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Abstract: 

In addition to its essential role in viral polyprotein processing, the SARS-CoV-2 3C-like 

(3CLpro) protease can cleave human immune signaling proteins, like NF-κB Essential 

Modulator (NEMO) and deregulate the host immune response. Here, in vitro assays show that 

SARS-CoV-2 3CLpro cleaves NEMO with fine-tuned efficiency. Analysis of the 2.14 Å 

resolution crystal structure of 3CLpro C145S bound to NEMO226-235 reveals subsites that tolerate 

a range of viral and host substrates through main chain hydrogen bonds while also enforcing 

specificity using side chain hydrogen bonds and hydrophobic contacts. Machine learning- and 

physics-based computational methods predict that variation in key binding residues of 3CLpro-

NEMO helps explain the high fitness of SARS-CoV-2 in humans. We posit that cleavage of 

NEMO is an important piece of information to be accounted for in the pathology of COVID-19. 

 

1. Introduction 

The impacts of the global Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) 

pandemic have been extremely harsh. As of July 2021, SARS-CoV-2 has caused over 187 

million confirmed cases of COVID-19, more than 4 million deaths (covid19.who.int/), and the 

global economy to contract by 3.5% in 2020 1. Unlike previous betacoronavirus outbreaks, 

SARS-CoV-2 has spread to every country, which has provided the urgency and impetus to 

develop and rapidly distribute novel therapeutics to reduce the spread of the virus, including 

RNA-based vaccines. However, many societal impediments and the emergence of highly fit 

variants of concern are preventing vaccination coverage from reaching the levels necessary for 
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herd immunity. Therefore, multiple therapeutic approaches will need to be implemented if we 

are to eventually eradicate SARS-CoV-2 and future zoonotic outbreaks. 

One effective means to inhibit viral transmission and reduce the severity of the disease is to 

disrupt the lifecycle of the pathogen. SARS-CoV-2 is an enveloped betacoronavirus with a 

single stranded, positive-sense, 29 kb RNA genome that encodes a number of open reading 

frames (ORFs). ORF1a and ORF1b encode the polyproteins that are processed to generate the 15 

nonstructural proteins (nsps) of SARS-CoV-2. These include the papain-like protease (PLpro) 

and the 3C-like protease (3CLpro), which  are required to execute the viral life cycle and inhibit 

the host immune response23. These proteases therefore represent high-value targets for 

intervention. 

The Protein Data Bank (RCSB PDB) is replete with structures of SARS-CoV-2 wild-type (WT) 

3CLpro 4,5. 3CLpro WT homodimers are a 67.60 kDa, heart-shaped complex 4,6–8. Each 3CLpro 

chain consists of three domains. Domain I (aa. 8-101) and Domain II (aa. 102-184) have a 

predominantly β-sheet structure, form the active site, and contribute to dimerization. Domain III 

(aa. 201-303) is substantially α-helical and is the primary determinant of dimerization6,7,9. The 

active site of WT 3CLpro contains a catalytic dyad of His41 and Cys145, and an oxyanion hole 

formed by the main chain amide groups of Gly143 and Cys14510.  During catalysis, His41 

deprotonates the γ-thiol group of Cys145 to generate a nucleophile. Nucleophilic attack at the 

main chain carbonyl carbon of the P1 residue (immediately preceding the substrate scissile bond) 

forms a tetrahedral oxyanion intermediate. Heterolytic fission of the scissile bond stabilizes this 

intermediate, forms the acyl-enzyme intermediate, and releases the peptide downstream of the 

scissile bond. Finally, the active site is regenerated as a catalytic water molecule deacylates the 

acyl-enzyme intermediate.  
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Functionally, 3CLpro recognizes a hydrophobic substrate residue at P2 (usually Phe or Leu), a 

Gln at P1, and Ser, Val, Asn, or Ala residues at P1’. This recognition motif is found in multiple 

sites of the viral polyproteins, which are cleaved by 3CLpro to form mature nsp5-16.  This 

consensus sequence is also present in proteins of the host innate immune pathway and therefore 

3CLpro may blunt the immediate antiviral immune response via proteolysis 11. The NF-κB 

essential modulator (NEMO) 12 is one of the immune proteins that may be cleaved by 3CLpro. 

NEMO is necessary for activating NF-κB during the canonical NF-κB response signalling 

pathway, which is a critical first response to viral infection. A disrupted NF-κB pathway is a 

hallmark of chronic inflammatory diseases  13, which suggests that hNEMO cleavage by 3CLpro 

and the downstream dysregulation of NF-κB could contribute to the enhanced inflammatory 

response observed in COVID-19 patients 12.  

The structure of 3CLpro from SARS-CoV-2 in complex with a NEMO-derived heptapeptide 

substrate was solved for the Porcine Epidemic Diarrhea Virus, an alphacoronavirus (PDB ID: 

5ZQG)14. It is not known if this interaction is conserved in SARS-CoV-2 and other 

betacoronaviruses. In this work, in vitro assays showed that WT SARS-CoV-2 3CLpro can 

cleave the 33-residue peptide substrate, NEMO215-247. To explore the molecular basis of this 

interaction, we solved a 2.14 Å crystal structure of a SARS-CoV-2 3CLpro active site cysteine 

variant, C145S, in complex with the human decapeptide substrate NEMO226-235. This represents 

the first structure of SARS-CoV-2 3CLpro that is bound to a human peptide substrate. Using this 

structure as a starting point, extensive molecular dynamics simulations, quantum mechanics 

calculations, and machine learning-based predictions indicated that the few differences in NEMO 

and 3CLpro across host species and human-infecting betacoronaviruses significantly change the 
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stability of the complex formed between these proteins. Finally, we discuss how ablation of 

NEMO via proteolysis connects with COVID-19 as a systemic disease. 

 

2. Results  

2.1. SARS-CoV-2 cleaves NEMO 

In prior studies11,12, SARS-CoV-2 3CLpro has been found to disrupt several components of the 

type I interferon pathway. NEMO has been shown to be cleaved by 3CLPro from feline 

infectious peritonitis virus (FIPV) and porcine epidemic diarrhea virus (PEDV) 15,16. Molecular 

docking and comparative structural analyses suggest that NEMO similarly binds to SARS-CoV-

2 3CLPro in a position that favors proteolysis 17. Recently, N-terminomics experiments 

confirmed in vitro the cleavage of NEMO by SARS-CoV-2 3CLpro 11.  

 

 

Figure 1. Truncated NF-κB essential modulator (NEMO) is cleaved by 3CLpro in enzymatic assays. 

a) NEMO includes the α-helical domain 1 (Hlx1), the coiled-coil domain 1 (CC1), the α-helical domain 2 

(Hlx2), the coiled-coil domain (CC2), a leucine zipper (LZ) domain, and the C-terminal zinc-finger (ZF). 
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Human NEMO (hNEMO) truncated at site 215 and 247 was used in enzymatic assays with 3CLpro. A 

recognition site of cleavage is found at Gln231. b) Cleavage of hNEMO215-247 at 0.053 μg/μL (~13 μM) 

by 3CLpro at two concentrations. Reactions were incubated at 25 ºC and aliquots were quenched at 

different times for analysis. The extent of proteolysis was quantified by LC-MS/MS. Apparent % 

cleavage was calculated by dividing the product peak area by the sum of the substrate and product peak 

areas. Error bars represent the range of duplicate enzymatic reactions. c) Multiple sequence alignment of 

peptide sequences of SARS-CoV-2 polyprotein and hNEMO. P1 site glutamine residues are shown in red. 

The region (P6 to P4’) visible in the crystal structure is indicated beneath the sequences.  

 

NEMO is known to form a homodimer of two, 419 residue (49 kDa), mostly ɑ-helical protomers 

18,19 and the overall domain architecture is well characterized (Figure 1a).19 A primary sequence 

analysis of NEMO (hNEMO) identifies five likely 3CLpro recognition sites around Gln83, 

Gln205, Gln231, Gln304, and Gln313, where the listed Gln would act as the P1 residue in each 

case 20 (Supplementary Figure S1). 3CLpro enzyme was incubated with five constructs of 

NEMO from mouse, Mus musculus, (mNEMO; i.e., amino acids 96-250, 221-250, 221-339, 

GST-96-250, GST-221-250, and GST-221-339), and the products detected by SDS-PAGE were 

consistent with cleavage following Gln231 (Supplementary Figure S2). To assess the ability and 

efficiency of the main protease to cleave hNEMO, we expressed and purified hNEMO truncated 

to amino acids 215-247, which mostly contains the Hlx2 domain, where the Gln231 recognition 

site is located. A previously reported assay was adapted.21 Concentration-dependent NEMO 

cleavage at the site reported for other coronaviruses (aa. 231-232) was detected via high 

performance liquid chromatography-mass spectrometry (HPLC-MS, Figure 1b). 
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2.2. Structure of 3CLpro C145S bound to a NEMO substrate peptide at 2.14 Å resolution 

After extensive co-crystallization trials, we determined the structure of the SARS-CoV-2 3CLpro 

C145S variant in complex with a decapeptide from human NEMO at 2.14 Å resolution. This 

structure shows the Michaelis-like complex of SARS-CoV-2 3CLpro C145S and NEMO poised 

for catalysis. 

 

Figure 2. Structure of the NEMO-bound 3CLpro C145S homodimer. a) Global view of NEMO-

bound 3CLpro dimer. Chains C and D have their N- (NH3+) and C-termini (COO-) labelled. NEMO 

bound into chain C (NEMO C) is displayed as sticks and colored wheat. A mesh of electron density is 

displayed around NEMO C in light grey. Acetylated Lys226 and amidated His235 at the N- and C-

terminus of the NEMO peptide, respectively, are labelled. The C-terminal tail of chain A is colored in 

light pink, displayed as sticks and is observed to bind into the substrate-binding site of chain D. Domains 

I (aa. 8-101), II (aa. 102-184) and III (aa. 201-303) are labelled in black. b) Interactions of NEMO with 

the substrate-binding groove of 3CLpro C145S. NEMO is depicted in wheat. Residues Lys226 to His235 

of NEMO are labelled P6 to P4’, respectively. The surface of chain C is shown in light blue and colored 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 15, 2021. ; https://doi.org/10.1101/2021.11.11.468228doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.11.468228
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

7 

by atom type, where oxygens are red, nitrogens are dark blue, carbons are light blue, and sulfurs are 

yellow. Residues in the substrate-binding site of chain C are portrayed as lines and labelled. Catalytically 

relevant residues22 in chain C are portrayed as sticks and also labelled in bold. Hydrogen bonds are 

depicted as dashed yellow lines. The hydrogen bond that would form between Cys145 (in WT) or Ser145 

(in C145S) and His41 is depicted as a dashed green line. c) Interactions of the C-terminal tail of chain A 

with the substrate-binding groove of 3CLpro C145S. The C-terminal tail of chain A is depicted as sticks 

in light pink. Residues Ser301 to Gln306 are labelled P6 to P1 respectively. The surface of chain D is 

shown in teal and colored by atom type. Residues in the substrate-binding groove of chain D that interact 

with the C-terminal tail of chain A are portrayed as lines and labelled. Catalytically relevant residues and 

hydrogen bonds are portrayed as in (b). The oxygen atom of water 95 is depicted as a red sphere.  

 

In the NEMO-bound 3CLpro C145S structure, the asymmetric unit contains two, mature, heart-

shaped 3CLpro C145S dimers. One dimer forms between chains A and B, and the second dimer 

forms between chains C and D. Chains B and C are each bound to the NEMO peptide (acetyl-

KLAQLQVAYH-amide; aa. 226-235) (Figure 2a). Within the asymmetric unit, the C-terminal 

tail (Ser301-Gln306) of chain A swaps into the substrate-binding site of chain D. This connects 

the two dimers to each other in the asymmetric unit. Additionally, the substrate-binding site of 

chain A is bound by the C-terminal tail of chain D from a neighboring symmetry equivalent. 

This C-terminal tail-binding contributes to crystal lattice formation by connecting chains A and 

D to each other throughout the crystal (Supplementary Figure S3a). Finally, while the C-terminal 

tails of chains A and D are involved in forming the crystal lattice, the C-terminal tails of chains 

B and C bind at sites found at the interfaces of their respective dimers. Similar C-terminus 

swapping was reported for the C145A mutant of SARS-CoV-2 3CLpro 10. NEMO peptides bind 

in an extended conformation, similar to an anti-parallel β-sheet with 3CLpro residues Gln189-
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Ala191 and His163-Pro168. In chains B and C, there is density to model KLAQLQVAY (aa. 

226-234) and, the entire peptide, KLAQLQVAYH (aa. 226-235), respectively (Supplementary 

Figure S3), where Lys226 is P6, His235 is P4’, Gln231 is P1 and Val232 is P1’ (Figure 2b). The 

N-acetyl and C-amide caps are not resolved. The densities in the substrate-binding sites of chains 

B and C can be unequivocally assigned as NEMO, rather than as a C-terminal tail. The densities 

do not connect to protein chains near the substrate-binding sites, but project into the bulk solvent. 

The densities in chains B and C are also too long to be assigned as the C-terminal tail, continuing 

beyond Ser145 in the substrate-binding site (unlike the density for the C-terminal tails in chains 

A and D). Finally, the positions of all C-terminal tails in the asymmetric unit are accounted for, 

and the shape of the density in chains B and C around residues P2, P3, P5, and P6 is consistent 

with the NEMO sequence.  

 

2.3. Thr26 and Thr190 of 3CLpro pin the NEMO peptide into 3CLpro   

Thr190 and Thr26 of 3CLpro use hydrogen bonds (H-bonds) to pin the ends of the NEMO 

peptide into the substrate-binding site, causing conformational changes in the site. Thr26 and 

Thr190 form H-bonds with Ala233 (P2’) and Ala228 of NEMO (P4), respectively. This causes 

the distance between the Cɑ atoms of Thr26 and Thr190 to decrease from 21.7 Å (in WT 

3CLpro) and 21.3 Å (in 3CLpro C145S without NEMO) to 20.4 Å in the NEMO-bound 3CLpro 

C145S. 

 

2.4. Polar and hydrophobic subsites in 3CLpro position a glutamine at P1 while promoting 

substrate versatility  
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Our structure of 3CLpro C145S bound to a NEMO peptide identifies all the structural sites 

required for substrate-binding in 3CLpro. The substrate-binding site of 3CLpro consists of a 

groove made by four groups of consecutive residues, Gln189-Ala191, His163-Pro168, Phe140-

Ser145, and Thr24-Leu27, as well as His41 and Met49. Gln189-Ala191 and His163-Pro168 run 

adjacent to each other, bind the P2-P4 residues of the NEMO peptide and position P1 in the 

active site. In the active site, Phe140-Ser145 bind P1. Following the active site, Thr24-Leu27 

bind the P1’-P4’ residues. His41 is involved in catalysis and Met49 interacts with substrate P2. 

The subsites in the substrate-binding site of 3CLpro are identified as S4 to S4’, where S4 binds 

to P4 and S4’ binds to P4’ (Figure 2b). 
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Table 1. Interactions between SARS-CoV-2 3CLpro C145S and NEMO in the crystal structure.  

Subsite 3CLpro residue (moiety) Interaction (distance) NEMO residue (moiety) 

S4 
Thr190 (main_C=O) H-bond (2.7 Å) Ala228 (main_N-H) 

Met165 (side chain) hydrophobic contact Ala228 (side chain) 

S3 
Glu166 (main_C=O) H-bond (3.0 Å) Gln229 (main_N-H) 

Glu166 (main_N-H) H-bond (2.7 Å) Gln229 (main_C=O) 

S2 

Gln189 (side_Oε1) H-bond (2.9 Å) Leu230 (main_N-H) 

Met49 (side chain) hydrophobic contact Leu230 (side chain) 

Met165 (side chain) hydrophobic contact Leu230 (side chain) 

S1 

His164 (main_C=O) H-bond (2.8 Å) Gln231 (main_N-H) 

Ser145 (main_N-H) H-bond (3.0 Å) Gln231 (main_C=O) 

Gly143 (main_N-H) H-bond (3.1 Å) Gln231 (main_C=O) 

Ser145 ( γOH) H-bond (2.8 Å) Gln231 (main_ C=O) 

His163 (side_Nε2) H-bond (2.4 Å) Gln231 (side_Oε1) 

Glu166 (side_Oε1) H-bond (3.3 Å) Gln231 (side_Nε2) 

S1' 
Thr25 (side chain) hydrophobic contact Val232 (side chain) 

Leu27 (side chain) hydrophobic contact Val232 (side chain) 

S2' 
Thr26 (main_C=O) H-bond (2.9 Å) Ala233 (main_N-H) 

Thr26 (main_N-H) H-bond (2.9 Å) Ala233 (main_C=O) 

S3' N.A. N.A. Tyr234 (N.A.) 

S4' Thr24 (main_C=O) H-bond (2.6 Å) His235 (main_N-H) 
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Table 1 indicates that the preference for main chain H-bond interactions with the substrate 

retains substrate versatility in the S4-S2 and S1’-S4’ subsites. This supports the versatility of 

3CLpro in cleaving the viral polyprotein at multiple sites and its activity towards several host 

proteins 11,12. There are no S5 and S6 subsites in 3CLpro for P5 and P6 substrate residues, 

respectively.  

To modulate substrate-selectivity, hydrophobic contacts select for hydrophobic side chains at P4, 

P2, and occasionally at P1’. Furthermore, in the S1 subsite, main chain interactions from His164 

as well as Gly143 and Ser145 of the oxyanion hole combine with side chain interactions from 

His163 and Glu166 to select for glutamine at P1, position the main chain carbonyl carbon of 

NEMO Gln231 for the nucleophilic attack during catalysis, and stabilize the tetrahedral anion 

intermediate. Finally, the side chain of Ser145 forms H-bonds with the main chain carbonyl of 

Gln231, and Nε2 of His41 (3.0 Å). The H-bond between Cys145 and His41 is crucial in WT 

3CLpro to generate the thiolate nucleophile for catalysis. 

 

2.5. Comparison of bound NEMO and C-terminal tails helps clarify substrate-selectivity of 

3CLpro  

Comparison of NEMO and C-terminal-binding identifies that the S2 and S4 subsites contribute 

to substrate versatility in 3CLpro and that the S3 and S1 subsites are highly conserved between 

substrates. Compared to the C-terminal tail, NEMO forms an additional H-bond with Thr190 in 

the S4 subsite (Table 1). Additionally, NEMO forms an additional H-bond and hydrophobic 

contact with Gln189 and Met165, respectively, in the S2 subsite compared to the C-terminal tail. 

The S4 and S2 subsites therefore engage extra interactions to bind to NEMO P4 and P2 residues 
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respectively. S3 and S1 subsites share the same interactions and so all the listed interactions are 

required for substrate-binding in 3CLpro. Finally, C-terminal P2 (Phe305) and P1 (Gln306) form 

H-bonds with the water 95 (3.0 Å and 2.7 Å respectively). This water is deacylating during 

3CLpro catalysis 10, 3.3 Å from the C-terminal carboxyl carbon and has a Bürgi-Donitz angle of 

122° (Figure 2c). In the NEMO-bound site, it is displaced by a hydrophobic side chain at P1’. 

Finally, the structure of 3CLpro bound to a C-terminal tail with residues in the S’ sites would 

identify such interactions in the S1’-S4’ subsites of 3CLpro. 

 

2.6. C-terminal tails bind at two distinct sites of the 3CLpro dimer  

An alternative binding site for the C-terminal tails is found in chains B and C in a groove formed 

at the dimer interface (Supplementary Figure S3a). At the dimer interface, the C-terminal tail is 

sandwiched between the two β-strands from Gly109-Tyr118 and Ser120-Arg131 in the 

neighboring chain and both the Ser1-Gly11 loop and Asp153-Cys156 turn in the same chain.  

Specifically, in chain B, the side chain methyl group of Thr304 forms hydrophobic contacts with 

the side chain of Tyr118 in the neighboring chain A. Finally, the side chain of Phe305 forms 

hydrophobic contacts with a hydrophobic pocket consisting of the side chains of Phe8, Ile152, 

Val303, and the side chain propyl moiety of Arg298. It is possible that this interfacial site has a 

role in positioning substrates and cleavage products prior to and following catalysis, respectively.  

 

2.7. Interfacial binding site of C-terminus attenuates self-inhibition of 3CLpro  

In SARS-CoV 3CLpro, residues Arg298 and Gln299 in the C-terminal ɑ-helix are reported to be 

essential for dimerization and for activity by direct and indirect interactions with the S1 subsite 
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of the neighboring 3CLpro in the dimer 23. In the C-terminal ɑ-helix of the NEMO-bound SARS-

CoV-2 3CLpro C145S structure, Arg298 of chain B is closer to the carbonyl oxygen of Met6 

when the C-terminal tail is bound at the dimer interface site than when it is bound in the 

substrate-binding groove. The closest distance of a side chain N in Arg298 from the backbone O 

in Met6 is 3.8, 3.6, 3.4, and 3.7 Å in chains A, B, C, and D, respectively, indicating tighter 

packing between the two sites with the C-terminal tail at the dimer interface. In both dimers 

within the asymmetric unit, this packing of Arg298 and Met6 is supported by a likely cation-π 

interaction between Arg298 and Phe8 as well as by H-bonds formed by Gln299 with the side 

chain of Ser139 in the neighboring protomer, chain A, and with the backbone of Arg4 in chain B. 

Molecular dynamics (MD) simulations of the 3CLpro dimer, using chains A and B, with NEMO 

bound to the latter, show that these interactions involving Arg298 and Gln299 persist during 

most of the trajectories except by the pair Arg298-Met6, indicating that other inter-dimeric 

contacts contribute to stabilizing the non-interfacial conformation of the C-terminus 

(Supplementary Figure S4). Finally, estimation of the binding affinity by rigid re-docking of a C-

terminus-like peptide (Cys300-Gln306) to the two alternative C-terminal binding sites predicts 

stronger binding to the catalytic site (-14.5 kcal/mol) compared to the dimer interface (-12.8 

kcal/mol) that by far compensates for a weaker Arg298-Met6 interaction. These comparable 

binding affinities suggest that the interfacial binding site contributes to decreasing self-inhibition 

of 3CLpro. In line with that and with the NEMO-cleavage detected in vitro, the interaction with 

C-terminal tail at the active groove is less effective compared to NEMO-binding (-19.8 

kcal/mol).  
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2.8. Molecular dynamics simulations of the complex formed by WT 3CLpro and a long 

construct of NEMO 

MD simulations performed on a longer construct of hNEMO with 3CLpro carrying catalytic 

Cys145 recapitulated the conformation captured experimentally (Figure 3a). A model of a 

partially unfolded hNEMO dimer (aa. 190-270) bound to 3CLpro was used in the simulations, 

which show a conformational fluctuation of the binding core of hNEMO (aa. 227-234) near the 

crystallographic conformation, with a Cɑ RMSD of 3.2 ± 0.8 Å (Figure 3a). The distance 

between the catalytic S- in Cys145 and the carbonyl C in Gln231 stands near 5.0 Å (5.0 ± 0.4 Å), 

indicating a conformation that would favor the nucleophilic attack by 3CLpro (Supplementary 

Figure S5).  

 

 

Figure 3. Molecular dynamics simulations of SARS-CoV-2 3CLpro bound to human or mouse 

NEMO. a) Main contacts from MD simulations and predicted hot spots in WT 3CLpro bound to human 
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NEMO. Contacts that persist for more than 70% of the simulation time are depicted. Hot spots predicted 

with either KFCa or KFCb are labeled in bold and those predicted with both methods are underlined. 

Persistent H-bonds are shown as dashed lines (Supplementary Table S1). A representative conformation 

of the short (aa. 227-234) and long (aa. 190-270) constructs of NEMO in the binding site is shown as 

solid and transparent surfaces, respectively. The lower panel displays a MD snapshot of the longer 

NEMO dimer partially unfolded, with one protomer bound to 3CLpro. b) Sequence Logo generated with 

WebLogo 24 of NEMO (aa. 216-253) across 535 animal sequences, including (but not limited to): 

placentals, bats, marsupials, birds, rodents, and primates. Clustal Omega 25 was used for multiple 

sequence alignment. c) Time evolution of the distance between the catalytic S- in 3CLpro Cys145 and the 

carbonyl C of Gln231 in human NEMO (hNEMO) and mouse NEMO (mNEMO) computed from MD 

simulations. 

 

Simulations of the WT 3CLpro dimer (chains A and B) bound to hNEMO227-234, using our crystal 

structure as the initial configuration, show that the H-bonds identified in the static structure 

persist (Supplementary Table S1, Figure 3a). Additional H-bonds are formed between the residue 

pairs Ala228-Gln189, Gln231-Cys145, and Val232-Asn142, in hNEMO and 3CLpro, 

respectively, appearing during about 20-30% of the simulation time. The H-bond pair Leu230-

Gln189 appears less than 7% of the time. Several other residues in the binding site of 3CLpro 

form stable contacts with hNEMO (Figure 3a). Finally, using the crystal structure as input (chain 

B, NEMO B), the machine learning (ML)-based predictor, KFC226,27 indicates that hot spots, i.e., 

residues likely accounting for most of the binding affinity, coincide with those forming persistent 

contacts between 3CLpro and hNEMO (Figure 3a).  
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2.9. Predicted binding affinity of NEMO to 3CLpro differ among host species and 

coronaviruses 

The binding core of NEMO is highly conserved among different species (Figure 3b), but 

amongst mammals, the predicted hot spot at P1’ is a Val232 in hNEMO whereas it is an Ala232 

in mNEMO and golden hamster (Mesocricetus auratus) NEMO. Next, we carried out other MD 

simulations for hNEMO227-234 and mNEMO227-234. Like in hNEMO, the distance between the 

catalytic S- in 3CLpro Cys145 and the carbonyl C in mNEMO Gln231 remains near 5.0 Å 

(Figure 3c). However, the simulations show a decrease in the average number of contacts 

between mNEMO (49 ± 4) and 3CLpro compared to hNEMO (54 ± 4), and the Cɑ root-mean-

square deviation (RMSD) of mNEMO (1.9 ± 0.6 Å) relative to the initial position is larger than 

hNEMO (1.4 ± 0.4 Å). The impact of V232A becomes more pronounced in simulations with 

NEMO190-270 in the dimeric form, in which we observe large fluctuations in the distance between 

3CLpro Cys145 and mNEMO Gln231 (Supplementary Figure S5). This is explained by 

competing interactions within the NEMO dimer. NEMO dimerizes at Hlx2 forming hydrophobic 

contacts between the pairs of Tyr234, Leu230, and Leu227 in each protomer 18, and Tyr234 

forms H-bonds with Glu240 in the neighboring protomer.  

The viral counterpart, 3CLpro, is also highly conserved among species, but structural differences 

among human-infecting betacoronaviruses underpin differences in their predicted interactions 

with NEMO. Specifically, in HCoV-HKU1, MERS-CoV, SARS-CoV, and SARS-CoV-2, the 

predicted hot spots, Met49, His164, and Met165, are not fully conserved, and the loop/ɑ-helix 

formed by aa. 41-53 in Domain I of 3CLpro, which skirts the substrate-binding site, harbors most 

of the other differences. MD simulations of these proteins bound to hNEMO (aa. 227-234) show 

that 3CLpro from MERS-CoV (43 ± 4) and SARS-CoV (46 ± 7) exhibit lower average number 
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of contacts than SARS-CoV-2 (52 ± 3) and HCoV-HKU1 (53 ± 2) (Figure 4a). Particularly, this 

corroborates the hypothesis, detailed in the Discussion, that the S46A substitution between 

SARS-CoV-2 and SARS-CoV 3CLpro significantly impacts interactions with NEMO. 

Unsurprisingly, given the proximity of S/A46, the hot spot Met49 is one of the affected contacts. 

Simulations of these enzymes in the apo state show that the aa. 41-53 in 3CLpro exhibit slightly 

different flexibility, with SARS-CoV 3CLpro displaying a RMS fluctuation of 2.2 and 2.3 Å in 

each chain of the dimer and SARS-CoV-2 3CLpro, 2.3 and  2.5 Å. Additionally, essential Cɑ 

cross-correlation analysis suggests that SARS-CoV-2 3CLpro dimer has significantly more 

residue pairs exhibiting synchronized motions along the same or opposite directions than SARS-

CoV 3CLpro, which may reflect a tighter dimeric packing (38183 vs. 22513 pairs and 35707 vs. 

17567 pairs, respectively; cutoff is a correlation modulus of 0.85; Supplementary Figure S6).  

Finally, for a quantitative assessment of relative hNEMO-binding affinities, quantum mechanics 

(QM)- and MD/ML-based predictions were carried out. In the QM calculations, the fragment 

molecular orbital density-functional tight-binding (FMO-DFTB) method was used. For the 

MD/ML-based approach, five different models were trained. The rankings from the weakest to 

the strongest binding enzyme were nearly consistent between the two approaches (Figure 4b). 

The exception is the relative position of SARS-CoV 3CLpro. A possible explanation, further 

explored in Discussion, is that the few differences between SARS-CoV and SARS-CoV-2 

3CLpro affect the conformational flexibility of the binding site, which may be captured in 

MD/ML but not in the QM approach. 
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Figure 4. Comparative analysis of 3CLpro from human-infecting betacoronaviruses bound to 

NEMO. a) Substrate-binding site of human-infecting betacoronaviruses with hNEMO227-234.  Contacts 

that persist for more than 70% of the simulation time are labeled in bold.  b) Ranking of predicted 

NEMO-binding affinities to 3CLpro from betacoronaviruses computed with quantum mechanics (QM, 

values of internal binding energy as defined in the Method section are shown in parentheses) and 

molecular dynamics/machine learning (MD/ML) approaches. In the MD/ML approach, five machine 

learning methods were used to train the model, namely, support-vector machine, gradient-boosted trees 

(scaled and unscaled*), and random forest (scaled and unscaled*). The ranking displayed was consistent 

for nine of the ten cases of MD conformers (5 ML models applied to either all MD conformers or the 

three lowest-energy MD conformers, yielding 5 x 2 = 10 cases). The exception was a boosted tree model 

trained on unnormalized features that yielded a ranking of SARS-CoV < MERS-CoV < HKU1-CoV < 

SARS-CoV-2 when considering just the conformers with the lowest energy of interaction with 3CLpro 
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computed from MD simulations. *Unscaled refers to the fact that unscaled, or unnormalized, features 

were used in the training.  

 

3. Discussion 

Predicted mechanism of NEMO-binding to SARS-CoV-2 3CLpro 

SARS-CoV-2 3CLpro binds Lys226-His235 of the α-helical Hlx2 domain of one NEMO 

protomer in an extended conformation. In agreement, QM calculations predict favorable 

energetics for NEMO-binding to 3CLpro in such an extended conformation. SARS-CoV-2 

3CLpro therefore either makes use of a transient partially unwound state of Hlx2 for proteolysis 

or it actively outcompetes NEMO dimer interactions and unwinds the α-helix of one protomer. 

Specifically, 3CLpro forms two hydrophobic contacts as well as H-bonds with Leu230. This 

outcompetes the hydrophobic contacts formed by Leu230 in the NEMO dimer partner. 

Additionally, 3CLpro forms H-bonds with NEMO His235 and Ala233, either side of Tyr234, 

outcompeting the H-bond formed between Tyr234 and Glu240 in the NEMO dimer. 

 

 Functional impact of NEMO proteolysis 

NEMO homodimers form three cellular structures. First, NEMO homodimers. Second, a higher-

order lattice 28.  The lattice assembles through both non-covalent associations of the IKKα/β 

domains of NEMO homodimers and polyubiquitin-binding between NEMO homodimers. Third, 

NEMO lattices compact to form signalosome-proximal aggregates during NF-κB signaling 

stimulation by interleukin-1 (IL-1) 28. Higher-order structures cooperatively enhance NF-κB 

signaling. Cleavage at Gln231 in the NEMO homodimer would separate the NEMO kinase-
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binding site from the ubiquitylation and ubiquitin-binding sites, preventing IKKα/β activation, 

IKK assembly, and thus lattice formation, which all ultimately ablate NF-κB signaling. It is 

unknown if and to what extent Gln231 is accessible to 3CLpro in the NEMO aggregates. Future 

characterization of the  different structural levels of NEMO as well as how they interchange in 

equilibrium can help to  answer this question. 

 

   

Figure 5. Comparison of 3CLpro interactions with its N-terminal sequence and NEMO. The surface 

of chain C from our NEMO-bound structure is depicted as in Figure 2b. This is juxtaposed with residues 

from our structure that form interactions with NEMO (light blue sticks) as well as residues (green sticks) 

from a structure of 3CLpro bound to an N-terminal peptide (PDB ID: 7N89). Residues forming conserved 

interactions are labelled in black. Those found only in NEMO-bound 3CLpro are labelled in light blue. 

Those found only in 7N89 are labelled in green. Water molecules are portrayed as red spheres and are 

exclusive to 7N89. Met165 forms a hydrophobic contact with the P2 and P4 residues of NEMO but only 

with P2 with the N-terminal peptide. Met49 forms a hydrophobic contact with the P2 residues of both 

NEMO and the N-terminus, but also forms hydrophobic contacts with P1’ and P3’ of the N-terminal 

sequence.  Substrates are excluded for clarity. 
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Dissecting the versatile substrate-selectivity of 3CLpro using peptide-bound structures 

Comparison of the NEMO-bound structure with the structure of SARS-CoV-2 3CLpro C145A 

bound to a peptide of its N-terminal autoprocessing sequence, acetyl-SAVLQSGF-amide (PDB 

ID: 7N89) 30  identifies specific interactions engaged by 3CLpro to bind either the N-terminal or 

NEMO substrate (Figure 5), as well as conserved interactions between the two structures that are 

required for substrate-binding.  

In 7N89, the S5 subsite recruits a water molecule to bind N-terminal P5 (Ser). This is not 

observed in our NEMO-bound structure. The S4 subsite forms a hydrophobic contact between 

Met165 and NEMO P4 but not with N-terminal P4 (Ala). This site therefore contributes to the 

substrate-versatility of 3CLpro. In the S3 subsite, the main chain H-bonds from Glu166 are 

conserved when binding both substrates. However, 3CLpro recruits an additional hydrophobic 

contact between the alkyl moiety of Glu166 and N-terminal P3 (Val). The S2 subsite conserves 

all interactions observed between 3CLpro and NEMO but engages an additional main chain H-

bond with water476 that stabilizes N-terminal P2 (Leu) in its subsite. 7N89 identifies extra 

interactions that strengthen the specificity for Gln P1. In 7N89, the side chain of P1 Gln forms 

additional H-bonds with the main chain carbonyl of Phe140 and water472. Due to the polar 

nature of the Ser145 γ-hydroxyl group in 3CLpro C145S, there is an additional observed H-bond 

with the carbonyl group of Gln P1 in the NEMO-bound structure. The S1’ subsite is flexible. It 

forms no interactions with the N-terminal substrate but engages hydrophobic contacts from 

Thr25 and Leu27 side chains to bind NEMO. It therefore contributes to 3CLpro substrate 

versatility. The S2’ subsite interactions are conserved between NEMO- and N-terminal-bound 
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structures, indicating a requirement for Thr26 peptide-nonspecific main chain interactions at this 

subsite. Finally, the S3’ and S4’ subsites both contribute to substrate versatility. 3CLpro engages 

hydrophobic contacts between Met49 and Thr24 to bind N-terminal P3’ (Phe) and NEMO P4’ 

respectively.  

Differences in betacoronaviruses 3CLpro and in host NEMO likely affect pathogenesis 

Subtle structural differences between otherwise highly conserved betacoronaviruses 3CLpro 

enzymes are predicted to have substantial effects on NEMO-binding. Our computational 

analyses suggest that the single substitution S46A in the substrate-binding site of SARS-CoV-2 

3CLpro relative to SARS-CoV-2 3CLpro increases local rigidity and, with that, conformational 

changes that optimize the interactions with NEMO are impaired31. Alanine has significantly 

higher ɑ-helical propensity than serine32 and, indeed, Ala46 is part of an ɑ-helix while Ser46 is at 

a turn in apo SARS-CoV33 and SARS-CoV-2 3CLpro, respectively. MERS-CoV 3CLpro has 

Ala46 and Pro45, both known to increase local rigidity, 34 and HCoV-HKU1 lacks such 

rigidifying residues. This is consistent with the predicted decrease in NEMO affinity from 

SARS-CoV-2 through HCoV-HKU1, SARS-CoV, and MERS-CoV. This may also explain why 

N-terminomics identified more substrates for SARS-CoV-2 3CLpro than for SARS-CoV 3CLpro 

despite 96% identity 11 and why FRET experiments did not capture any activity of SARS-CoV 

3CLpro on NEMO16.  

Differences distal to the binding site may also have a significant functional impact. For example, 

the presence of Thr285 in the Domain III of SARS-CoV 3CLpro is associated with a looser 

dimer and slightly lower catalytic efficiency compared to SARS-CoV-2 3CLpro, which has 

Ala2858. Essential dynamics analysis shows that this difference in dimerization was captured in 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 15, 2021. ; https://doi.org/10.1101/2021.11.11.468228doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.11.468228
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

23 

our trajectories. Although a causal relationship is not obvious, our results reinforce the 

importance of accounting for molecular differences in the entire proteome for a complete 

understanding of pathogenesis.  

Similarly, we predict that the substitution V232A in NEMO from human to mouse affects 

NEMO-binding to 3CLpro. Site 232 is variable in other relevant reservoirs of SARS-CoV-2 and 

may have implications in the disease tolerance (Supplementary Table S2)35. Therefore, animal 

models incorporating multiple elements of the human immune system, as in mice transplanted 

with human immune cells 36, may be a way of accounting for the impact of apparently subtle 

differences in pathogenesis.  

 

Highly fit SARS-CoV-2 can fine-tune viral replication and modulation of host immune responses  

The interaction of 3CLpro with host proteins that are part of the innate immune response appears 

to be finely tuned to avoid competition with its role of processing the viral polyproteins and to 

maintain functional cells for production of virions 37. Our enzymatic assays indicate that 

cleavage of NEMO is a slow process and likely not impactful in the first hours of infection 38. 

Similarly, it was demonstrated that SARS-CoV-2 infection of different cell lines requires 24 to 

48 hours to cause a dramatic reduction in the levels of host proteins cleaved by PLpro and 

3CLpro 12. These observations and the cleavage of multiple host proteins detected with N-

terminomics suggest that the cleavage of NEMO is one component of a number of mechanisms 

that SARS-CoV-2 combines to counteract the host immune response 11. However, certain traits 

of COVID-19 are remarkably consistent with known effects caused by NEMO ablation, 

suggesting its particular relevance in the pathophysiology. Mutations in the NEMO gene in the 
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genetic disease incontinentia pigmenti are typically lethal in males and cause skewed X-

inactivation patterns in females, selecting for the normal allele, as NEMO resides on the X-

chromosome 39,40. Similarly, males seem to develop more severe COVID-19 41.  Additionally, 

deletion of NEMO leads to rarefaction of brain microvessels 42 and increased vascular 

permeability in the brain is observed in COVID-19 patients with neurological symptoms 43, 

which resembles those of incontinentia pigmenti 44.  

 

Concluding remarks 

NEMO lies at the nexus of the antiviral response driven by the mitochondrial antiviral-signaling 

protein (MAVS) that results in the activation of both NF-κB and type I interferons45.  The NF-κB 

pathway is targeted  by diverse viruses 46  and its suppression contributes to an imbalance in the 

renin-angiotensin system, which is proposed to result in severe COVID-19 outcomes47. Our 

results suggest that SARS-CoV-2 weakens innate immunity by cleaving NEMO using 3CLpro. 

In addition to directly countering the immunosuppressive effects from NEMO cleavage, 

inactivating 3CLpro as a therapeutic strategy would impair viral replication and reduce the 

production of proteins that intervene downstream from MAVS, such as nsp6, and nsp13 48,49. 

Future avenues for research will involve defining the link between the binding affinity of 3CLpro 

to NEMO and the observed proteolytic rate via enzymatic assays. Finally, semi-quantitative 

analysis of accumulation of 3CLpro and the products of NEMO-cleavage in human cells from 

different tissues infected with SARS-CoV-2 will help to unravel the specific pathogenesis traits 

derived from ablation of NEMO. 
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5. Methods 

5.1. Enzymatic assays 

NEMO peptide expression and purification 

The constructs of Human NEMO (residues 215-247) and mouse NEMO (residues 221-250) 

cloned into pGEX-6p-1 vector were transformed into BL21 (DE3) cells and selected using 

ampicillin-enriched LB media. Cells were grown to OD600 of 0.6-0.8 and induced with 0.25 

mM IPTG overnight at 25˚C. Cells were harvested, resuspended in phosphate buffered saline 

(PBS) and lysed on ice using sonicator (QSonica). Insoluble material was pelleted using 

centrifugation and the lysate was incubated with Glutathione Sepharose 4B (GS4B, Cytiva) for 2 

hours on a rotating platform at 4˚C. The beads with the GST-tagged protein were separated using 

a gravity column and washed with PBS to remove any unbound protein. The GST tag was 

cleaved on-column using Prescission protease and incubating overnight at 4 ˚C. Cleavage was 

confirmed by SDS-PAGE and the cleaved protein was eluted using PBS. The protein was further 

purified by size-exclusion chromatography on a Superdex 75 16/60 column using 20 mM Tris-

HCl, pH 8.0 and 150 mM NaCl as the running buffer. 

 

3CLpro expression and purification  

3CLpro WT enzyme for assays was prepared independently from a clone of the SARS-CoV-2 

NSP5 gene in pD451-SR (Atum, Newark, CA) according to published procedure 6. To make the 

authentic N-terminus, the protease sequence is preceded by maltose binding protein followed 

by the 3CLpro autoprocessing site between NSP4 and NSP5 (SAVLQ↓SGFRK, arrow indicates 
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the cleavage site). Authentic C-terminus is achieved by a sequence of a human rhinovirus 3C 

(HRV-3C) cleavage site (SGVTFQ↓GP) connected to a His6 tag. The N-terminal flanking 

sequence is autoprocessed during expression in E. coli (BL21 DE3), whereas the C-terminal 

flanking sequence is removed by the treatment with HRV-3C protease (Millipore Sigma, St. 

Louis, MO) in-between two rounds of Ni-NTA affinity chromatography.    

 

Human NEMO cleavage assay 

70 μL reactions of 0.053 μg/μL substrate hNEMO 215-247 and 0, 1, or 5 μM WT 3CLpro were 

prepared in duplicate using a reaction buffer of 20 mM Tris-HCl, pH 7.35, 100 mM sodium 

chloride, 1 mM EDTA, and 2 mM reduced glutathione. Reactions were incubated at 25 ºC with 

gentle shaking and 5 μL aliquots were quenched by diluting into 95 μL of 1.63% formic acid in 

water at 4 ºC at 15, 30, 60, and 120 mins. 2 μL of quenched reactions were injected onto an 

Agilent EclipsePlusC18 1.8 μM, 2.1 x 50 mm chromatography column, and eluted using a 

gradient elution of 2-80% buffer B (0.1% formic acid in acetonitrile) against buffer A (0.1% 

formic acid in water) over 8.5 mins. Samples were introduced into mass spectrometers, and 

molecular masses of the substrate [M+2H]+2 ion with m/z 1486.5 and the C-terminal fragment 

VAYHQLFQEYDNHIKS [M+H]+ ion with m/z 1675.5 were detected using positive mode 

ionization, a capillary voltage of 4000 V, a nozzle voltage of 1500 V, an MS2 scan of 830-1490 

m/z over a 330 ms scan time, a fragmentor voltage of 300 V, and a cell accelerator voltage of 3 

V. Substrate and product peak areas were determined by integrating the extracted ion 

chromatograms.  
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Mouse NEMO cleavage assay 

NEMO peptides were prepared as 0.2 mg/mL stocks and 3CLpro as 0.5 𝜇M stock in the same 

assay buffer as described for the human NEMO cleavage assay, and assays were initiated by 

adding 5 𝜇L enzyme (or buffer for negative controls) to 5 𝜇L peptides. Reactions were incubated 

at 37 °C in a thermocycler for 30 min and quenched by adding 10 𝜇L quench buffer (50% v/v 

NuPAGE™ 4x LDS buffer, 20% v/v 0.5 M dithiothreitol, 30% v/v water) and heating at 37 °C in 

a thermocycler for 20 min. A NuPAGE™ 4 to 12%, Bis-Tris, 1.0 mm, Mini Protein Gel, 12-

well, was loaded with 10 𝜇L/lane and 8 𝜇L SeeBluePlus2 ladder, and proteins were separated 

with 200 V electrophoresis for 35 min with MES buffer. Bands were visualized with BullDog 

Bio Acquastain. 

 

5.2. Crystallography 

3CLpro WT expression and purification 

BL21(DE3) cells were transformed with pMCSG53 pDNA containing a 3CLpro WT insert with 

an autoprocessing-sensitive N-terminal Maltose Binding Protein (MBP) tag and a PreScission 

protease-sensitive C-terminal His6 tag (provided by Andrzej Joachimiak).  Transformants were 

selected using ampicillin-enriched LB media, grown to OD600 of 0.6-0.8 and induced over 10 

hours with 0.5 mM IPTG (GoldBio, USA), and harvested. Cell pellets were resuspended in 50 

mM HEPES pH 7.2, 150 mM NaCl, 5% glycerol, 20 mM Imidazole, 10 mM 2-mercaptoethanol, 

and lysed by sonication. Insoluble material was pelleted by centrifugation and the lysate loaded 

onto a Ni2+ column, equilibrated with 50 mM HEPES pH 7.2, 150 mM NaCl, 5% glycerol, 10 

mM Imidazole, 10 mM 2-mercaptoethanol. The column was washed using 50 mM HEPES pH 
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7.2, 150 mM NaCl, 5% glycerol, 50 mM Imidazole, 10 mM 2-mercaptoethanol, and eluted using 

50 mM HEPES pH 7.2, 150 mM NaCl, 5% glycerol, 500 mM Imidazole, 10 mM 2-

mercaptoethanol. The C-terminal His6  tag was cleaved using 1 mg of PreScission to 500 mg of 

3CLpro WT at 4 °C, before being flowed through a second Ni2+ column, and buffer-exchanged 

into crystallization buffer 1 (20 mM Tris-HCL pH 8.0, 150 mM NaCl, 1 mM TCEP).  

  

3CLpro WT crystallization 

Platelike crystal clusters were produced by adding 10 µL of 3CLpro WT at 5 mg/mL to 10 µL of 

crystallization matrix (30% PEG 3350, 0.1 M Bis-tris propane pH 7.0) well solution in a 

hanging-drop vapor diffusion setup at 18 °C. Microseeds were generated from clusters using 

Seed-Beads (Hampton Research, USA). Single crystals were produced by setting up hanging 

drop crystallization wells at 18 °C with 10 µL of 3CLpro WT and 10 µL of 1:500 dilution 

microseeds, using 20% PEG 3350, 0.1 M Bis-tris propane pH 7.0 and 4 mg/mL 3CLpro WT 

protein concentration, and 20% PEG 3350/0.1 M Bis-tris pH 6.5, 5 mg/mL 3CLpro WT protein 

concentration.  

 

3CLpro C145S expression and purification 

BL21(DE3) cells were transformed with pMCSG53 pDNA containing a 3CLpro C145S insert 

(provided by Andrzej Joachimiak) with a TEV-sensitive N-terminal His6 tag. Transformation, 

expression and harvesting was performed as with WT 3CLpro. Initial Ni2+ column purification 

was performed as with WT 3CLpro. Elution fractions with highest 3CLpro C145S concentration 

were combined and dialysed overnight against 2L of dialysis buffer (50 mM HEPES pH 7.2, 25 
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mM NaCl, 5% glycerol, 10 mM 2-mercaptoethanol). 48-hour TEV digestion was initiated by 

adding 25 ug of TEV per ug of 3CLpro C145S. The solution after cleavage reaction was passed 

through a second, 6 ml, pre-equilibrated nickel column. The flowthrough from this column was 

collected and buffer-exchanged using 10,000 MWCO centrifugal concentrators (EMD Millipore, 

USA) into crystallization buffer 2 (20 mM HEPES pH 7.2, 150 mM NaCl, 2 mM DTT).  

 

3CLpro C145S-NEMO binding 

Human NEMO capped peptide (residues 226-235, acetyl-KLAQLQVAYH-amide, synthesized 

by Thermo Scientific) was dissolved to 2 mM in peptide buffer (20 mM HEPES, 150 mM NaCl, 

pH 7.2) and DMSO (5.67%). Peptides were then added to 3CLpro C145S at a 20-fold molar 

excess, before overnight incubation at 4 oC. The mixture was centrifuged to remove precipitants, 

and the supernatant was concentrated to 6.5 mg/mL for crystallization screens.  

  

3CLpro C145S crystallization 

3CLpro C145S was incubated overnight with a 0.01-fold molar ratio of Human NEMO capped 

peptide and incubated overnight at 4 oC. No precipitation was observed. TOP96 (Rigaku 

Reagents, Japan), BCS (Molecular Dimensions, UK) and GRAS2 (Hampton Research, USA) 

screens were run using a Gryphon (Art Robbins Instruments, USA). 0.2 µL of protein solution at 

6.5 mg/mL was added to 0.2 µL of crystallization matrix in a sitting-drop vapor diffusion setup 

at 18 °C. BCS screen condition A9 (0.1 M MES pH 6.5, 20 % v/v PEG Smear High) produced 

needle-like crystal clusters of 3CLpro C145S.  
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3CLpro C145S-NEMO co-crystallization 

TOP96 (Rigaku Reagents, Japan), BCS (Molecular Dimensions, UK) and GRAS2 (Hampton 

Research, USA) screens were run using a Gryphon (Art Robbins Instruments, USA). 0.2 µL of 

protein solution at 6.5 mg/mL was added to 0.2 µL of crystallization matrix in a sitting-drop 

vapor diffusion setup at 18 C. GRAS2 screen condition F11 (0.1 M Sodium phosphate dibasic 

dihydrate, pH 9.3, 10 mM Calcium chloride, 20% w/v Polyethylene glycol 3,350), yielded 

platelike single crystals. These crystals were isolated, cryoprotected by supplementation with 

20% glycerol, mounted into ALS style, 0.05-0.1 mm loops (Hampton Research, USA) and flash 

frozen in liquid nitrogen.  

  

Data collection and structural determination and refinement 

Preliminary, cryogenic data collection was carried out at SSRL, using an Eiger X 16M detector, 

to confirm the presence of protein crystals. Cryogenic, X-ray crystallographic diffraction data of 

3CLpro WT, C145S and NEMO-bound C145S was collected on beamline 12-2 at SSRL, using 

an Eiger X 16M detector. Data were processed using XDS. 3CLpro WT crystallized in the C2 

space group, with one molecule in the asymmetric unit. Both 3CLpro C145S and the NEMO-

bound 3CLpro C145S crystallized in the P1 space group with four protomers per asymmetric 

unit. The 3CLpro WT structure was phased in MOLREP 50 using the coordinates of 3CLpro 

bound to Telaprevir (PDB ID: 7K6D). For 3CLpro C145S and NEMO-bound 3CLpro C145S, 

molecular replacement was performed in MOLREP 50 using the coordinates of the 3CLpro WT 

structure solved in this study. Iterative refinement was performed manually in Coot 51 and 
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REFMAC 52. The final rounds of refinement were performed by Phenix 53. Details of data 

collection and refinement parameters are provided in Supplementary Table S3.  

 

5.3. Molecular dynamics simulations and binding affinity predictions 

Preparation NEMO-bound models of 3CLpro from different betacoronaviruses  

Chains A and B from the crystallographic structure described here were used as the starting 

configuration for the simulations of the NEMO-bound dimeric SARS-CoV-2 3CLpro. Along 

with that, structures of 3CLpro from SARS-CoV (PDB id 5B6O), MERS-CoV (PDB id 5C3N), 

and HKU1-CoV (PDB id 3D23) were used 33,54,55. After structural alignment, the coordinates 

from NEMO (aa. 227-234) from the X-ray structure of the NEMO-bound SARS-CoV-2 3CLpro 

C145S variant were used to build the models of NEMO-bound SARS-CoV, MERS-CoV, and 

HKU1-CoV 3CLpro dimers. In SARS-CoV-2 3CLpro, Val232 was replaced by Ala232 to also 

study the interactions in the binding site of 3CLpro with mouse NEMO227-234.   

The models of complexes of 3CLpro with a long construct of human and mouse NEMO (aa. 

190-270) were built prior to solving the crystallographic structure described in this study, so the 

coordinates of the 7-residue fragment of NEMO (residues 227-233) from the crystallographic 

structure of the porcine epidemic diarrhea virus (PEDV) 3CLpro bound to NEMO227-233 (PDB id 

5ZQG) were used. We note that the NEMO-peptide in PEDV 3CLpro has a very similar 

conformation and position to what was found in SARS-CoV-2 3CLpro, displaying a NEMO227-

233 Cɑ/Cβ RMSD of 0.9 Å between the two structures. NEMO N- and C-termini were capped 

with acetyl and N-methylamide, respectively. More details about system preparation are 

described in the Supplementary Methods. 
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Molecular dynamics simulations and conformation selection for binding affinity predictions 

Different protocols of simulation were conducted for 3CLpro-NEMO227-234 and 3CLpro-

NEMO190-270 systems, as the former was used both for traditional MD analysis and to select 

conformations for binding affinity predictions (Supplementary Methods). For the 3CLpro-

NEMO227-234 systems, which were mostly generated in silico, we applied a strategy of MD 

simulations that aims structural refinement and sampling conformations that visit key 

interactions. Snapshots selected from these simulations were used as input for machine learning-

based binding affinity prediction (MD/ML approach). Similarly to the method of protein 

structure refinement described in Heo et al.56, sampling was accelerated in a controlled manner 

by applying a fairly high temperature and weak position restraint potentials that compensate for 

the high thermal energy, which could drastically propagate the effects of any local molecular 

distortions or bad contacts. The applied position restraints are much weaker than the energy 

range of typical non-covalent interactions and conformational changes so that sampling is 

minimally biased while unrealistic states are easily escaped. 

For the MD/ML approach, five independent conformational sampling runs were performed for 

224 ns, recording coordinates every 40 ps. Supplementary Methods and Table S4 summarizes 

this MD-based protocol of sampling for conformation selection. The conformations generated 

from the restrained MD simulations were grouped via a root-mean-square deviation-based 

algorithm57. Considering only Cɑ atoms of NEMO and residues in the Domains I and II of the 

holo chain of 3CLpro (aa. 16-198), the RMSD of atom-pair distances was computed applying the 

1.0 Å cutoff as parameter for clustering. The interaction energy between 3CLpro and the NEMO-

peptide was computed using the energy plugin within GROMACS. For each system, three 
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structures with the lowest interaction energy were selected from different conformation clusters 

within the 20 most populated and used as input for ML-based binding affinity prediction.  

In parallel, for classical molecular dynamics analysis, the equilibration phase was fully 

performed at 310.15 K and five independent production unrestrained runs of 112 ns were carried 

out. In the simulations of 3CLpro-NEMO190-270 systems, five production runs of 116 ns were 

performed with no position restraints.  

 

Binding affinity from quantum mechanics calculations 

The inclusion of quantum mechanics (QM) or machine learning (ML) in high-throughput drug 

screening to narrow down the list of promising inhibitor candidates has emerged as a very 

promising protocol. Recently, we illustrated an encouraging application of QM to refine the 

binding affinity of classical docking results of COVID-19 spike protein inhibitor drugs 58. In this 

work, we employed a similar strategy to evaluate the binding affinity of NEMO with different 

3CLPro targets.  For the QM-based prediction, we employed the linear-scaling fragment 

molecular orbital density-functional tight-binding (FMO-DFTB) 59,60 method to predict binding 

affinities of NEMO with the four 3CLPro targets. In addition, the polarizable continuum model 

(PCM) was used to include solvent effects 61. The polarizable continuum model (PCM) was used 

to describe interactions with solvent, and the empirical D3 dispersion correction was used to 

improve the accuracy in describing non-covalent interactions.  For the PCM calculations, the 

cavity was calculated using newly calibrated atomic radii to improve accuracy in predicting 

solvation free energy of DFTB in an aqueous solvent. The details of the atomic radii 

optimization will be published elsewhere.  For each target, the FMO-DFTB/PCM method was 
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used to re-optimize structures of NEMO model systems in bound and unbound states, while the 

target's structure was fixed. Partial re-optimization of the target did not significantly alter the 

result. The internal binding energy is defined as the difference in internal energy between the 

complex and its corresponding unbound NEMO and unbound 3CLPro. 

 

Binding affinity from machine learning-based rescoring 

Machine-learned models dedicated to predicting binding affinities (Demerdash, 2021, in press) 

were trained on a large database of protein-small molecule complexes with both experimental 

binding affinities and X-ray crystal complexes known as PDBBIND 62, followed by testing on an 

independent data set, the CASF-2013 benchmark 62, that was not used in the training. For each 

complex a set of seven features were calculated, where each feature is itself a predicted affinity 

or free energy calculated under very different physical assumptions (Supplementary Methods). 

Models were trained using either support-vector machines, gradient-boosted trees, or random 

forest. For each of these 3 methods, models were trained using normalized, or scaled, features. 

For the gradient-boosted tree and random forest method, models were additionally trained on the 

raw, unscaled features. For each betacoronavirus 3CLpro, the models were applied to the energy 

minimized complexes and to the set of MD-generated conformers. Separately, both the full set of 

MD conformers as well as the three conformers with the lowest molecular mechanics (MM) 

energy of interaction were considered for each system. The average predicted affinity was 

obtained, considering either the full set of MD conformers or just the three with the lowest MM 

energy of interaction (Figure 4b). Noticeably, the ML models applied to energy minimized 

complexes (conformers prior to MD simulations) did not provide consistent results among the 

rankings. These structures have appreciably higher MM energy than the MD structures, 
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suggesting that the consistent rankings of the MD structures reflect more native-like structures 

and that the MD protocol of confirmation selection is effective to account for the conformational 

flexibility of the receptor.  

 

Molecular re-docking of 3CLpro C-terminus  

Chains A and B from the crystallographic structure of SARS-CoV-2 3CLpro-NEMO described 

in this study were used to estimate the contributions of local interactions to the binding affinity 

of the C-terminus to the dimer interfacial site. The C-terminus of chain B seats between Domains 

I in the dimer formed with chain A. Chains A and D were used as receptor and ligand, 

respectively, to estimate the contributions of local interactions to the binding affinity of the C-

terminus to a catalytic site in a neighboring dimer. For the calculations of C-terminus at the 

interfacial and catalytic binding sites, a peptide comprising residues 302 to 306 was defined from 

the C-terminus of chain B and D, respectively, detaching it from the rest of the protein by 

deleting residues 300 and 301. N- and C-termini of these peptides were capped with acetyl and 

N-methylamide, respectively. Molecular re-docking of the C-terminus peptides was performed 

using AutoDock Vina 63. All bonds of the peptide were kept rigid as the goal was to preserve the 

initial conformation and compute the binding free energy using the AutoDock Vina scoring 

function. 

  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 15, 2021. ; https://doi.org/10.1101/2021.11.11.468228doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.11.468228
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

37 

References 

1. Yeyati, E. L. & Filippini, F. Social and economic impact of COVID-19. Brookings Global Working 

Paper #158 at www.brookings.edu/global (2021).  

2. Woo, P. C. Y., Huang, Y., Lau, S. K. P. & Yuen, K.-Y. Coronavirus Genomics and Bioinformatics 

Analysis. Viruses 2, 1804–1820 (2010). 

3. Perlman, S. & Netland, J. Coronaviruses post-SARS: update on replication and pathogenesis. Nat. 

Rev. Microbiol. 7, 439–450 (2009). 

4. Jin, Z. et al. Structure of M from SARS-CoV-2 and discovery of its inhibitors. Nature 582, 289–293 

(2020). 

5. Jaskolski, M. et al. Crystallographic models of SARS-CoV-2 3CL: in-depth assessment of structure 

quality and validation. IUCrJ 8, 238–256 (2021). 

6. Kneller, D. W., Phillips, G., Kovalevsky, A. & Coates, L. Room-temperature neutron and X-ray data 

collection of 3CL M from SARS-CoV-2. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. 76, 

483–487 (2020). 

7. Kneller, D. W. et al. Structural plasticity of SARS-CoV-2 3CL Mpro active site cavity revealed by 

room temperature X-ray crystallography. Nat. Commun. 11, 3202 (2020). 

8. Zhang, L. et al. Crystal structure of SARS-CoV-2 main protease provides a basis for design of 

improved α-ketoamide inhibitors. Science 368, 409–412 (2020). 

9. Goyal, B. & Goyal, D. Targeting the Dimerization of the Main Protease of Coronaviruses: A 

Potential Broad-Spectrum Therapeutic Strategy. ACS Comb. Sci. 22, 297–305 (2020). 

10. Lee, J. et al. Crystallographic structure of wild-type SARS-CoV-2 main protease acyl-enzyme 

intermediate with physiological C-terminal autoprocessing site. Nat. Commun. 11, 5877 (2020). 

11. Koudelka, T. et al. N-Terminomics for the Identification of In Vitro Substrates and Cleavage Site 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 15, 2021. ; https://doi.org/10.1101/2021.11.11.468228doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.11.468228
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

38 

Specificity of the SARS-CoV-2 Main Protease. Proteomics 21, e2000246 (2021). 

12. Moustaqil, M. et al. SARS-CoV-2 proteases PLpro and 3CLpro cleave IRF3 and critical modulators 

of inflammatory pathways (NLRP12 and TAB1): implications for disease presentation across 

species. Emerg. Microbes Infect. 10, 178–195 (2021). 

13. Liu, T., Zhang, L., Joo, D. & Sun, S.-C. NF-κB signaling in inflammation. Signal Transduct Target 

Ther 2, 17023 (2017). 

14. Wang, D. et al. Porcine Epidemic Diarrhea Virus 3C-Like Protease Regulates Its Interferon 

Antagonism by Cleaving NEMO. J. Virol. 90, 2090–2101 (2016). 

15. Chen, S. et al. Feline Infectious Peritonitis Virus Nsp5 Inhibits Type I Interferon Production by 

Cleaving NEMO at Multiple Sites. Viruses 12, (2019). 

16. Ye, G. et al. Structural basis for the dimerization and substrate recognition specificity of porcine 

epidemic diarrhea virus 3C-like protease. Virology 494, 225–235 (2016). 

17. Prates, E. T. et al. Potential pathogenicity determinants identified from structural proteomics of 

SARS-CoV and SARS-CoV-2. Mol. Biol. Evol. 38, 702-715 (2020). 

18. Bagnéris, C. et al. Crystal Structure of a vFlip-IKKγ Complex: Insights into Viral Activation of the 

IKK Signalosome. Molecular Cell 30, 620–631 (2008). 

19. Rushe, M. et al. Structure of a NEMO/IKK-associating domain reveals architecture of the interaction 

site. Structure 16, 798–808 (2008). 

20. Wenzel, J. et al. The SARS-CoV-2 main protease Mpro causes microvascular brain pathology by 

cleaving NEMO in brain endothelial cells. Nat. Neurosci. 24, 1522–1533 (2021). 

21. Lampe, J. et al. The SARS-CoV-2 main protease Mpro causes microvascular brain pathology by 

cleaving NEMO in brain endothelial cells. Nat. Neurosci. 24, 1522-1533. 

22. Wang, H. et al. Comprehensive Insights into the Catalytic Mechanism of Middle East Respiratory 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 15, 2021. ; https://doi.org/10.1101/2021.11.11.468228doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.11.468228
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

39 

Syndrome 3C-Like Protease and Severe Acute Respiratory Syndrome 3C-Like Protease. ACS Catal. 

10, 5871–5890 (2020). 

23. Li, C. et al. Conformational Flexibility of a Short Loop near the Active Site of the SARS-3CLpro is 

Essential to Maintain Catalytic Activity. Sci. Rep. 6, 20918 (2016). 

24. Crooks, G. E., Hon, G., Chandonia, J.-M. & Brenner, S. E. WebLogo: a sequence logo generator. 

Genome Res. 14, 1188–1190 (2004). 

25. Madeira, F. et al. The EMBL-EBI search and sequence analysis tools APIs in 2019. Nucleic Acids 

Res. 47, W636–W641 (2019). 

26. Darnell, S. J., Page, D. & Mitchell, J. C. An automated decision-tree approach to predicting protein 

interaction hot spots. Proteins 68, 813–823 (2007). 

27. Zhu, X. & Mitchell, J. C. KFC2: a knowledge-based hot spot prediction method based on interface 

solvation, atomic density, and plasticity features. Proteins 79, 2671–2683 (2011). 

28. Scholefield, J. et al. Super-resolution microscopy reveals a preformed NEMO lattice structure that is 

collapsed in incontinentia pigmenti. Nat. Commun. 7, 12629 (2016). 

29. Noske, G. D. et al. A Crystallographic Snapshot of SARS-CoV-2 Main Protease Maturation Process. 

J. Mol. Biol. 433, 167118 (2021). 

30. Kneller, D. W., Zhang, Q., Coates, L., Louis, J. M. & Kovalevsky, A. Michaelis-like complex of 

SARS-CoV-2 main protease visualized by room-temperature X-ray crystallography. IUCrJ 8, 973–

979 (2021). 

31. Prates, E. T. et al. The impact of O-glycan chemistry on the stability of intrinsically disordered 

proteins. Chem. Sci. 9, 3710–3715 (2018). 

32. Fujiwara, K., Toda, H. & Ikeguchi, M. Dependence of α-helical and β-sheet amino acid propensities 

on the overall protein fold type. BMC Struct. Biol. 12, 18 (2012). 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 15, 2021. ; https://doi.org/10.1101/2021.11.11.468228doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.11.468228
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

40 

33. Muramatsu, T. et al. SARS-CoV 3CL protease cleaves its C-terminal autoprocessing site by novel 

subsite cooperativity. Proc. Natl. Acad. Sci. U. S. A. 113, 12997–13002 (2016). 

34. Jacob, J., Duclohier, H. & Cafiso, D. S. The role of proline and glycine in determining the backbone 

flexibility of a channel-forming peptide. Biophys. J. 76, 1367–1376 (1999). 

35. Goh, G. et al. Complementary regulation of caspase-1 and IL-1β reveals additional mechanisms of 

dampened inflammation in bats. Proc. Natl. Acad. Sci. U. S. A. 117, 28939–28949 (2020). 

36. Pujhari, S. & Rasgon, J. L. Mice with humanized-lungs and immune system - an idealized model for 

COVID-19 and other respiratory illness. Virulence 11, 486–488 (2020). 

37. Sender, R. et al. The total number and mass of SARS-CoV-2 virions. Proc. Natl. Acad. Sci. U. S. A.  

118, e2024815118  (2021). 

38. Bar-On, Y. M., Flamholz, A., Phillips, R. & Milo, R. SARS-CoV-2 (COVID-19) by the numbers. 

eLife 9, e57309 (2020). 

39. Fusco, F. et al. Molecular analysis of the genetic defect in a large cohort of IP patients and 

identification of novel NEMO mutations interfering with NF-κB activation. Hum. Mol. Genet. 13, 

1763–1773 (2004). 

40. Aradhya, S. et al. Multiple pathogenic and benign genomic rearrangements occur at a 35 kb 

duplication involving the NEMO and LAGE2 genes. Hum. Mol. Genet. 10, 2557–2567 (2001). 

41. Muñoz-Fontela, C. et al. Animal models for COVID-19. Nature 586, 509–515 (2020). 

42. Ridder, D. A. et al. Brain endothelial TAK1 and NEMO safeguard the neurovascular unit. J. Exp. 

Med. 212, 1529–1549 (2015). 

43. Helms, J. et al. Neurologic Features in Severe SARS-CoV-2 Infection. N. Engl. J. Med. 382, 2268–

2270 (2020). 

44. Minić, S., Trpinac, D. & Obradović, M. Systematic review of central nervous system anomalies in 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 15, 2021. ; https://doi.org/10.1101/2021.11.11.468228doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.11.468228
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

41 

incontinentia pigmenti. Orphanet J. Rare Dis. 8, 25 (2013). 

45. Ren, Z. et al. Regulation of MAVS Expression and Signaling Function in the Antiviral Innate 

Immune Response. Front. Immunol. 11, 1030 (2020). 

46. Santoro, M. G., Rossi, A. & Amici, C. NF-kappaB and virus infection: who controls whom. EMBO 

J. 22, 2552–2560 (2003). 

47. Garvin, M. R. et al. A mechanistic model and therapeutic interventions for COVID-19 involving a 

RAS-mediated bradykinin storm. Elife  9, e59177 (2020). 

48. Xia, H. et al. Evasion of Type I Interferon by SARS-CoV-2. Cell Rep. 33, 108234 (2020). 

49. Vazquez, C. et al. SARS-CoV-2 viral proteins NSP1 and NSP13 inhibit interferon activation through 

distinct mechanisms. PLoS One 16, e0253089 (2021). 

50. Vagin, A. & Teplyakov, A. MOLREP: an Automated Program for Molecular Replacement. J. Appl. 

Crystallogr. 30, 1022–1025 (1997). 

51. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D 

Biol. Crystallogr. 60, 2126–2132 (2004). 

52. Murshudov, G. N., Vagin, A. A. & Dodson, E. J. Refinement of macromolecular structures by the 

maximum-likelihood method. Acta Crystallogr. D Biol. Crystallogr. 53, 240–255 (1997). 

53. Liebschner, D. et al. Macromolecular structure determination using X-rays, neutrons and electrons: 

recent developments in Phenix. Acta Crystallogr D Struct Biol 75, 861–877 (2019). 

54. Ho, B.-L. et al. Critical Assessment of the Important Residues Involved in the Dimerization and 

Catalysis of MERS Coronavirus Main Protease. PLoS One 10, e0144865 (2015). 

55. Zhao, Q. et al. Structure of the main protease from a global infectious human coronavirus, HCoV-

HKU1. J. Virol. 82, 8647–8655 (2008). 

56. Heo, L., Arbour, C. F., Janson, G. & Feig, M. Improved Sampling Strategies for Protein Model 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 15, 2021. ; https://doi.org/10.1101/2021.11.11.468228doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.11.468228
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

42 

Refinement Based on Molecular Dynamics Simulation. J. Chem. Theory Comput. 17, 1931–1943 

(2021). 

57. Daura, X. et al. Peptide folding: When simulation meets experiment. Angew. Chem. Int. Ed Engl. 38, 

236–240 (1999). 

58. Acharya, A. et al. Supercomputer-Based Ensemble Docking Drug Discovery Pipeline with 

Application to Covid-19. J. Chem. Inf. Model. 60, 5832–5852 (2020). 

59. Nishimoto, Y., Fedorov, D. G. & Irle, S. Density-Functional Tight-Binding Combined with the 

Fragment Molecular Orbital Method. J. Chem. Theory Comput. 10, 4801–4812 (2014). 

60. Nishimoto, Y., Fedorov, D. G. & Irle, S. Third-order density-functional tight-binding combined with 

the fragment molecular orbital method. Chem. Phys. Lett. 636, 90–96 (2015). 

61. Nishimoto, Y. & Fedorov, D. G. The fragment molecular orbital method combined with density-

functional tight-binding and the polarizable continuum model. Phys. Chem. Chem. Phys. 18, 22047–

22061 (2016). 

62. Li, Y., Han, L., Liu, Z. & Wang, R. Comparative assessment of scoring functions on an updated 

benchmark: 2. Evaluation methods and general results. J. Chem. Inf. Model. 54, 1717–1736 (2014). 

63. Trott, O. & Olson, A. J. AutoDock Vina: improving the speed and accuracy of docking with a new 

scoring function, efficient optimization, and multithreading. J. Comput. Chem. 31, 455–461 (2010). 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 15, 2021. ; https://doi.org/10.1101/2021.11.11.468228doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.11.468228
http://creativecommons.org/licenses/by-nc-nd/4.0/

