. This represents a 62% increase in
capture efficiency. In addition, the size distributions of EVs eluted
from the different channel geometries appear to be similar and
again illustrate the differences in concentration, shown in Figure
4C. Although there are clear differences between these two EV
quantification approaches, they collectively demonstrate that the
simulations can be used to improve EV capture efficiency in mi-
crofluidic liquid biopsy applications.

The differences seen between the two EV quantification meth-
ods could be due to several reasons, including incomplete elution
of the EVs from the capture surface or even elution at different
rates given the different geometries. In addition, the fluorescent
plate reader cannot provide a single particle count or any size
distribution information, and the strong levels of background flu-
orescence could have resulted in imperfect normalisation of the
total fluorescence signal. In the future, a standard curve could
be created to give some indication of absolute EV quantity. This
would also need to be done for each specific geometry, again due
to the different levels of background fluorescence in each design.

The differences seen between both experimental EV quantifi-
cation methods and the simulations could be caused by several
factors, such as the EV capture being a boolean function based
solely on proximity in the simulations, whereas the imperfect ki-
netics of antibody binding to EVs mean the overall capture prob-
ability is inherently lower in the experiments. In addition, the
simulations were performed using EVs with an assumed diame-
ter of 100 nm. This is likely more in line with NTA-based quan-
tification, which preferentially quantifies particles in this range
due to its well-established decrease in accuracy when quantify-
ing smaller particles23. Fluorescence quantification, on the other
hand, would obtain a signal from EVs below the detection limit
of NTA, and could in part explain the increased difference in EV
capture measured from the plate reader analysis.

In the future, this simulation approach could be improved by
relaxing many of the assumptions that were made in this study
and expanding this approach to other device geometries. For in-
stance, several assumed constants could instead be added to the
explored parameter space, including the channel height, shape
and angle of the pillar arrays, or flow rate. In addition, other com-
mon microfluidic geometries such as alternating staggered her-
ringbone grooves could potentially be paramterised, optimised,
and experimentally validated in a similar manner.

3 Conclusions
In this study, we demonstrate that a parallel pattern search op-
timiser built in Python could use COMSOL Multiphysics’ Parti-
cle Tracing Module to optimise microfluidic geometries for EV
immunoaffinity capture. Surprisingly, the simulations suggested
that simply maximising the total number of pillars, and thus the
effective surface area, was not the optimum triangular pillar array
geometry. Rather, slightly larger and more spaced out pillars al-
lowed slower contact with EVs and encouraged them to follow the
coutours of the pillars more closely. These findings were validated
experimentally using fluorescently labeled EVs from a bioreactor
and an antibody against the tetraspanin CD63, and quantified us-
ing a fluorescent plate reader as well as an acidic elution approach

followed by NTA. These results demonstrate the potential of au-
tomated microfluidic optimisations for EV liquid biopsies and will
support further development of this rapidly growing field.

4 Materials and Methods

4.1 Microchannel Design

We consider a microchannel of length 75mm, width 300µm and
height 100µm. The EV suspension passed through the channel
in PBS (phosphate buffered saline), and has a density of 1007
kg/m3 and a dynamic viscosity µ of 3.30× 10−3 Pas. The volu-
metric flow rate (V) is 2.5× 10−10 m3/s. The pillar array within
the microchannel is the same as14, an equilateral triangle ar-
rangement of circular pillars with radius r, centre-to-centre (row)
separation d = ar and corresponding lateral (column) separation
G =

√
3d. Observing manufacturing constraints, we explore the

parameter range 50/3µm < r < 50µm and 3≤ a≤ 4.

4.2 Design Optimisation

The modelling framework consists of several stages. For a given
microchannel geometry, we simulate the flow of an EV laden fluid
through that geometry, and determine the EV capture rate. The
flow simualator is coupled to an optimisation routine that updates
the microchannel geometry to maximise this capture rate. We
provide more details below on these two components.

4.2.1 Flow Simulations

At the small length scales found in microfluidic devices, vis-
cous forces dominate inertial effects, and the flow can be well-
described by the Stokes Flow equations (sometimes known as
creeping Flow)24.

−∇p+µ∇
2u = 0, ∇ ·u = 0 (1)

where u represents flow velocity, p flow pressure, and µ dynam-
ics viscosity. We assume that the EVs have negligible inertia and
are sufficiently dilute that they are advected by the flow without
appreciably affecting it. As such, the trajectory of the EVs satisfy

dX i

dt
= u (2)

where X i denotes the location of the ith EV in the suspension.
We assume that there is no flow on solid surfaces of the mi-

crochannel geometry. Moreover, due to the repeating nature of
the geometric patterns within the microfluidic channel, the flow
geometry can be reduced to a repeating unit cell with a periodic
velocity boundary condition. This simplification provides dras-
tic reductions in computational expense as only a small section
of the entire device needs to be simulated. However, a pressure
difference across the repeating unit cell is required, and with a
difference of 1.108Pa found to give the require volumetric flow
rate through the channel. To validate the periodic geometry ap-
proach, the flow through an entire microchannel, containing re-
peating arrangements of triangular or circular micropillars, were
compared to the flow through a single repeating unit. As illus-
trated in Figure 1, simulations showed that the flow computed in
the full geometry (right image) is seen to agree with that com-
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Fig. 4 Comparison of EV capture quantification methods showing (A) normalised fluorescence signals from plate reader, (B) NTA particle counts
following elution of captured EVs, and (C) NTA size distributions of eluted EVs. (n=3, *=p<.05)

puted using a single periodic repeating unit (left image).
The flow equations and particle tracking and capture were

undertaken using the Microfluidic and Particle Tracing modules
within COMSOL Multiphysics (version 5.4). Every 0.1 seconds,
for a period of 10 seconds, 100 particles were injected into the mi-
crochannel at randomly distributed locations across the channel
inlet. An accumulator counter was created to track the number
of particles (EVs) making contact with the wall (enabling particle
capture), which was used as a measure of the design’s perfor-
mance. A physics controlled unstructured tetrahedral mesh was
used in simulations, with mesh convergence achieved using ele-
ments sizes in the range 6.71× 10−6 to 2.24× 10−5 (see Figure
6).

Fig. 5 Flow around triangular pillar arrays simulated as assuming a
periodic repeating unit (left) and explicit full geometry (right). Both
designs comparisons show near-identical flow fields.

4.2.2 Parallel Pattern Search Optimisation

In this study, we implement a Parallel Pattern Search (PPS) op-
timiser to maximise the theoretical immunoaffinity-based cap-
ture of EVs on triangular micropillar arrays within a microflu-
idic channel. Parallel Pattern Search (PPS) is a gradient-free and
parameter-based optimisation algorithm specifically designed for
computationally expensive and bound-constrained problems of
high dimensionality25. This algorithm starts at the outer edges
of the parameter domain and works its way towards the centre.
If an improved solution is found, the pattern shifts and contin-
ues converging. This algorithm is partly non-sequential, in that
multiple points within the parameter domain can be simulated
simultaneously, reducing the total computation time if high per-
formance resources are available.

Our workflow combined a Python implementation of PPS cou-
pled to the COMSOL particle tracing simulations. On each iter-

ation of the PPS algorithm, geometric design parameters r and
a, corresponding to pillar radius and spacing, are passed to the
COMSOL scheme which simulates the flow and particle trajecto-
ries in the corresponding microchannel geometry, and returns to
the PPS the particle capture for that particular geometric design.
Convergence of the PPS algorithm was set to be when variations
in the geometric parameters r and a become less than 5%, as
these represent changes below manufacturing tolerances. All op-
timal designs were computed within 24 hours using 8 CPU’s and
16 GB of memory on the Mahuika New Zealand eScience Infras-
tructure (NeSI) high performance computing cluster.

Fig. 6 Computational mesh for periodic repeating unit of triangular array
of circular pillars in a 300µm wide microchannel.

5 Experimental Setup

5.1 EV Production and Isolation

EVs were produced using a two-chambered CELLine AD1000
bioreactor (Sigma) culture of BT-20 cells, a triple negative breast
cancer cell line, as previously reported26,27 Briefly, cells were in-
oculated in complete media and and slowly adapted to serum-
free advanced media with serum replacement CDM-HD (Fiber-
cell). Once per week, the 500 ml media chamber was refreshed
and twice per week, the 15ml of conditioned media in the cell
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chamber was collected and used for EV isolation. EVs were iso-
lated by first centrifuging at 2,000 xg for 10 min to remove dead
cells and large debris, followed by 10,000 xg for 30 min to pellet
large EVs, and finally 100,000 xg for 70 min to pellet small EVs.
Small EVs were then resuspended in 500 µl PBS, labeled with 10
µM Vybrant DiO (V22886, ThermoFisher), and purified using a
35 nm qEV Original size exclusion chromatography column and
an automated fraction collector (Izon). EV-rich fractions (7-10),
as validated previously based on nanoparticle tracking analysis
(NTA) and bicinchoninic acid assay (BCA)26,27, were pooled and
used for the remainder of the study.

5.2 Microfluidic Fabrication and Characterisation

Microfluidic devices were fabricated using standard SU8-2100
photolithography and PDMS moulding. First, 80 mm diame-
ter acrylic wafers were cut using a laser cutter. SU8-2100 (Mi-
croChem) was then spincoated and processed with appropriate
baking, exposure, and development conditions. Wafers were then
treated with HMDS (Sigma) overnight in a vacuum degasser to
improve demoulding of the pillar features. A 10:1 ratio of Syl-
gard 184 PDMS (Dow Corning) was mixed, degassed, and poured
over the patterned wafers, degassed again, and cured at 60 °C for
3 h. PDMS channels were then demoulded from the patterned
wafer and connector holes were punched using a filed 18g nee-
dle. Channels and glass slides were plasma treated with air at
40W for 2 min (Harrick Plasma) and left for 10 min before in-
troducing a series of linker chemistries. To validate the desired
channel geometries, SEM imaging was performed by coating de-
vices with 10 nm of gold (Q150R S, Quorum) then imaging using
a JCM-6000 benchtop SEM (JEOL) at 15 kV. Optical profilometry
was used to further validate the structures using a Contour GT-K
Optical Profiler (Bruker).

5.3 EV Capture Efficiency Quantification

10 min after bonding, microfluidic channels (n = 3 of each
design) were functionalised with an antibody against CD63
(SantaCruz, sc-5275) by using a well-established linker chem-
istry4,28–30. Briefly, 8% percent (3-Aminopropyl)triethoxysilane
(APTES, Sigma) in ethanol was flowed at a rate of 20 µl/min for
15 min then left stagnant for 20 min, followed by a flush with
pure ethanol. Then, 4% glutaraldehyde in water was flowed and
left stagnant similarly, with a similar water flush. Finally, 100 µl
of CD63 antibody (MX-49.129.5, sc-5275, SantaCruz) in PBS at a
concentration of 5 µg/ml was flowed through at a rate of µl/min
until all but roughly 5 µl was left in the inlet tubing. The inlet tub-
ing was then cut at the fluid mark, and the chips were stored at 4
°C overnight. The following day, the chips were flushed with PBS
at 20 µl/min for 15 min, then the BT-20 EVs were flowed through
at a rate of 15 µl/min. The chips were once again flushed with
PBS at a rate of 15 µl/min.

We tested whether a plate reader could be used to compare
the capture efficiency of the DiO-labeled EVs in each chip design
(Supp Fig 1). Using a custom 3D printed chip holder with align-
ment markers based on a 96-well ELISA plate (.stl file provided in
supplementary), chips were loaded and fluorescence was quanti-

fied for 483 nm excitation and 501 nm emission on an Ensight
Multimode Plate Reader (Perkin Elmer). Chips that were func-
tionalised similarly but did not undergo EV capture were used as
background fluorescence controls (antibody only). Immediately
following fluorescence analysis, EVs were eluted with 200 µl pH
2.2 Glycine-HCl buffer into 20 µl pH 8.5 Tris-HCl neutralisation
buffer as shown in Figure 7, then counted using NTA.

Fig. 7 Schematic of EV capture and release approach.

5.4 Statistical Analyses
All averages are reported as average ± standard error mean. Er-
ror in all figures are standard error mean. Statistical analyses
were performed were unpaired t-tests (p<.05).

Author Contributions
Colin Hisey: Conceptualization, Methodology, Validation, Formal
analysis, Investigation, Resources, Writing – Original Draft and
Reviewing Editing, Supervision, Project administration, Fund-
ing acquisition AJ Tyler: Methodology, Software, Validation, Data
Curation, Visualization, Formal analysis, Investigation, Writing –
Original Draft and Reviewing Editing Arvin Lim: Methodology,
Software, Validation, Data Curation, Visualization, Formal anal-
ysis, Investigation, Writing – Original Draft and Reviewing Edit-
ing Lawrence W. Chamley: Resources, Writing – Review Editing
Cherie Blenkiron: Resources, Writing – Review Editing Richard
Clarke: Conceptualization, Methodology, Validation, Formal anal-
ysis, Investigation, Resources, Writing – Original Draft and Re-
viewing Editing, Supervision, Project administration.

Conflicts of interest
There are no conflicts to declare.

Acknowledgements
The authors would like to thank the Breast Cancer Foundation
New Zealand Technology and Innovation Project Grant for fund-
ing this project, as well as the Hub for Extracellular Vesicle In-
vestigations and New Zealand eScience Infrastructure (NeSI) for
their continued support.

Notes and references
1 B. Zhou, K. Xu, X. Zheng, T. Chen, J. Wang, Y. Song, Y. Shao

and S. Zheng, Signal transduction and targeted therapy, 2020,
5, 1–14.

6 | 1–7

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted November 14, 2021. ; https://doi.org/10.1101/2021.11.13.468499doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.13.468499


2 M. He and Y. Zeng, Journal of laboratory automation, 2016,
21, 599–608.

3 J. C. Contreras-Naranjo, H.-J. Wu and V. M. Ugaz, Lab on a
Chip, 2017, 17, 3558–3577.

4 C. L. Hisey, K. D. P. Dorayappan, D. E. Cohn, K. Selvendiran
and D. J. Hansford, Lab on a Chip, 2018, 18, 3144–3153.

5 S. S. Kanwar, C. J. Dunlay, D. M. Simeone and S. Nagrath, Lab
on a Chip, 2014, 14, 1891–1900.

6 E. Reátegui, K. E. van der Vos, C. P. Lai, M. Zeinali, N. A.
Atai, B. Aldikacti, F. P. Floyd, A. H. Khankhel, V. Thapar, F. H.
Hochberg et al., Nature communications, 2018, 9, 1–11.

7 C. Chen, J. Skog, C.-H. Hsu, R. T. Lessard, L. Balaj, T. Wur-
dinger, B. S. Carter, X. O. Breakefield, M. Toner and D. Irimia,
Lab on a Chip, 2010, 10, 505–511.

8 W. C. Chang, L. P. Lee and D. Liepmann, Lab on a Chip, 2005,
5, 64–73.

9 S. Nagrath, L. V. Sequist, S. Maheswaran, D. W. Bell, D. Irimia,
L. Ulkus, M. R. Smith, E. L. Kwak, S. Digumarthy, A. Muzikan-
sky et al., Nature, 2007, 450, 1235–1239.

10 J. P. Gleghorn, E. D. Pratt, D. Denning, H. Liu, N. H. Bander,
S. T. Tagawa, D. M. Nanus, P. A. Giannakakou and B. J. Kirby,
Lab on a Chip, 2010, 10, 27–29.

11 Z. Wang, H.-j. Wu, D. Fine, J. Schmulen, Y. Hu, B. Godin, J. X.
Zhang and X. Liu, Lab on a Chip, 2013, 13, 2879–2882.

12 Y. J. Jan, J.-F. Chen, Y. Zhu, Y.-T. Lu, S. H. Chen, H. Chung,
M. Smalley, Y.-W. Huang, J. Dong, L.-C. Chen et al., Advanced
drug delivery reviews, 2018, 125, 78–93.

13 P. Zhang, M. He and Y. Zeng, Lab on a Chip, 2016, 16, 3033–
3042.

14 S. Wang, S. Sohrabi, J. Xu, J. Yang and Y. Liu, Microfluidics
and Nanofluidics, 2016, 20, 1–11.

15 T. J. Kwak, Y. G. Nam, M. A. Najera, S. W. Lee, J. R. Strickler
and W.-J. Chang, PloS one, 2016, 11, e0166068.

16 A. D. Stroock, S. K. Dertinger, A. Ajdari, I. Mezić, H. A. Stone
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