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Abstract

Hierarchical modelling is essential to achieving complex, large-scale models. However,

not all modelling schemes support hierarchical composition, and correctly mapping

points of connection between models requires comprehensive knowledge of each model’s

components and assumptions. To address these challenges in integrating biosimulation

models, we propose an approach to automatically and confidently compose

biosimulation models. The approach uses bond graphs to combine aspects of physical

and thermodynamics-based modelling with biological semantics. We improved on

existing approaches by using semantic annotations to automate the recognition of
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common components. The approach is illustrated by coupling a model of the

Ras-MAPK cascade to a model of the upstream activation of EGFR. Through this

methodology, we aim to assist researchers and modellers in readily having access to

more comprehensive biological systems models.

Author summary

Detailed, multi-scale computational models bridging from biomolecular processes to

entire organs and bodies have the potential to revolutionise medicine by enabling

personalised treatments. One of the key challenges to achieving these models is

connecting together the vast number of isolated biosimulation models into a coherent

whole. Using recent advances in both modelling techniques and biological standards in

the scientific community, we developed an approach to integrate and compose models in

a physics-based environment. This provides significant advantages, including the

automation of model composition and post-model-composition adjustments. We

anticipate that our approach will enable the faster development of realistic and accurate

models to understand complex biological systems.

1 Introduction 1

Modelling complex biological systems such as cells, organs, and organisms allows 2

researchers and physicians to integrate and study different aspects of a biological entity, 3

reveal the limits and shortcomings of our knowledge, and obtain new insights into 4

disease treatment [1]. Motivated by such aims, hierarchical modelling is an approach 5

that assists researchers in constructing system-level models, which are continuously 6

expanding in detail, scope, and size [2]. 7

Hierarchical models are composed of pre-existing smaller models, referred to as 8

modules. Each module can operate and be examined independently, thus reducing 9

model composition errors and facilitating large-scale model generation due to 10

pre-existing models. To accelerate hierarchical model composition, one can capitalise on 11

a myriad of the existing modules created by others. A requirement for this is that the 12

modules be both accessible and reusable [2]. Over the past decade biosimulation models 13
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have become increasingly accessible on public repositories such as the Physiome Model 14

Repository (PMR) [3] and BioModels [4], which store models in XML-based format 15

such as CellML [5] and the Systems Biology Markup Language (SBML) [6, 7]. 16

The main challenges in hierarchical model composition include: (a) incompatible 17

code languages, (b) different modelling frameworks, (c) post-composition adjustments, 18

and (d) physically implausible resultant models. Each integrating system or platform 19

addresses some of these challenges. A majority of model integration platforms, such as 20

the SBML Hierarchical Model Composition package [8], require compatibility between 21

the languages and modelling frameworks in the modules. In contrast, the resultant 22

model still needs further post-merging code-wise adjustments to be executable, yet it 23

might not represent a physically feasible model. Physical feasibility refers to models 24

following the laws of thermodynamics and physics even if the model itself is 25

incorrect [9, 10]. One solution to these issues is using a hierarchical modelling approach 26

(to help with the post-composition adjustments) and an energy-based modelling 27

framework (to guarantee a physically plausible composed model). The bond graph 28

approach addresses these issues. 29

Bond graphs provide a domain-independent hierarchical framework that generates 30

models based on the laws of physics and thermodynamics. Initially introduced by 31

Paynter [11], bond graphs were primarily intended for engineering applications. The 32

application of bond graphs was extended to the chemical domain by Oster et al. [12, 13] 33

and subsequently by Cellier [14]. Gawthrop and Crampin have recently developed the 34

bond graphs framework to model and analyse biochemical and electrochemical 35

systems [10,15]. 36

An automated model composition approach significantly assists researchers in 37

creating large-scale models from existing modules [16]. Shahidi et al. [17] introduced a 38

general hierarchical model composition method by encoding bond graph modules in 39

CellML and constructing a complex model using the semantics-based SemGen merger 40

tool [18]. Although this method facilitated the integration of annotated bond graph 41

models, bottlenecks might arise when a modification in the CellML bond graph modules 42

is needed (modellers must know the bond graph conservation laws). Moreover, it 43

required adding auxiliary variables as ports to each module and connecting them 44

manually using the semi-automated SemGen merger tool. While annotations are readily 45
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incorporated into bond graphs, using annotations in model composition has not been 46

conducted in this context. 47

Here, as an extension to our previous work, we have incorporated annotations to 48

bond graphs in a platform in which a composed model can be automatically constructed 49

from annotated CellML files treated as modules. Because the CellML files do not 50

contain the bond graph structure, a separate bond graph library in Python 51

(BondGraphTools [19]) automatically deals with any required changes in the 52

conservation laws. The annotated data from the CellML modules are then extracted 53

and assigned to their equivalent bond graph components. Thereafter, any common 54

entities among the modules are identified and merged to render a composed model. We 55

demonstrate this by an example where a bond graph model is constructed from its 56

constitutive modules, i.e., the Epidermal Growth Factor Receptor (EGFR) signalling 57

pathway and the Mitogen-Activated Protein Kinase (MAPK) cascade are merged to 58

construct a model of the entire EGFR-Ras-MAPK signalling pathway. This type of 59

model integration provides a reliable and consistent framework that first conserves 60

energy due to the energy-based bond graphs implementation; second, prevents modellers 61

from making physically infeasible models; third, does not require any post-merging 62

modifications due to the hierarchical feature of bond graphs; and fourth, automates the 63

model composition and merging using the modules’ rich semantics. 64

In this paper, we introduce our automated model composition approach in 65

Section 2.1. Its prerequisites along with the generic method description are reviewed in 66

Sections 2.1.1 & 2.1.2. We review the use of bond graphs in modelling biochemical 67

reactions (Section 2.2) and describe how the bong graph modules of the 68

EGFR-Ras-MAPK signalling pathway are created based on the existing work by 69

Kholodenko et al. [20] and Pan et al. [21] (Section 2.3). As an example of our method 70

application, we utilise it to create the EGFR-Ras-MAPK signalling pathway in 71

Section 2.4. Next, we describe how we verified the simulation results of our composed 72

model in Section 2.5. In Section 3 we demonstrate the simulation results both for the 73

constitutive modules and our composed bond graph model, and in Section 4 we discuss 74

and analyse the behaviour of bond graph modules and then verify the behaviour of our 75

composed model. Possible improvements and shortcomings are also discussed in this 76

section. The main features of our method and the future developments are summarised 77
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in Section 5. 78

2 Materials and methods 79

In this section, we discuss our energy-conserving semantics-based model composition 80

approach: the prerequisites and the generic application. We give a brief introduction to 81

bond graph modelling of biochemical networks consisting of multiple reactions. Later, 82

we demonstrate how a mathematical model of a biochemical network can be converted 83

into bond graphs. We utilised this approach to create a bond graph model of the EGFR 84

pathway. We will show that by having the bond graph model of any physical or 85

chemical system, our method can merge the similarly annotated entities within the 86

models by automatically rewiring the connections between components and modules. 87

The whole composed model in bond graphs will then be ready for simulation or 88

connection to other modules. We demonstrate this by applying our method to 89

automatically compose and generate a EGFR-Ras-MAPK signalling model. 90

2.1 Automated model composition pipeline 91

Our method to expand and integrate biosimulation models provides the foundation for 92

further developments in an open-source environment based on energy-based modules 93

and automation to minimise manual input. In this endeavour, we have provided some 94

exemplar symbolic bond graph models to which the annotated parameters from the 95

CellML modules would accordingly link. Symbolic modules are predefined models in 96

which the parameters do not have any values and allow us to determine the parameters’ 97

values later where each module gets its specific parameters from the source CellML files. 98

The suitable bond graph model is then automatically selected from the list by 99

identifying specific annotated components in the CellML modules. Merging points are 100

automatically recognised and merged, resulting in a physically consistent model. Due to 101

the hierarchical feature of bond graphs, the needed adjustments during the composition 102

will be systematic, leading to the automation of modifications (adding/deleting bonds 103

between the components). 104

To apply our method to CellML models, some preparations are required in advance, 105

i.e., installing the bond graph Python library as well as downloading the required 106
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ontologies. Once prepared, the user can commence the model composition in a Python 107

environment like Jupyter Notebook. 108

2.1.1 The prerequisites 109

• BondGraphTools 110

The task of automated model composition requires bond graph software that 111

readily supports automation. For this purpose, we have selected BondGraphTools 112

– an open-source Python library for bond graph modelling – created and developed 113

by Cudmore et al. [19], accessible from 114

https://github.com/BondGraphTools/BondGraphTools. BondGraphTools 115

supports modularisation and automation in model building. 116

• Ontologies 117

Depending on the area of biomedical science in which the researchers annotate 118

their models, one or various reference ontologies might be used. Our approach 119

identifies and interprets the annotations by comparing them with the codes and 120

labels in ontologies saved as csv files. We suggest downloading CHEBI, FMA, 121

OPB, and GO ontologies from the following links: 122

– CHEBI: https://bioportal.bioontology.org/ontologies/CHEBI 123

– FMA: https://bioportal.bioontology.org/ontologies/FMA 124

– OPB: https://bioportal.bioontology.org/ontologies/OPB 125

– GO: https://bioportal.bioontology.org/ontologies/GO 126

We used the OPB and GO ontologies for the particular case study in this paper. 127

2.1.2 The generic approach 128

To reuse and compose models deposited on online repositories such as PMR, we need a 129

tool to first convert a non-bond-graph model into an equivalent bond graph one; second, 130

automatically assign the parameters in the models to the bond graph components; third, 131

identify the same entities in the models as the merging points and make the necessary 132

changes to join the models without any loss of information. 133
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To improve our model composition method toward automation and reuse the models 134

in various formats, we employed the idea of having symbolic bond graph templates and 135

connectivity matrices for some exemplar systems (EGF signalling and the Ras-MAPK 136

cascade). A connectivity matrix is a binary square matrix that defines connections 137

between the elements of a system. The number of rows and columns each equals the 138

number of elements in the network in total [22]. Instead of using the embedded syntax 139

in BondGraphTools to append/delete the elements, we employed the concept of a 140

connectivity matrix. Binary representation of models clearly shows the connections, 141

facilitates computational measurements, and gives the minimal required details to define 142

a network which can be exported to other tools and software for further analysis [22]. 143

Modifying a network is easily performed by inserting 0 or 1 in the matrix or deleting its 144

corresponding row and column. The connectivity matrix (CM) for a system with m 145

elements can be described as CM ∈ {0, 1}m×m, where: 146

CMij =

1, if ai and aj are connected

0, otherwise.
(1)

Figure 1 shows the connectivity matrix for a sample network. Notice that the 147

connectivity matrix is symmetric (CMij = CMji), representing the bidirectional flow of 148

energy between the bond graph components. 149

Fig 1. An example network with its connectivity matrix. (A) The network
topology of the connections between the elements of a system; (B) The connectivity
matrix of the system. 0 means no connection and 1 means connection. The dashed red
line shows the diagonal of the matrix to demonstrate its symmetry.

To identify the merging points between the modules we used a ‘white box’ approach. 150

In this approach all or a group of the elements in the modules can be selected as 151

merging points. In a ‘black box’ composition approach, the elements of the modules are 152
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not accessible and only the input/output variables can be used for coupling 153

modules [17,23]. In coupling biological models almost all the entities can be regarded as 154

merging ports, hence, we found the ‘white box’ configuration more compatible with our 155

model composition method. To do this, we need the variables and parameters of the 156

models to be annotated. To summarise, we started our automated model composition 157

method by preparing the following (Figure 2): 158

• Bond graph symbolic templates of the models; 159

• Connectivity matrix of each bond graph template; 160

• Ontologies required for matching and interpreting the annotations. 161

In a given biological/physiological/physical context, our framework can detect the 162

type of bond graph template that matches the annotated model. This is done by 163

searching for specific groups of biological entities/processes within the annotated 164

CellML files. If a certain group of entities is found in a file, then it will be linked to its 165

corresponding bond graph symbolic template. Thereafter, by finding similar 166

annotations in the models, the merging points will be selected. Based on this, the 167

required changes in the bond graph components (deleting the duplicates) and the 168

connectivity matrices (deleting or inserting rows and columns) will be made. Ultimately, 169

the final model will be produced based on the connection/non-connection relationships 170

between all the components. 171
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Fig 2. The generic flowchart of our automated model composition
approach. The Repository shows the prerequisites for model composition. The Input
section shows two arbitrary CellML models to be merged using our approach.

We have deposited the required ontologies, the bond graph symbolic template 172
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models, and their connectivity matrices in our repository. Any number of CellML 173

models containing the annotated parameters of a system can be used in our framework 174

as inputs (here, we list two models). First, the annotations and values of the CellML 175

models are extracted, and if no similar annotations are detected between the models, it 176

gives a warning. For the similar annotations, two paths are taken: 177

1. Value allocation: If the same components do not have the same values, it asks the 178

user to either select one of the values or insert a new one. 179

2. Composition process: If the components with similar annotations are mergeable, 180

it keeps one of them and discards the rest; otherwise, it ignores them [24]. For 181

example, biochemical species are considered mergeable since they can 182

simultaneously participate in multiple reactions but a parameter like temperature 183

cannot be merged as it can not become a port for external connections. Based on 184

the deleted duplicate components, the connectivity matrices are combined, 185

allowing the models to be merged (details in Section 2.4). 186

2.2 Bond graph modelling of biochemical reactions 187

This section summarises the bond graph basic principles and delineates how biochemical 188

reactions are represented in bond graphs. 189

Two physical co-variables form the energy-based foundation of bond graphs: effort 190

(e) and flow (f). Power is the product of effort and flow (p = e.f) and energy is the 191

power over time: E =
∫
p dt. Effort and flow are general terms that represent voltage 192

and current in the electrical domain, force and velocity in the mechanical domain, 193

chemical potential and molar flux in the chemical domain, respectively. Bond graphs 194

represent complex systems as graphical representations which consist of components, 195

bonds, and junctions. Components represent physical elements and are defined as 196

general configurations of electrical, mechanical, or chemical elements. For instance, C 197

components in bond graphs are charge storage components i.e. capacitors in electrical 198

circuits, springs in mechanical systems, or chemical species in chemical reactions. A 199

common effort between the components is shown by a ‘0’ junction, while a ‘1’ junction 200

shows a common flow, and the energy is conserved and travels between components 201

bidirectionally through bonds (shown by harpoons). Readers can find a more detailed 202
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description of the bond graph theory in [25–27]. 203

To facilitate reusability, biochemical models must obey the laws of physics and 204

thermodynamics [28]. In conventional modelling approaches, modellers often ignore the 205

energy transfer; thus, the reactions may proceed against chemical potential gradients 206

and lead to physically implausible models [10]. Since bond graphs are based on energy 207

conservation and thermodynamic laws, fluxes are always in the direction of decreasing 208

potential. Biochemical bond graph models contain components for the species (Ce), 209

stoichiometry (TF : N), and reaction (Re). To highlight the notion of the bond graph 210

junctions for sharing a common molar flux or a common chemical potential, we indicate 211

them by ‘1 : v’ and ‘0 : u’, respectively. Here, 212

• The chemical potential is u (Jmol−1), stored within the biochemical species, and 213

the molar flux is v (mol s−1), driven by the reactions; 214

• The biochemical species are defined using the component Ce, given by the 215

constitutive relation uq = RT ln Kq.q (Boltzmann’s formula), where R 216

(Jmol−1 K−1) is the ideal gas constant, T (K) is the temperature, q (molm−3) is 217

the molar concentration of the species, and Kq (mol−1) is the thermodynamic 218

constant of the species [29]; 219

• Species with fixed concentrations are considered as sources of potential which are 220

called chemostats (CS) in bond graph terminology; 221

• A reaction represents a dissipative process, which in the case of mass-action 222

kinetics is defined by an Re component with the constitutive relation 223

v = κ(eur/(RT ) − eup/(RT )) (Marcelin–de Donder equation), where κ is the 224

reaction rate constant and ur and up are total chemical potentials of the reactants 225

and products, respectively; 226

• Stoichiometries are represented by transformer TF : N , in which the transformer 227

ratio (N) corresponds to stoichiometry. 228

For further discussion of bond graph modelling of biomolecular and chemical systems, 229

the reader is referred to the works by Gawthrop & Crampin [21,30]. 230

As an example, a reaction with two reactants and two products is demonstrated in 231

Fig 3 along with its equivalent bond graph representation. 232
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Fig 3. A chemical reaction and its bond graph equivalent. A chemical reaction
with two reactants and two products. (A) Schematic of a chemical reaction where κ is
the reaction rate constant, A & B are the reactants, C & D are the products, and α &
β are stoichiometries; (B) Bond graph equivalent of the reaction where Ce components
correspond to the species, Re corresponds to the reaction, and TF components
represent the stoichiometries. Since the consumption/production rate of all the
contributing species in a reaction is equal to the reaction flow rate, they share a
common flow with the Re component through a ‘1 : v’ junction.

In Fig 3.B, the reaction flow rate for the Re component is given by: 233

v = κ(e(αuA+uB)/RT − e(βuC+uD)/RT ) (2)

or if we substitute the chemical potentials with the Boltzmann’s formula: 234

v = κ(Kα
A qαA .KBqB − Kβ

C qβC .KDqD) (3)

which can be generally described by mass action kinetics: 235

v = κ

∏
i

(Kri qri)
αi −

∏
j

(Kpj qpj )
βj

 (4)

where Kri and Kpj are the thermodynamic constants, qri and qpj are the concentrations, 236

and αi and βj are the stoichiometries of reactants and products, respectively. 237

In the next section we illustrate how the bond graph approach toward biochemical 238

reactions is utilized to create models of two exemplar biochemical pathways. 239
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2.3 Modules for EGFR-Ras-MAPK signalling: Bond graph 240

models of the pathways 241

The EGFR-Ras-MAPK is a signalling pathway that transduces signals from the 242

extracellular environment to the cell nucleus [31]. It participates in multiple biological 243

functions in mammalian cells, including growth and differentiation, cell migration, and 244

wound healing [20,31,32] and consists of two major parts: the EGFR pathway and 245

MAPK cascade. Ras protein activation signals stimulate the Ras-MAPK cascade [20], 246

which is located downstream at the EGFR pathway. As such, we consider Ras protein 247

to be the mutual species in both pathways. The bond graph model of the EGFR 248

pathway is created based on the model by Kholodenko et al. [20] (CellML model 249

available from: Kholodenko 1999 ) and the bond graph model of MAPK cascade is taken 250

from the work by Pan et al. [21]. In this paper, the bond graph representation of the 251

reference MAPK cascade was available. Here, we detail how bond graph models of these 252

systems were constructed. 253

2.3.1 EGFR pathway module 254

The schematic of the EGFR pathway model developed by Kholodenko et al. [20] is 255

shown in Fig 4. The signal transmission starts with the Epidermal Growth Factor 256

(EGF) binding to the Epidermal Growth Factor receptor (EGFR). It continues via 257

several subpathways that target the SOS (Son of Sevenless) protein. The formation of 258

SOS complexes (RShGS and RGS) activates the Ras protein, which initialises 259

phosphorylation in the MAPK cascade. 260
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Fig 4. Kinetic structure of EGFR pathway. The ATP hydrolysis species are
shown in green (involved in phosphorylation and dephosphorylation reactions). The
complexes in yellow activate the Ras protein. The reactions are numbered as the
equations in the CellML source code. The network adapted from [20].

The bond graph equivalent network of the EGFR pathway is illustrated in Fig 5. 261
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Fig 5. Bond graph representation of EGFR pathway. Re components are
numbered according to the steps in [20]. Each Ce or CS component is connected to a
‘0 : u’ junction. Where a species participates in more than one reaction, new bonds are
applied to its corresponding ‘0 : u’ junction to share a common chemical potential (See
R-PL where it is produced in reaction 5 and consumed in reaction 6). The chemostats
in orange boxes are added to the reconstructed bond graph version.

The reactions in the EGFR model by Kholodenko et al. are either reversible or 262

irreversible. The reversible reactions are described using the kinetic scheme as: 263

v = k+
∏
i

qri − k−
∏
j

qpj (5)

where k+ and k− are the forward and reverse kinetic rate constants and
∏
i qr and 264∏

j qp are the concentrations of reactants and products, respectively. The kinetic model 265
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and parameters are given in [20] (Table I & Table II). The irreversible reactions (steps 4, 266

8, 16) are described using Michaelis–Menten kinetics as: 267

v = Vmax
qr

Km + qr
(6)

where Vmax (mol/s) is the maximum reaction rate achieved by the system, Km (mol) is 268

the Michaelis constant referring to the reactant concentration at half of the Vmax, and 269

qr (mol) is the reactant concentration. Irreversible reactions are thermodynamically 270

impossible in a bond graph model; we deal with this issue later. 271

The required energy for the reactions is supplied by Adenosine triphosphate (ATP) 272

hydrolysis, producing Adenosine diphosphate (ADP) during phosphorylation and 273

phosphate (Pi) during dephosphorylation. The reversible phosphorylation reactions 274

(steps 3, 6, 14) follow the kinetic formulation (Eq 5) and the irreversible 275

dephosphorylation reactions (steps 4, 8, 16) follow the Michaelis–Menten kinetics (Eq 6). 276

Kholodenko et al. have not explicitly included ATP, ADP, and Pi in their model, which 277

contravenes mass and energy conservation. Therefore, we considered these species in our 278

bond graph model. ATP, ADP, and Pi are assumed to be chemostats. 279

To convert the kinetic parameters (k+ and k− in Eq 5) to those required by bond 280

graphs (κ, Kr, and Kp in Eq 4), we first removed the thermodynamically infeasible 281

irreversible reactions from the network (for their different parameter definitions) and 282

then applied the method described in [28]. In brief, by taking logarithms on the 283

constraints of each reaction (k+ = κ
∏
iKri and k− = κ

∏
j Kpj ), the relationship 284

between the kinetic and bond graph parameters can be expressed as a linear matrix [28]. 285

Due to accounting for the ATP, ADP, and Pi components in our bond graph model, we 286

included them in the constraints of their corresponding reactions. 287

As our selected pathways are in the cytosolic compartment, they use the same 288

sources of potential (ATP, ADP, and Pi); thus, we used the same chemical potentials for 289

these chemostats as we used in the MAPK cascade module. We obtained the 290

thermodynamic constants in the previous phase (except the ones in the irreversible 291

reactions), in which we converted the kinetic parameters into bond graph parameters. 292

We approximated the irreversible reactions with kinetic quantities (Eq 5) which led to a 293

negligible reverse molar flux. We applied curve fitting to estimate the reaction rate 294
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constants for the irreversible steps (κ4, κ8, & κ16). We obtained the time-dependent 295

behaviour of the contributing species in steps 4, 8, and 16 (required for curve fitting) 296

from the reference CellML model for the EGFR pathway. As we will discuss further in 297

Section 3, an exact fit was not possible because of two reasons: first there are 298

irreversible reactions, and second, some of the reversible reactions do not satisfy 299

detailed balance. The reaction equations along with their participating species are given 300

in S1 Table. S2 Table and S3 Table compare the parameter amounts of the Kholodenko 301

et al. model with the ones from our reconstructed bond graph model. 302

The code to convert kinetic parameters into bond graph equivalents for the EGFR 303

pathway is accessible from: 304

https://github.com/Niloofar-Sh/EGFR_MAPK/tree/main/EGF. 305

2.3.2 MAPK cascade module 306

Fig 6 shows the schematic of the MAPK cascade. Each oval trajectory in Fig 6.A 307

represents a cycle. The stimulus signal is amplified sequentially through the cycles in 308

the cascade. MKKK is activated through a single phosphorylation phase by a kinase 309

(Ras) and turns into MKKKP [33]. MKK and MK each phosphorylates in two steps and 310

ultimately produce MKKPP and MKPP. The phosphorylated product of each layer 311

plays a kinase role for the phosphorylation phase in the next downstream layer. 312

Simultaneously, an opposing phosphatase dephosphorylates the product of each cycle 313

(shown by backward arrows) [34]. Each layer in Fig 6.A is dephosphorylated by a 314

specific phosphatase: MKKK-Pase in the first layer, MKK-Pase in the second layer, and 315

MK-Pase in the third layer. The dual phosphorylation-dephosphorylation mechanisms 316

in the second and third layers act as amplification, generating ultrasensitive responses. 317

Although the species in each cycle are different, the structures of the cycles are the 318

same. The similarity in the structures enables us to break the cascade down into five 319

modules of cycles. Hence, a symbolic bond graph module for a cycle could be created 320

and reused. Fig 6.B shows the modular representation of the cascade by reusing the 321

bond graph module in Fig 6.C. Pan et al. modularized the cascade into 322

phosphorylation/dephosphorylation modules linked by mitogen proteins. We included 323

the mitogen proteins into the symbolic bond graph module to facilitate the composition 324

of the modules. Also, we modelled the MAPK cascade in the absence of feedback. The 325
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Fig 6. Structure of MAPK cascade. (A) Kinetic representation. The stimulus
from the extracellular environment is received (Ras) and transmitted through the
MAPK cascade to the cell nucleus. The layers demonstrate the cycles with the same
kinase and phosphatase enzymes; (B) MAPK cascade with five modules. Linking
species are shown in colours where green corresponds to the linking enzymes and pink
corresponds to unphosphorylated/phosphorylated mitogen proteins. Arrows show the
links between the modules; (C) The symbolic bond graph model of each cycle. Sources
of potential with fixed concentrations (Cs:ATP, Cs:ADP, and Cs:Pi) are shown in
orange. (Same sources of potential within the modules are omitted in (A) and (C) for
clarity).

code for the modular bond graph model of the MAPK cascade in BondGraphTools is 326

accessible from: 327

https://github.com/Niloofar-Sh/EGFR_MAPK/tree/main/MAPK%20cascade. 328

In the literature, several models of EGFR-Ras-MAPK signalling have been 329

developed considering the involvement of MKKP as an enzyme in phosphorylation of 330

MK and MKP [32] as well as negative feedback from MKPP to the upstream EGFR 331

pathway [33–37]. This paper aims to demonstrate the reusability and composition of 332

bond graph modules; thus, further involvements and feedback loops are not considered 333

in our composition procedure. However, to verify the behaviour of the final composed 334

model, we studied the response of our bond graph EGFR-Ras-MAPK model under the 335
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condition of adding negative feedback from MKPP to incorporate as an inactivating 336

enzyme in the first cycle as studied by Kholodenko et al. [35]. 337

In the next section, we illustrate the workflow by applying it to an example 338

biochemical network: EGFR-Ras-MAPK signalling pathway. 339

2.4 Applying the composition method to EGFR-Ras-MAPK 340

signalling pathway 341

Here, we implement our model composition method (described in Section 2.1.2) to 342

generate a model of EGFR-Ras-MAPK signalling pathway. The EGFR-Ras-MAPK 343

signalling pathway is comprised of two major modules: the EGFR pathway and MAPK 344

cascade. Since MAPK cascade includes five structurally repetitive cycles, we broke it 345

down into five sub-modules. As such, we need two template bond graph modules; one 346

for the EGFR pathway (Fig 5) and one for the cycles in MAPK cascade (Fig 6.C). The 347

connectivity matrix for each module in csv format and the annotated CellML files for 348

the parameters of each module/sub-module are available on GitHub: 349

https://github.com/Niloofar-Sh/EGFR_MAPK. Due to the limited size of uploaded 350

files on GitHub, the required reference ontologies for the current model composition 351

(CHEBI, FMA, OPB, and GO) are not provided in the repository (refer to Section 2.1.1 352

for ontologies). 353

As well as checking for inconsistencies among the values of similarly annotated 354

components and parameters, components will go through the composition process. In 355

the composition process, if they are mergeable, only one is kept and the rest will be 356

removed from the modules (the list of components for each module will be updated). 357

Furthermore, the rows and columns of the connectivity matrices that correspond to the 358

removed components will be deleted. 359

Ultimately, a connectivity matrix describing all the connections between the 360

components of the composed network is needed. This is done by integrating the 361

connectivity matrices of all the modules into one. All the connectivity matrices are put 362

consecutively in the diagonal direction of a zero square matrix. Thus, the number of 363

rows/columns equals the total number of components in the system. Subsequently, 364

where we need a bond between two modules, an additional 1 will be inserted in the 365
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matrix. An example demonstrating this is shown in Fig 7. 366
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Fig 7. Construction of the whole-system connectivity matrix for a
composed model. The procedure is illustrated by integrating two connectivity
matrices (1st and 2nd cycles in MAPK cascade). Initially, the two cycles had identical
connectivity matrices. (A) MKKKP is a common component between the first and
second cycle; (B) The connectivity matrix for the 1st cycle; (C) The modified
connectivity matrix for the 2nd cycle where the row and column for the common
component (MKKKP) will be removed; (D) The placement of the connectivity matrices
for each module on the diagonal of the whole-system connectivity matrix. The pink and
green boxes indicate the connectivity matrices for the 1st and 2nd cycles, respectively.
The corresponding ‘0:u’ junctions for MKKKP in the two cycles are connected by
inserting two 1s (in red) to represent a bond between them (bidirectional connections
between the components require the matrix be symmetric).
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2.5 Verification 367

To verify the behaviour of the composed EGFR-Ras-MAPK pathway model, we first 368

compare our bond graph estimation of the EGFR module to the original model using 369

the concentration of species. To compare the simulation results between the two models, 370

the normalised root mean square error (NRMSE) was computed as in Eq 7, where x̂i 371

corresponds to the simulation points of our bond graph estimation, and xi corresponds 372

to the Kholodenko et al. model. The normalisation was performed relative to the 373

difference of maximum and minimum data of the reference model in each simulation. 374

NRMSE =

√∑n
i=1

(x̂i−xi)2

n

xmax − xmin
(7)

Second, we studied the steady-state behaviour of the phosphorylated kinases at the 375

terminal level of each layer of the MAPK cascade under varying stimulus strengths. 376

This denoted how we should expect the kinases to respond to any stimulus coming from 377

the upstream levels (here, the RShGS complex). 378

To further study our composed model, we observed its behaviour under two more 379

conditions: a) We added negative feedback from the terminal phosphorylated kinase in 380

the last layer of the cascade (MKPP) to the dephosphorylation reaction in the initial 381

layer [35] (Fig 8). The effect of adding the negative feedback was then observed and 382

qualitatively verified. b) We simulated the model for different intracellular ATP 383

concentrations and monitored how the concentration of activated kinases was correlated 384

to this change. 385
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Fig 8. Bond graph schematic of adding negative feedback in the composed
EGFR-Ras-MAPK pathway model. The negative feedback loop (red bonds)
initiates from MKPP and has an enzymatic role in the first layer’s dephosphorylation
reaction.

3 Results 386

We used our method to merge the modules within the MAPK cascade and between the 387

EGFR and MAPK models, yielding the bond graph configuration of the 388

EGFR-Ras-MAPK signalling pathway. Fig 9 shows how the EGFR and MAPK modules 389

are manipulated to deal with same components existing within the modules. Here, Ras 390

and all ATP-ADP-Pi trio components in the MAPK model are removed while RShGS 391

and all ATP-ADP-Pi trios in the EGFR model are kept and bonded to the ‘0 : u’ 392

junctions corresponding to the removed components. 393
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Fig 9. The composed modular bond graph model of EGFR-Ras-MAPK
signalling pathway. The blue dashed boxes represent the bond graph modules, the
yellow boxes show the merged common components between the modules (each sharing
a common potential by a ‘0 : u’ junction), and the blue harpoons represent the bonds
between the modules and common components. The inter-module bonds, along with the
internal bonds between the components in each module, are defined and automatically
applied to the model using the whole connectivity matrix. All the six modules also
share common potentials with CS :ATP, CS :ADP, and CS :Pi.

To check the function of our composed model, we verified the simulations in two 394

steps: 1. verification of each bond graph module separately (EGFR and MAPK); and 2. 395

verification of the bond graph composed model (EGFR-Ras-MAPK signalling pathway). 396

3.1 Verification of bond graph modules 397

• EGFR: Our approach requires models to be expressed as bond graphs. A bond 398

graph equivalent of the EGFR pathway was not available, which motivated us to 399

convert an existing kinetic model of the EGFR pathway into an equivalent bond 400

graph form. An exact conversion was not possible due to the existence of 401

irreversible reactions and not explicitly accounting for mass conservation. Hence, 402

we approximated the non-bond graph irreversible reactions with bond graph 403

equivalents and included the missing metabolites ATP, ADP, and Pi to provide 404

the energy required to approximate the irreversible reactions. 405

The conversion of the kinetic EGFR model into bond graphs was performed by 406
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solving a linear matrix of equations for the constraints. The species’ responses in 407

the EGFR bond graph module were observed and compared to the ones derived 408

from the Kholodenko et al. model. The responses of four exemplar species in the 409

pathway are demonstrated in Fig 10, and the NRMSE is computed for each 410

comparison in percentage. We see that the bond graph equivalent of the EGFR 411

module functioned similarly to the original kinetic model, although the equations 412

could not be solved perfectly. This implies that the kinetic parameters of the 413

Kholodenko et al. model are not thermodynamically consistent. The bond graph 414

equivalent represents a close-match approximation of the original model in a 415

thermodynamically consistent manner. 416

Fig 10. Comparison between the Kholodenko et al. EGFR model and its
bond graph approximation. The simulations are given for four exemplar species in
the pathway. NRMSE is calculated for each comparison in percentage. The initial
concentration of EGF (the initiative molecule in the EGFR module) was 680 nM.

• MAPK: The bond graph model of the MAPK cascade was developed by Pan et 417

al. [21]. We have reused the model here with slightly different configuration of the 418

modules. 419

The bond graph version of MAPK cascade in BondGraphTools was simulated 420
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with an initial amount of Ras = 3× 10−5 (µM). A minor increase in the 421

concentration of the input kinase results in amplified sigmoidal responses of 422

downstream kinases, referred to as ultrasensitivity (S1 Fig) [35]. Amplification in 423

the layers of MAPK cascade form the ultrasensitive responses, i.e., single 424

phosphorylation-dephosphorylation in the first layer and dual 425

phosphorylation-dephosphorylation in the second and third layers. At this point, 426

we plotted the steady-state responses of the activated kinases against a range of 427

input concentrations (10−8 – 100 (µM)) in Fig 11. Note how for inputs less than 428

7× 10−5 (µM) MKPP reaches a higher concentration than MKKPP while 429

MKKPP overtakes MKPP for higher input concentrations. S2 Fig shows the 430

relative activation of the kinases indicating the lower the layer in the MAPK 431

cascade, the smaller the input concentration activates the kinases [21]. Note that 432

the MKPP (third layer) activation curve is steeper compared to MKKPP (second 433

layer) and MKKKP (first layer), projecting that a higher increase in the stimulus 434

is required for MKKKP to reach its maximum response compared to MKKPP and 435

MKPP (Table 1). The analysis of the behaviour of the MAPK module assisted us 436

to predict how the kinases will respond to the input kinase (Ras) coming from the 437

upstream module (EGFR pathway) and validate our composed bond graph model. 438

Fig 11. The steady-state responses of the activated kinases for different
input amounts. The input Ras concentration is expressed on a logarithmic scale.

Table 1 delineates the required stimulus increase for each activated kinase to reach 439
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Table 1. Input differences in reaching from 10% to 90% of maximum
concentration in kinases.

Kinase 10% maximum
response∗

90% maximum
response∗

Input increase nH

MKKKP 0.00027 0.0024 80-fold 1.002
MKKPP 0.108 0.972 12-fold 1.768
MKPP 0.098 0.88 2.5-fold 4.795

∗ Concentration amounts are in µM.

from 10% of its ultimate concentration to 90%. This affirms the ultrasensitive 440

responses to the input as we go to the lower layers of the cascade. To estimate the 441

ultrasensitivity in sigmoidal input-output curves, the Hill coefficient (nH) is also 442

calculated per activated kinase as per Eq 8, where EC90 and EC10 are the input 443

values required to produce 90% and 10% of the maximal response, 444

respectively [38]. The greater the Hill coefficient than 1, the smaller input value is 445

required for the concentration transition from 10% to 90% of its maximum 446

amount. The figures are consistent to the predicted Hill coefficients for MAPK 447

cascade in work by Huang & Ferrell [39]. 448

nH =
log(81)

log(EC90/EC10)
(8)

3.2 Verification of the bond graph composed 449

EGFR-Ras-MAPK model 450

We investigated the behaviour of our bond graph composed model (EGFR-Ras-MAPK 451

pathway) under three conditions: without negative feedback, with negative 452

feedback, and different ATP concentrations to examine the functionality of our 453

model under varying conditions. Each of these three conditions imply qualitatively 454

predictable changes in the behaviour of the whole network which we aim to investigate 455

in our composed model. 456

• Without negative feedback: 457

The simulated time courses of the three activated kinases (MKKKP, MKKPP, and 458

MKPP) in the composed bond graph model of the EGFR-Ras-MAPK pathway 459
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are shown in Fig 12.A. Fig 12.B predicts the activated kinases at steady-state for 460

various input concentrations. The semi-steady-state concentration of the input 461

kinase (Ras) was 14.18 nM, which is indicated by the purple dashed line in 462

Fig 12.B. The intersection of this line with the MKKKP, MKKPP, and MKPP 463

concentrations shows the expected steady-state concentrations of the 464

aforementioned kinases. 465

Fig 12. Responses of activated kinases to the input kinase (Ras) in the
composed bond graph model of the EGFR-Ras-MAPK pathway. (A) Ras
signal; (B) Ultrasensitivity in the composed bond graph models of the
EGFR-Ras-MAPK pathway; (C) Predicted steady-state activation of the kinases. The
purple dashed line shows the steady-state imposed Ras signal.

• With negative feedback: 466

Negative feedback in MAPK cascade may lead to inhibited responses or 467

oscillations depending on the stability points of the system [37]. The activated 468

kinases respond differently when a negative feedback loop is added to the system. 469

This feature was also explored in our composed bond graph model of the 470

EGFR-Ras-MAPK pathway. 471

Fig 13 compares the steady-state responses of terminal kinases in the MAPK 472

cascade model in two cases: without negative feedback (Fig 13.A) and with 473

negative feedback (Fig 13.B). Under the effect of a negative feedback loop in the 474

MAPK cascade the kinases require higher input Ras concentration to reach their 475
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steady-state concentrations. The right shift to the curves in Fig 13.B shows the 476

expected functionality of the MAPK cascade module in the presence of negative 477

feedback along with reduced amplification. 478

Fig 13. Activation of terminal kinases with and without negative feedback.
(A) Without negative feedback; (B) With negative feedback. The input kinase (Ras)
concentration is expressed on a logarithmic scale

Next, we show how the terminal kinases respond in our bond graph composed 479

model of EGFR-Ras-MAPK pathway in the presence of the same negative 480

feedback loop. Fig 14 shows the inhibited responses of the terminal kinases and 481

subsequently, the significant delay in reaching their steady-states (compare with 482

Fig 12.B). The added Negative feedback in EGFR-Ras-MAPK model strengthens 483

the dephosphorylation reaction in the first layer of the MAPK cascade module 484

which receives the Ras stimulus. This strengthened dephosphorylation inhibits its 485

corresponding phosphorylation pair and affects phosphorylation in all the 486

proceeding layers. 487
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Fig 14. Time course behaviour of the terminal kinases in the
EGFR-Ras-MAPK bond graph model with negative feedback.

• ATP concentration: 488

ATP is one of the species involved in prompting wound responses that activates 489

MAPK pathways in cells [40]. As such, ATP shortage causes delays or failure in 490

activating kinases, and as a result, dysfunction in wound healing responses. The 491

production of ATP in cells might be blocked or reduced due to multiple reasons, 492

such as mitochondrial disorders, ageing, or very intense exercises [41–43]. 493

The impact of ATP concentration on the behaviour of the bond graph 494

EGFR-Ras-MAPK model was investigated by clamping the ATP concentration at 495

15%, 35%, 81%, and 100% of its baseline level (Fig 15). Fig 15.A-C illustrate 496

how different levels of cellular ATP (energy) influence the behaviour of activated 497

kinases and also confirm that ATP shortage induces a delay in the responses. 498

Fig 15.D compares the steady-state concentration of MKKKP, MKKPP, and 499

MKPP against various ATP concentrations relatively. The lower the ATP 500

production, the lower the steady-state concentration of MKKKP, MKKPP, and 501

MKPP, highlighting the importance of energy for the function of the pathway. 502
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Fig 15. Effect of different levels of ATP concentration on activated kinases.
(A) MKPP; (B) MKKPP; (C) MKKKP; (D) Steady-state concentration of MKKKP,
MKKPP, and MKPP against relative ATP concentration.

4 Discussion 503

In this paper, we introduced a generic approach to assemble computational models in 504

biology without starting from scratch. This was enabled by constructing symbolic bond 505

graph modules of biophysical systems and obtaining the required parameters from 506

existing models. To extract and allocate the parameters, the conventional target model 507

needs to be fully and properly annotated. Here, we have selected models encoded in 508

CellML, but the approach can be applied to models in other formats, such as SBML, as 509

long as they can include a semantic description of the system being modelled. For 510

biochemical reactions, if the parameters are thermodynamically inconsistent, they are 511

converted into bond graph compatible ones. The modules will then automatically 512

combine when the common components (species) among them are merged. The 513
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resulting composed bond graph model complies with the laws of physics and can be 514

coupled to other bond graph modules. As an example, we applied our method to the 515

EGFR-Ras-MAPK pathway. 516

Our composed model of EGFR-Ras-MAPK signalling pathway is different from the 517

ones in the literature in three ways which prevents us from conducting a direct 518

comparison: 519

• Our reference models of EGFR pathway and MAPK cascade are adopted from 520

different sources which included/excluded some reactions or feedback effects; 521

• Some reactions in the original EGFR model were irreversible and therefore 522

thermodynamically infeasible; 523

• RShGS and RGS both trigger the activation of Ras protein through an 524

intermediate molecule that serves as a switch for the transmission of the signal to 525

the downstream MAPK cascade and yields Ras. Since none of our reference 526

models included this intermediate and we could only merge one species with 527

another one, we selected RShGS to be merged with the Ras protein in the MAPK 528

cascade module due to its prominent role in localising Ras compared to 529

RGS [44,45]. 530

Thus, we validated the composed model by comparing the behaviour of the terminal 531

kinases to the predicted behaviours from running the MAPK cascade model solely 532

(Fig 11). The purple dashed line in Fig 12.C denotes the steady-state concentration 533

forecast of each activated kinase at Ras = 14.18 (nmol). The results gained from our 534

composed model in Fig 12.B comply with the predicted ones in Fig 12.C. 535

Merging components across models might raise inconsistencies in their parameters. 536

Here, RShGS in the EGFR model was merged with Ras in the MAPK model. These 537

two species have different initial values and thermodynamic constants in their 538

corresponding models. In such cases, our framework flags inconsistent values for same 539

species. This is solved by asking the user to either select one of the values or insert a 540

new value for the flagged parameter. Since the user may not have the relevant expertise, 541

we aim to provide users with an evaluation of the ambiguous parameter in multiple 542

models available on PMR in the future. This will give the user a better awareness of the 543

range of values for uncertain parameters. 544
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As an improvement to our previous approach [17], the present framework overcame 545

the aforementioned limitations: 546

1. No mathematical formulation of bond graphs is required in the CellML modules 547

(formulating symbolic bond graph modules in BondGraphTools is more 548

straightforward and less error-prone); 549

2. Auxiliary variables are not needed in the CellML modules as linking ports (ports 550

are automatically detected using ‘white box’ approach by finding similar 551

annotations); 552

3. Instead of the semi-automated SemGen merger tool, our approach integrates the 553

modules in a fully-automated manner (our implementation automatically merges 554

the modules and performs the required structural changes). 555

Currently, our model composition approach is capable of detecting exact matches. 556

However, this approach could be improved by allowing the user to specify mergeable 557

components from a shortlist of similarly annotated ones. In the future, if the scientific 558

community defines a globally accepted standard to unify the annotation of similar 559

biological models, finding matching metadata among the models will be facilitated. 560

Our energy-based model composition approach is designed to link mathematical 561

models encoded in CellML to their bond graph equivalent and compose them in a 562

consistent and physics-based environment. Currently, there is no general method of 563

automatically converting mathematical models into bond graphs, and each model 564

requires domain-specific expertise to generate a similar bond graph form. To reuse and 565

compose the massive number of existing biological models, the community should either 566

push the researchers to build thermodynamically consistent and physically plausible 567

models or encourage the researchers to develop computational tools that convert 568

existing biological models into bond graphs. 569

If a model follows the laws of physics and thermodynamics, it can be directly 570

converted into bond graphs. Otherwise one must make assumptions to produce a bond 571

graph that approximates the original model. To facilitate such decisions, we propose 572

establishing an evaluation system to check whether the original model is physically 573

realistic or not. If the model cannot represent a physically plausible system and its 574
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bond graph approximation does not fit the data, it highlights some inconsistencies in 575

the original model that must be noted and fixed. 576

The ultimate goal of applying our model composition method is to provide a 577

foundation for future tool developments to convert any arbitrary CellML model into 578

bond graphs and then convert it back to a CellML file. We require the bond graph 579

conversion for appending, deleting, and editing modules. This allows us to firstly avoid 580

any errors or confusions during the process, and secondly, make sure that the model 581

conserves energy and mass and remains thermodynamically and physically consistent as 582

we modify it. Eventually, the generated mathematical equations in the bond graph 583

environment can be converted into CellML for simulation and reproducibility. 584

Models are constructed in different units for parameters and various scales of 585

amounts. Coupling arbitrary models will alter their boundary conditions which induces 586

differences that propagate throughout the models. In the future, we plan to apply 587

nondimensionalization to remove dependencies to the measured units across the models 588

and generate unified composed models, regardless of their units [46]. 589

Nondimensionalization is especially useful in models that are described by differential 590

equations. In this systematic technique, all variables and parameters become unitless by 591

rescaling them relative to a reference value. 592

5 Conclusion 593

We have developed a method that automates the integration of biosimulation models. 594

We utilised the SemGen annotator tool to add metadata to CellML models and the 595

Python library BondGraphTools to generate the bond graph template of models. 596

Describing the bonds between bond graph components with connectivity matrices 597

helped us conveniently delete or add bonds/components to the modules. This minimises 598

user error when a structural change is required in complex systems. Here we have 599

presented a method that automates the composition by taking advantage of semantics 600

in the modules and the systematic structural modification using connectivity matrices. 601

We demonstrated the functionality of our method by coupling two biosimulation models 602

and their sub-models. Likewise, several annotated biosimulation models can be 603

integrated automatically if they have common elements/species. This is particularly 604

November 12, 2021 34/40

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 13, 2021. ; https://doi.org/10.1101/2021.11.12.468343doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.12.468343
http://creativecommons.org/licenses/by-nc/4.0/


pivotal when dealing with complex and large biological systems where mathematically 605

merging models requires time-consuming and error-prone post-merging adjustments. 606

We believe that our method is one of the initial steps toward multiscale 607

cell-to-organ-level model integration. 608

6 Supporting information 609

S1 Fig. Ultrasensitivity in MAPK cascade. For an input kinase of 610

Ras=3× 10−5 (µM), the concentration changes of the activated kinases (MKKKP, 611

MKKPP, and MKPP) show the signal is amplified through each layer. 612

S2 Fig. The normalised activation of kinases in the MAPK cascade 613

module for different input amounts (Ras). 614

S1 Table. Reactant(s) and product(s) of each step in EGFR pathway and 615

the reaction rate equations. Steps 4, 8, and 16 are irreversible reactions, which are 616

approximated by mass action kinetics. κi(i ∈ {Step}) in the reaction rate equations 617

represent the reaction rate constants, Kx (x ∈ {Reactants,Products}) is the 618

thermodynamic constant of each species, and qx (x ∈ {Reactants,Products}) is the 619

concentration amount of each species. 620

S2 Table. Original and modified parameters of the species in the EGFR 621

pathway model. 622

S3 Table. Original and modified parameters of the reactions in the EGFR 623

pathway model. 624
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42. Schütt F, Aretz S, Auffarth GU, Kopitz J. Moderately reduced ATP levels

promote oxidative stress and debilitate autophagic and phagocytic capacities in

human RPE cells. Investigative ophthalmology & visual science. 2012;53

9:5354–61.

November 12, 2021 39/40

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 13, 2021. ; https://doi.org/10.1101/2021.11.12.468343doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.12.468343
http://creativecommons.org/licenses/by-nc/4.0/


43. Hargreaves M, Spriet LL. Skeletal muscle energy metabolism during exercise.

Nature Metabolism. 2020; p. 1–12.

44. Sasaoka T, Langlois WJ, Leitner JW, Draznin B, Olefsky JM. The signaling

pathway coupling epidermal growth factor receptors to activation of p21ras. The

Journal of biological chemistry. 1994;269 51:32621–5.

45. Resat H, Ewald JA, Dixon DA, Wiley HS. An integrated model of epidermal

growth factor receptor trafficking and signal transduction. Biophysical journal.

2003;85 2:730–43.

46. Ledder G. Scaling for Dynamical Systems in Biology. Bulletin of Mathematical

Biology. 2017;79:2747–2772.

November 12, 2021 40/40

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 13, 2021. ; https://doi.org/10.1101/2021.11.12.468343doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.12.468343
http://creativecommons.org/licenses/by-nc/4.0/


.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 13, 2021. ; https://doi.org/10.1101/2021.11.12.468343doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.12.468343
http://creativecommons.org/licenses/by-nc/4.0/


.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 13, 2021. ; https://doi.org/10.1101/2021.11.12.468343doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.12.468343
http://creativecommons.org/licenses/by-nc/4.0/


.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 13, 2021. ; https://doi.org/10.1101/2021.11.12.468343doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.12.468343
http://creativecommons.org/licenses/by-nc/4.0/


.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 13, 2021. ; https://doi.org/10.1101/2021.11.12.468343doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.12.468343
http://creativecommons.org/licenses/by-nc/4.0/


.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 13, 2021. ; https://doi.org/10.1101/2021.11.12.468343doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.12.468343
http://creativecommons.org/licenses/by-nc/4.0/


.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 13, 2021. ; https://doi.org/10.1101/2021.11.12.468343doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.12.468343
http://creativecommons.org/licenses/by-nc/4.0/


.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 13, 2021. ; https://doi.org/10.1101/2021.11.12.468343doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.12.468343
http://creativecommons.org/licenses/by-nc/4.0/


.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 13, 2021. ; https://doi.org/10.1101/2021.11.12.468343doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.12.468343
http://creativecommons.org/licenses/by-nc/4.0/


.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 13, 2021. ; https://doi.org/10.1101/2021.11.12.468343doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.12.468343
http://creativecommons.org/licenses/by-nc/4.0/


.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 13, 2021. ; https://doi.org/10.1101/2021.11.12.468343doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.12.468343
http://creativecommons.org/licenses/by-nc/4.0/


.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 13, 2021. ; https://doi.org/10.1101/2021.11.12.468343doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.12.468343
http://creativecommons.org/licenses/by-nc/4.0/


.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 13, 2021. ; https://doi.org/10.1101/2021.11.12.468343doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.12.468343
http://creativecommons.org/licenses/by-nc/4.0/


.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 13, 2021. ; https://doi.org/10.1101/2021.11.12.468343doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.12.468343
http://creativecommons.org/licenses/by-nc/4.0/


.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 13, 2021. ; https://doi.org/10.1101/2021.11.12.468343doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.12.468343
http://creativecommons.org/licenses/by-nc/4.0/


.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 13, 2021. ; https://doi.org/10.1101/2021.11.12.468343doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.12.468343
http://creativecommons.org/licenses/by-nc/4.0/

